1
|
Yang K, He Z. Integrating oxidation and reduction processes in electrochemical wastewater treatment for contaminant removal with byproduct control. WATER RESEARCH 2025; 282:123632. [PMID: 40300238 DOI: 10.1016/j.watres.2025.123632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
Electrochemical technologies offer a promising approach for recalcitrant contaminants removal, but toxic halogenated byproducts from the treatment pose a critical challenge. Herein, an integrated electrochemical oxidation (EO) and reduction (ER) process was developed for both contaminant removal and byproduct control. The anodic EO achieved > 90 % contaminant removal and generated > 0.6 μM THM4 and > 0.8 μM HAA5 when treating a saline wastewater. A trace amount of Br- led to the production of reactive bromine species and the brominated byproducts. Carbonates made EO more compound-specific by scavenging halogen radicals to CO3•- and reduced the THM4 and HAA5 formation by 16 % and 31 %, respectively. The cathodic ER removed > 80 % of THM4 and > 50 % of HAA5 through direct reduction and H*-mediated indirect reduction pathways with the final concentrations of ∼ 0.1 μM THM4 and ∼ 0.4 μM HAA5. HAAs could achieve complete dehalogenation via ER and form the non-halogenated products. Throughout the treatment of the integrated process, phenolic contaminant was completely removed by the anodic EO with the kobs > 0.045 min-1, and the formed halogenated byproducts were subsequently removed by the cathodic ER to meet the national and global standards, with a total energy consumption of ∼ 4.5 kWh m-3. The results of this study would encourage the further exploration of enhanced electrochemical wastewater treatment with minimized byproduct residues.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Zhao X, Zhang Z. Heterogeneous Peroxymonosulfate-Based Advanced Oxidation Mechanisms: New Wine in Old Bottles? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5913-5924. [PMID: 40101212 DOI: 10.1021/acs.est.4c11311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Heterogeneous persulfate-based advanced oxidation processes (PS-AOPs) have been gaining significant attention in water/wastewater treatment; however, the elucidation of mechanisms in PS-AOPs has become increasingly complex as the understanding of potential reactive pathways expands and the rigor of corresponding characterizations intensifies. As such, accurately illustrating system mechanisms with a robust and convincing methodology is crucial, while the influence of substrates must not be overlooked. In this Perspective, established techniques and critical issues are systematically compiled to serve as practical guidelines. Additionally, a newly proposed pathway, the direct oxidation transfer process (DOTP), is discussed in comparison to conventional mineralization processes by reactive oxidative species (ROS) in PS-AOPs. Overall, the investigation of PS-AOP mechanisms across various heterogeneous systems remains contentious and calls for standardization, for which this work aims to serve as a valuable reference.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Centre, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Qian J, Zhang X, Jia Y, Xu H, Pan B. Oxidative Polymerization in Water Treatment: Chemical Fundamentals and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1060-1079. [PMID: 39761191 DOI: 10.1021/acs.est.4c10073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
For several decades, the methodology of complete destruction of organic pollutants via oxidation, i.e., mineralization, has been rooted in real water treatment applications. Nevertheless, this industrially accepted protocol is far from sustainable because of the excessive input of chemicals and/or energy as well as the unregulated carbon emission. Recently, there have been emerging studies on the removal of organic pollutants via a completely different pathway, i.e., polymerization, meaning that the target pollutants undergo oxidative polymerization reactions to generate polymeric products. These studies have collectively shown that compared to the conventional mineralization pathway, the polymerization pathway allows more efficient removal of target pollutants, largely reduced input of chemicals, and suppressed carbon emission. In this review, we aim to provide a comprehensive examination of the fundamentals of the oxidative polymerization process, current state-of-the-art strategies for regulation of the polymerization pathway from both kinetic and thermodynamic perspectives, and resource recovery of the formed polymeric products. In the end, the limitations of the polymerization process for pollutant removal are discussed, with perspectives for future studies. Hopefully, this review could not only provide critical insight for the advancement of polymerization-oriented technologies for removal of more organic pollutants in a greener manner but also stimulate more paradigm innovations for low-carbon water treatment.
Collapse
Affiliation(s)
- Jieshu Qian
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuqian Jia
- School of Environmental Science and Engineering, Wuxi University, Jiangsu 214105, PR China
| | - Hui Xu
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Zhang X, Ye G, Zhao Z, Wu D. Contribution of complexed Fe(Ⅱ) oxygenation to norfloxacin humification and stabilization: Producing and trapping of more humified products. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135251. [PMID: 39068885 DOI: 10.1016/j.jhazmat.2024.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Organic pollutants polymerization in advanced oxidation processes or environmental matrices has attracted increasing attention, but little is known about stabilization of the polymerization products. The results in this work revealed the contribution of Fe(Ⅱ) oxygenation to stabilization of the products from norfloxacin (NOR) humification. It was found that upon oxygenation of Fe(Ⅱ) complexed by catechol (CT), NOR polymerized into the products with larger molecular weight through nucleophilic addition. Around 83.9-89.7 % organic carbon (OC) can be retained in the reaction solution and the precipitates at different Fe(II)/CT molar ratio. In this system with humification potential, the produced hydroxyl radical (HO•) dominantly modified, instead of decomposed, the structure of transformation products (TPs). TPs with diversified side chains were formed through hydroxylation and ring-opening, leading to the more humified products. In the subsequent Fe(Ⅱ) oxidative precipitation, Fe-TPs composites were formed as spherical particle clusters, which could steadily incorporate OC species with molecular fractionation. Specifically, lignin-like, tannins-like, condensed aromatic and high-molecular-weight TPs were preferentially preserved in the precipitates, while the recalcitrant aliphatic products mainly retained in the solution. These findings shed light on the role of Fe(Ⅱ) oxygenation in stabilizing the products from pollutants humification, which could strengthen both decontamination and organics sequestration.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Guojie Ye
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Zhenyu Zhao
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Fu H, Zheng W, Duan W, Fang G, Duan X, Wang S, Feng C, Zhu S. Overlooked Roles and Transformation of Carbon-Centered Radicals Produced from Natural Organic Matter in a Thermally Activated Persulfate System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14949-14960. [PMID: 39126387 DOI: 10.1021/acs.est.4c06770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The presence and induced secondary reactions of natural organic matter (NOM) significantly affect the remediation efficacy of in situ chemical oxidation (ISCO) systems. However, it remains unclear how this process relates to organic radicals generated from reactions between the NOM and oxidants. The study, for the first time, reported the vital roles and transformation pathways of carbon-centered radicals (CCR•) derived from NOM in activated persulfate (PS) systems. Results showed that both typical terrestrial/aquatic NOM isolates and collected NOM samples produced CCR• by scavenging activated PS and greatly enhanced the dehalogenation performance under anoxic conditions. Under oxic conditions, newly formed CCR• could be oxidized by O2 and generate organic peroxide intermediates (ROO•) to catalytically yield additional •OH without the involvement of PS. Nuclear magnetic resonance (NMR) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) results indicated that CCR• predominantly formed from carboxyl and aliphatic structures instead of aromatics within NOM through hydrogen abstraction and decarboxylation reactions by SO4•- or •OH. Specific anoxic reactions (i.e., dehalogenation and intramolecular cross-coupling reactions) further promoted the transformation of CCR• to more unsaturated and polymerized/condensed compounds. In contrast, oxic propagation of ROO• enhanced bond breakage/ring cleavage and degradation of CCR• due to the presence of additional •OH and self-decomposition. This study provides novel insights into the role of NOM and O2 in ISCO and the development of engineered strategies for creating organic radicals capable of enhancing the remediation of specific contaminants and recovering organic carbon.
Collapse
Affiliation(s)
- Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Li Z, Wang X, Peng F, Chen N, Fang G. Organic radicals driving polycyclic aromatic hydrocarbon polymerization with peracetic acid activation in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134839. [PMID: 38878430 DOI: 10.1016/j.jhazmat.2024.134839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024]
Abstract
The use of peracetic acid (PAA) in advanced oxidation processes has gained significant attention recently, but the knowledge of activating PAA to degrade polycyclic aromatic hydrocarbons (PAHs) is limited due to the variety and selectivity of reactive substances in PAA oxidation system. This paper presented the first systemically study on the degradation of PAHs by PAA activation in soil. It was found that heat-activated peracetic acid (heat/PAA) was capable of degrading phenanthrene (PHE) efficiently with degradation efficiency > 90 % within 30 min. Experimental results demonstrated that a series of reactive oxygen species (ROS) including organic radicals (RO•), hydroxyl radicals (HO•) and singlet oxygen (1O2) were generated, while acetylperoxyl (CH3C(O)OO•) and acetyloxyl (CH3C(O)O•) radicals were primarily responsible for PHE degradation in soil. Further analysis shows that polymerization products such as diphenic acid, 2'-formyl-2-biphenylcarboxylic acid and other macromolecules were dominant products of PHE degradation, suggesting polymerization driving PHE degradation instead of the conventional mineralization process. Toxicity analysis shows that most of the polymerization products had less toxicity than that of PHE. These results indicate that PAA activation was a highly effective remediation method for PAHs contaminated soil, which also provided a novel mechanism for pollutant degradation with the PAA activation process for environmental remediation.
Collapse
Affiliation(s)
- Ziyue Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaolei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Fei Peng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
7
|
Zhang H, Wang X, Zhao X, Dong Y, Wang W, Lv Y, Cao S, Wang L. Enhanced degradation of reactive black 5 via persulfate activation by natural bornite: influencing parameters, mechanism and degradation pathway. ENVIRONMENTAL TECHNOLOGY 2024; 45:3961-3973. [PMID: 37452659 DOI: 10.1080/09593330.2023.2237660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
Reactive black 5 (RBk5) is a refractory azo dye that constitutes a serious threat to the environment and humans. Herein, natural bornite (Nbo) was utilized to activate persulfate (PDS) for the RBk5 removal. The particle size of the Nbo catalyst was optimized and the RBk5 degradation rate constant that responded positively to the particle size of the Nbo catalyst was exhibited. Then, the operational factors affecting RBk5 removal were comprehensively investigated. With the addition of 1.5 g L-1 Nbo and 1.5 mM PDS, 99.05% of the RBk5 (20 mg L-1) was removed in 150 min compared with 0.46% removal with PDS only, which was caused by the additional reactive oxygen species (ROS) produced by the synergistic action of Fe-Cu bimetallic metal and reductive sulfur species. The Nbo catalyst presented high stability and reusability toward RBk5 removal. Identification of reactive oxygen species revealed that SO 4 ⋅ - , ·OH, O 2 ⋅ - and 1O2 collectively participated in RBk5 removal. Additionally, a possible degradation pathway for RBk5 was proposed, including cleavage of the azo, C-S and S-O bonds, hydroxylation, hydrolyzation, direct oxidation and other pathways. This work developed a highly effective and low-cost natural mineral-based bimetallic sulfide material for PDS activation for the degradation of contaminants and environmental remediation.
Collapse
Affiliation(s)
- Hongmin Zhang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Xiaochen Zhao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yonghao Dong
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Wanying Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Yongtao Lv
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Shumiao Cao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| | - Lei Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, People's Republic of China
| |
Collapse
|
8
|
Liu JY, Duan PJ, Li MX, Zhang ZQ, Bai CW, Chen XJ, Kong Y, Chen F. Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12155-12166. [PMID: 38934735 DOI: 10.1021/acs.est.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f- index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure-activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination.
Collapse
Affiliation(s)
- Jiu-Yun Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ming-Xue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yan Kong
- Key Laboratory of Yellow River Water Environment in Gansu Province, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
9
|
Zheng W, Luo X, Fu H, Duan W, Zhu S, Yang X, Feng C. Trace Br - Inhibits Halogenated Byproduct Formation in Saline Wastewater Electrochemical Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12212-12224. [PMID: 38916044 DOI: 10.1021/acs.est.4c02061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The electrochemical technology provides a practical and viable solution to the global water scarcity issue, but it has an inherent challenge of generating toxic halogenated byproducts in treatment of saline wastewater. Our study reveals an unexpected discovery: the presence of a trace amount of Br- not only enhanced the electrochemical oxidation of organic compounds with electron-rich groups but also significantly reduced the formation of halogenated byproducts. For example, in the presence of 20 μM Br-, the oxidation rate of phenol increased from 0.156 to 0.563 min-1, and the concentration of total organic halogen decreased from 59.2 to 8.6 μM. Through probe experiments, direct electron transfer and HO• were ruled out as major contributors; transient absorption spectroscopy (TAS) and computational kinetic models revealed that trace Br- triggers a shift in the dominant reactive species from Cl2•- to Br2•-, which plays a key role in pollutant removal. Both TAS and electron paramagnetic resonance identified signals unique to the phenoxyl and carbon-centered radicals in the Br2•--dominated system, indicating distinct reaction mechanisms compared to those involving Cl2•-. Kinetic isotope experiments and density functional theory calculations confirmed that the interaction between Br2•- and phenolic pollutants follows a hydrogen atom abstraction pathway, whereas Cl2•- predominantly engages pollutants through radical adduct formation. These insights significantly enhance our understanding of bromine radical-involved oxidation processes and have crucial implications for optimizing electrochemical treatment systems for saline wastewater.
Collapse
Affiliation(s)
- Wenxiao Zheng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Luo
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Shishu Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
10
|
Yang SQ, Ye RQ, Cui YH, Liu ZQ, Sun K, Yu YZ. Transformation of metoprolol in UV/PDS process: Role and mechanisms of degradation and polymerization. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134498. [PMID: 38733782 DOI: 10.1016/j.jhazmat.2024.134498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes for the treatment of organic pollutants in wastewater suffer from difficulties in mineralization, potential risks of dissolved residues, and high oxidant consumption. In this study, radical-initiated polymerization is dominated in an UV/peroxydisulfate (PDS) process to eliminate organic pollutant of pharmaceutical metoprolol (MTP). Compared with an ideal degradation-based UV/PDS process, the present process can save four fifths of PDS consumption at the same dissolved organic carbon removal of 47.3%. Simultaneously, organic carbon can be recovered from aqueous solution by separating solid polymers at a ratio of 50% of the initial chemical oxygen demand. The chemical structure of products was analyzed to infer the transformation pathways of MTP. Unlike previous studies on simple organic pollutants that the polymerization can occur independently, the polymerization of MTP is dependent on the partial degradation of MTP, and the main monomer in polymerization is a dominant degradation product (4-(2-methoxyethyl)-phenol, denoted as DP151). The separated solid polymers are formed by repeated oxidation and coupling of DP151 or its derivatives through a series of intermediate oligomers. This proof-of-concept study demonstrates the advantage of polymerization-dominated mechanism on dealing with large organic molecules with complex structures, as well as the potential of UV/PDS process for simultaneous organic pollution reduction and organic carbon recovery from aqueous solution.
Collapse
Affiliation(s)
- Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Rui-Qiu Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China.
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Kai Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Ze Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| |
Collapse
|
11
|
Zhou H, He YL, Peng J, Duan X, Lu X, Zhang H, Liu Y, He CS, Xiong Z, Ma T, Wang S, Lai B. High-valent metal-oxo species transformation and regulation by co-existing chloride: Reaction pathways and impacts on the generation of chlorinated by-products. WATER RESEARCH 2024; 257:121715. [PMID: 38728779 DOI: 10.1016/j.watres.2024.121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
High-valent metal-oxo species (HMOS) have been extensively recognized in advanced oxidation processes (AOPs) owing to their high selectivity and high chemical utilization efficiency. However, the interactions between HMOS and halide ions in sewage wastewater are complicated, leading to ongoing debates on the intrinsic reactive species and impacts on remediation. Herein, we prepared three typical HMOS, including Fe(IV), Mn(V)-nitrilotriacetic acid complex (Mn(V)NTA) and Co(IV) through peroxymonosulfate (PMS) activation and comparatively studied their interactions with Cl- to reveal different reactive chlorine species (RCS) and the effects of HMOS types on RCS generation pathways. Our results show that the presence of Cl- alters the cleavage behavior of the peroxide OO bond in PMS and prohibits the generation of Fe(IV), spontaneously promoting SO4•- production and its subsequent transformation to secondary radicals like Cl• and Cl2•-. The generation and oxidation capacity of Mn(V)NTA was scarcely influenced by Cl-, while Cl- would substantially consume Co(IV) and promote HOCl generation through an oxygen-transfer reaction, evidenced by density functional theory (DFT) and deuterium oxide solvent exchange experiment. The two-electron-transfer standard redox potentials of Fe(IV), Mn(V)NTA and Co(IV) were calculated as 2.43, 2.55 and 2.85 V, respectively. Due to the different reactive species and pathways in the presence of Cl-, the amounts of chlorinated by-products followed the order of Co(II)/PMS > Fe(II)/PMS > Mn(II)NTA/PMS. Thus, this work renovates the knowledge of halide chemistry in HMOS-based systems and sheds light on the impact on the treatment of salinity-containing wastewater.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yong-Li He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jiali Peng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaohui Lu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shaobin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Zhang P, Yang Y, Duan X, Wang S. Oxidative polymerization versus degradation of organic pollutants in heterogeneous catalytic persulfate chemistry. WATER RESEARCH 2024; 255:121485. [PMID: 38522399 DOI: 10.1016/j.watres.2024.121485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Catalytic polymerization pathways in advanced oxidation processes (AOPs) have recently drawn much attention for organic pollutant elimination owing to the rapid removal kinetics, high selectivity, and recovery of organic carbon from wastewater. This work presents a review on the polymerization regimes in AOPs and their applications in wastewater decontamination. The review mainly highlights three critical issues in polymerization reactions induced by persulfate activation (Poly-PS-AOPs), including heterogeneous catalysts, persulfate activation pathways, and properties of organic substrates. The dominant influencing factors on the selection of catalysts, activation regimes of reactive oxygen species, and polymerization processes of organic substrates are discussed in detail. Moreover, we systematically demonstrate the merits and challenges of Poly-PS-AOPs upon pollutant degradation and polymer synthesis. We particularly highlight that Poly-PS-AOPs technology could be promising in the treatment of industrial wastewater containing heterocyclic organics and the synthesis of polymers and polymer-functionalized materials for advanced environmental and energy applications.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yangyang Yang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Dou J, Su X, Wu J, Li S, Dai H, Liu M, Tang Y, Lu Z, Xu J, He Y. Peroxydisulfate-Driven Reductive Dechlorination as Affected by Soil Constituents: Free Radical Formation and Conversion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8065-8075. [PMID: 38597221 DOI: 10.1021/acs.est.3c08759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
We report a previously unrecognized but efficient reductive degradation pathway in peroxydisulfate (PDS)-driven soil remediation. With supplements of naturally occurring low-molecular-weight organic acids (LMWOAs) in anaerobic biochar-activated PDS systems, degradation rates of 12 γ-hexachlorocyclohexanes (HCH)-spiked soils boosted from 40% without LMWOAs to a maximum of 99% with 1 mM malic acid. Structural analysis revealed that an increase in α-hydroxyl groups and a diminution in pKa1 values of LMWOAs facilitated the formation of reductive carboxyl anion radicals (COO•-) via electrophilic attack by SO4•-/•OH. Furthermore, degradation kinetics were strongly correlated with soil organic matter (SOM) contents than iron minerals. Combining a newly developed in situ fluorescence detector of reductive radicals with quenching experiments, we showed that for soils with high, medium, and low SOM contents, dominant reactive species switched from singlet oxygen/semiquinone radicals to SO4•-/•OH and then to COO•- (contribution increased from 30.8 to 66.7%), yielding superior HCH degradation. Validation experiments using SOM model compounds highlighted critical roles of redox-active moieties, such as phenolic - OH and quinones, in radical formation and conversion. Our study provides insights into environmental behaviors related to radical activation of persulfate in a broader soil horizon and inspiration for more advanced reduction technologies.
Collapse
Affiliation(s)
- Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaxiong Wu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuyao Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, Michigan 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China
| |
Collapse
|
14
|
Chen Y, Ren W, Ma T, Ren N, Wang S, Duan X. Transformative Removal of Aqueous Micropollutants into Polymeric Products by Advanced Oxidation Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4844-4851. [PMID: 38385614 DOI: 10.1021/acs.est.3c06376] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This perspective presents the latest advancements in selective polymerization pathways in advanced oxidation processes (AOPs) for removal of featured organic pollutants in wastewater. In radical-based homogeneous reactions, SO4• --based systems exhibit superior oxidative activity toward aromatics with electron-donating substituents via single electron transfer and radical adduct formation (RAF). The produced organic radical cations subsequently undergo coupling and polymerization reactions to produce polymers. For •OH-based oxidation, metal ions facilitate the production of monomer radicals via RAF. Additionally, heterogeneous catalysts can mediate both coupling and polymerization reactions via persulfate activation without generating inorganic radicals. Metal-based catalysts will mediate a direct oxidation pathway toward polymerization. In contrast, carbon-based catalysts will induce coupling reactions to produce low-molecular-weight oligomers (≤4 units) via an electron transfer process. In comparison to mineralization, polymerization pathways remarkably reduce peroxide usage, quickly separate pollutants from the aqueous phase, and generate polymeric byproducts. Thus, AOP-driven polymerization systems hold significant promise in reducing carbon emission and realizing carbon recycling in water treatment processes.
Collapse
Affiliation(s)
- Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, People's Republic of China
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Wei Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, People's Republic of China
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Guangdong 518055, People's Republic of China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
15
|
Wang H, Kvit A, Wei H. In Situ Monitoring of the Polymerization Kinetics of Organic Pollutants during Persulfate-Based Advanced Oxidation Processes Using Plasmonic Colorimetry. Anal Chem 2024; 96:1587-1596. [PMID: 38215347 DOI: 10.1021/acs.analchem.3c04325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Using sulfate radicals to initiate polymer production in persulfate-based advanced oxidation processes (AOPs) is an emerging strategy for organics removal. However, our understanding of this process remains limited due to a dearth of efficient methods for in situ and real time monitoring of polymerization kinetics. This study leverages plasmonic colorimetry to monitor the polymerization kinetics of an array of aromatic pollutants in the presence of sulfate radicals. We observed that the formation of polymer shells on the surfaces of gold nanoparticles (AuNPs) led to an increase and red shift in their localized surface plasmon resonance (LSPR) band as a result of an increased refractive index surrounding the AuNP surfaces. This observation aligns with Mie theory simulations and transmission electron microscopy-electron energy loss spectroscopy characterizations. Our study demonstrated that the polymerization kinetics exhibits a significant reliance on the electrophilicity and quantity of benzene rings, the concentration of aromatic pollutants, and the dosage of oxidants. In addition, we found that changes in LSPR band wavelength fit well into a pseudo-first-order kinetic model, providing a comprehensive and quantitative insight into the polymerization kinetics involving diverse organic compounds. This technique holds the potential for optimizing AOP-based water treatment by facilitating the polymerization of aromatic pollutants.
Collapse
Affiliation(s)
- Hanwei Wang
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park St., Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Alexander Kvit
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, Wisconsin 53706, United States
| | - Haoran Wei
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 N. Park St., Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Elmetwalli A, Allam NG, Hassan MG, Albalawi AN, Shalaby A, El-Said KS, Salama AF. Evaluation of Bacillus aryabhattai B8W22 peroxidase for phenol removal in waste water effluents. BMC Microbiol 2023; 23:119. [PMID: 37120512 PMCID: PMC10148497 DOI: 10.1186/s12866-023-02850-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/04/2023] [Indexed: 05/01/2023] Open
Abstract
Environmental contamination by phenol has been reported in both aquatic and atmospheric environments. This study aimed to separate and purify the peroxidase enzyme from bacteria that degrade phenol from wastewater sources. An enrichment culture of MSM was used to screen 25 bacterial isolates from different water samples for peroxidase production, six of the isolates exhibited high levels of peroxidase enzyme activity. Qualitative analysis of peroxidase revealed that isolate No. 4 had the highest halo zones (Poly-R478: 14.79 ± 0.78 mm, Azure B: 8.81 ± 0.61 mm). The promising isolate was identified as Bacillus aryabhattai B8W22 by 16S rRNA gene sequencing with accession number OP458197. As carbon and nitrogen sources, mannitol and sodium nitrate were utilized to achieve maximum peroxidase production. A 30-h incubation period was used with pH 6.0, 30 °C, mannitol, and sodium nitrate, respectively, for maximal production of peroxidase. Purified peroxidase enzyme showed 0.012 U/mg specific activity, and SDS-PAGE analysis indicated a molecular weight of 66 kDa. The purified enzyme exhibits maximum activity and thermal stability at pH values of 4.0 and 8.0, respectively, with maximum activity at 30 °C and complete thermal stability at 40 °C. In the purified enzyme, the Km value was 6.942 mg/ml and the Vmax value was 4.132 mol/ml/hr, respectively. The results demonstrated that Bacillus aryabhattai B8W22 has promising potential for degrading phenols from various phenol-polluted wastewater sources.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | - Nanis G Allam
- Microbiology Division, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mervat G Hassan
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, 33516, Egypt
| | - Aisha Nawaf Albalawi
- Department of Biology , University of Haql College, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Azza Shalaby
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Afrah Fatthi Salama
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|