1
|
Jing E, Yan L, Jiang G, Le XC. Environmental studies of priority persistent contaminants: A special issue dedicated to Professor Chuanyong Jing. J Environ Sci (China) 2025; 153:1-5. [PMID: 39855782 DOI: 10.1016/j.jes.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Affiliation(s)
- Emma Jing
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; University of Minnesota, Minneapolis, MN 55455, USA
| | - Li Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
2
|
Liu W, Wang W, Jing C, Yin Z, Cai Y. Novel arsenate-respiring bacteria drive arsenic biogeochemical cycling in Tibetan geothermal springs revealed by DNA-SIP based metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136899. [PMID: 39689562 DOI: 10.1016/j.jhazmat.2024.136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/24/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
Arsenic (As) is a toxic element posing health risks globally, with geothermal environment as one of the hotspots. Arsenic biotransformation is mainly mediated by microorganisms which often employ diverse metabolic strategies for survival. However, the microorganisms responsible for As cycling and their survival strategies in geothermal environment in Tibet, the Third Pole, remain unclear. To address this knowledge gap, we investigated As biotransformation in representative geothermal springs using DNA-stable isotope probing (DNA-SIP) combined with metagenomic sequencing. As(V) reduction to the more toxic As(III) was found to be prevalent. Pseudomonas and Thermincola were identified as the dominant As(V)-reducing bacteria (AsRB). Metagenome-assembled genomes (MAGs) affiliated with AsRB contained abundant genes encoding As(V)-respiratory reductase (arrA, 1044.34 transcripts per million (TPM)), nitrate reduction pathway (e.g., narG), and Wood-Ljungdahl pathway (e.g., acsA), indicating their role as dissimilatory As(V)-reducing prokaryotes (DARPs) with diverse metabolic strategies. Here, Thermincola's potential of As(V) reduction via arrA and carbon fixation via Wood-Ljungdahl pathway was observed for the first time, which was found to be widespread in various ecosystems. Our study unravels the key players driving As biogeochemical cycle in Tibetan geothermal springs and provides insights into the genetic mechanisms enabling their survival in extreme environments.
Collapse
Affiliation(s)
- Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenting Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
3
|
Wu YF, Huang H, Zhang J, Hu G, Wang J, Peng C, Kappler A, Zhao FJ. Sulfate-mediated Fe(III) mineral reduction accelerates arsenic mobilization by a Desulfovibrio strain isolated from paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176529. [PMID: 39343409 DOI: 10.1016/j.scitotenv.2024.176529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The biogeochemical cycling of arsenic (As) is often intertwined with iron (Fe) and sulfur (S) cycles, wherein Fe(III)- and sulfate-reducing bacteria (SRB) play a crucial role. Here, we isolated strain DS-1, a strictly anaerobic Fe(III)- and sulfate-reducing bacterium, from As-contaminated paddy soil. Using 16S rRNA gene sequence analysis, strain DS-1 was identified as a member of the genus Desulfovibrio. Strain DS-1 utilized energy derived from ferrihydrite reduction to support its cellular growth. Under anoxic sulfate-reducing conditions, the presence of strain DS-1 significantly increased As mobilization compared to sulfate-free conditions. Mechanistically, SRB-produced sulfide reacts with Fe(III) to form FeS, which disrupts Fe(III) minerals, thereby enhancing As release. These findings highlight the critical role of redox disequilibrium in As mobilization and suggest that SRB-produced sulfide may permeate to the rice rhizosphere, increasing As mobilization through Fe(III) reduction.
Collapse
Affiliation(s)
- Yi-Fei Wu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Huang
- College of Ecology and Environment and Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jun Zhang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Gang Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiajia Wang
- School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, People's Republic of China
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong, China
| | - Andreas Kappler
- Geomicrobiology, Department of Geoscience, University of Tuebingen, Tuebingen 72076, Germany
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Yin Z, Zhang M, Jing C, Cai Y. Organic matter in geothermal springs and its association with the microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176775. [PMID: 39378948 DOI: 10.1016/j.scitotenv.2024.176775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Organic matter (OM) plays an important role in the biogeochemical cycles of carbon, nitrogen, and other elements, shaping the structure of the microbiome and vice versa. However, the molecular composition of OM and its impact on the microbial community in terrestrial geothermal environments remain unclear. In this study, we characterized the OM in water and sediment from a typical geothermal field using ultra-high-resolution Fourier transform ion cyclotron resonance mass spectrometry. By combining high-throughput amplicon sequencing and multivariate analyses, we deciphered the association between OM components and microbial community. A surprisingly high chemodiversity of OM was observed in the waters (11,088 compounds) and sediments (7772 compounds) in geothermal springs. Sulfur-containing organic compounds, a characteristic molecular signature of geothermal springs, accounted for 21 % ± 5 % in waters and 33 % ± 4 % in sediments. Multivariate analyses revealed that both labile and recalcitrant fractions of OM (e.g., carbohydrates intensity and tannins chemodiversity) influenced the structure and function of the microbial community. Co-occurrence networks showed that Proteobacteria and Crenarchaeota accounted for most of the connections with OM in waters (33 % and 15 %, respectively) and sediments (15 % and 12 %, respectively), highlighting their key roles in carbon cycling. This study expands our understanding of the molecular compositions of OM in geothermal springs and highlights its potentially important role in global climate change through microbial carbon cycling.
Collapse
Affiliation(s)
- Zhipeng Yin
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States.
| |
Collapse
|
5
|
Ito K, Kuramata M, Tanikawa H, Suda A, Yamaguchi N, Ishikawa S. Diversity and transcription of genes involved in respiratory As(V) reduction and As(III) methylation in Japanese paddy soils. BMC Microbiol 2024; 24:396. [PMID: 39379826 PMCID: PMC11462812 DOI: 10.1186/s12866-024-03562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Arsenic (As) metabolism by soil microorganisms has an impact on As geochemical cycling in paddy soils, which in turn affects As uptake in rice. However, little is known about the key microorganisms involved in this process in Japanese paddy soil. RESULTS Total RNA was extracted from Japanese paddy soils with different levels of dissolved As under flooded conditions, and the transcription of As metabolic genes (arrA, ttrA and arsM) was analyzed via a metatranscriptomic approach. The results showed that ttrA was the predominant respiratory arsenate reductase gene transcribed in these soils rather than arrA, suggesting that ttrA contributes to the reductive dissolution of As. The predominant taxa expressing ttrA differed among soils but were mostly associated with genera known for their iron- and/or sulfate-reduction activity. In addition, a wide variety of microorganisms expressed and upregulated arsM approximately 5.0- to 13.2-fold at 9 d compared with 3 d of incubation under flooded conditions in flasks. CONCLUSIONS Our results support the involvement of microbial activity in the geochemical cycling of As in Japanese paddy soils and suggest that ttrA may be one of the key genes involved in the formation of arsenite, an inorganic species taken up by rice.
Collapse
Affiliation(s)
- Koji Ito
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Masato Kuramata
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Hachidai Tanikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Aomi Suda
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Noriko Yamaguchi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Satoru Ishikawa
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
| |
Collapse
|
6
|
Hu N, Xiao F, Zhang D, Hu R, Xiong R, Lv W, Yang Z, Tan W, Yu H, Ding D, Yan Q, He Z. Organophosphorus mineralizing-Streptomyces species underpins uranate immobilization and phosphorus availability in uranium tailings. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134975. [PMID: 38908177 DOI: 10.1016/j.jhazmat.2024.134975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.
Collapse
Affiliation(s)
- Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Fangfang Xiao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Dandan Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rui Xiong
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenpan Lv
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhaolan Yang
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China.
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519080, China
| |
Collapse
|
7
|
Demin KA, Prazdnova EV, Minkina TM, Gorovtsov AV. Sulfate-reducing bacteria unearthed: ecological functions of the diverse prokaryotic group in terrestrial environments. Appl Environ Microbiol 2024; 90:e0139023. [PMID: 38551370 PMCID: PMC11022543 DOI: 10.1128/aem.01390-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) are essential microorganisms that play crucial roles in various ecological processes. Even though SRPs have been studied for over a century, there are still gaps in our understanding of their biology. In the past two decades, a significant amount of data on SRP ecology has been accumulated. This review aims to consolidate that information, focusing on SRPs in soils, their relation to the rare biosphere, uncultured sulfate reducers, and their interactions with other organisms in terrestrial ecosystems. SRPs in soils form part of the rare biosphere and contribute to various processes as a low-density population. The data reveal a diverse range of sulfate-reducing taxa intricately involved in terrestrial carbon and sulfur cycles. While some taxa like Desulfitobacterium and Desulfosporosinus are well studied, others are more enigmatic. For example, members of the Acidobacteriota phylum appear to hold significant importance for the terrestrial sulfur cycle. Many aspects of SRP ecology remain mysterious, including sulfate reduction in different bacterial phyla, interactions with bacteria and fungi in soils, and the existence of soil sulfate-reducing archaea. Utilizing metagenomic, metatranscriptomic, and culture-dependent approaches will help uncover the diversity, functional potential, and adaptations of SRPs in the global environment.
Collapse
|
8
|
Li M, Kang Y, Kuang S, Wu H, Zhuang L, Hu Z, Zhang J, Guo Z. Efficient stabilization of arsenic migration and conversion in soil with surfactant-modified iron-manganese oxide: Environmental effects and mechanistic insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170526. [PMID: 38286296 DOI: 10.1016/j.scitotenv.2024.170526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The use of iron-manganese oxide (FMO) as a promising amendment for remediating arsenic (As) contamination in soils has gained attention, but its application is limited owing to agglomeration issues. This study aims to address agglomeration using surfactant-modified FMO and investigate their stabilization behavior towards As and resulting environmental changes upon amendments. The results confirmed the efficacy of surfactants and demonstrated that cetyltrimethylammonium-bromide-modified FMO significantly reduced the leaching concentration of As by 92.5 % and effectively suppressed the uptake of As by 85.8 % compared with the control groups. The ratio of the residual fraction increased from 30.5-41.6 % in unamended soil to 67.9-69.2 %. The number of active sites was through the introduction of surfactants and immobilized As via complexation, ion exchange, and redox reactions. The study also revealed that amendments and the concentration of As influenced the soil physicochemical properties and enriched bacteria associated with As and Fe reduction and changed the distribution of C, N, Fe, and As metabolism genes, which promoted the stabilization of As. The interactions among cetyltrimethylammonium bromide, FMO, and microorganisms were found to have the greatest effect on As immobilization.
Collapse
Affiliation(s)
- Mei Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Xu K, Pei R, Zhang M, Jing C. Iron oxide-supported gold nanoparticle electrode for simultaneous detection of arsenic and sulfide on-site. Anal Chim Acta 2024; 1288:342120. [PMID: 38220269 DOI: 10.1016/j.aca.2023.342120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
The environmental behavior of arsenic (As) has garnered significant attention due to its hazardous nature. The fate of As often couples with sulfide, thus co-detecting arsenic and sulfide on-site is crucial for comprehending their geochemical interactions. While electrochemical methods are suitable for on-site chemical analysis, there currently exists no electrode capable of simultaneously detecting both arsenic and sulfide. To address this, we developed a dual-metal electrode consisting of iron oxide-encased carbon cloth loaded with gold nanoparticles (Au/FeOx/CC) using the electrochemical deposition method. This electrode enables square wave stripping voltammetry (SWASV) binary detection of As and sulfide. Comparison experiments reveal that the reaction sites for sulfide primarily reside on FeOx, while the interface synergy of iron oxide and gold nanoparticles enhances the response to arsenite (AsIII). Arsenate (AsV) is directly reduced to As0 on Fe0, obviating the need for an external reducing agent. The electrode achieves detection limits of 1.5 μg/L for AsV, 0.25 μg/L for AsIII, and 11.6 μg/L for sulfide at mild conditions (pH 7.8). Field validation was conducted in the Tengchong geothermal hot spring region, where the electrochemical method exhibited good correlation with the standard methods: Total As (r = 0.978 vs. ICP-MS), AsIII (r = 0.895 vs. HPLC-ICP-MS), and sulfide (r = 0.983 vs. colorimetric method). Principal component analysis and correlation analysis suggest that thioarsenic, could potentially be positive interferents for AsIII. However, this interference can be anticipated and mitigated by monitoring the abundance of sulfide. The study provides new insights and problems for the electrochemical detection of coexisted As and sulfide.
Collapse
Affiliation(s)
- Kun Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Rui Pei
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Min Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
10
|
Deng W, Zhao Z, Li Y, Cao R, Chen M, Tang K, Wang D, Fan W, Hu A, Chen G, Chen CTA, Zhang Y. Strategies of chemolithoautotrophs adapting to high temperature and extremely acidic conditions in a shallow hydrothermal ecosystem. MICROBIOME 2023; 11:270. [PMID: 38049915 PMCID: PMC10696704 DOI: 10.1186/s40168-023-01712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.
Collapse
Affiliation(s)
- Wenchao Deng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yufang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Rongguang Cao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guangcheng Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
11
|
Valdez S, de la Vega FV, Pairazaman O, Castellanos R, Esparza M. Hyperthermophile diversity microbes in the Calientes geothermal field, Tacna, Peru. Braz J Microbiol 2023; 54:2927-2937. [PMID: 37801222 PMCID: PMC10689642 DOI: 10.1007/s42770-023-01117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/23/2023] [Indexed: 10/07/2023] Open
Abstract
Hyperthermophile microorganisms have been discovered worldwide, and several studies regarding biodiversity and the potential biotechnological applications have been reported. In this work, we describe for the first time the diversity of hyperthermophile communities in the Calientes Geothermal Field (CGF) located 4400 m above sea level in Tacna Region, Perú. Three hot springs were monitored and showed a temperature around 84 to 88 °C, for the microbiome analyzed was taken by sampling of sediment and water (pH 7.3-7.6). The hyperthermophile diversity was determined by PCR, DGGE, and DNA sequencing. The sediments analyzed showed a greater diversity than water samples. Sediments showed a more abundant population of bacteria than archaea, with the presence of at least 9 and 5 phylotypes, respectively. Most interestingly, in some taxa of bacteria (Bacillus) and archaea (Haloarcula and Halalkalicoccus), any of operational taxonomic units (OTUs) have not been observed before in hyperthermophile environments. Our results provide insight in the hyperthermophile diversity and reveal the possibility to develop new biotechnological applications based on the kind of environments.
Collapse
Affiliation(s)
- Silvia Valdez
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
| | - Fabián Veliz de la Vega
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaiso-Chile Av. Brasil 2085, Valparaíso, Chile.
| | - Omar Pairazaman
- Laboratorio Regional de Salud Pública (Diresa), Cajamarca, Perú
| | - Roberto Castellanos
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Tacna, Perú
| | - Mario Esparza
- Universidad Privada Antenor Orrego, Facultad de Medicina Humana, Laboratorio de Genética, Reproducción y Biología Molecular, Trujillo, Perú
| |
Collapse
|
12
|
Zhang Z, Liu T, Li X, Ye Q, Bangash HI, Zheng J, Peng N. Metagenome-assembled genomes reveal carbohydrate degradation and element metabolism of microorganisms inhabiting Tengchong hot springs, China. ENVIRONMENTAL RESEARCH 2023; 238:117144. [PMID: 37716381 DOI: 10.1016/j.envres.2023.117144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
A hot spring is a distinctive aquatic environment that provides an excellent system to investigate microorganisms and their function in elemental cycling processes. Previous studies of terrestrial hot springs have been mostly focused on the microbial community, one special phylum or category, or genes involved in a particular metabolic step, while little is known about the overall functional metabolic profiles of microorganisms inhabiting the terrestrial hot springs. Here, we analyzed the microbial community structure and their functional genes based on metagenomic sequencing of six selected hot springs with different temperature and pH conditions. We sequenced a total of 11 samples from six hot springs and constructed 162 metagenome-assembled genomes (MAGs) with completeness above 70% and contamination lower than 10%. Crenarchaeota, Euryarchaeota and Aquificae were found to be the dominant phyla. Functional annotation revealed that bacteria encode versatile carbohydrate-active enzymes (CAZYmes) for the degradation of complex polysaccharides, while archaea tend to assimilate C1 compounds through carbon fixation. Under nitrogen-deficient conditions, there were correspondingly fewer genes involved in nitrogen metabolism, while abundant and diverse set of genes participating in sulfur metabolism, particularly those associated with sulfide oxidation and thiosulfate disproportionation. In summary, archaea and bacteria residing in the hot springs display distinct carbon metabolism fate, while sharing the common energy preference through sulfur metabolism. Overall, this research contributes to a better comprehension of biogeochemistry of terrestrial hot springs.
Collapse
Affiliation(s)
- Zhufeng Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Tao Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Qing Ye
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Hina Iqbal Bangash
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Nan Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Das S, Najar IN, Sherpa MT, Kumar S, Sharma P, Mondal K, Tamang S, Thakur N. Baseline metagenome-assembled genome (MAG) data of Sikkim hot springs from Indian Himalayan geothermal belt (IHGB) showcasing its potential CAZymes, and sulfur-nitrogen metabolic activity. World J Microbiol Biotechnol 2023; 39:179. [PMID: 37133792 DOI: 10.1007/s11274-023-03631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
Here we present the construction and characterization of metagenome assembled genomes (MAGs) from two hot springs residing in the vicinity of Indian Himalayan Geothermal Belt (IHGB). A total of 78 and 7 taxonomic bins were obtained for Old Yume Samdong (OYS) and New Yume Samdong (NYS) hot springs respectively. After passing all the criteria only 21 and 4 MAGs were further studied based on the successful prediction of their 16 S rRNA. Various databases were used such as GTDB, Kaiju, EzTaxon, BLAST XY Plot and NCBI BLAST to get the taxonomic classification of various 16 S rRNA predicted MAGs. The bacterial genomes found were from both thermophilic and mesophilic bacteria among which Proteobacteria, Chloroflexi, Bacteroidetes and Firmicutes were the abundant phyla. However, in case of OYS, two genomes belonged to archaeal Methanobacterium and Methanocaldococcus. Functional characterization revealed the richness of CAZymes such as Glycosyl Transferase (GT) (56.7%), Glycoside Hydrolase (GH) (37.4%), Carbohydrate Esterase family (CE) (8.2%), and Polysaccharide Lyase (PL) (1.9%). There were negligible antibiotic resistance genes in the MAGs however, a significant heavy metal tolerance gene was found in the MAGs. Thus, it may be assumed that there is no coexistence of antibiotic and heavy metal resistance genes in these hot spring microbiomes. Since the selected hot springs possess good sulfur content thus, we also checked the presence of genes for sulfur and nitrogen metabolism. It was found that MAGs from both the hot springs possess significant number of genes related to sulfur and nitrogen metabolism.
Collapse
Affiliation(s)
- Sayak Das
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
- Department of Life Science and Bioinformatics, Hargobind Khurana School of Life Sciences, Assam University, Silchar, Assam, 788011, India
| | - Ishfaq Nabi Najar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Mingma Thundu Sherpa
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Santosh Kumar
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Prayatna Sharma
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Krishnendu Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sonia Tamang
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India
| | - Nagendra Thakur
- Department of Microbiology, School of Life Sciences, Sikkim University, 6th Mile, Samdur, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
14
|
Wang L, Guo Q, Wu G, Yu Z, Ninin JML, Planer-Friedrich B. Methanogens-Driven Arsenic Methylation Preceding Formation of Methylated Thioarsenates in Sulfide-Rich Hot Springs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7410-7420. [PMID: 37134202 DOI: 10.1021/acs.est.2c08814] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hot springs represent a major source of arsenic release into the environment. Speciation is typically reported to be dominated by arsenite, arsenate, and inorganic thiolated arsenates. Much less is known about the relevance and formation of methylated thioarsenates, a group with species of high mobility and toxicity. In hot spring samples taken from the Tengchong volcanic region in China, methylated thioarsenates contributed up to 13% to total arsenic. Enrichment cultures were obtained from the corresponding sediment samples and incubated to assess their capability to convert arsenite into methylated thioarsenates over time and in the presence of different microbial inhibitors. In contrast to observations in other environmental systems (e.g., paddy soils), there was no solid evidence, supporting that the sulfate-reducing bacteria contributed to the arsenic methylation. Methanosarcina, the sole genus of methanogens detected in the enrichment cultures, as well as Methanosarcina thermophila TM-1, a pure strain within the genus, did methylate arsenic. We propose that methylated thioarsenates in a typical sulfide-rich hot spring environment like Tengchong form via a combination of biotic arsenic methylation driven by thermophilic methanogens and arsenic thiolation with either geogenic sulfide or sulfide produced by sulfate-reducing bacteria.
Collapse
Affiliation(s)
- Luxia Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Qinghai Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Geng Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - Zhicheng Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, Hubei, P. R. China
| | - José Miguel Léon Ninin
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
15
|
Zhang C, Liu X, Shi LD, Li J, Xiao X, Shao Z, Dong X. Unexpected genetic and microbial diversity for arsenic cycling in deep sea cold seep sediments. NPJ Biofilms Microbiomes 2023; 9:13. [PMID: 36991068 PMCID: PMC10060404 DOI: 10.1038/s41522-023-00382-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Cold seeps, where cold hydrocarbon-rich fluid escapes from the seafloor, show strong enrichment of toxic metalloid arsenic (As). The toxicity and mobility of As can be greatly altered by microbial processes that play an important role in global As biogeochemical cycling. However, a global overview of genes and microbes involved in As transformation at seeps remains to be fully unveiled. Using 87 sediment metagenomes and 33 metatranscriptomes derived from 13 globally distributed cold seeps, we show that As detoxification genes (arsM, arsP, arsC1/arsC2, acr3) were prevalent at seeps and more phylogenetically diverse than previously expected. Asgardarchaeota and a variety of unidentified bacterial phyla (e.g. 4484-113, AABM5-125-24 and RBG-13-66-14) may also function as the key players in As transformation. The abundances of As cycling genes and the compositions of As-associated microbiome shifted across different sediment depths or types of cold seep. The energy-conserving arsenate reduction or arsenite oxidation could impact biogeochemical cycling of carbon and nitrogen, via supporting carbon fixation, hydrocarbon degradation and nitrogen fixation. Overall, this study provides a comprehensive overview of As cycling genes and microbes at As-enriched cold seeps, laying a solid foundation for further studies of As cycling in deep sea microbiome at the enzymatic and processual levels.
Collapse
Affiliation(s)
- Chuwen Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai, China
| | - Ling-Dong Shi
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiwei Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xi Xiao
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|