1
|
Chen Y, Xu R, Meng F. Biodegradable polylactic acid plastic can aid to achieve partial nitrification/denitrification for low carbon to nitrogen ratio wastewater treatment: Performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2025; 427:132411. [PMID: 40118223 DOI: 10.1016/j.biortech.2025.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
The partial nitrification/denitrification (PND) process is a green biotechnology for nitrogen removal in low carbon to nitrogen ratio wastewater, however, inhibiting nitrite-oxidizing bacteria (NOB) remains a challenge. This study uncovered that polylactic acid (PLA) can eliminate NOB and regulate the structure and function of nitrogen-transforming bacteria (NTB). An anoxic/aerobic membrane bioreactor with PLA achieved a total nitrogen removal efficiency of 64.8%, much higher than the 32.4% without PLA. Nitrite accumulation during nitrification stage reached 66.7% with PLA addition. Ammonia-oxidizing bacteria were transiently inhibited by PLA but recovered quickly. NOB were maintained at low levels due to the absence of genes for protein and DNA repair, while denitrifiers lacking NarGHI/NapAB genes were enriched. OLB8, with a relative abundance of 13.7%, played a central role in regulating NTB interaction and facilitating PND. In summary, this study provided a new strategy for improving nitrogen removal from wastewater through the reuse of PLA plastics.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
2
|
Xiong X, Jiang J, Yu H, Wei Y, Chen J, Liu Z, Ji H, Chen H, Sanjaya EH, Wu L. Achieving rapid granulation and long-term stability of partial nitritation /anammox process by uniquely configured airlift inner-circulation partition bioreactor. BIORESOURCE TECHNOLOGY 2025; 428:132474. [PMID: 40174654 DOI: 10.1016/j.biortech.2025.132474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/30/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
To maintain the long-term stability and efficiency of the partial nitritation/anammox (PN/A) process, a novel partition bioreactor featuring a uniquely sieve plate was developed to improve the airlift inner-circulation. The bioreactor achieved startup within 38 days, effectively handling influent containing 150 mg-N/L ammonium nitrogen and 50 mg-N/L nitrite. By reducing hydraulic retention time, nitrogen loading rate was escalated to 0.60 kg-N/m3/d, maintaining over 80 % nitrogen removal. Additionally, fluctuations in nitrite-oxidizing bacteria (NOB) were automatically controlled through dissolved oxygen (DO) partitioning. Moreover, the average granules size expanded from 85 μm to 338 μm by day 127, coinciding with robust anammox activity reaching 1.02 ± 0.05 g-N/g-VSS/d by day 179. The results demonstrate that the bioreactor effectively enhanced the enrichment of functional bacteria, enabled spatial distribution of DO, promoted NOB self-regulation and sludge granulation. This approach provides an efficient solution for rapid granulation while maintaining stable performance in the PN/A process.
Collapse
Affiliation(s)
- Xiaoting Xiong
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China
| | - Jingyi Jiang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hanbo Yu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yanxiao Wei
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Zhihua Liu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Haoshuai Ji
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China; Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China.
| | | | - Lvzhou Wu
- Fujian Strait Graphene Industrial Technology Research Institute, Jinjiang 362200, China
| |
Collapse
|
3
|
Kong Z, Wang Z, Hu Z, Song Y, Xu D, Li G, Dwyer J, Hu S. Insights into the start-up of acidic nitritation using conventional activated sludge: Process dynamics, nitrifiers succession, and pilot-scale demonstration. WATER RESEARCH 2025; 275:123208. [PMID: 39893904 DOI: 10.1016/j.watres.2025.123208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Acidic nitritation driven by acid-tolerant ammonia-oxidizing bacteria (AOB) has gained wide attention due to its potential in sustainable wastewater and sludge treatment. However, limited knowledge of initiating acidic nitration using conventional activated sludge hindered the wider studies and application of this technology at lab- and field-scale. This study evaluates three strategies for initiating acidic nitritation: a constant low hydraulic retention time (HRT); an extended initial HRT followed by manual HRT reduction; and pH-controlled HRT. All strategies successfully started acidic nitritation using seed sludge from a local wastewater treatment plant (WWTP) containing undetectable acid-tolerant AOB. Among the three strategies, pH-controlled HRT was the most efficient, with a smoother (minimal fluctuations) and faster (around 30 days) start-up process than the other two strategies. This was attributed to an initial redundancy in ammonia oxidation capacity (i.e. making the proton generation rate caused by ammonium oxidation exceed the alkalinity supply rate by influent), allowing AOB to overcome the activity valley during the transition from neutral to acid pH Level. Using pH as a real-time proxy of AOB activity also leveraged the unique low buffer capacity at acidic pH. Based on these findings, a pilot-scale acidic nitritation reactor treating diluted sidestream wastewater was initiated for the first time using the pH-controlled strategy. The pilot reactor immediately achieved nitrite accumulation and reached the target hydraulic loading rate quicker than the lab reactor, indicating higher influent nitrogen concentration may facilitate NOB suppression and a higher growth rate of acid-tolerant AOB. Based on those results, the versatile start-up strategies using both mainstream or sidestream wastewater were further discussed. Overall, this work greatly expands potential applications of acidic nitritation and paves the way for future field-scale applications.
Collapse
Affiliation(s)
- Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Dongdong Xu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guanbin Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jason Dwyer
- Urban Utilities, Brisbane, QLD 4000, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
Cheng X, Hu L, Liu T, Cheng X, Li J, Xu K, Zheng M. High-level nitrogen removal achieved by Feammox-based autotrophic nitrogen conversion. WATER RESEARCH X 2025; 27:100292. [PMID: 39723189 PMCID: PMC11667699 DOI: 10.1016/j.wroa.2024.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Anaerobic ammonium oxidation coupled with Fe(III) reduction (Feammox) is an essential process in the geochemical iron and nitrogen cycling. This study explores Feammox-based nitrogen removal in a continuous laboratory up-flow bioreactor stimulated by intermittently adding 5 mM Fe(OH)3 at intervals of approximately two months. The feed was synthetic wastewater with a relatively low ammonium concentration (∼100 mg N/L), yet without organic carbon in order to test its autotrophic nitrogen removal performance. The operation of this system showed the achievement of high-level ammonium and total nitrogen removal efficiency (∼97% and ∼90% on average, respectively) within four months of operation, along with a relatively practical rate of ∼50 mg N/(L·d). The demand of Fe(Ⅲ) for ammonium removal during the whole bioreactor operation was estimated to be only 0.033, two orders of magnitude less than that calculated based on the Feammox reaction producing nitrogen gas. A series of assays on Fe(II) oxidation with different oxidants (O2, NO2 - and NO3 -) in abiotic and biotic batch tests further revealed an important role of Fe(II) oxidation processes, likely driven by microbial nitrate reduction and chemical oxygen reduction, in assisting the regeneration of Fe(III) for continuous Feammox-based nitrogen removal. This work demonstrates that Feammox-based autotrophic nitrogen conversion is a potential option for future wastewater treatment.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Lanlan Hu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiang Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
5
|
Liu Y, Chen F, He Y, Wang Y, Zhu T, Tong Y, Zhao Y, Ni BJ, Liu Y. Evaluation of nitrous oxide reduction in solid carbon source-driven counter-diffusional biofilm denitrification system. WATER RESEARCH X 2025; 27:100306. [PMID: 39926343 PMCID: PMC11802382 DOI: 10.1016/j.wroa.2025.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 01/22/2025] [Indexed: 02/11/2025]
Abstract
Solid carbon-driven biofilm system can provide sufficient carbon source for denitrification, while its counter-diffusional structure could inevitably induce the delayed carbon-nitrogen contact and electron transport, further affecting carbon footprints mainly contributed by nitrous oxide (N2O) at wastewater treatment plants (WWTPs). However, the detailed understanding of N2O dynamics during solid-phase denitrification (SPD) has not been disclosed. In this work, a fixed bed bioreactor driven by polycaprolactone (PCL) was constructed and operated over 180 days, achieving 97 %-99 % of total nitrogen (TN) removal efficiency. Biochemical results indicated that under the condition that each nitrogen oxide (NO x ) concentration was maintained at 30 mg-N/L, the electron competition between upstream and downstream electron pools was still observed during PCL-driven denitrification even providing sufficient carbon source. For example, under the coexistent nitrate (NO3 -)+ nitrite (NO2 -)+N2O condition, few electrons (i.e., 12.6 %) distributed to N2O reductase (Nos), significantly decreasing the N2O reduction rate (i.e., 1.42 mg/g VSS/h). Under the condition that TN concentration was maintained at 30 mg-N/L, the TN removal rate in the scheme containing NO3 -+NO2 -+N2O was observed to be 1.75-2.3 times higher than that of the scheme with sole NO x of 30 mg-N/L. This suggested that when treating wastewater containing multiple NO x , the PCL-driven biofilm denitrification system can not only relatively improve the total nitrogen removal efficiency, but also relatively alleviate N2O emissions. The higher abundance of Bacteroidota and Comamonadaceae ensured the stable carbon source release and nitrogen conversion states.
Collapse
Affiliation(s)
- Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Feng Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Du Z, Du Y, Wang J, Zhang Y, Lu H, Zhang F, Peng Y. Acidophilic partial nitrification rapid startup and robustness validation for municipal wastewater treatment: Operation performance and microorganism insights. WATER RESEARCH 2025; 272:122922. [PMID: 39657562 DOI: 10.1016/j.watres.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Acidophilic partial nitrification (a-PN) is a promising short-flow nitrogen conversion biotechnology, but achieving a rapid startup remains a significant challenge. This study explored strategies for starting up a-PN in real municipal wastewater treatment using sequencing batch reactors (SBRs). The influent alkalinity-to-NH4+ molar ratio was maintained at 0.5-0.6 in the control reactor (SBRa), while other reactors were supplemented with sodium formate (150 mg COD/L, SBRb), hydroxylamine (5 mg/L, SBRc), and sludge alkaline fermentation liquid (NH4+-N=227.97±7.08 mg/L, COD=2463.98±125.17 mg/L, SBRd). Results indicated that the system using the composite strategy with sodium formate addition achieved a 93.7 % nitrite accumulation ratio (NAR) within just 4 days. Furthermore, stable a-PN performance was maintained in the systems without external substrate addition with pH ranging from 5.7 to 7.4. The established a-PN systems demonstrated robust performance, maintained a high NAR of 92.84 %-98.84 %, even under the intense impact of traditional nitrification biomass for 13 consecutive days. Although the relative abundances of Nitrosomonas and Nitrospira temporarily increased, traditional ammonia oxidizing bacteria and nitrite oxidizing bacteria were completely eliminated, falling to undetectable levels after long-term operation. Notably, amo and hao genes exhibited opposite trends: amo decreased significantly from 356 reads to 22-46 reads, while hao substantially increased by 186.6 %-613.1 %, from 626 reads to 1168-2838 reads. This suggests that hao may play a more crucial functional role in the a-PN process, and unidentified nitrifying communities may be driving acidophilic partial nitrification. Overall, our study advances the understanding of rapid startup strategies of a-PN and provides novel perspectives on the microbial structure and functional genes involved in a-PN system.
Collapse
Affiliation(s)
- Ziyi Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujia Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiahui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujing Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hongying Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
7
|
Du R, Ando K, Liu R, Deng L, Wang W, Li YY. CO 2 removal from biogas improved stable treatment of low-alkalinity municipal wastewater using anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2025; 416:131821. [PMID: 39549958 DOI: 10.1016/j.biortech.2024.131821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
This study addressed a less-reported issue: the insufficient alkalinity encountered when anaerobic membrane bioreactors (AnMBRs) are used to treat municipal wastewater (MWW). In the present study, a 20-L AnMBR was initiated at an MWW treatment plant. During the initial startup, a continuous decrease in pH was observed. Through the analyses of the balance between HCO3-/CO2 in the biogas and alkalinity in the reactor, the cause of pH instability was determined to be that the alkalinity could not balance the acidity induced by the continuous dissolution of CO2 from biogas in the liquid phase. Therefore, this study employed the in-situ removal of CO2 from biogas using soda lime to reduce the CO2 partial pressure, thereby achieving stable control of the pH in the reactor. This study provides valuable experience and technical support for anaerobic processes for treating low-alkalinity MWW in the future applications.
Collapse
Affiliation(s)
- Runda Du
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Koichi Ando
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan
| | - Ruiping Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Liangwei Deng
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Wenguo Wang
- Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
8
|
Cen X, Hu Z, Huang X, Yuan Z, Zheng M. Integrated urban wastewater management through on-site generation and application of ferrous carbonate. WATER RESEARCH 2024; 268:122732. [PMID: 39531799 DOI: 10.1016/j.watres.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Integrated urban water management is an increasingly popular concept that cost-effectively maximizes system-wide performance by holistically considering all aspects of water and wastewater sectors. An innovative technology enabling production of high-quality bioenergy and an iron salt, ferrous carbonate (FeCO3), represents a significant opportunity for integrated urban water management. This study experimentally evaluates the effect of in-sewer FeCO3 dosing on the performance of sewers and the downstream wastewater treatment plants. Two continuous-flow laboratory-scale urban wastewater systems, each consisting of sewer reactors, a sequencing batch wastewater treatment reactor, and an anaerobic digester, were operated in parallel. After establishing comparable performance, one served as the control without any chemical dosing, while the other received a dosing of 10mgFe/L of FeCO3 in its sewer reactors. Compared to the control, the FeCO3-dosed experimental system reduced dissolved sulfide concentrations by 32.2±3.3% (at 0.58±0.05mgS/mgFe, or 1.0molFe/molS) in sewer reactors, decreased phosphate concentrations by 38.3%±3.2% (at 0.37±0.04mgP/mgFe, or 1.5molFe/molP) in sequencing batch reactors, and lowered dissolved sulfide concentrations by 72.0±4.2% (18.9±2.4mgS/L) in the anaerobic sludge digester. Iron accumulated in the sludge and improved sludge settleability by 33.9±5.5% and enhanced dewaterability of anaerobically digested sludge by 15.9±2.0%. The findings indicate multiple benefits from the integrated use of FeCO3, potentially being as a substitute for the currently used iron salts in urban wastewater systems.
Collapse
Affiliation(s)
- Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Xin Huang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, PR China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
9
|
Liao Q, Sun L, Lu H, Qin X, Liu J, Zhu X, Li XY, Lin L, Li RH. Iron driven organic carbon capture, pretreatment, recovery and upgrade in wastewater: Process technologies, mechanisms, and implications. WATER RESEARCH 2024; 263:122173. [PMID: 39111213 DOI: 10.1016/j.watres.2024.122173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Wastewater treatment plants face significant challenges in transitioning from energy-intensive systems to carbon-neutral, energy-saving systems, and a large amount of chemical energy in wastewater remains untapped. Iron is widely used in modern wastewater treatment. Research shows that leveraging the coupled redox relationship of iron and carbon can redirect this energy (in the form of carbon) towards resource utilization. Therefore, re-examining the application of iron in existing wastewater carbon processes is particularly important. In this review, we investigate the latest research progress on iron for wastewater carbon flow restructuring. During the iron-based chemically enhanced primary treatment (CEPT) process, organic carbon is captured into sludge and its bioavailability is enhanced through iron-based advanced oxidation processes (AOP) pretreatment, further being recovered or upgraded to value-added products in anaerobic biological processes. We discuss the roles and mechanisms of iron in CEPT, AOP, anaerobic biological processes, and biorefining in driving organic carbon conversion. The dosage of iron, as a critical parameter, significantly affects the recovery and utilization of sludge carbon resources, particularly by promoting effective electron transfer. We propose a pathway for beneficial conversion of wastewater organic carbon driven by iron and analyze the benefits of the main products in detail. Through this review, we hope to provide new insights into the application of iron chemicals and current wastewater treatment models.
Collapse
Affiliation(s)
- Quan Liao
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lianpeng Sun
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Hui Lu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xianglin Qin
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Junhong Liu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinzhe Zhu
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Xiao-Yan Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Lin Lin
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Ruo-Hong Li
- Department of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| |
Collapse
|
10
|
Kong Z, Wang Z, Lu X, Song Y, Yuan Z, Hu S. Significant in situ sludge yield reduction in an acidic activated sludge system. WATER RESEARCH 2024; 261:122042. [PMID: 38986284 DOI: 10.1016/j.watres.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Minimizing sludge generation in activated sludge systems is critical to reducing the operational cost of wastewater treatment plants (WWTPs), particularly for small plants where bioenergy is not recovered. This study introduces a novel acidic activated sludge technology for in situ sludge yield reduction, leveraging acid-tolerant ammonia-oxidizing bacteria (Candidatus Nitrosoglobus). The observed sludge yield (Yobs) was calculated based on the cumulative sludge generation and COD removal during 400 d long-term operation. The acidic process achieved a low Yobs of 0.106 ± 0.004 gMLSS/gCOD at pH 4.6 to 4.8 and in situ free nitrous acid (FNA) of 1 to 3 mg/L, reducing sludge production by 58 % compared to the conventional neutral-pH system (Yobs of 0.250 ± 0.003 gMLSS/gCOD). The acidic system also maintained effective sludge settling and organic matter removal over long-term operation. Mechanism studies revealed that the acidic sludge displayed higher endogenous respiration, sludge hydrolysis rates, and higher soluble microbial products and loosely-bounded extracellular polymer substances, compared to the neutral sludge. It also selectively enriched several hydrolytic genera (e.g., Chryseobacterium, Acidovorax, and Ottowia). Those results indicate that the acidic pH and in situ FNA enhanced sludge disintegration, hydrolysis, and cryptic growth. Besides, a lower intracellular ATP content was observed for acidic sludge than neutral sludge, suggesting potential decoupling of catabolism and anabolism in the acidic sludge. These findings collectively demonstrate that the acidic activated sludge technology could significantly reduce sludge yield, contributing to more cost- and space-effective wastewater management.
Collapse
Affiliation(s)
- Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yunqian Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong 999077, PR China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
11
|
Zhang F, Du Z, Wang J, Du Y, Peng Y. Acidophilic partial nitrification (pH<6) facilitates ultra-efficient short-flow nitrogen transformation: Experimental validation and genomic insights. WATER RESEARCH 2024; 260:121921. [PMID: 38924807 DOI: 10.1016/j.watres.2024.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Partial nitrification (PN) represents an energy-efficient bioprocess; however, it often confronts challenges such as unstable nitrite accumulation, nitrite oxidizing bacteria shocks, and slow reaction rate. This study established an acidophilic PN with self-sustained pH as low as 5.36. Over 120-day monitoring, nitrite accumulation rate (NAR) was stabilized at more than 97.9 %, and an ultra-high ammonia oxidation rate of 0.81 kg/m3·d was achieved. Notably, least NAR of 77.8 % persisted even under accidental nitrite oxidizing bacteria invasion, aeration delay, alkalinity fluctuations, and cooling shocks. During processing, despite detrimental effects on bacterial diversity, there was a discernible increase in acid-tolerant bacteria responsible for nitrification. Candidatus Nitrosoglobus, gradually dominated in nitrifying guild (2.15 %), with the substantially reduction or disappearance of typical nitrifying microorganisms. Acidobacteriota, a key player in nitrogen cycling of soil, significantly increased from 0.45 % to 9.98 %, and its associated nitrogen metabolism genes showed a substantial 215 % rise. AmoB emerged as the most critical functional gene influencing acidophilic PN, exhibiting significantly higher unit gene expression than other nitrification genes. Blockade tricarboxylic acid cycle, DNA damage, and presence of free nitrous acid exert substantial effects on nitrite-oxidizing bacteria (NOB), serving as internal driving forces for acidophilic PN. This highlights the reliable potential for shortening nitrogen transformation process.
Collapse
Affiliation(s)
- Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ziyi Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiahui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujia Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
12
|
Zhou H, Long J, Qin M, Ji X, Wang J, Qian F, Shen Y, Liu W. Successful operation of nitrifying granules at low pH in a continuous-flow reactor: Nitrification performance, granule stability, and microbial community. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121793. [PMID: 38991342 DOI: 10.1016/j.jenvman.2024.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
Acidic nitrification, as a novel process for treating wastewater without sufficient alkalinity, has received increasing attention over the years. In this study, a continuous-flow reactor with aerobic granular sludge was successful operated at low pH (<6.5) performing high-rate acidic nitrification. Volumetric ammonium oxidation rate of 0.4-1.2 kg/(m3·d) were achieved with the specific biomass activities of 5.8-13.9 mg N/(gVSS·h). Stable partial nitritation with nitrite accumulation efficiency over 85% could be maintained at pH above 6 with the aid of residual ammonium, whereas the nitrite accumulation disappeared when pH was below 6. Interestingly, the granule morphology significantly improved during the acidic operation. The increased secretion of extracellular polymeric substances (especially polysaccharides) suggested a self-protective behavior of microbes in the aerobic granules against acidic stress. 16S rRNA gene sequencing analyses indicated that Candidatus Nitrospira defluvii was always the dominant nitrite-oxidizing bacteria, while the dominant ammonia-oxidizing bacteria shifted from Nitrosomonas europaea to Nitrosomonas mobilis. This study, for the first time, demonstrated the improved stability of aerobic granules under acidic conditions, and also highlighted aerobic granules as a useful solution to achieve high-rate acidic nitrification.
Collapse
Affiliation(s)
- Han Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jing Long
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Manyu Qin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yaoliang Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
13
|
Wang S, Tian Y, Bi Y, Meng F, Qiu C, Yu J, Liu L, Zhao Y. Recovery strategies and mechanisms of anammox reaction following inhibition by environmental factors: A review. ENVIRONMENTAL RESEARCH 2024; 252:118824. [PMID: 38588911 DOI: 10.1016/j.envres.2024.118824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is a promising biological method for treating nitrogen-rich, low-carbon wastewater. However, the application of anammox technology in actual engineering is easily limited by environmental factors. Considerable progress has been investigated in recent years in anammox restoration strategies, significantly addressing the challenge of poor reaction performance following inhibition. This review systematically outlines the strategies employed to recover anammox performance following inhibition by conventional environmental factors and emerging pollutants. Additionally, comprehensive summaries of strategies aimed at promoting anammox activity and enhancing nitrogen removal performance provide valuable insights into the current research landscape in this field. The review contributes to a comprehensive understanding of restoration strategies of anammox-based technologies.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yu Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
14
|
Tong Y, Liao X, He Y, Cui X, Wishart M, Zhao F, Liao Y, Zhao Y, Lv X, Xie J, Liu Y, Chen G, Hou L. Mitigating greenhouse gas emissions from municipal wastewater treatment in China. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100341. [PMID: 38094258 PMCID: PMC10716752 DOI: 10.1016/j.ese.2023.100341] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 06/01/2024]
Abstract
Municipal wastewater treatment plays an indispensable role in enhancing water quality by eliminating contaminants. While the process is vital, its environmental footprint, especially in terms of greenhouse gas (GHG) emissions, remains underexplored. Here we offer a comprehensive assessment of GHG emissions from wastewater treatment plants (WWTPs) across China. Our analyses reveal an estimated 1.54 (0.92-2.65) × 104 Gg release of GHGs (CO2-eq) in 2020, with a dominant contribution from N2O emissions and electricity consumption. We can foresee a 60-65% reduction potential in GHG emissions with promising advancements in wastewater treatment, such as cutting-edge biological techniques, intelligent wastewater strategies, and a shift towards renewable energy sources.
Collapse
Affiliation(s)
- Yindong Tong
- School of Ecology and Environment, Tibet University, Lhasa, 850012, China
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiawei Liao
- Bay Area International Business School, Beijing Normal University, Zhuhai, 519087, China
| | - Yanying He
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa, 850012, China
| | | | - Feng Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yulian Liao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuebin Lv
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiawen Xie
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiwen Liu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Ecology and Environment, Tibet University, Lhasa, 850012, China
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Li'an Hou
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Gao H, Zhao H, Chang S, Meng Z, Han Z, Liu Y. Multi-biomimetic Double Interlaced Wetting Janus Surface for Efficient Fog Collection. NANO LETTERS 2024; 24:7774-7782. [PMID: 38847520 DOI: 10.1021/acs.nanolett.4c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Various methods to solve water scarcity have attracted increasing attention. However, most existing water harvesting schemes have a high demand for preparation methods and costs. Here, a multi-biomimetic double interlaced wetting Janus surface (DIWJS) was prepared by laser for effective fog collection. The as-prepared surfaces are composed of superhydrophilic points/hydrophobic substrates on the A-side and superhydrophilic stripes/hydrophobic substrates on the B-side. The interlaced wettability and superhydrophilic points on the A side are conducive to capture and permeation of droplets. The superhydrophilic stripes and interlaced wettability on the B-side are conducive to transportation and shedding of droplets. Therefore, the overall fog collection process is accelerated. The proposal of smart farm model validates broad application prospects of DIWJS. This work provides an advanced and multi-biomimetic surface and provides important insights for green, low-cost, and versatile strategies to solve water scarcity issues.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Haoyang Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Siyu Chang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
16
|
Zuo Z, Xing Y, Liu T, Zheng M, Lu X, Chen Y, Jiang G, Liang P, Huang X, Liu Y. Methane mitigation via the nitrite-DAMO process induced by nitrate dosing in sewers. WATER RESEARCH 2024; 257:121701. [PMID: 38733962 DOI: 10.1016/j.watres.2024.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Nitrate or nitrite-dependent anaerobic methane oxidation (n-DAMO) is a microbial process that links carbon and nitrogen cycles as a methane sink in many natural environments. This study demonstrates, for the first time, that the nitrite-dependent anaerobic methane oxidation (nitrite-DAMO) process can be stimulated in sewer systems under continuous nitrate dosing for sulfide control. In a laboratory sewer system, continuous nitrate dosing not only achieved complete sulfide removal, but also significantly decreased dissolved methane concentration by ∼50 %. Independent batch tests confirmed the coupling of methane oxidation with nitrate and nitrite reduction, revealing similar methane oxidation rates of 3.68 ± 0.5 mg CH4 L-1 h-1 (with nitrate as electron acceptor) and 3.57 ± 0.4 mg CH4 L-1 h-1 (with nitrite as electron acceptor). Comprehensive microbial analysis unveiled the presence of a subgroup of the NC10 phylum, namely Candidatus Methylomirabilis (n-DAMO bacteria that couples nitrite reduction with methane oxidation), growing in sewer biofilms and surface sediments with relative abundances of 1.9 % and 1.6 %, respectively. In contrast, n-DAMO archaea that couple methane oxidation solely to nitrate reduction were not detected. Together these results indicated the successful enrichment of n-DAMO bacteria in sewerage systems, contributing to approx. 64 % of nitrite reduction and around 50 % of dissolved methane removal through the nitrite-DAMO process, as estimated by mass balance analysis. The occurrence of the nitrite-DAMO process in sewer systems opens a new path to sewer methane emissions.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yaxin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xi Lu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yan Chen
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Niu C, Ying Y, Zhao J, Zheng M, Guo J, Yuan Z, Hu S, Liu T. Superior mainstream partial nitritation in an acidic membrane-aerated biofilm reactor. WATER RESEARCH 2024; 257:121692. [PMID: 38713935 DOI: 10.1016/j.watres.2024.121692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Shortcut nitrogen removal holds significant economic appeal for mainstream wastewater treatment. Nevertheless, it is too difficult to achieve the stable suppression of nitrite-oxidizing bacteria (NOB), and simultaneously maintain the activity of ammonia-oxidizing bacteria (AOB). This study proposes to overcome this challenge by employing the novel acid-tolerant AOB, namely "Candidatus Nitrosoglobus", in a membrane-aerated biofilm reactor (MABR). Superior partial nitritation was demonstrated in low-strength wastewater from two aspects. First, the long-term operation (256 days) under the acidic pH range of 5.0 to 5.2 showed the successful NOB washout by the in situ free nitrous acid (FNA) of approximately 1 mg N/L. This was evidenced by the stable nitrite accumulation ratio (NAR) close to 100 % and the disappearance of NOB shown by 16S rRNA gene amplicon sequencing and fluorescence in situ hybridization. Second, oxygen was sufficiently supplied in the MABR, leading to an unprecedentedly high ammonia oxidation rate (AOR) at 2.4 ± 0.1 kg N/(m3 d) at a short hydraulic retention time (HRT) of a mere 30 min. Due to the counter diffusion of substrates, the present acidic MABR displayed a significantly higher apparent oxygen affinity (0.36 ± 0.03 mg O2/L), a marginally lower apparent ammonia affinity (14.9 ± 1.9 mg N/L), and a heightened sensitivity to FNA and pH variations, compared with counterparts determined by flocculant acid-tolerant AOB. Beyond supporting the potential application of shortcut nitrogen removal in mainstream wastewater, this study also offers the attractive prospect of intensifying wastewater treatment by markedly reducing the HRT of the aerobic unit.
Collapse
Affiliation(s)
- Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yifeng Ying
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jing Zhao
- Sustainable Minerals Institute (SMI), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China.
| |
Collapse
|
18
|
Pan J, Li J, Zhang T, Liu T, Xu K, Wang C, Zheng M. Complete ammonia oxidation (comammox) at pH 3-4 supports stable production of ammonium nitrate from urine. WATER RESEARCH 2024; 257:121686. [PMID: 38705065 DOI: 10.1016/j.watres.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
This study developed a new process that stably produced ammonium nitrate (NH4NO3), an important and commonly used fertilizer, from the source-separated urine by comammox Nitrospira. In the first stage, the complete conversion of ammonium to nitrate was achieved by comammox Nitrospira. In this scenario, the pH was maintained at 6 by adding external alkali, which also provided sufficient alkalinity for full nitrification. In the second stage, the NH4NO3 was produced directly by comammox Nitropsira by converting half of the ammonium in urine into nitrate. In this case, no alkali was added and pH automatically dropped and self-maintained at an extremely acidic level (pH 3-4). In both scenarios, negligible nitrite accumulation was observed, while the final product of the second stage contained ammonium and nitrate at the molar ratio of 1:1. The dominance of comammox Nitrospira over canonical ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was systematically proved by the combination of 16S rRNA gene amplicon sequencing, quantitative polymerase chain reaction, and metagenomics. Notably, metagenomic sequencing suggested that the relative abundance of comammox Nitrospira was over 20 % under the acidic condition at pH 3-4, while canonical AOB and NOB were undetectable. Batch experiments showed that the optimal pH for the enriched comammox Nitrospira was ∼7, which could sustain their activity in a wider pH range from 4 to 8 surprisingly but lost activity at pH 3 and 9. The findings not only present an application potential of comammox Nitrospira in nitrogen recovery from urine wastewater but also report the survivability of comammox bacteria in acidic environments.
Collapse
Affiliation(s)
- Junhao Pan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiyun Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tingting Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kangning Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Chengwen Wang
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
19
|
Cheng X, Xu K. Evaluation of autotrophic process influencing extracellular polymeric substances in aerobic membrane bioreactor with expanded ASM model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172207. [PMID: 38583621 DOI: 10.1016/j.scitotenv.2024.172207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
A mathematical model was developed to predict the formation of both the autotrophic and heterotrophic extracellular polymeric substances (EPS) in the aerobic membrane bioreactor (MBR). Batch experimental results and 45-day operation data on a pilot MBR at a sludge retention time (SRT) of 20 d were used to calibrate and validate the model. Simulated MBR setup results demonstrated the key role of the influent COD and NH4+-N in governing the composition of heterotrophic and autotrophic EPS in the MBR. These results also revealed that the autotrophic EPS process was non-ignorable in the system. According to the autotrophic EPS simulation in the MBR, the EPS yield increased with increasing influent COD/NH4+-N ratio towards a constant level. The EPS yield was significantly influenced by the SRT, attributed to the autotrophic process's impact on EPS. Simulation results revealed a slight increase in EPS yield with an SRT of up to 5 days, followed by a rapid decrease beyond that threshold.
Collapse
Affiliation(s)
- Xiaoqiao Cheng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Kangning Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Ye M, Zhu A, Liu J, Li YY. Iron Recycle-Driven Organic Capture and Sidestream Anaerobic Membrane Bioreactor for Revolutionizing Bioenergy Generation in Municipal Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9350-9360. [PMID: 38743617 DOI: 10.1021/acs.est.3c10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The practicality of intensifying organic matter capture for bioenergy recovery to achieve energy-neutral municipal wastewater treatment is hindered by the lack of sustainable methods. This study developed innovative processes integrating iron recycle-driven organic capture with a sidestream anaerobic membrane bioreactor (AnMBR). Iron-assisted chemically enhanced primary treatment achieved elemental redirection with 75.2% of chemical oxygen demand (COD), 20.2% of nitrogen, and 97.4% of phosphorus captured into the sidestream process as iron-enhanced primary sludge (Fe-PS). A stable and efficient biomethanation of Fe-PS was obtained in AnMBR with a high methane yield of 224 mL/g COD. Consequently, 64.1% of the COD in Fe-PS and 48.2% of the COD in municipal wastewater were converted into bioenergy. The acidification of anaerobically digested sludge at pH = 2 achieved a high iron release efficiency of 96.1% and a sludge reduction of 29.3% in total suspended solids. Ultimately, 87.4% of iron was recycled for coagulant reuse, resulting in a theoretical 70% reduction in chemical costs. The novel system evaluation exhibited a 75.2% improvement in bioenergy recovery and an 83.3% enhancement in net energy compared to the conventional system (primary sedimentation and anaerobic digestion). This self-reliant and novel process can be applied in municipal wastewater treatment to advance energy neutrality at a lower cost.
Collapse
Affiliation(s)
- Min Ye
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Aijun Zhu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Jianyong Liu
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200444, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
21
|
Liu W, Li J, Liu T, Zheng M, Meng J, Li J. Temperature-resilient superior performances by coupling partial nitritation/anammox and iron-based denitrification with granular formation. WATER RESEARCH 2024; 254:121424. [PMID: 38460226 DOI: 10.1016/j.watres.2024.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Partial nitritation-anammox (PN/A), an energy-neutral process, is widely employed in the treatment of nitrogen-rich wastewater. However, the intrinsic nitrate accumulation limits the total nitrogen (TN) removal, and the practical application of PN/A continues to face a significant challenge at low temperatures (<15 °C). Here, an integrated partial nitritation-anammox and iron-based denitrification (PNAID) system was developed to address the concern. Two up-flow bioreactors were set up and operated for 400 days, with one as the control group and the other as the experiment group with the addition of Fe0. In comparison to the control group, the experiment group with the Fe0 supplement showed better nitrogen removal during the entire course of the experiment at different temperature levels. Specifically, the TN removal efficiency of the control group decreased from 82.9 % to 53.9 % when the temperature decreased from 30 to 12 °C, while in stark contrast, the experiment group consistently achieved 80 % of TN removal in the same condition. Apart from the enhanced nitrogen removal, the experiment group also exhibited better phosphorus removal (10.6 % versus 74.1 %) and organics removal (49.5 % versus 65.1 %). The enhanced and resilient nutrient removal performance of the proposed integrated process under low temperatures appeared to be attributed to the compact structure of granules and the increased microbial metabolism with Fe0 supplement, elucidated by a comprehensive analysis including microbial-specific activity, apparent activation energy, characteristics of granular sludge, and metagenomic sequencing. These results clearly confirmed that Fe0 supplement not only improved nitrogen removal of PN/A process, but also conferred a certain degree of robustness to the system in the face of temperature fluctuations.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
22
|
Yang S, Peng Y, Hou F, Pang H, Jiang L, Sun S, Li J, Zhang L. Rapid establishment of municipal sewage partial denitrification-anammox for nitrogen removal through inoculation with side-stream anammox biofilm without domestication. BIORESOURCE TECHNOLOGY 2024; 400:130679. [PMID: 38588781 DOI: 10.1016/j.biortech.2024.130679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Mainstream partial denitrification anammox was achieved through inoculation of side-stream mature partial nitritation anammox biofilm without domestication. The contribution of anammox to nitrogen removal was 29.4 %. Moreover, prolonging anoxic hydraulic retention time and introducing side-stream nitrite under different carbon/nitrogen ratios enriched anammox bacteria. The abundance of anammox bacteria increased by ∼ 10 times ((2.19 ± 0.17) × 1012 copies gene / g dry sludge) with a total relative abundance of 18.51 %. During 258 days of operation, the contribution of anammox to nitrogen removal gradually increased to 68.8 %. The total nitrogen in the effluent decreased to 8.84 mg/L with a total nitrogen removal efficiency of 76.4 % under a carbon/nitrogen ratio of 3. This paper proposes a novel way to rapidly achieve mainstream partial denitrification anammox via inoculation with side-stream mature partial nitritation anammox biofilm. This method achieves advanced nitrogen removal from municipal wastewater, even under low carbon/nitrogen ratios.
Collapse
Affiliation(s)
- Shenhua Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Feng Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Hongtao Pang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Leyong Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Shihao Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; China Water Environment Group Co. Ltd., Beijing 101101, China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
23
|
Chen Y, Guo G, Li YY. Kinetic and elemental characterization of HAP-based high-rate partial nitritation/anammox system orienting stability and inorganic elemental requirements. WATER RESEARCH 2024; 251:121169. [PMID: 38281335 DOI: 10.1016/j.watres.2024.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Anammox-based processes are attractive for biological nitrogen removal, and the combination of anammox and hydroxyapatite (HAP) is promising for the simultaneous removal of nitrogen and phosphorus from wastewater. However, the kinetics of one-stage partial nitritation/anammox (PNA) in which ammonia-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) exist in a reactor are poorly understood. Moreover, inorganic elements are required to promote microbial cell synthesis and growth; therefore, monitoring of elements to prevent the limitation and inhibition of the process is critical. The minimum amounts of inorganic elements required for a one-stage PNA process and the elemental flow remain unknown. Therefore, in this study, kinetics, stoichiometry, and element flow in the long-term, high-rate, continuous, one-stage HAP-PNA process with microaerobic granular sludge at 25 °C were determined using process modeling, parameter estimation, and mass balance. The biomass elemental composition was determined to be CH2.2O0.89N0.18S0.0091, and the biomass yield (Yobs) was calculated to be 0.0805 g/g NH4+-N. Therefore, a stoichiometric reaction equation for the one-stage HAP-PNA system was also proposed. The maximum specific growth rate (μm) of AnAOB and AOB were 0.0360 and 0.0982 d-1 with doubling times of 19 and 7.1 d, respectively. Finally, the elemental requirements for stable and high-rate performance were determined using element flow analysis. These findings are essential for developing the anammox-based process in a stable and resource-efficient manner and determining engineering applicability.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
24
|
Li S, Islam MS, Yang S, Xue Y, Liu Y, Huang X. Potential stimulation of nitrifying bacteria activities and genera by landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168620. [PMID: 37977385 DOI: 10.1016/j.scitotenv.2023.168620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
With the increasing complexity of influent composition in wastewater treatment plants, the potential stimulating effects of refractory organic matter in wastewater on growth characteristics and genera conversion of nitrifying bacteria (ammonium-oxidizing bacteria [AOB] and nitrite-oxidizing bacteria [NOB]) need to be further investigated. In this study, domestic wastewater was co-treated with landfill leachate in the lab-scale reactor, and the competition and co-existence of NOB genera Nitrotoga and Nitrospira were observed. The results demonstrated that the addition of landfill leachate could induce the growth of Nitrotoga, whereas Nitrotoga populations remain less competitive in domestic wastewater operation. In addition, the refractory organic matter in the landfill leachate also would have a potential stimulating effect on the maximum specific growth rate of AOB genus Nitrosomonas (μmax, aob). The μmax, aob of Nitrosomonas in the control group was estimated to be 0.49 d-1 by fitting the ASM model, and the μmax, aob reached 0.66-0.71 d-1 after injection of refractory organic matter in the landfill leachate, while the maximum specific growth rate of NOB (μmax, nob) was always in the range of 1.05-1.13 d-1. These findings have positive significance for the understanding of potential stimulation on nitrification processes and the stable operation of innovative wastewater treatment process.
Collapse
Affiliation(s)
- Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Md Sahidul Islam
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
He Y, Liu Y, Li X, Guo H, Zhu T, Liu Y. Polyvinyl Chloride Microplastics Facilitate Nitrous Oxide Production in Partial Nitritation Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1954-1965. [PMID: 38239129 DOI: 10.1021/acs.est.3c09280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Partial nitritation (PN) is an important partner with anammox in the sidestream line treating high-strength wastewater and primarily contributes to nitrous oxide (N2O) emissions in such a hybrid system, which also suffers from ubiquitous microplastics because of the growing usage and disposal levels of plastics. In this study, the influences of polyvinyl chloride microplastics (PVC-MPs) on N2O-contributing pathways were experimentally revealed to fill the knowledge gap on N2O emission from the PN system under microplastics stress. The long-term results showed that the overall PN performance was hardly affected by the low-dose PVC-MPs (0.5 mg/L) while obviously deteriorated by the high dose (5 mg/L). According to the batch tests, PVC-MPs reduced biomass-specific ammonia oxidation rates (AORs) by 5.78-21.94% and stimulated aerobic N2O production by 9.22-88.36%. Further, upon increasing dissolved oxygen concentrations from 0.3 to 0.9 mg O2/L, the degree of AOR inhibition increased but that of N2O stimulation was lightened. Site preference analysis in combination with metabolic inhibitors demonstrated that the contributions of hydroxylamine oxidation and heterotrophic denitrification to N2O production at 0.3 mg O2/L were enhanced by 18.84 and 10.34%, respectively, accompanied by a corresponding decreased contribution of nitrifier denitrification. Finally, the underlying mechanisms proposed for negative influences of PVC-MPs were bisphenol A leaching and reactive oxygen species production, which led to more cell death, altered sludge properties, and reshaped microbial communities, further resulting in enhanced N2O emission. Overall, this work implied that the ubiquitous microplastics are a hidden danger that cannot be ignored in the PN system.
Collapse
Affiliation(s)
- Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xuecheng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
26
|
Liu Y, Liu Y, Zhao T, He Y, Zhu T, Chai H, Peng L. Smaller Aerobic Granules Significantly Reduce N 2O Production by Ammonia-Oxidizing Bacteria: Evidences from Biochemical and Isotopic Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:545-556. [PMID: 38111342 DOI: 10.1021/acs.est.3c06246] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mitigation of nitrous oxide (N2O) is of primary significance to offset carbon footprints in aerobic granular sludge (AGS) systems. However, a significant knowledge gap still exists regarding the N2O production mechanism and its pathway contribution. To address this issue, the impact of varying granule sizes, dissolved oxygen (DO), and nitrite (NO2-) levels on N2O production by ammonia-oxidizing bacteria (AOB) during nitrification in AGS systems was comprehensively investigated. Biochemical and isotopic experiments revealed that increasing DO or decreasing NO2- levels reduced N2O emission factors (by 13.8 or 19.5%) and production rates (by 0.08 or 0.35 mg/g VSS/h) via weakening the role of the AOB denitrification pathway since increasing DO competed for more electrons required for AOB denitrification. Smaller granules (0.5 mm) preferred to diminish N2O production via enhancing the role of NH2OH pathway (i.e., 59.4-100% in the absence of NO2-), while larger granules (2.0 mm) induced conspicuously higher N2O production via the AOB denitrification pathway (approximately 100% at higher NO2- levels). Nitrifying AGS systems with a unified size of 0.5 mm achieved 42% N2O footprint reduction compared with the system with mixed sizes (0.5-2.0 mm) under optimal conditions (DO = 3.0 mg-O2/L and NO2- = 0 mg-N/L).
Collapse
Affiliation(s)
- Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianhang Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yanying He
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Hongxiang Chai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| |
Collapse
|
27
|
Wang K, Li J, Gu X, Wang H, Li X, Peng Y, Wang Y. How to Provide Nitrite Robustly for Anaerobic Ammonium Oxidation in Mainstream Nitrogen Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21503-21526. [PMID: 38096379 DOI: 10.1021/acs.est.3c05600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Innovation in decarbonizing wastewater treatment is urgent in response to global climate change. The practical implementation of anaerobic ammonium oxidation (anammox) treating domestic wastewater is the key to reconciling carbon-neutral management of wastewater treatment with sustainable development. Nitrite availability is the prerequisite of the anammox reaction, but how to achieve robust nitrite supply and accumulation for mainstream systems remains elusive. This work presents a state-of-the-art review on the recent advances in nitrite supply for mainstream anammox, paying special attention to available pathways (forward-going (from ammonium to nitrite) and backward-going (from nitrate to nitrite)), key controlling strategies, and physiological and ecological characteristics of functional microorganisms involved in nitrite supply. First, we comprehensively assessed the mainstream nitrite-oxidizing bacteria control methods, outlining that these technologies are transitioning to technologies possessing multiple selective pressures (such as intermittent aeration and membrane-aerated biological reactor), integrating side stream treatment (such as free ammonia/free nitrous acid suppression in recirculated sludge treatment), and maintaining high activity of ammonia-oxidizing bacteria and anammox bacteria for competing oxygen and nitrite with nitrite-oxidizing bacteria. We then highlight emerging strategies of nitrite supply, including the nitrite production driven by novel ammonia-oxidizing microbes (ammonia-oxidizing archaea and complete ammonia oxidation bacteria) and nitrate reduction pathways (partial denitrification and nitrate-dependent anaerobic methane oxidation). The resources requirement of different mainstream nitrite supply pathways is analyzed, and a hybrid nitrite supply pathway by combining partial nitrification and nitrate reduction is encouraged. Moreover, data-driven modeling of a mainstream nitrite supply process as well as proactive microbiome management is proposed in the hope of achieving mainstream nitrite supply in practical application. Finally, the existing challenges and further perspectives are highlighted, i.e., investigation of nitrite-supplying bacteria, the scaling-up of hybrid nitrite supply technologies from laboratory to practical implementation under real conditions, and the data-driven management for the stable performance of mainstream nitrite supply. The fundamental insights in this review aim to inspire and advance our understanding about how to provide nitrite robustly for mainstream anammox and shed light on important obstacles warranting further settlement.
Collapse
Affiliation(s)
- Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xin Gu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
28
|
Zhu T, Ding J, Liu Y, Li X, Wang Z, Liu Y. The effect of organic sources on the electron distribution and N 2O emission in sulfur-driven autotrophic denitrification biofilters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166126. [PMID: 37562622 DOI: 10.1016/j.scitotenv.2023.166126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Sulfur-driven autotrophic denitrification (SAD) is considered as an effective alternative to traditional heterotrophic denitrification (HD) due to its cheap, low sludge production and non-toxicity. Nitrous oxide (N2O) as an intermediate product inevitably was generated at the limited supply of electron donor or unbalanced electron distribution condition during the denitrification process. Recently, autotrophic denitrification biofilters were conclusively implemented for advanced nitrogen removal in wastewater treatment plant (WWTP). However, residual organic sources after wastewater treatment could affect the electron distribution among denitrifying reductases and few studies are known about this issue. In this study, several lab-scale biofilters packed with elemental sulfur slices were applied to explore the electron distribution characteristics of autotrophic denitrification through the combination of different nitrogen oxides (NOx). The results clearly delineated that the different combination of nitrogen oxides had a remarkable effect on the electron distribution. In any case, the electrons likely flow toward nitrate reductase (Nar) under a single nitrogen oxide combination, followed by nitrite reductase (Nir) and nitrous oxide reductase (Nos). The concurrent presence of multiple electron acceptors resulted in most electrons flowing toward Nar, and least toward Nos. Compared to traditional SAD, the reduction rate of nitrogen oxide in the sulfur-driven autotrophic denitrification with influent of organic source (OSAD) was greatly improved. The maximum value of the true specific rates of NO3- in OSAD process was 9.43 mg-N/g-VSS/h. It was increased by 8.26 folds higher than that in traditional SAD. The electrons were more easily distributed to Nos with the addition of sodium acetate, which further promoted the N2O reduction. This study will provide theoretical support for controlling N2O release in SAD biofilters.
Collapse
Affiliation(s)
- Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiazeng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingrui Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Xufeng Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhiwen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
29
|
Cen X, Duan H, Hu Z, Huang X, Li J, Yuan Z, Zheng M. Multifaceted benefits of magnesium hydroxide dosing in sewer systems: Impacts on downstream wastewater treatment processes. WATER RESEARCH 2023; 247:120788. [PMID: 37924683 DOI: 10.1016/j.watres.2023.120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Magnesium hydroxide [Mg(OH)2] is a non-hazardous chemical widely applied in sewer systems for managing odour and corrosion. Despite its proven effectiveness in mitigating these issues, the impacts of dosing Mg(OH)2 in sewers on downstream wastewater treatment plants have not been comprehensively investigated. Through a one-year operation of laboratory-scale urban wastewater systems, including sewer reactors, sequencing batch reactors, and anaerobic sludge digesters, the findings indicated that Mg(OH)2 dosing in sewer systems had multifaceted benefits on downstream treatment processes. Compared to the control, the Mg(OH)2-dosed experimental system displayed elevated sewage pH (8.8±0.1vs 7.1±0.1), reduced sulfide concentration by 35.1%±4.9% (6.7±0.9mgSL-1), and lower methane concentration by 58.0%±4.9% (19.1±3.6mgCODL-1). Additionally, it increased alkalinity by 16.3%±2.2% (51.9±5.4mgCaCO3L-1), and volatile fatty acids concentration by 207.4%±22.2% (56.6±9.0mgCODL-1) in sewer effluent. While these changes offered limited advantages for downstream nitrogen removal in systems with sufficient alkalinity and carbon sources, significant improvements in ammonium oxidation rate and NOx reduction rate were observed in cases with limited alkalinity and carbon sources availability. Moreover, Mg(OH)2 dosing in upstream did not have any detrimental effects on anaerobic sludge digesters. Magnesium-phosphate precipitation led to a 31.7%±4.1% reduction in phosphate concertation in anaerobic digester sludge supernatant (56.1±10.4mgPL-1). The retention of magnesium in sludge increased settleability by 13.9%±1.6% and improved digested sludge dewaterability by 10.7%±5.3%. Consequently, the use of Mg(OH)2 dosing in sewers could potentially reduce downstream chemical demand and costs for carbon sources (e.g., acetate), pH adjustment and sludge dewatering.
Collapse
Affiliation(s)
- Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Xin Huang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Jiaying Li
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
30
|
Lu Y, Liu T, Niu C, Duan H, Zheng M, Hu S, Yuan Z, Wang H, Guo J. Challenges of suppressing nitrite-oxidizing bacteria in membrane aerated biofilm reactors by low dissolved oxygen control. WATER RESEARCH 2023; 247:120754. [PMID: 37897992 DOI: 10.1016/j.watres.2023.120754] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
Membrane aerated biofilm reactor (MABR) and shortcut nitrogen removal are two types of solutions to reduce energy consumption in wastewater treatment, with the former improving the aeration efficiency and the latter reducing the oxygen demand. However, integrating these two solutions, i.e., achieving shortcut nitrogen removal in MABR, is challenging due to the difficulty in suppressing nitrite-oxidizing bacteria (NOB). In this study, four MABRs were established to demonstrate the feasibility of initiating, maintaining, and restoring NOB suppression using low dissolved oxygen (DO) control, in the presence and absence of anammox bacteria, respectively. Long-term results revealed that the strict low DO (< 0.1 mg/L) in MABR could initiate and maintain stable NOB suppression for more than five months with nitrite accumulation ratio above 90 %, but it was unable to re-suppress NOB once they prevailed. Moreover, the presence of anammox bacteria increased the threshold of DO level to maintain NOB suppression in MABRs, but it was still incapable to restore the deteriorated NOB suppression in conjunction with low DO control. Mathematical modelling confirmed the experimental results and further explored the differences of NOB suppression in conventional biofilms and MABR biofilms. Simulation results showed that it is more challenging to maintain stable NOB suppression in MABRs compared to conventional biofilms, regardless of biofilm thickness or influent nitrogen concentration. Kinetic mechanisms for NOB suppression in different types of biofilms were proposed, suggesting that it is difficult to wash out NOB developed in the innermost layer of MABR biofilms because of the high oxygen level and low sludge wasting rate. In summary, this study systematically demonstrated the challenges of NOB suppression in MABRs through both experiments and mathematical modelling. These findings provide valuable insights into the applications of MABRs and call for more studies in developing effective strategies to achieve stable shortcut nitrogen removal in this energy-efficient configuration.
Collapse
Affiliation(s)
- Yan Lu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Chenkai Niu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing 100083, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
31
|
Xue Y, Zheng M, Cheng Z, Li S, Yang S, Liu Y, Qian Y, Huang X. Dynamic Simulation of Nitrifying Microbial Communities for Establishing Acidic Partial Nitritation in Suspended Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17542-17552. [PMID: 37909179 DOI: 10.1021/acs.est.3c01282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Acidic partial nitritation (PN) is a promising technology to achieve low-cost and energy-efficient shortcut nitrogen removal from wastewater. However, a comprehensive understanding of the acidic PN under dynamic changes of pH in a sequencing batch reactor (SBR) is still lacking. In this study, we successfully established acidic PN (NO2- accumulation ratio >80%) under dynamic pH variation from 7.0 to 4.5 in a lab-scale SBR. By accumulating in situ free nitrous acid (FNA) generation based on the dynamic pH change, acidic PN maintained stability even at a low NH4+ concentration of 100 mg N L-1. The microbial community analysis revealed that two ammonium-oxidizing bacteria (AOB) genera, Nitrosospira and Nitrosomonas, successfully coexisted and cooperated during acidic PN. None of the species of nitrite-oxidizing bacteria (NOB) showed adaptation to intermittent inhibition of in situ FNA even under high DO conditions (>4.0 mg O2 L-1). Furthermore, we innovatively incorporated the classic nitrification model with the growth and decay of different nitrifying bacterial species and their inhibition by pH, FNA, and free ammonia (FA) to predict the nitrifying microbial communities shifting for establishing acidic PN. The extended model was calibrated by using short-term batch experiments and was validated by using long-term dynamic data of the nitrifying microbial community during SBR operation. The validated model was further used to identify feasible influent conditions for the SBR PN process, including influent HCO3- concentration, NH4+ concentration and molar ratio (HCO3/NH4+). Outcomes from this study support the optimal design of acidic PN-based short-cut nitrogen removal processes for future application.
Collapse
Affiliation(s)
- Yu Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zhao Cheng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Tian L, Wang X, Guo H, Wang Y, Zhu T, Tong Y, Zhao Y, Sun P, Liu Y. Impact of sertraline on biohydrogen production from alkaline anaerobic fermentation of waste activated sludge: Focusing on microbial community and metabolism. BIORESOURCE TECHNOLOGY 2023; 388:129733. [PMID: 37714494 DOI: 10.1016/j.biortech.2023.129733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023]
Abstract
Nowadays, antidepressants are massively consumed worldwide, inevitably bringing about the concern for their latent hazard to the natural environment. This research focused on exploring the effect of sertraline (SET, a typical antidepressant) on hydrogen yields from alkaline anaerobic fermentation of waste activated sludge (WAS). The hydrogen accumulation reached the peak of 14.73 mL/g VSS (volatile suspended solids) at a SET dosage of 50 mg/kg TSS (total suspended solids), i.e., 1.90 times of that in the control fermenter. The data of Illumina high-throughput sequencing demonstrated that SET promoted the expression of genes regulating the membrane transport. Microbial community analysis suggested that some species that could degrade refractory substances were enriched after SET exposure. Finally, metabolic pathways of hydrogen production and consumption were found to be significantly affected with SET addition. This study would deepen the concept of typical antidepressants influencing energy recovery from WAS.
Collapse
Affiliation(s)
- Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
33
|
Hu Z, Li L, Cen X, Zheng M, Hu S, Wang X, Song Y, Xu K, Yuan Z. Integrated urban water management by coupling iron salt production and application with biogas upgrading. Nat Commun 2023; 14:6405. [PMID: 37828023 PMCID: PMC10570337 DOI: 10.1038/s41467-023-42158-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Integrated urban water management is a well-accepted concept for managing urban water. It requires efficient and integrated technological solutions that enable system-wide gains via a whole-of-system approach. Here, we create a solid link between the manufacturing of an iron salt, its application in an urban water system, and high-quality bioenergy recovery from wastewater. An iron-oxidising electrochemical cell is used to remove CO2 (also H2S and NH3) from biogas, thus achieving biogas upgrading, and simultaneously producing FeCO3. The subsequent dose of the electrochemically produced FeCO3 to wastewater and sludge removes sulfide and phosphate, and enhances sludge settleability and dewaterability, with comparable or superior performance compared to the imported and hazardous iron salts it substitutes (FeCl2, and FeCl3). The process enables water utilities to establish a self-reliant and more secure supply chain to meet its demand for iron salts, at lower economic and environmental costs, and simultaneously achieve recovery of high-quality bioenergy.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Lanqing Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yarong Song
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Kangning Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Collage of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
34
|
Xu R, Cui H, Fan F, Zhang M, Yuan S, Wang D, Gan Z, Yu Z, Wang C, Meng F. Combination of Sequencing Batch Operation and A/O Process to Achieve Partial Mainstream Anammox: Pilot-Scale Demonstration and Microbial Ecological Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13887-13900. [PMID: 37667485 DOI: 10.1021/acs.est.3c03022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In this study, sequencing batch operation was successfully combined with a pilot-scale anaerobic biofilm-modified anaerobic/aerobic membrane bioreactor to achieve anaerobic ammonium oxidation (anammox) without inoculation of anammox aggregates for municipal wastewater treatment. Both total nitrogen and phosphorus removal efficiencies of the reactor reached up to 80% in the 250-day operation, with effluent concentrations of 4.95 mg-N/L and 0.48 mg-P/L. In situ enrichment of anammox bacteria with a maximum relative abundance of 7.86% was observed in the anaerobic biofilm, contributing to 18.81% of nitrogen removal, with denitrification being the primary removal pathway (38.41%). Denitrifying phosphorus removal (DPR) (40.54%) and aerobic phosphorus uptake (48.40%) played comparable roles in phosphorus removal. Metagenomic sequencing results showed that the biofilm contained significantly lower abundances of NO-reducing functional genes than the bulk sludge (p < 0.01), favoring anammox catabolism in the former. Interactions between the anammox bacteria and flanking community were dominated by cooperation behaviors (e.g., nitrite supply, amino acids/vitamins exchange) in the anaerobic biofilm community network. Moreover, the hydrolytic/fermentative bacteria and endogenous heterotrophic bacteria (Dechloromonas, Candidatus competibacter) were substantially enriched under sequencing batch operation, which could alleviate the inhibition of anammox bacteria by complex organics. Overall, this study provides a feasible and promising strategy for substantially enriching anammox bacteria and achieving partial mainstream anammox as well as DPR.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Hongcan Cui
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fuqiang Fan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shasha Yuan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Depeng Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhihao Gan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhong Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
35
|
Hu Z, Liu T, Su Z, Zhao J, Guo J, Hu S, Yuan Z, Zheng M. Adaptation of anammox process for nitrogen removal from acidic nitritation effluent in a low pH moving bed biofilm reactor. WATER RESEARCH 2023; 243:120370. [PMID: 37482002 DOI: 10.1016/j.watres.2023.120370] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Acidic partial nitritation (PN) has emerged to be a promisingly stable process in wastewater treatment, which can simultaneously achieve nitrite accumulation and about half of ammonium reduction. However, directly applying anaerobic ammonium oxidation (anammox) process to treat the acidic PN effluent (pH 4-5) is susceptible to the inhibition of anammox bacteria. Here, this study demonstrated the adaptation of anammox process to acidic pH in a moving bed biofilm reactor (MBBR). By feeding the laboratory-scale MBBR with acidic PN effluent (pH = 4.6 ± 0.2), the pH of an anammox reactor was self-sustained in the range of pH 5 - 6. Yet, a high total nitrogen removal efficiency of over 80% at a practical loading rate of up to 149.7 ± 3.9 mg N/L/d was achieved. Comprehensive microbial assessment, including amplicon sequencing, metagenomics, cryosection-FISH, and qPCR, identified that Candidatus Brocadia, close to known neutrophilic members, was the dominant anammox bacteria. Anammox bacteria were found present in the inner layer of thick biofilms but barely present in the surface layer of thick biofilms and in thin biofilms. Results from batch tests also showed that the activity of anammox biofilms could be maintained when subjected to pH 5 at a nitrite concentration of 10 mg N/L, whereas the activity was completely inhibited after disturbing the biofilm structure. These results collectively indicate that the anammox bacteria enriched in the present acidic MBBR could not be inherently acid-tolerant. Instead, the achieved stable anammox performance under the acidic condition is likely due to biofilm stratification and protection. This result highlights the biofilm configuration as a useful solution to address nitrogen removal from acidic PN effluent, and also suggests that biofilm may play a critical role in protecting anammox bacteria found in many acidic nature environments.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zicheng Su
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jing Zhao
- Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong China.
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
36
|
Su Z, Liu T, Guo J, Zheng M. Nitrite Oxidation in Wastewater Treatment: Microbial Adaptation and Suppression Challenges. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12557-12570. [PMID: 37589598 PMCID: PMC10470456 DOI: 10.1021/acs.est.3c00636] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
Microbial nitrite oxidation is the primary pathway that generates nitrate in wastewater treatment systems and can be performed by a variety of microbes: namely, nitrite-oxidizing bacteria (NOB). Since NOB were first isolated 130 years ago, the understanding of the phylogenetical and physiological diversities of NOB has been gradually deepened. In recent endeavors of advanced biological nitrogen removal, NOB have been more considered as a troublesome disruptor, and strategies on NOB suppression often fail in practice after long-term operation due to the growth of specific NOB that are able to adapt to even harsh conditions. In line with a review of the history of currently known NOB genera, a phylogenetic tree is constructed to exhibit a wide range of NOB in different phyla. In addition, the growth behavior and metabolic performance of different NOB strains are summarized. These specific features of various NOB (e.g., high oxygen affinity of Nitrospira, tolerance to chemical inhibitors of Nitrobacter and Candidatus Nitrotoga, and preference to high temperature of Nitrolancea) highlight the differentiation of the NOB ecological niche in biological nitrogen processes and potentially support their adaptation to different suppression strategies (e.g., low dissolved oxygen, chemical treatment, and high temperature). This review implicates the acquired physiological characteristics of NOB to their emergence from a genomic and ecological perspective and emphasizes the importance of understanding physiological characterization and genomic information in future wastewater treatment studies.
Collapse
Affiliation(s)
- Zicheng Su
- Australian Centre for Water
and Environmental Biotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Tao Liu
- Australian Centre for Water
and Environmental Biotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water
and Environmental Biotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| | - Min Zheng
- Australian Centre for Water
and Environmental Biotechnology, The University
of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
37
|
Liu T, Hu S, Yuan Z, Guo J. Simultaneous dissolved methane and nitrogen removal from low-strength wastewater using anaerobic granule-based sequencing batch reactor. WATER RESEARCH 2023; 242:120194. [PMID: 37320879 DOI: 10.1016/j.watres.2023.120194] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic treatment of mainstream wastewater has been proposed as a promising solution to enhance bioenergy recovery for wastewater treatment plants (WWTPs). However, the limited organics for downstream nitrogen removal and emissions of dissolved methane into the atmosphere are two major barriers to the broad application of anaerobic wastewater treatment. This study aims to develop a novel technology to overcome these two challenges by achieving simultaneous removal of dissolved methane and nitrogen, and unravel the microbial competitions underpinning the process from the microbial and kinetic perspectives. To this end, a laboratory granule-based sequencing batch reactor (GSBR) coupling anammox and nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) microorganisms was developed to treat wastewater mimicking effluent from mainstream anaerobic treatment. The GSBR achieved high-level nitrogen and dissolved methane removal rates (> 250 mg N/L/d and > 65 mg CH4/L/d) and efficiencies (> 99% total nitrogen removal and > 90% total methane removal) during the long-term demonstration. The availability of different electron acceptors (nitrite or nitrate) imposed significant effects on the removal of ammonium and dissolved methane, as well as on the microbial communities, and the abundance and expression of functional genes. The analysis of apparent microbial kinetics showed that anammox bacteria had a higher nitrite affinity than n-DAMO bacteria, while n-DAMO bacteria had a higher methane affinity than n-DAMO archaea. These kinetics underpin the observation that nitrite is a preferred electron acceptor for removing ammonium and dissolved methane than nitrate. The findings not only extend the applications of novel n-DAMO microorganisms in nitrogen and dissolved methane removal, but also provide insights into microbial cooperation and competition in granular systems.
Collapse
Affiliation(s)
- Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
38
|
Cen X, Li J, Jiang G, Zheng M. A critical review of chemical uses in urban sewer systems. WATER RESEARCH 2023; 240:120108. [PMID: 37257296 DOI: 10.1016/j.watres.2023.120108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Chemical dosing is the most used strategy for sulfide and methane abatement in urban sewer systems. Although conventional physicochemical methods, such as sulfide oxidation (e.g., oxygen/nitrate), precipitation (e.g., iron salts), and pH elevation (e.g., magnesium hydroxide/sodium hydroxide) have been used since the last century, the high chemical cost, large environmental footprint, and side-effects on downstream treatment processes demand a sustainable and cost-effective alternative to these approaches. In this paper, we aimed to review the currently used chemicals and significant progress made in sustainable sulfide and methane abatement technology, including 1) the use of bio-inhibitors, 2) in situ chemical production, and 3) an effective dosing strategy. To enhance the cost-effectiveness of chemical applications in urban sewer systems, two research directions have emerged: 1) online control and optimization of chemical dosing strategies and 2) integrated use of chemicals in urban sewer and wastewater treatment systems. The integration of these approaches offers considerable system-wide benefits; however, further development and comprehensive studies are required.
Collapse
Affiliation(s)
- Xiaotong Cen
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
39
|
Liu Y, Zuo Z, Li H, Xing Y, Cheng D, Guo M, Liu T, Zheng M, Yuan Z, Huang X. In-situ advanced oxidation of sediment iron for sulfide control in sewers. WATER RESEARCH 2023; 240:120077. [PMID: 37247440 DOI: 10.1016/j.watres.2023.120077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Sulfide control is a significant problem in urban sewer management. Although in-sewer dosing of chemicals has been widely applied, it is prone to high chemical consumption and cost. A new approach is proposed in this study for effective sulfide control in sewers. It involves advanced oxidation of ferrous sulfide (FeS) in sewer sediment, to produce hydroxyl radical (·OH) in-situ, leading to simultaneous sulfide oxidation and reduction of microbial sulfate-reducing activity. Long-term operation of three laboratory sewer sediment reactors was used to test the effectiveness of sulfide control. The experimental reactor with the proposed in-situ advanced FeS oxidation substantially reduced sulfide concentration to 3.1 ± 1.8 mg S/L. This compares to 9.2 ± 2.7 mg S/L in a control reactor with sole oxygen supply, and 14.1 ± 4.2 mg S/L in the other control reactor without either iron or oxygen. Mechanistic investigations illustrated the critical role of ·OH, produced from the oxidation of sediment iron, in regulating microbial communities and the chemical sulfide oxidation reaction. Together these results demonstrate that incorporating the advanced FeS oxidation process in sewer sediment enable superior performance of sulfide control at a much lower iron dosage, thereby largely saving chemical use.
Collapse
Affiliation(s)
- Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - He Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yaxin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Miao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Zuo Z, Chen Y, Xing Y, Li S, Yang S, Jiang G, Liu T, Zheng M, Huang X, Liu Y. The advantage of a two-stage nitrification method for fertilizer recovery from human urine. WATER RESEARCH 2023; 235:119932. [PMID: 37011577 DOI: 10.1016/j.watres.2023.119932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Recycling nutrients (nitrogen, phosphorus, and potassium) from human urine can potentially offset more than 13% of global agricultural fertilizer demand. Biological nitrification is a promising method for converting volatile ammonia in high-strength human urine into stable ammonium nitrate (a typical fertilizer), but it is usually terminated in the intermediate production of nitrite due to the inhibition of nitrite-oxidizing bacteria by free nitrous acid (FNA). This study aimed to develop a stable nitrification process in a unique two-stage bioreactor by removing critical barriers associated with FNA inhibition. Experimental results show that half of the ammonium in high-strength urine was successfully converted into nitrate, forming valuable ammonium nitrate (with a nitrogen concentration greater than 1500 mg N/L). The ammonium nitrate solution could retain most phosphorus (75% ± 3%) and potassium (96% ± 1%) in human urine, resulting in nearly full nutrient recovery. Once concentrated, the liquid compound fertilizer of ammonium nitrate was generated. Based on an assessment of economic and environmental impacts at the urban scale, urine diversion for nutrient recovery using a technical combination of nitrification and reverse osmosis could reduce total energy input by 43%, greenhouse gas emission by 40%, and cost by 33% compared to conventional wastewater management. Further research is needed to optimize the two-stage nitrification method on a larger scale.
Collapse
Affiliation(s)
- Zhiqiang Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; Engineering Research Center of Beijing, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, China
| | - Yan Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yaxin Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Siqi Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaolin Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Hu Z, Hu S, Ye L, Duan H, Wu Z, Hong PY, Yuan Z, Zheng M. Novel Use of a Ferric Salt to Enhance Mainstream Nitrogen Removal from Anaerobically Pretreated Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6712-6722. [PMID: 37038903 DOI: 10.1021/acs.est.2c08325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This study aims to demonstrate a new technology roadmap to support the ongoing paradigm shift in wastewater management from pollutant removal to resource recovery. This is achieved by developing a novel use of an iron salt (i.e., FeCl3) in an integrated anaerobic wastewater treatment and mainstream anammox process. FeCl3 was chosen to be dosed in a proposed sidestream unit rather than in a primary settler or a mainstream reactor. This causes acidification of returned activated sludge and enables stable suppression of nitrite-oxidizing bacterial activity and excess sludge reduction. A laboratory-scale system, which comprised an anaerobic baffled reactor, a continuous-flow anoxic-aerobic (A/O) reactor, and a secondary settler, was designed to treat real domestic wastewater, with the performance of the system comprehensively monitored under a steady-state condition. The experimental assessments showed that the system had good effluent quality, with total nitrogen and phosphorus concentrations of 12.6 ± 1.3 mg N/L and 0.34 ± 0.05 mg P/L, respectively. It efficiently retained phosphorus in excess sludge (0.18 ± 0.03 g P/g dry sludge), suggesting its potential for further recovery. About half of influent organic carbon was recovered in the form of bioenergy (i.e., methane). This together with low energy consumption revealed that the system could produce a net energy of about 0.11 kWh/m3-wastewater, assessed by an energy balance analysis.
Collapse
Affiliation(s)
- Zhetai Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Haoran Duan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ziping Wu
- School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Pei-Ying Hong
- Environmental Science and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|