1
|
Liu B, Liu Z, Zhang S, Tang X, Wang Z, Qu R. Novel role of Silver(I) as electron shuttle for polymerization of chlorophenols by permanganate oxidation. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137565. [PMID: 39947077 DOI: 10.1016/j.jhazmat.2025.137565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 04/16/2025]
Abstract
Permanganate (Mn(VII)) oxidation is attracting increasing attention in the field of water treatment, however, it exhibits limited chemical oxygen demand (COD) removal due to its inability to completely destroy the structure of pollutants. This paper discovered the novel role of ionic silver as electron shuttle for regulation of chlorophenols (CPs) polymerization during Mn(VII) oxidation. The Mn(VII)-Ag(I) system displayed remarkable removal of CPs in real water bodies and facilitated polymerization to at least hexamerization for improved COD removal. The ring-closure reaction was proposed for the first time, potentially stabilizing chained oligomers and reducing their migration toxicity. Ag(I) plays a dual role to create the electron-deficient state of Mn(VII) and enhance the oxidation susceptibility of 2,4-DCP via complexation, which mediates the electron transfer to generate abundant phenoxyl radicals to initiate polymerization for the formation of filterable and settleable oligomers. Findings of this work would provide new inspirations for the development of highly-efficient, cost-effective and environment-friendly Mn(VII) oxidation technologies in removal of CPs-like contaminants.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zhiwei Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xiaosheng Tang
- Jiangsu Yangtze River Delta Environmental Science and Technology Research Institute Co., Ltd., Changzhou, Jiangsu 213100, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
2
|
Tian S, Jiang S, Xu Y, Ma J, Wen G. New insight into enhanced permanganate oxidation by lignocellulose-derived biochar: The overlooked role of persistent free radicals. WATER RESEARCH 2025; 274:123069. [PMID: 39764863 DOI: 10.1016/j.watres.2024.123069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025]
Abstract
Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance. Herein, we prepared a series of biochar via pyrolyzing different sources of biomass, and their introduction enhanced 24 % of Mn(VII) oxidation of diclofenac (DCF) to 47.3 %∼100 % within 20 min. Particularly, Mn(VII)/walnut shell biochar (SBC) system achieved the highest reaction rate constant of 0.3817 min-1, 5.8 times faster than that by UVA-LED-activated Mn(VII). Physicochemical properties of biochar were found to be highly dependent on the organic compositions of biomass. According to quantitative structure-activity relationship (QSAR) studies, graphitization degree of biochar was recognized to be the decisive factor, facilitating the electron transfer from organics to Mn(VII)-biochar complexes. Lignin-abundant biomass was more conducive to producing highly-graphitized biochar with superior activity. Mn(III), identified as the sole reactive Mn intermediate in Mn(VII)/biochar systems, made the secondary contribution to contaminants removal. Impressively, Mn(III) formation was positively correlated with persistent free radicals (PFRs) intensity of biochar. Manipulation experiments and theoretical calculations corroborated that PFRs generated on pyrolyzed biomass and biopolymers (cellulose, hemicellulose and lignin), could donate electrons for Mn(VII) decomposition, regulating Mn(III) production via the synergy of PFRs' concentrations and types. Overall, this work offered new insights into the contribution of lignocellulose-derived biochar to Mn(VII) oxidation and contaminants removal.
Collapse
Affiliation(s)
- Shiqi Tian
- The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Susu Jiang
- The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Yuanyuan Xu
- The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Gang Wen
- The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
3
|
Tian Q, Wang H, Huangfu S, Yang R, Chen Y, Gao J, Yang Y, Zhang L. Oxygen Vacancy Formation Energy Determines the Phase-Activity Relationship of MnO 2 Laccase Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19638-19647. [PMID: 40129185 DOI: 10.1021/acsami.4c22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Although manganese dioxide (MnO2) has been explored as a powerful laccase nanozyme for pollutant oxidation in wastewater treatment, the phase-activity relationship of multiphase MnO2 remains ambiguous and controversial. Herein, the experimental studies show that the laccase-like activities and aerobic catalytic oxidation toward tetracycline antibiotics of the six types of MnO2 are in the following order: β- > λ- > γ- > α- > ε- > δ-MnO2. Density functional theory (DFT) calculations revealed that the catalytic activities are inversely proportional to the oxygen vacancy formation energies of the different MnO2 materials. Further investigation of surface oxygen species with reactivity demonstrated that rich oxygen vacancies boost the oxygen mobility and catalytic efficiency of MnO2 nanozymes, which is in good agreement with both experimental and DFT results. Hence, this study reveals the decisive role of the crystal phase in the oxygen vacancy generation, which elucidates the laccase-like catalytic mechanism of MnO2 nanozymes and is valuable for the future design and synthesis of MnO2 nanocatalysts.
Collapse
Affiliation(s)
- Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Haoyu Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuaiqi Huangfu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yao Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jie Gao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingchun Yang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Lu X, Wang X, He H, Liu Q, Li J, Zhao Z, Yang P, Pan Z, Wang Z. Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137013. [PMID: 39736254 DOI: 10.1016/j.jhazmat.2024.137013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO2 ≫ γ-MnOOH > Mn3O4. Adding pyrophosphate (PP) significantly enhanced BPA degradation by promoting the formation of Mn(III)-PP complexes and exposing more reactive sites, achieved through destabilizing the crystal structure and mitigating of Mn(II) readsorption, particularly in γ-MnOOH and Mn3O4. Our kinetic model revealed that heterogeneous degradation by Mn oxides is the predominant reaction pathway, accounting for 61.4 %, 87.8 %, and 73.8 % of the total degraded BPA for δ-MnO2, γ-MnOOH, and Mn3O4, respectively, even in the presence of significant amount of dissolved Mn(III) intermediates due to high PP concentrations. These results offer mechanistic details on BPA degradation by Mn oxides and the influence of ligand concentration, providing helpful insights for optimizing degradation strategies of organic pollutants.
Collapse
Affiliation(s)
- Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qiuyao Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jinfeng Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ziyi Zhao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Peng Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Wang J, Bi S, Wei L, Shen Y, Meng F, Zhang Y, Tan X. Unveiling the critical roles of nascent MnO 2 in accelerating permanganate carbocatalysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136439. [PMID: 39531815 DOI: 10.1016/j.jhazmat.2024.136439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
To probe the underlying mechanisms of carbocatalysis in enhanced permanganate (PM) oxidation and identify the exact roles of nascent MnO2, graphene aerogels (GA) were fabricated to activate PM for naproxen (NPX) degradation. All the three GA samples could accelerate NPX oxidation by PM, the rate constants and reaction stoichiometric efficiency (RSE) followed the order of GA900 > GA600 > GA300. Mechanistic studies revealed that Mn(VI), Mn(V) and Mn(III) were not the major reactive species involved in NPX oxidation, but highlighted the essential contribution of electron transfer pathway (ETP) mediated directly by GA and indirectly by nascent MnO2. For GA300 with strong electron-donating capability, it mainly served as the electron donor for PM decomposition, and indirectly oxidized NPX via nascent MnO2 mediated ETP, thereby exhibiting inferior RSE as well as mediocre recycling performance. GA600 and GA900 could serve as the electron shuttle to directly mediate the ETP for NPX degradation, the nascent MnO2 accumulated on GA framework during the reaction would also mediate the ETP from NPX to PM, thus displaying an obvious accelerating recycling performance. This work provides novel insights into the structure-dominated PM carbocatalysis, which contributes better to development of promising carbocatalysts and utilization of nascent MnO2.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Simeng Bi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Li Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fanpeng Meng
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China; Department of Chemical Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Hu E, Ye Y, Wang B, Cheng H. Unique role of Mn(II) in enhancing electro-oxidation of organic pollutants on anodes with low oxygen evolution potential at low current density. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136332. [PMID: 39486322 DOI: 10.1016/j.jhazmat.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
This study systematically explored the role of Mn(II) in the removal of 4-chlorophenol (4-CP) by electro-oxidation (EO) employing anodes with low oxygen evolution potential (OEP), i.e., Ti/RuO2-IrO2, Ti/Pt, and Ti/Ti4O7, as well as anodes with high OEP, namely, Ti/PbO2, Ti/SnO2, and boron-doped diamond (Si/BDD). Mn(II) significantly promoted 4-CP removal on the anodes with low OEP at fairly low current density (0.04 to 1 mA/cm2), but had minimal to negative impact on those with high OEP. Cyclic voltammetry and X-ray photoelectron spectra revealed that Mn(II) was oxidized to Mn(III), then to Mn(IV) on the anodes with low OEP, whereas its was oxidized directly to Mn(IV) on those with high OEP. Deposition of manganese oxide on the anodes with low OEP suppressed oxygen evolution reaction (OER) in EO process, but enhanced OER on those with high OEP. Quenching and spectral results consistently indicated that Mn(III) and Mn(IV) were the primary species responsible for enhancing 4-CP removal on the anodes with low OEP. These findings provide mechanistic insights into the redox transformation of Mn(II) in EO and the theoretical basis for a novel strategy to boost pollutant degradation in EO systems using low OEP anodes through coupling with the redox chemistry of manganese.
Collapse
Affiliation(s)
- Erdan Hu
- College of Environment, Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang, Province Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuhua Ye
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Luo M, Zhang H, Guo J, Zhao J, Feng C, Yin J, Xu C, Du Y, Liu Y, He CS, Lai B. Proton vs Electron: The Dual Role of Redox-Inactive Metal Ions in Permanganate Oxidation Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18041-18051. [PMID: 39329234 DOI: 10.1021/acs.est.4c06557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Redox-inactive metal-ion-driven modulation of the oxidation behavior of high-valent metal-oxo complex has garnered significant interest in biological and chemical synthesis; however, their role in permanganate (Mn(VII)) oxidation for the removal of organic pollutants has been largely neglected. Here, we uncover the impact of six metal ions (i.e., Ca2+, Mg2+, Ni2+, Zn2+, Al3+, and Sc3+) presenting in water environments on Mn(VII) activity. These ions uniformly boost the electron and oxygen transfer capabilities of Mn(VII) while impeding proton transfer, as evidenced by electrochemical tests, thioanisole probe analysis, and the kinetic isotope effect. The observed effects are intricately linked to the Lewis acidity of the metal ions. Further mechanistic insights reveal that Mn(VII) can interact with metal ions without direct reduction. Such interactions modify the electronic configuration of Mn(VII) and create an acidic microenvironment, thus increasing its electrophilicity and the energy barrier for the abstraction of proton from organic substrates. More importantly, the efficacy of Mn(VII) in removing phenolic pollutants is regulated by these ions through changing the driving force for proton and electron transfer, i.e., facilitated at pH > 4.5 and inhibited at lower pH. The contribution of active Mn intermediates is also discussed to reveal the oxidative mechanism of the metal ion/Mn(VII) system. These findings not only facilitate the rational design of Mn(VII) oxidation conditions in the presence of metal ions for water decontamination but also offer an alternative paradigm for enhancing electrophilic oxidation.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jianhua Guo
- Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
| | - Jia Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Can Feng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jialong Yin
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chang Xu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
8
|
Wang X, Jones MR, Pan Z, Lu X, Deng Y, Zhu M, Wang Z. Trivalent manganese in dissolved forms: Occurrence, speciation, reactivity and environmental geochemical impact. WATER RESEARCH 2024; 263:122198. [PMID: 39098158 DOI: 10.1016/j.watres.2024.122198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
The cycling processes of elemental manganese (Mn), including the redox reactions of dissolved Mn(III) (dMn(III)), directly and indirectly influences the biogeochemical processes of many elements. Though increasing evidence indicates the widespread presence of dMn(III) mediates the fate of many elements, its role may be currently underestimated. There is both a lack of clear understanding of the historical research framework of dMn(III) and a systematic overview of its geochemical properties and detection methods. Therefore, the primary aim of this review is to outline the understanding of dMn(III) in multiple fields, including soil science, analytical chemistry, biochemistry, geochemistry, and water treatment, and summarize the formation pathways, species forms, and detection methods of dMn(III) in aquatic systems. This review considers how the characteristics of dMn(III), the intermediate formed in the single-electron reaction processes of Mn(II) oxidation and Mn(IV) reduction, determines its participation in environmental geochemical processes. Its widespread presence in diverse water systems and active redox properties coupling with various elements confirm its significant role in natural elemental geochemistry cycle and artificial water treatment processes. Therefore, further investigation into the role of dissolved Mn(III) in aquatic systems is warranted to unravel unexplored coupled elemental redox reaction processes mediated by dissolved Mn(III), filling in the gaps in our understanding of manganese environmental geochemistry, and providing a theoretical basis for recognizing the role of dMn(III) role in water treatment technologies.
Collapse
Affiliation(s)
- Xingxing Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Matthew R Jones
- Wolfson Atmospheric Chemistry Laboratory, University of York, York YO10 5DD, United Kingdom
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China
| | - Xiaohan Lu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yamin Deng
- Key Laboratory of Groundwater Quality and Health (China University of Geosciences), Ministry of Education, Wuhan 430078, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution & School of Environmental Studies, China University of, Geosciences, Wuhan 430078, China
| | - Mengqiang Zhu
- Department of Geology, University of Maryland, College Park, MD, 20740, USA
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Shanghai 200438, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Mai J, Zeng G, Jiang M, Su P, Lv Q, Li W, Hou X, Liu M, Ma J, Yang T. Unraveling the role of Mn(V)/Mn(III) in the enhanced permanganate oxidation under Vis-LED radiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173655. [PMID: 38848904 DOI: 10.1016/j.scitotenv.2024.173655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
A novel approach of visible light-emitting diode (Vis-LED) radiation was employed to activate permanganate (Mn(VII)) for efficient organic micropollutant (OMP) removal. The degradation rates of OMPs by Vis-LED/Mn(VII) were 2-5.29 times higher than those by Mn(VII) except for benzoic acid and atrazine. Increasing wavelengths (445-525 nm) suppressed the degradation of diclofenac (DCF) and 4-chlorophenol (4-CP) owing to the decreased quantum yields of Mn(VII). Comparatively, light intensity and Mn(VII) dosage had a positive effect on the degradation of DCF and 4-CP. Experimental data revealed that Mn(V) dominated the DCF degradation whereas Mn(III) was the active oxidant in the 4-CP degradation. Mn(V) and Mn(III) formed from the photo-decomposition of Mn(VII), meanwhile, Mn(III) also formed from the Mn(V) photo-decomposition. The increase in solution pH inhibited DCF degradation but had a positive impact on 4-CP degradation, mainly due to the changing speciation of DCF and 4-CP. Inorganic anions (Cl- and HCO3-) had little impact on DCF and 4-CP degradation, while humic acid (HA) showed a positive impact because of the π-π interaction between HA and DCF/4-CP. The transformation products of DCF and 4-CP were identified and transformation pathways were proposed. Finally, the Vis-LED/Mn(VII) exhibited great degradation performance in various authentic waters. Overall, this study boosts the development of Mn(VII)-based oxidation processes.
Collapse
Affiliation(s)
- Jiamin Mai
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Qixiao Lv
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Wenqi Li
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Xiangyang Hou
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Minchao Liu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, China; Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
10
|
Luo L, Zheng M, Du E, Wang J, Guan X, Guo H. Development of a New Permanganate/Chlorite Process for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16578-16588. [PMID: 39219237 DOI: 10.1021/acs.est.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Development of new technologies with strong selectivity for target pollutants and low sensitivity toward a water matrix remains challenging. Herein, we introduced a novel strategy that used chlorite as an activator for Mn(VII) at pH 4.8, turning the inert reactivity of the pollutants toward Mn(VII) into a strong reactivity. This paved a new way for triggering reactions in water decontamination. By utilizing sulfamethoxazole (SMX) as a typical pollutant, we proposed coupled pathways involving electron transfer across hydrogen bonds (TEHB) and oxidation by reactive manganese species. The results indicated that a hydrogen bonding complex, SMX-ClO2-*, formed through chlorite binding the amino group of SMX initially in the TEHB route; such a complex exhibited a stronger reduction capability toward Mn(VII). Chlorite, in the hydrogen bonding complex SMX-ClO2-*, can then complex with Mn(VII). Consequently, a new reactive center (SMX-ClO2--Mn(VII)*) was formed, initiating the transfer of electrons across hydrogen bonds and the preliminary degradation of SMX. This is followed by the involvement of the generated Mn(V)-ClO2-/Mn(III) in the reduction process of Mn(VII). Such a process showed pH-dependent degradation, with a removal ratio ranging from 80% to near-stagnation as pH increased from 4.8 to 7. Combining with pKa analysis showed that the predominant forms of contaminants were crucial for the removal efficiency of pollutants by the Mn(VII)/chlorite process. The impact of the water matrix was demonstrated to have few adverse or even beneficial effects. With satisfactory performance against numerous contaminants, this study introduced a novel Mn(VII) synergistic strategy, and a new reactivity pattern focused on reducing the reduction potential of the contaminant, as opposed to increasing the oxidation potential of oxidants.
Collapse
Affiliation(s)
- Liping Luo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Jingquan Wang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Shi Y, Xiao S, Qian Y, Huang CH, Chen J, Li N, Liu T, Zhang Y, Zhou X. Revisiting the synergistic oxidation of peracetic acid and permanganate(Ⅶ) towards micropollutants: The enhanced electron transfer mechanism of reactive manganese species. WATER RESEARCH 2024; 262:122105. [PMID: 39032336 DOI: 10.1016/j.watres.2024.122105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(Ⅶ) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(Ⅶ) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(Ⅴ/Ⅵ) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.
Collapse
Affiliation(s)
- Yufei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
12
|
Cui L, Gong Y, Zhao S, Wu Y, Wang A, Chen Z. Homogenous Oxidizing Oligomerization Coupled with Coagulation for Water Purification. WATER RESEARCH 2024; 257:121684. [PMID: 38723348 DOI: 10.1016/j.watres.2024.121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/29/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024]
Abstract
Natural manganese oxides could induce the intermolecular coupling reactions among small-molecule organics in aqueous environments, which is one of the fundamental processes contributing to natural humification. These processes could be simulated to design novel advanced oxidation technology for water purification. In this study, periodate (PI) was selected as the supplementary electron-acceptor for colloidal manganese oxides (Mn(IV)aq) to remove phenolic contaminants from water. By introducing polyferric sulfate (PFS) into the Mn(IV)aq/PI system and exploiting the flocculation potential of Mn(IV)aq, a post-coagulation process was triggered to eliminate soluble manganese after oxidation. Under acidic conditions, periodate exists in the H4IO6- form as an octahedral oxyacid capable of coordinating with Mn(IV)aq to form bidentate complexes or oligomers (Mn(IV)-PI*) as reactive oxidants. The Mn(IV)-PI* complex could induce cross-coupling process between phenolic contaminants, resulting in the formation of oligomerized products ranging from dimers to hexamers. These oligomerized products participate in the coagulation process and become stored within the nascent floc due to their catenulate nature and strong hydrophobicity. Through coordination between Mn(IV)aq and H4IO6-, residual periodate is firmly connected with manganese oxides in the floc after coagulation and could be simultaneously separated from the aqueous phase. This study achieves oxidizing oligomerization through a homogeneous process under mild conditions without additional energy input or heterogeneous catalyst preparation. Compared to traditional mineralization-driven oxidation techniques, the proposed novel cascade processes realize transformation, convergence, and separation of phenolic contaminants with high oxidant utilization efficiency for low-carbon purification.
Collapse
Affiliation(s)
- Lei Cui
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yingxu Gong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Shengxin Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yining Wu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhonglin Chen
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
13
|
Wang J, Chai Z, Su H, Du E, Guan X, Guo H. Unraveling the Role of Humic Acid in the Oxidation of Phenolic Contaminants by Soluble Manganese Oxo-Anions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8576-8586. [PMID: 38696240 DOI: 10.1021/acs.est.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Humic acid (HA) is ubiquitous in natural aquatic environments and effectively accelerates decontamination by permanganate (Mn(VII)). However, the detailed mechanism remains uncertain. Herein, the intrinsic mechanisms of HA's impact on phenolics oxidation by Mn(VII) and its intermediate manganese oxo-anions were systematically studied. Results suggested that HA facilitated the transfer of a single electron from Mn(VII), resulting in the sequential formation of Mn(VI) and Mn(V). The formed Mn(V) was further reduced to Mn(III) through a double electron transfer process by HA. Mn(III) was responsible for the HA-boosted oxidation as the active species attacking pollutants, while Mn(VI) and Mn(V) tended to act as intermediate species due to their own instability. In addition, HA could serve as a stabilizer to form a complex with produced Mn(III) and retard the disproportionation of Mn(III). Notably, manganese oxo-anions did not mineralize HA but essentially changed its composition. According to the results of Fourier-transform ion cyclotron resonance mass spectrometry and the second derivative analysis of Fourier-transform infrared spectroscopy, we found that manganese oxo-anions triggered the decomposition of C-H bonds on HA and subsequently produced oxygen-containing functional groups (i.e., C-O). This study might shed new light on the HA/manganese oxo-anion process.
Collapse
Affiliation(s)
- Jingquan Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhizhuo Chai
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Haizheng Su
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaohong Guan
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
14
|
Zhou Y, Zeng Z, Fu J, Gao Y, Ma J, Zhang Z, Zu D, Han B, Lu X, Ma J, Jiang J. New Insights into the Role of Humic Acid in Permanganate Oxidation of Diclofenac: A Novel Electron Transfer Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4019-4028. [PMID: 38366980 DOI: 10.1021/acs.est.3c10703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Humic acid (HA) ubiquitously existing in aquatic environments has been reported to significantly impact permanganate (KMnO4) decontamination processes. However, the underlying mechanism of the KMnO4/HA system remained elusive. In this study, an enhancing effect of HA on the KMnO4 oxidation of diclofenac (DCF) was observed over a wide solution pH range of 5-9. Surprisingly, the mechanism of HA-induced enhancement varied with solution pH. Quenching and chemical probing experiments revealed that manganese intermediates (Mn(III)-HA and MnO2) were responsible for the enhancement under acidic conditions but not under neutral and alkaline conditions. By combining KMnO4 decomposition, galvanic oxidation process experiments, electrochemical tests, and FTIR and XPS analysis, it was interestingly found that HA could effectively mediate the electron transfer from DCF to KMnO4 in neutral and alkaline solutions, which was reported for the first time. The formation of an organic-catalyst complex (i.e., HA-DCF) with lower reduction potential than the parent DCF was proposed to be responsible for the accelerated electron transfer from DCF to KMnO4. This electron transfer likely occurred within the complex molecule formed through the interaction between HA-DCF and KMnO4 (i.e., HA-DCF-KMnO4). These results will help us gain a more comprehensive understanding of the role of HA in the KMnO4 oxidation processes.
Collapse
Affiliation(s)
- Yang Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhu Zeng
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Junhao Fu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuan Gao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixin Lu
- China MCC17 Group Co., Ltd., Ma'anshan 243000, Anhui, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
Sharma VK, Ma X, Zboril R. Single atom catalyst-mediated generation of reactive species in water treatment. Chem Soc Rev 2023; 52:7673-7686. [PMID: 37855667 DOI: 10.1039/d3cs00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Water is one of the most essential components in the sustainable development goals (SDGs) of the United Nations. With worsening global water scarcity, especially in some developing countries, water reuse is gaining increasing acceptance. A key challenge in water treatment by conventional treatment processes is the difficulty of treating low concentrations of pollutants (micromolar to nanomolar) in the presence of much higher levels of inorganic ions and natural organic matter (NOM) in water (or real water matrices). Advanced oxidation processes (AOPs) have emerged as an attractive treatment technology that generates reactive species with high redox potentials (E0) (e.g., hydroxyl radical (HO˙), singlet oxygen (1O2), sulfate radical (SO4˙-), and high-valent metals like iron(IV) (Fe(IV)), copper(III) (Cu(III)), and cobalt(IV) (Co(IV))). The use of single atom catalysts (SACs) in AOPs and water treatment technologies has appeared only recently. This review introduces the application of SACs in the activation of hydrogen peroxide and persulfate to produce reactive species in treatment processes. A significant part of the review is devoted to the mechanistic aspects of traditional AOPs and their comparison with those triggered by SACs. The radical species, SO4˙- and HO˙, which are produced in both traditional and SACs-activated AOPs, have higher redox potentials than non-radical species, 1O2 and high-valent metal species. However, SO4˙- and HO˙ radicals are non-selective and easily affected by components of water while non-radicals resist the impact of such constituents in water. Significantly, SACs with varying coordination environments and structures can be tuned to exclusively generate non-radical species to treat water with a complex matrix. Almost no influence of chloride, carbonate, phosphate, and NOM was observed on the performance of SACs in treating pollutants in water when nonradical species dominate. Therefore, the appropriately designed SACs represent game-changers in purifying water vs. AOPs with high efficiency and minimal interference from constituents of polluted water to meet the goals of water sustainability.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, USA.
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
- Nanotechnology Centre, for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
16
|
Shao B, Deng J, Dong H, Wang S, Li E, Guan X. Iron(III)-(1,10-Phenanthroline) Complex Can Enhance Ferrate(VI) and Ferrate(V) Oxidation of Organic Contaminants via Mediating Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17144-17153. [PMID: 37877900 DOI: 10.1021/acs.est.3c04589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Recent research has primarily focused on the utilization of reductants as activators for Fe(VI) to generate high-valent iron species (Fe(IV)/Fe(V)) for the degradation of emerging organic contaminants (EOCs). However, a significant drawback of this approach arises from the reaction between reductants and ferrates, leading to a decrease in oxidation capacity. This study introduces a novel discovery that highlights the potential of the iron(III)-(1,10-phenanthroline) (Fe(III)-Phen) complex as an activator, effectively enhancing the degradation of EOCs by Fe(VI) and augmenting the overall oxidation capacity of Fe(VI). The degradation of EOCs in the Fe(VI)/Fe(III)-Phen system is facilitated through two mechanisms: a direct electron transfer (DET) process and electron shuttle action. The DET process involves the formation of a Phen-Fe(III)-Fe(VI)* complex, which exhibits a stronger oxidation ability than Fe(VI) alone and can accept electrons directly from EOCs. On the other hand, the electron shuttle process utilizes Fe(III)-Phen as a redox mediator to transfer electrons from EOCs to Fe(VI) through the Fe(IV)/Fe(III) or Fe(IV)/Fe(II)/Fe(III) cycle. Moreover, the Fe(III)-Phen complex can improve the utilization efficiency of Fe(V) by preventing its self-decay. This study's findings may present a viable option for utilizing an effective catalyst to enhance the oxidation of EOCs by Fe(VI) and Fe(V).
Collapse
Affiliation(s)
- Binbin Shao
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shuchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Enchao Li
- Baowu Water Technology Co., Ltd., Shanghai 201999, China
| | - Xiaohong Guan
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
17
|
Wu S, Guo K, Xie R, He S, Wei W, Fang J. Enhancing the Abatement of Permanganate-inert Micropollutants: Multiple Roles of Nascent Manganese Dioxide in Permanganate Oxidation. WATER RESEARCH 2023; 245:120562. [PMID: 37708775 DOI: 10.1016/j.watres.2023.120562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Permanganate (Mn(VII)) is widely used as an oxidant in water treatment and usually reduced to nascent manganese dioxide (MnO2), which could promote Mn(VII) oxidation for the Mn(VII)-reactive compounds such as phenols and anilines. However, the removal of micropollutants containing diverse functional groups and the underlying mechanisms remain largely unexplored. This study reveals that Mn(VII)/nascent MnO2 was effective for the degradation of Mn(VII)-inert micropollutants, including sulfonamide antibiotics, β-blockers and trimethoprim, with observed first-order rate constants (k'obs) of 0.126 ∼ 9 min-1 at pH 4.0. The synergetic effect of Mn(VII) and nascent MnO2 on the degradation of Mn(VII)-inert micropollutants decreased significantly when pH increased from 4.0 to 9.5. MnO2 played multiple roles in micropollutant degradation, which acted as a catalyst to promote the Mn(VII) oxidation of trimethoprim and propranolol, as well as an oxidant in propranolol degradation. Besides, Mn(III) oxidation accounted for 58% of the overall degradation of propranolol, but was not important for trimethoprim oxidation. Hydroxylated products were common products formed in Mn(VII)/MnO2. Differently, trimethoprim tended to form single-ring products via MnO2-catalyzed Mn(VII) oxidation, while propranolol preferentially formed dimers via in situ formed MnO2 oxidation. This study is the first to report that MnO2 enhances the abatement of Mn(VII)-inert micropollutants during Mn(VII)-based water treatment and unravels the multiple roles of MnO2 in micropollutant degradation by Mn(VII)/MnO2.
Collapse
Affiliation(s)
- Sining Wu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Kaiheng Guo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Ruijie Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shaoxiong He
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wenrui Wei
- Guangzhou Environmental Protection Investment Group Co., Ltd., Guangzhou, 510170, China
| | - Jingyun Fang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
18
|
Zhao L, Zhang J, Ma J. PTIO as a redox mediator to enhance organic contaminants oxidation by permanganate. WATER RESEARCH 2023; 244:120500. [PMID: 37633207 DOI: 10.1016/j.watres.2023.120500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
Although permanganate (Mn(VII)) is extensively utilized as a strong oxidizer for the purification of water, the direct reaction rates between some refractory pollutants and Mn(VII) are moderate or relatively low. In this study, we found that 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO), could act as a redox mediator to enhance bisphenol A (BPA) degradation by Mn(VII) at pH 5.0 - 9.0, with a removal higher than 80% over 5 min. Moreover, the Mn(VII)/PTIO system is highly efficient toward a broad spectrum of contaminants. Mechanism was elucidated as following: PTIO was oxidized by Mn(VII) to PTIO+, an oxoammonium cation. As a newly generated reactive species, PTIO+ could oxidize organics and be reduced to PTIOH (PTIO hydroxylamine) or PTIO simultaneously. The redox cycle of PTIO in consecutive runs as an electron shuttle proved its stability and reusability in Mn(VII) oxidation. In addition to being an electron shuttle, PTIO also acts as an activator of Mn(VII) to promote the production of MnO2, which plays a vital role in enhancing BPA abatement at the acidic condition. For the purpose of further understanding the interaction between PTIO and target contaminants, three corresponding degradation pathways for BPA were proposed. Notably, the transformation products of BPA coupling with PTIO were detected, indicating PTIO inhibited the self-coupling of BPA and facilitated the ring-opening pathway. In addition, the ubiquitous humic acid has a positive effect on the Mn(VII)/PTIO system, suggesting a high promise of this system for practical application.
Collapse
Affiliation(s)
- Lin Zhao
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
19
|
Ren CY, Xu QJ, Alvarez PJJ, Zhu L, Zhao HP. Simultaneous antibiotic removal and mitigation of resistance induction by manganese bio-oxidation process. WATER RESEARCH 2023; 244:120442. [PMID: 37549546 DOI: 10.1016/j.watres.2023.120442] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Microbial degradation to remove residual antibiotics in wastewater is of growing interest. However, biological treatment of antibiotics may cause resistance dissemination by mutations and horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). In this study, a Mn(Ⅱ)-oxidizing bacterium (MnOB), Pseudomonas aeruginosa MQ2, simultaneously degraded antibiotics, decreased HGT, and mitigated antibiotic resistance mutation. Intracellular Mn(II) levels increased during manganese oxidation, and biogenic manganese oxides (BioMnOx, including Mn(II), Mn(III) and Mn(IV)) tightly coated the cell surface. Mn(II) bio-oxidation mitigated antibiotic resistance acquisition from an E. coli ARG donor and mitigated antibiotic resistance inducement by decreasing conjugative transfer and mutation, respectively. BioMnOx also oxidized ciprofloxacin (1 mg/L) and tetracycline (5 mg/L), respectively removing 93% and 96% within 24 h. Transcriptomic analysis revealed that two new multicopper oxidase and one peroxidase genes are involved in Mn(II) oxidation. Downregulation of SOS response, multidrug resistance and type Ⅳ secretion system related genes explained that Mn(II) and BioMnOx decreased HGT and mitigated resistance mutation by alleviating oxidative stress, which makes recipient cells more vulnerable to ARG acquisition and mutation. A manganese bio-oxidation based reactor was constructed and completely removed tetracycline with environmental concentration within 4-hour hydraulic retention time. Overall, this study suggests that Mn (II) bio-oxidation process could be exploited to control antibiotic contamination and mitigate resistance propagation during water treatment.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiu-Jin Xu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Lizhong Zhu
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Zhong C, Cao H, Huang Q, Xie Y, Zhao H. Degradation of Sulfamethoxazole by Manganese(IV) Oxide in the Presence of Humic Acid: Role of Stabilized Semiquinone Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13625-13634. [PMID: 37650769 DOI: 10.1021/acs.est.3c03698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.
Collapse
Affiliation(s)
- Chen Zhong
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbin Cao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongbing Xie
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, China
- National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Beijing 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Luo M, Zhang H, Ren Y, Zhou H, Zhou P, He CS, Xiong Z, Du Y, Liu Y, Lai B. In Situ Regulation of MnO 2 Structural Characteristics by Oxyanions to Boost Permanganate Autocatalysis for Phenol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12847-12857. [PMID: 37578486 DOI: 10.1021/acs.est.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO3-) as an example, the results indicate that HCO3- can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3- plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3-. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Liao Z, He H, Cui D, Cui J, Yang X, Guo Z, Chen H, Dao G, Huang B, Sun H, Pan X. Algal organic matter and dissolved Mn cooperatively accelerate 17α-ethinylestradiol photodegradation: Role of photogenerated reactive Mn(III). WATER RESEARCH 2023; 236:119980. [PMID: 37080107 DOI: 10.1016/j.watres.2023.119980] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Algal extracellular organic matter (EOM), a major fraction of the dissolved organic matter found in eutrophic plateau lakes, can act as a photosensitizer to drive the abiotic oxidation of Mn(II). This process has the potential to generate reactive Mn(III) and influence the fate of organic pollutants. In this study, the photodegradation of 17α-ethinylestradiol (EE2) in the presence of Mn(II) and EOM was investigated with emphasis on the photogeneration mechanism of Mn(III). The results indicated that Mn(II) can accelerate EE2 photodegradation in EOM solution owing to the photogeneration of reactive Mn(III), and the enhancement was greater at higher Mn(II) concentrations. The generation of reactive Mn(III) was mainly attributable to the action of superoxide radical generated by photosensitization of EOM. In addition, the photodegradation of EE2 was slower at higher pH, possibly because of the deactivation of Mn(III) under alkaline conditions. Single-electron transfer was an indispensable process in the photodegradation. The differences in fluorophore content, pH, and NO3- concentrations are all important determinants for EE2 photodegradation in natural waters. The information obtained in this research would contribute to the understanding of reactions between Mn(II) and EOM, and provide new insights into the behaviors of reactive Mn(III) in eutrophic water irradiated by sunlight.
Collapse
Affiliation(s)
- Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Danni Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingye Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Ziwei Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Chen
- Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
| |
Collapse
|
23
|
Ma L, Gong W, Wu Q, Zhou X, Zhao S, Khan A, Li X, Xu A. Permanganate activation with Mn oxides at different oxidation states: Insight into the surface-promoted electron transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131746. [PMID: 37270959 DOI: 10.1016/j.jhazmat.2023.131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The development of new strategies to improve the removal of organic pollutants with permanganate (KMnO4) is a hot topic in water treatment. While Mn oxides have been extensively used in Advanced Oxidation Processes through an electron transfer mechanism, the field of KMnO4 activation remains relatively unexplored. Interestingly, this study has discovered that Mn oxides with high oxidation states including γ-MnOOH, α-Mn2O3 and α-MnO2, exhibited excellent performance to degrade phenols and antibiotics in the presence of KMnO4. The MnO4- species initially formed stable complexes with the surface Mn(III/IV) species and showed an increased oxidation potential and electron transfer reactivity, caused by the electron-withdrawing capacity of the Mn species acting as Lewis acids. Conversely, for MnO and γ-Mn3O4 with Mn(II) species, they reacted with KMnO4 to produce cMnO2 with very low activity for phenol degradation. The direct electron transfer mechanism in α-MnO2/KMnO4 system was further confirmed through the inhibiting effect of acetonitrile and the galvanic oxidation process. Moreover, the adaptability and reusability of α-MnO2 in complicated waters indicated its potential for application in water treatment. Overall, the findings shed light on the development of Mn-based catalysts for organic pollutants degradation via KMnO4 activation and understanding of the surface-promoted mechanism.
Collapse
Affiliation(s)
- Lu Ma
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Wenqiang Gong
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Qinghong Wu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiong Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
24
|
Sun Y, Wang C, May AL, Chen G, Yin Y, Xie Y, Lato AM, Im J, Löffler FE. Mn(III)-mediated bisphenol a degradation: Mechanisms and products. WATER RESEARCH 2023; 235:119787. [PMID: 36917870 DOI: 10.1016/j.watres.2023.119787] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) is a high production volume chemical with potential estrogenic effects susceptible to abiotic degradation by MnO2. BPA transformation products and reaction mechanisms with MnO2 have been investigated, but detailed process understanding of Mn(III)-mediated degradation has not been attained. Rapid consumption of BPA occurred in batch reaction vessels with 1 mM Mn(III) and 63.9 ± 0.7% of 1.76 ± 0.02 μmol BPA was degraded in 1 hour at circumneutral pH. BPA was consumed at 1.86 ± 0.09-fold higher rates in vessels with synthetic MnO2 comprising approximately 13 mol% surface-associated Mn(III) versus surface-Mn(III)-free MnO2, and 10-35% of BPA transformation could be attributed to Mn(III) during the initial 10-min reaction phase. High-resolution tandem mass spectrometry (HRMS/MS) analysis detected eight transformation intermediates in reactions with Mn(III), and quantum calculations proposed 14 BPA degradation products, nine of which had not been observed during MnO2-mediated BPA degradation, suggesting mechanistic differences between Mn(III)- versus MnO2-mediated BPA degradation. The findings demonstrate that both Mn(III) and Mn(IV) can effectively degrade BPA and indicate that surface-associated Mn(III) increases the reactivity of synthetic MnO2, offering opportunities for engineering more reactive oxidized Mn species for BPA removal.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Amanda L May
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Gao Chen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Yin
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Yongchao Xie
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ashley M Lato
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeongdae Im
- Department of Civil Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States; Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
| |
Collapse
|