1
|
Yang W, Yang J, Liu E, Xing N, Wang D, Yang H, Li Y, Zhang P, Dou J. MnO/MnS nanoparticles encapsulated in Lycopodium spores derived nitrogen-doped porous carbon as a cost-effective peroxymonosulfate activator for pollutant decontamination: Insight into the mechanism of electron transfer-dominated non-radical pathway. J Colloid Interface Sci 2025; 691:137428. [PMID: 40147365 DOI: 10.1016/j.jcis.2025.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The rational design and exploitation of cost-effective and robust catalysts for peroxymonosulfate (PMS) activation is of great significance. Herein, MnO/MnS nanoparticles encapsulated in Nitrogen-doped porous carbon skeleton (abbreviated as MnO/MnS@NPC) were first constructed through an easy two-step of impregnation along with subsequent pyrolysis technique and utilized to activate PMS for the elimination and mineralization of tetracycline (TC). Benefiting from the strong coupling of transition metal Mn with carbon-based material, the co-doping of heteroatom N and S, the enhanced electrical conductivity, and the hierarchical porous microarchitecture, the obtained MnO/MnS@NPC composite has been expected to present superior PMS activation capacity and pollutant elimination efficiency to its benchmark NPC and MnO@NPC, with 92.5 % degradation rate of TC within 60 min. Comprehensive investigations, involving quenching experiments, electron paramagnetic resonance (EPR) studies, in situ Raman identification, and electrochemical tests, jointly indicated that the non-radical pathways including electron-transfer, single oxygen (1O2) and the high-valent Mn-oxo species, especially the electron transfer process (ETP) from TC molecule to the metastable MnO/MnS@NPC-PMS* complex were dominantly responsible for PMS activation and further decomposition of TC, which greatly enhanced the selective removal of TC and the anti-interference capacity of the PMS system. Furthermore, the possible TC degradation routes were predicted by Density Functional Theory (DFT) calculation and the toxicity of degradation intermediates were also analyzed by toxicity assessment software. In addition, the heterogeneous catalyst displayed outstanding stability and reusability owing to the shield effect of NPC framework to MnO/MnS nanoparticles. Overall, this work proposed a prospective strategy for rationally designing and exploring heterogeneous PMS activator towards wastewater purification.
Collapse
Affiliation(s)
- Wenning Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Jie Yang
- Department of Pharmaceutical and Bioengineering, ZiBo Vocational Institute, ZiBo 255000, China
| | - Erkang Liu
- Hebei Short Process Steelmaking Technology Innovation Center, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ningning Xing
- School of Sport Communication and Information Technology, Shandong Sport University, Jinan 250100, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Liu J, Fan J, Yu T, Zong Y, Zhou Z, Ye G, Wu D. Directed transformation of glyphosate to orthophosphate in EAOP based on Ti/SnO 2/PbO 2 anode: First unraveling the role of high-valent Pb in various reactive oxygen species. WATER RESEARCH 2025; 277:123301. [PMID: 39987585 DOI: 10.1016/j.watres.2025.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025]
Abstract
The discharge of wastewater containing non-reactive phosphorus (NRPs), which does not exist in the form of P(V) (PO43-), poses significant environmental risks and phosphorus loss. In this study, electrochemical advanced oxidation process (EAOP) based twenty pairs of electrodes is used to simultaneously achieve the pollution-reducing and targeted conversion of NRPs to P(V). Significantly, EAOP driven by Ti/SnO2/PbO2-Ti plate electrode pair achieved more than five-fold of glyphosate (Gly) removal with only 16 %-56 % of energy consumption compared with that in other anode-based EAOP systems. Usually, Ti/SnO2/PbO2 as a typical non-active anode is considered to produce ·OH as the main active species. Surprisingly, the high-valent Pb was also identified as a key active species through PMSO probe experiment combined with 18O isotope labelling technique in this study. Therefore, the synergistic effect of ·OH and high-valent Pb enhanced the Gly degradation and directed generation of PO43- through the cleavage of C-P bond in the EAOP system based on Ti/SnO2/PbO2 anode. The work provides promising electrodes and insights for identification of reactive species and mechanism in EAOP system to remove NRPs contaminants and targeted conversion to P(V).
Collapse
Affiliation(s)
- Jia Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinhong Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Tao Yu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026. PR China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China
| |
Collapse
|
3
|
Song W, Fang H, Lei Z, Wang R, Fu C, Wang F, Fang Y, Du X, Wang Z, Zhao Z. Insight into homogeneous activation of sodium hypochlorite by dithionite coupled with dissolved oxygen (DO@NaClO/DTN) for carbamazepine degradation. WATER RESEARCH 2025; 277:123312. [PMID: 39983265 DOI: 10.1016/j.watres.2025.123312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Emerging contaminants (ECs) including carbamazepine (CBZ) in aquatic systems pose non-target risks to wildlife. We introduce an innovative advanced oxidation process (AOP) utilizing sodium hypochlorite (NaClO), which achieved 45.3 % degradation and mineralization of CBZ within 60 mins. Natural saturated state dissolved oxygen (DO, ∼7.5 mg·L-1) played a crucial role in synergistically activating NaClO with dithionite (DTN) without extra energy consumption. In DO@NaClO/DTN system, scavenging tests and electron spin resonance (ESR) analysis confirmed that ·OH and Cl· were dominant for CBZ degradation. The critical DO was responsible for the direct simultaneous production of ·OH and Cl·, confirmed by the greater thermodynamic data ΔG from density functional theory (DFT) calculation. These reactive species participate in subsequent transformations of SO4·-, O2·-, and 1O2. Preferential hydroxylation of CBZ first occurred due to the attacking at the reactive sites of C(21) and C(22) atoms. LC-MS/MS detection and DFT theoretical calculations also verified the sequent mechanisms of Meinwald rearrangement, deamidation and hydroxylation, cyclized hydroxylated and dehydrated with the decreasing ΔG. Ubiquitous Cl- accelerated CBZ degradation remarkably, regardless of its concentration. The significant enhancement of Cl- for CBZ degradation in DO@NaClO/DTN system suggest its promising application for ECs degradation in high-chloride seawater including offshore wastewater and tailwater in mariculture.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongze Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhaosheng Lei
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ruigang Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 51060, China
| | - Caixia Fu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 51060, China.
| | - Fei Wang
- Shandong Marine Resource and Environment Research Institute, Yantai Key Laboratory of Quality and Safety Control and Deep Processing of Marine Food, Yantai 264006, China
| | - Yuning Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhiwei Zhao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Cross Research Institute of Ocean Engineering Safety and Sustainable Development, Guangzhou 510000, China
| |
Collapse
|
4
|
Zhang C, Wang Y, Tao Y, Shi Y, Wang J, Ma Z, Shang H, Zhang D, Li G. Ultrahigh Peroxymonosulfate Utilization Over a Single-Atom Iron-N-C Catalyst for Efficient Fenton-Like Chemistry via Surface-Bound Reactive Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501267. [PMID: 40270286 DOI: 10.1002/smll.202501267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Transition metal single-atom catalysts (SACs) find extensive application in peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs). Yet, the disparity in intrinsic activity is often attributed to thermodynamics, but few studies focused on the electronic structure between different metals. Herein, transition metal catalysts in the form of single-atom M-N4 moieties moored to graphitic carbon nitride (denoted MSA CN, M = Fe, Co, and Cu) are developed and used for activating PMS for the degradation of 4-chlorophenol. Remarkably, FeSA CN achieves a catalyst-dose-normalized kinetic rate constant of 34.2 L min-1 g-1, surpassing reported systems by 2-551 times ─ even at ultralow catalyst (0.06 mg L-1) and PMS (0.2 mm) concentration. The in situ formation of surface-bound PMS* complexes enabled the degradation of 4-chlorophenol to achieve unprecedented utilization efficiency (≈100%) through highly efficient non-radical pathways. Density functional theory calculations revealed that large spin polarization of Fe-N-C sites facilitated the d orbitals to overlap with the PMS on the metal active sites and promoted electron transport, thereby facilitating PMS adsorption and enhancing the oxidation capacity. This work establishes a mechanistic foundation for designing a single Fe-atom catalyst/PMS system in Fenton-like water treatment.
Collapse
Affiliation(s)
- Chi Zhang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yongjie Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Ying Tao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Yuxin Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Jixing Wang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Zhong Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200234, P. R. China
| | - Huan Shang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200234, P. R. China
| | - Dieqing Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Guisheng Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai, 200234, P. R. China
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200234, P. R. China
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, P. R. China
| |
Collapse
|
5
|
Zhang YS, Chen XJ, Huang XT, Bai CW, Duan PJ, Zhang ZQ, Chen F. Enhanced peroxone reaction with amphoteric oxide modulation for efficient decontamination of challenging wastewaters: Comparative performance, economic evaluation, and pilot-scale implementation. WATER RESEARCH 2025; 274:123058. [PMID: 39740329 DOI: 10.1016/j.watres.2024.123058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
The peroxone reaction, a promising alternative technology for water treatment, is traditionally hampered by its restricted pH operational range and suboptimal oxidant utilization. In this study, we introduced a novel amphoteric metal oxide (ZnO)-regulated peroxone system that transcended the pH limitations of conventional peroxone processes. Our innovative approach exploited the unique properties of ZnO to regulate the reaction pathway of the traditional O3/H2O2 (or peroxymonosulfate, PMS) processes, resulting in a 52.4 % (64.9 %) increase in the removal efficiency of electron-deficient pollutant atrazine under acidic conditions (pH=5.8). This was achieved through the facilitated generation of hydroxyl radicals (•OH) and sulfate radicals (SO4•-), alongside a marked increase in the utilization efficiency of O3, thus reducing the requisite amount of oxidant. The primary active sites within this system were identified as zinc-oxidant sites, with the critical interfacial interactions between ZnO and oxidants elucidated through comprehensive analytical techniques. These studies reveal that ZnO acted as an electron acceptor, with H2O2 (or PMS) serving as the electron donor, leading to the formation of a reactive intermediate. This intermediate subsequently engaged with O3, producing secondary radicals such as HO2• (SO5•-) and O3•-, which were instrumental in generating the final radical species, •OH and SO4•-. The efficacy of this ZnO-regulated peroxone process was validated through resistance to interference tests, treatment of pilot-scale coking wastewater (mineralization rate of over 70 %), and extensive biological toxicity evaluations, all of which validated the system's robust degradation capability, stability, and significant detoxification potential. A detailed comparison of reaction systems with conventional technologies using Electrical Energy per Order (EE/O) and Life Cycle Assessment (LCA) further highlighted the advantages. This investigation offers a groundbreaking solution for the treatment of complex wastewater, showcasing the substantial promise of ZnO-catalyzed peroxone for practical wastewater treatment applications.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Chen C, Zhao X, Chen H, Li Z, Ma B, Wang Y, Xian Q. Generation of DBPs from dissolved organic matter by solar photolysis of chlorine: Associated changes of cytotoxicity and reactive species. WATER RESEARCH 2025; 274:123074. [PMID: 39752920 DOI: 10.1016/j.watres.2024.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/11/2024] [Accepted: 12/30/2024] [Indexed: 02/17/2025]
Abstract
Since elevated amounts of chlorine disinfectant were discharged into surface water, more attention should be paid to the reactions between dissolved organic matter (DOM) and chlorine under sunlight. However, disinfection byproducts (DBPs) formed from DOM by solar photolysis of chlorine, and changes of cytotoxicity during this process remain unclear. In this study, it was found that solar photolysis of chlorine significantly promoted the formation of aliphatic chlorinated DBPs and aromatic chlorinated DBPs (including chlorobenzoquinone) by 44.7-109 % and 81.7-121 %, respectively compared with dark chlorination. Unknown total organic chlorine contained in low molecular weight fraction (<1 kD) significantly positively correlated to the cytotoxicity of water samples. Several factors (bicarbonate, dissolved oxygen, pH, nitrate, ammonia, bromide, and iodide) affecting the radical chemistry, and the formation of DBPs under solar photolysis of chlorine were also investigated. Reactive species including HO•, Cl•, O3, and reactive nitrogen species (RNS) were responsible for forming different DBPs. Especially O3 increased the formation of most categories of DBPs tested in this study, and RNS contributed to the formation of nitrogenous DBPs. This study provided more understanding of the adverse impact of overused chlorine, and reaction mechanisms between reactive species and DOM.
Collapse
Affiliation(s)
- Chuze Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiating Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haoran Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhigang Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Boyun Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Guo S, Lyu H, Shi Y, Tang J. Overlooked risks of photoaging of nitrogenous microplastics with natural organic matter in water: Augmenting the formation of nitrogenous disinfection by-products. WATER RESEARCH 2025; 274:123085. [PMID: 39787842 DOI: 10.1016/j.watres.2024.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown. Herein, this study investigated polyamide (PA) with NOM (fulvic acid [FA], humic acid [HA] and biochar-derived DOM [BDOM]) on N-DBPs formation. Results showed that the levels of the main DBPs, N-nitrosamine, formed in the FA+PA, BDOM+PA, and HA+PA systems were 3.0. 2.7 and 1.6 folds higher, respectively, compared to those in the corresponding NOM treatments. NDMA was found to be the dominant N-nitrosamine species, with the highest level of 202 ng/L, exceeding the WHO guideline of 100 ng/L. The main reactive intermediates (RIs) were 1O2 and reactive nitrogen species (RNS) during the first stage (0-3d), and •OH and RNS during the second stage (3-7d), which were confirmed by quenching experiment. For the first time, we found the formation of N-DBPs during photoaging of N-containing MPs, and proposed a two-stages, two-processes, and two-pathways theory of N-DBPs formation. This work emphasizes the importance to understand the interactions between the MPs and NOM in photoaging to better assess the risk of DBPs formation in aqueous environment.
Collapse
Affiliation(s)
- Saisai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Yinghao Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
8
|
Chen L, Cheng X, Chen G, Wang Y, Chen X, Yang C, Liu W, Kalonji G, Ma J, Liu B. Binding interaction between chlorine and powder activated carbon driving nonradical oxidation toward diclofenac abatement: Surface-bound complexes generating on diverse sites performing diverse duties. WATER RESEARCH 2025; 282:123620. [PMID: 40250316 DOI: 10.1016/j.watres.2025.123620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/21/2025] [Accepted: 04/06/2025] [Indexed: 04/20/2025]
Abstract
Photolysis of chlorine by UV irradiation is commonly used as an advanced oxidation process for the abatement of micropollutants, but suffers from the energy-extensive consumption and potential risk, e.g., formation of disinfection byproduct and use of fragile mercury-containing lamps. This study demonstrates powder activated carbon (PAC) catalysis-mediated chlorine activation to significantly promote the degradation of diclofenac (DCF), a representative emerging contaminant, via nonradical oxidation pathways, thus reconsidering the interaction between PAC and chlorine in depth which are widely applied in actual water treatment. The chlorine/PAC process produces reactive metastable surface-bound complexes, i.e., PAC-HOCl*, via the cleavage of O-Cl bond in chlorine and formation of C-Cl by interfacial binding interaction, to regulate the charge distribution and electron density configuration. Carbonyl groups and structural defects of PAC are determined as the active sites via functional group derivatization and defect engineering for PAC modification, and performed diverse duties in the chlorine activation, producing PAC-C=O-HOCl* and PAC-D-HOCl*, responsible for the oxidation ability improvement and electron transfer acceleration, respectively. Of particular significance is that the chlorine/PAC process performs high efficiencies in the degradation of diverse micropollutants and is scarcely affected by water matrices, exhibiting a high potential of practical application for the decontamination of emerging micropollutants without the requirement of external energy input.
Collapse
Affiliation(s)
- Liang Chen
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xin Cheng
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Guijing Chen
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Ying Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Xin Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Chunyan Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Gretchen Kalonji
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water and Environment, Harbin Institute of Technology, No73 Huanghe Road, Nangang Dist. Harbin 150090, China
| | - Baicang Liu
- Sichuan University - The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
9
|
Wang Y, Chen X, Chen L, Cheng X, Yang C, Chen G, Shu J, Liu W, Tiraferri A, Liu B. Ultra-efficient degradation of isoquinoline from shale gas wastewater with the diethylamine-ferrate(VI) system: The key role of Fe(IV)/Fe(V) active species. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138215. [PMID: 40239515 DOI: 10.1016/j.jhazmat.2025.138215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Although isoquinoline (IQL) in shale gas wastewater contributes minimally to chemical oxygen demand, its potential high toxicity makes it an environmental risk factor that cannot be overlooked. This study introduces a synergistic diethylamine (Di)/ferrate (Fe(VI)) system for efficient degradation of IQL. Compared with Fe(VI) alone, the Di/Fe(VI) system demonstrated superior performance, achieving degradation efficiency of 80.5 %. The degradation rate constant of the Di/Fe(VI) system was almost 3-fold larger than that measured with Fe(VI) alone in the degradation of IQL. Mechanistic studies, including radical quenching, electron paramagnetic resonance, pre-mixed experiments, Raman spectroscopy, and probe compounds tests suggested that high-valent iron intermediates (Fe(IV/V)) were responsible for IQL degradation in the Di/Fe(VI) system. The presence of Di promoted the generation of Fe(IV)/Fe(V) by donating electrons. Based on the intermediates identified with GC-MS measurements and density functional theory calculations, three reaction pathways for IQL degradation were proposed. ECOSAR prediction and Escherichia coli toxicity tests showed that the toxicity of IQL was significantly reduced after treatment with Di/Fe(VI) system. Optimal IQL degradation occurred at higher Fe(VI)/Di concentrations and lower pH, with minimal interference from common ions or matrix components. The system also effectively degraded other organics (e.g., 2,4-di-tert-butylphenol, 6-methylquinoline, diclofenac, carbamazepine), demonstrating broad applicability for refractory pollutant treatment.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Xin Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Liang Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Xin Cheng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Chunyan Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Guijing Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Jingyu Shu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Turin 10129, Italy
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610207, China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, China.
| |
Collapse
|
10
|
Liu Y, Zhang C, Wang X, Gao Y, Zhang X, Wang G. High-efficiency and sustainable peroxymonosulfate activation on Fe single-atom catalyst through incorporating complementary S species for enhanced water decontamination. J Colloid Interface Sci 2025; 692:137533. [PMID: 40209433 DOI: 10.1016/j.jcis.2025.137533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/02/2025] [Accepted: 04/05/2025] [Indexed: 04/12/2025]
Abstract
Single-atom FeNC catalyst is a promising alternative for peroxymonosulfate (PMS) activation based water treatment, but the trade-off between PMS adsorption and products desorption on Fe single site limits its performance for achieving sustainable PMS activation. Herein, the thiophene-like S (CSC) and oxidized S (C-SOx) with different electron-donating/withdrawing properties were introduced into the second coordination shell of single-atom FeNC catalyst (Fe-NSBC) to optimize its Fe electronic structure for high-efficiency and sustainable PMS activation. The S species composition was also regulated to study its effect on catalytic performance and mechanism of Fe-NSBC. Results showed the Fe-NSBC displayed highest PMS catalytic efficiency and radical (SO4•- and •OH) yield at moderate CSC/C-SOx ratio, whose catalytic activity was 3.8 and 21.1 times higher than that of Fe-NBC without S doping and homogeneous Co2+ (metal-based benchmark), and greatly outperformed those of the state-of-the-art FeNC based catalysts. Moreover, the Fe-NSBC/PMS favored free radicals production for preferential removal of hydrophilic pollutants, and displayed unique anti-interference and long-term effectiveness in real water decontamination. The CSC and C-SOx played complementary role in promoting sustainable PMS activation: CSC raised d-band center and electron density of Fe for enhanced adsorption and reduction of PMS into radicals, while C-SOx lowered d-band center of Fe for favorable radical desorption and active site regeneration.
Collapse
Affiliation(s)
- Yangcen Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Chunyu Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Gao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Guanlong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
11
|
Zhang M, Gong W, Wang X, Blaney L, Peng G, Sharma VK. Chloride-enhanced degradation of micropollutants in natural water by the iron/biochar/peroxymonosulfate system: Role of iron(IV) and radicals. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:137952. [PMID: 40188542 DOI: 10.1016/j.jhazmat.2025.137952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/16/2025] [Accepted: 03/13/2025] [Indexed: 04/08/2025]
Abstract
The increased occurrence and concentration of micropollutants in water supplies raise public health concerns. Advanced oxidation of micropollutants in real water sources remains challenging due to scavenging reactions involving background anions and natural organic matter. For the first time, this paper demonstrates that chloride (Cl-) accelerates the activation of peroxymonosulfate (PMS) by iron-biochar (Fe/BC) composites. Under the tested conditions, this novel system completely degraded bisphenol A (BPA), a representative micropollutant, within 1.0 min. Micropollutant degradation was investigated at different Cl- contents, PMS levels, Fe/BC doses, and solution pH. The primary reactive species involved with BPA degradation were iron(IV) (Fe(IV)), sulfate radical (SO4•-), hydroxyl radical (•OH), and reactive chlorine species (Cl•, ClO•, Cl2•-). The steady-state concentrations of these reactive species were evaluated to determine their relationships to the Cl- and PMS contents. Fe(IV) was confirmed as the dominant reactive species, with Fe(IV) concentrations increasing with Cl- content and salinity to enhance the overall BPA degradation. Importantly, BPA degradation by the Fe/BC/PMS/Cl- system was not greatly affected by background anions or natural organic matter (NOM) present in real water sources, and the system was successfully applied for five sequential cycles of BPA treatment.
Collapse
Affiliation(s)
- Mengqiao Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Wenwen Gong
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Xiling Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, Baltimore, MD 21250, USA.
| | - Guilong Peng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Virender K Sharma
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, 1251 Memorial Drive, Miami, FL 33146, USA
| |
Collapse
|
12
|
de la Cruz IL, Lee CI, Lin KM. Investigation of OH Species in a Helium Atmospheric Pressure Plasma Jet: from Gas Phase to Liquid Phase through the Plasma-Liquid Interface. Anal Chem 2025. [PMID: 40183937 DOI: 10.1021/acs.analchem.4c06093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
This work develops a semiempirical 1D numerical model with average measured [•OH(g)] (denoted as [•OH(g)]M) as the boundary condition and measured [•OH(aq)] (denoted as [•OH(aq)]M) to calibrate the accumulated [•OH(aq)] modeled (denoted as [•OH(aq)]S) in the solution treated by a plasma jet. The [•OH(g)]M obtained in the plasma plume is integrated from the [•OH(g)] distribution detected in the radial direction at position 1 mm above the interface. The [•OH(aq)]M in the solutions is determined from the fluorescence measurements by exciting 2-hydroxyterephthalic acid at 310 nm and detecting the fluorescence emitted at 425 nm for cases with different plasma treatment times. The developed numerical model considers both the diffusion and convection for the domain covering 1 mm above the interface with the dominant generation and consumption mechanisms considered in the discharge plume to evaluate the incoming flux of •OH(g) through the interface, which is calibrated with [•OH(aq)]M in the solution treated. The simulated results show that the transport behavior (i.e., diffusion and convection) plays only a minor role in the contribution of [•OH(aq)]S, while the electron-impact dissociation reactions play significant roles in the generation of •OH(g) in the discharge plume, leading to the high local [•OH(g)] and incoming flux of •OH(g) to the interface. The self-association reactions of •OH(g) contribute to the remarkable consumption of •OH(g). The simulated [•OH(g)] distribution increases from the [•OH(g)]M determined at the upstream boundary to its maximum near the central region as the density reaches 9.5 × 1019 m-3 and decreases rapidly above the interface.
Collapse
Affiliation(s)
- Ireneo L de la Cruz
- Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Minxiong,Chiayi, 621301, Taiwan
| | - Cheng-I Lee
- Department of Biomedical Sciences, National Chung Cheng University, Minxiong,Chiayi 621301, Taiwan
| | - Kun-Mo Lin
- Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Minxiong,Chiayi, 621301, Taiwan
- Department of Mechanical Engineering, National Chung Cheng University, Minxiong,Chiayi 621301, Taiwan
| |
Collapse
|
13
|
Liu J, Liu J, Zhang Z, Xu Y, Yang N, Wu Z, Lin J, Shi J, Deng H. Cu-O-Fe boosts electronic transport for efficient peroxymonosulfate activation over a wide range of pH. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138118. [PMID: 40187245 DOI: 10.1016/j.jhazmat.2025.138118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
The transition metal-oxygen-transition metal (TM1-O-TM2) structural bonds served as electron transport bridges facilitates the charge flow, which guided developing bimetallic activators for peroxymonosulfate (PMS). In this work, a bimetallic CuO/Fe2O3 heterojunction with Cu-O-Fe bond in a core-shell structure was designed. The configuration enhanced PMS activation over a wide range of pH, as demonstrated by the degradation of the model contaminant sulfamethoxazole (SMX), particularly under acid and alkaline condition (>95 % within 30 min). Mechanistic investigations were conducted under various pH conditions. Cu(III) and 1O2 were the dominant active species at acid and alkaline condition, respectively, confirmed by DFT calculations, characterizations and experiments. The degradation pathway of SMX was speculated by mass spectrometry combined with calculations. In addition, the substrate guidance mechanism which was verified by 6 kinds of emerging contaminants (ECs) further highlights the excellence of the surveyed system. The potential for practical application was suggested, attributed to the excellent performance in SMX removal from raw river water (98.7 %), tap water (100 %) and domestic sewage (86.7 %). This study provides new prospect into PMS activation by bimetallic heterojunctions attributing to electronic transport via TM1-O-TM2 bond, which is significant for treating ECs in water.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jiawei Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Zhilin Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yongsui Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Ning Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Hefei Water Affairs Group, Hefei 230000, PR China.
| | - Zizhen Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Junhao Lin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jun Shi
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Huiping Deng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
14
|
Wang Y, Zheng J, Zhou T, Zhang Q, Feng M, Zhang S. Confinement-Modulated Singlet-Oxygen Nanoreactors for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6341-6351. [PMID: 40094388 DOI: 10.1021/acs.est.5c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Water decontamination with singlet oxygen (1O2) has shown advantages over the traditional radical-based treatment processes, which are frequently inhibited by the background inorganic/organic substances and produce toxic byproducts. However, earlier reported treatment systems mostly suffer from side reactions against efficient and cost-effective production of 1O2, together with insufficient utilization of 1O2 limited by the extremely short diffusion length. To overcome the drawbacks, we here designed high-performance nanoreactors by modulating the MnO2 phase to nanotube structures (with ∼5 nm diameter, termed "NT5"). With nanoconfinement, our developed NT5 directed efficient and almost 100% utilization of peroxymonosulfate (PMS) to produce 1O2 and achieved maximal kinetics on organic pollutant elimination. The mechanism study revealed that the geometric strain of NT5 together with spatial confinement modulated the adsorption properties of PMS molecules and led to their transformation to 1O2. To demonstrate the applicability of NT5, we developed a reactive filter with a particulate catalyst (NT5 grown on an alumina substrate) that can effectively and stably work in a broad range of contaminated scenarios (surface water, groundwater, municipal secondary effluent, and industrial wastewaters), due to the confined treatment together with the fouling-resistance nature. Our study may boost the deployment of nanomaterials with confined catalysis and their applications in practical water treatment scenarios.
Collapse
Affiliation(s)
- Yichuan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Jianfeng Zheng
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Tianlin Zhou
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, Tianjin, Tianjin 300350, P. R. China
| | - Quanzhi Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Menghan Feng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shuo Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
15
|
Hao J, Han Z, Wang H, Chu Z, Chen T, Liu H, Zou X, Chen D, Wang H, Sun F. Fe 1-xS@BC prepared from natural pyrite and biomass as peroxydisulfate activator for sulfadiazine degradation. ENVIRONMENTAL RESEARCH 2025; 270:120936. [PMID: 39862952 DOI: 10.1016/j.envres.2025.120936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the Fe1-xS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of Fe1-xS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification. The results indicate that Fe1-xS@WBC with carbon defects and oxygenated functional groups facilitate the dissolution of Fe and the generation of ·OH and ·SO4-. Additionally, the electron-rich the thiophene S facilitate the regeneration of Fe(II). In the Fe1-xS@WBC/PDS system, 90.3% of SDZ degradation could be achieved under optimal conditions: Fe1-xS@WBC = 0.5 g L-1, SDZ = 10 mg L-1, PDS = 2.0 mM, initial solution pH = 7.0. In addition, Fe1-xS@WBC/PDS system exhibits strong resistance to interference from Cl-, and NO3-, while elevated concentrations of HCO3-, HPO42-, and HA hinder SDZ degradation. The Fe1-xS@WBC/PDS system shows excellent selectivity and recoverability. Quenching experiments and electron spin resonance (ESR) reveal the involvement of ·OH, ·SO4-, and 1O2 in the degradation of SDZ within Fe1-xS@WBC/PDS system. Furthermore, four possible degradation pathways for SDZ were proposed based on density functional theory (DFT) and liquid chromatography-mass spectrometry (LC-MS) analysis, while assessing the toxicity of degradation intermediates. This study not only introduces a novel catalytic system for the efficient degradation of antibiotic-contaminated wastewater, but also provides a theoretical foundation for the development and application of iron sulfide-biomass composite catalysts.
Collapse
Affiliation(s)
- Jintian Hao
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengyan Han
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanlin Wang
- School of Civil and Hydraulic Engineering, Bengbu University, Bengbu, 233030, China
| | - Ziyang Chu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Tianhu Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Haibo Liu
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuehua Zou
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dong Chen
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Wang
- Key Laboratory of Nano-minerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, China; Institute of Environmental Minerals and Materials, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Fuwei Sun
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
| |
Collapse
|
16
|
Li R, Liu Z, Qin J, Lin K, Xu W, Li M, Yeung KL, Zhu X, Fang J, Zhou G, Fang Z. Photogenerated electron transfer in Ni/NiO supported on g-C 3N 4 enables sustainable catalytic activation of peroxymonosulfate for emerging pollutant removal. ENVIRONMENTAL RESEARCH 2025; 275:121460. [PMID: 40127745 DOI: 10.1016/j.envres.2025.121460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
Emerging pollutants such as enrofloxacin (ENR), a widely used fluoroquinolone antibiotic, pose significant threats to aquatic ecosystems due to their persistence, bioaccumulation, and toxicity. This study reports the development of a stable and efficient Ni-NiO/g-C3N4 heterojunction photocatalyst for ENR degradation under visible light and in the presence of peroxymonosulfate (PMS). The catalyst, synthesized via a templated self-assembly and hydrothermal method, achieved 98.7 % ENR removal within 45 min. Mechanistic studies revealed that the charge transfer along lower energy bands in ternary heterojunctions enhances charge separation and promotes the generation of reactive oxygen species (ROS), including sulfate radicals (SO4•-), hydroxyl radicals (•OH), and singlet oxygen (1O2). Density functional theory calculations confirmed strong PMS adsorption on the heterojunction of metallic Ni and exposed Ni in NiO, facilitating efficient ROS production and bond polarization for pollutant degradation. The catalyst exhibited remarkable structural stability, maintaining consistent performance over six reuse cycles, attributed to the robust g-C3N4 matrix and dynamic redox cycling of Ni/NiO. Toxicity assessments showed significant detoxification of ENR into less harmful byproducts, emphasizing the environmental safety of the process. This work demonstrates the potential of the Ni-NiO/g-C3N4/PMS system as a sustainable and scalable approach to address the challenges posed by emerging pollutants in aquatic environments. The research highlights the significance of integrating photocatalysis and PMS activation for advanced oxidation processes, offering an effective pathway to mitigate antibiotic pollution and its ecological impact and can contribute to the development of next-generation catalysts for environmental remediation.
Collapse
Affiliation(s)
- Runqi Li
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; Guangzhou Accurate and Correct Test Co., Ltd, Guangzhou, 510700, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Kowloon, PR China.
| | - Jingjun Qin
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Kaichun Lin
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, PR China
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, Kowloon, PR China
| | - Ximiao Zhu
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Jianzhang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, PR China.
| | - Guangying Zhou
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| | - Zhanqiang Fang
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China; Guangdong Technology Research Center for Ecological Management and Remediation of Urban Water System, Guangzhou, 510006, PR China
| |
Collapse
|
17
|
Liu W, Kong L, Qian F, Jin Z, Lai J, Song Y. Selective oxidation of aminotrismethylene phosphonate (ATMP) by UV-Cu (II)/H 2O 2 system: Performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137877. [PMID: 40107105 DOI: 10.1016/j.jhazmat.2025.137877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/12/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025]
Abstract
Phosphonates are important water-soluble organic phosphorus compounds that are widely present in contaminated water bodies. Their oxidation and conversion to orthophosphate are often prerequisite steps for achieving deep removal of total phosphorus from water. In this study, aminotrismethylene phosphonate (ATMP) was used as a representative phosphonate, under alkaline pH conditions, we innovatively employed the UV-Cu (II)/H₂O₂ system to achieve selective oxidation of ATMP and efficient conversion to orthophosphate. Under conditions of UV irradiation, trace amount of Cu (II) (0.020 mM), and 2 mM H₂O₂, 97.43 % of ATMP (0.10 mM) was converted into orthophosphate within 30 min at pH= 8.5. Furthermore, the UV-Cu (II)/H₂O₂ system was unaffected by the presence of common cations, anions, humic acid and partial competitive ligands. The results indicated that hydroxyl radicals, singlet oxygen and trivalent copper Cu (III) were the primary active species participating in the oxidation process. The complexation of Cu (II) with ATMP, promoted the intramolecular electron transfer process, thereby improving the selectivity of the process and increasing the conversion rate to orthophosphate. Further validation involved adding H₂O₂ to concentrated reverse osmosis water with existing trace Cu (II), confirming its effectiveness in degrading ATMP and highlighting its potential for removing phosphonate scale inhibitors.
Collapse
Affiliation(s)
- Wenfang Liu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Linghao Kong
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Feng Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhe Jin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junxi Lai
- Department of Environmental Health and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yonghui Song
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
18
|
Zhang Q, Ye X, Chen D, Chen H, Zhang ZX, Fu M, Dong Y. Interfacial electronic structure engineering on nano-confined cobalt nanoparticles to enhance Fenton-like reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137930. [PMID: 40112435 DOI: 10.1016/j.jhazmat.2025.137930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Rational design of nano-confined cobalt-based heterogeneous catalysts for peroxymonosulfate (PMS) activation remains challenging in Fenton-like systems, particularly in regulating interfacial electronic structures and establishing explicit electron transfer-activity correlations. To address this, we engineered a hierarchically structured Co@C-CNT composite featuring cobalt nanoparticles encapsulated in N-doped carbon polyhedrons interconnected by carbon nanotubes, forming a unique one-dimensional beads-on-string architecture. The strategic integration of CNTs significantly enhanced interfacial electron transfer kinetics, endowing the Co@C-CNT/PMS system with exceptional catalytic performance for carbamazepine degradation (kobs = 0.2281 min⁻¹), demonstrating a twofold enhancement over the CNT-free Co@C counterpart (0.1053 min⁻¹). Mechanistic studies through DFT calculations unveiled that the CNT-induced electronic string effect synergistically modulates the d-band center of confined Co sites and facilitates electron donation to PMS, preferentially cleaving O-H bonds to generate metastable SO5•- intermediates. This electronic configuration promotes selective O12 generation through PMS self-decomposition while suppressing radical pathways. The optimized system exhibited high efficiency across electron-rich pollutants, maintained robust performance in real wastewater matrices, and demonstrated operational stability in continuous-flow reactors. This work elucidates the critical role of electronic structure engineering in manipulating PMS activation pathways and provides a paradigm for designing advanced oxidation catalysts through targeted electron transport optimization.
Collapse
Affiliation(s)
- Quanzhi Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Xinchun Ye
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Dezhi Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Huan Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Xia Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Maosheng Fu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Yongquan Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
19
|
Du P, Yang B, Chow ATS, Shi D, Wong KMC, Wang J. From Quencher to Promoter: Revisiting the Role of 2,4,6-Trimethylphenol (TMP) in Triplet-State Photochemistry of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4444-4454. [PMID: 39999104 DOI: 10.1021/acs.est.4c09859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triplet-state dissolved organic matter (3DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with 3DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP's effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike 3DOM*, TMP-RS may react with SMX with the formation of non-SMX•+ intermediates. This process prevents the reduction of SMX•+ and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP's involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Alex Tat-Shing Chow
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Dongliang Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
20
|
Zhou H, Duan X, Huang B, Zhong S, Cheng C, Sharma VK, Wang S, Lai B. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angew Chem Int Ed Engl 2025:e202422892. [PMID: 40040468 DOI: 10.1002/anie.202422892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
A comprehensive and in-depth analysis of reaction mechanisms is essential for advancing chemical water treatment technologies. However, due to the limitations of conventional experimental and analytical methods, the types of reactive species and their generation pathways are commonly debatable in many aqueous systems. As highly sensitive diagnostic tools, isotope techniques offer deeper insights with minimal interference from reaction conditions. Nevertheless, precise interpretations of isotope results remain a significant challenge. Herein, we first scrutinized the fundamentals of isotope chemistry and highlighted key changes induced by the isotope substitution. Next, we discussed the application of isotope techniques in kinetic isotope effects, presenting a roadmap for interpreting KIE in sophisticated systems. Furthermore, we summarized the applications of isotope techniques in elemental tracing to pinpoint reaction sites and identify dominant reactive species. Lastly, we propose future research directions, highlighting critical considerations for the rational design and interpretation of isotope experiments in environmental chemistry and related fields.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Cheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Virender K Sharma
- Department of Chemical, Environmental and Materials, University of Miami, 1251 Memorial Drive, Coral Gables, Florida, 33146, USA
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Pan Z, Wang C, Liu X, Xu R, Xin H, Yu H, Li L, Zhao S, Song C, Wang T. MnOOH/carbon-based reactive electrochemical membrane for aqueous organic pollutants decontamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124631. [PMID: 39978016 DOI: 10.1016/j.jenvman.2025.124631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
The electrochemical filtration process (ECFP), which integrates the benefits of membrane separation with electrochemical advanced oxidation, exhibits significant potential for water decontamination. A key aspect in realizing practical applications of ECFP lies in the development of cost-effective, high-performance reactive electrochemical membranes (REM). In this work, a novel carbon-based REM (MCM-30) was prepared by coating the low-cost coal-based carbon membrane (CM) with MnOOH nano-catalyst through a simple and environmentally friendly electrochemical deposition method. Results indicated that the nano-MnOOH catalyst significantly improved the hydrophilicity and electrochemical properties of the CM, thereby enhancing its permeability and removal efficiency towards bisphenol A (BPA). The effects of deposition time, applied voltages, flow rates, electrolyte concentrations, and water matrixes on BPA removal efficiency were systematically investigated. Under optimal conditions, 30 min deposition, 2.0 V applied voltage, 2 mL min-1 flow rate, 0.1 mol L-1 Na2SO4 electrolyte concentration, the BPA removal efficiency of the MCM-30 reached to over 95%, which is much higher than that of the CM. The improved water treatment performance of MCM-30 during the electrochemical filtration could be attributed to the enhancement in both direct and indirect oxidation owing to the nano MnOOH deposition. Furthermore, the MCM-30 is recyclable and can be applied across various water backgrounds and pollutant types.
Collapse
Affiliation(s)
- Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chunyu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Xinyu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Ruisong Xu
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Hong Xin
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Hang Yu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Lin Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Shuaifei Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China; Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Tonghua Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
22
|
Bai Y, Hu X, Du H, Gao M, Li Z, Fei Y. Walnut shell-based biochar-assisted Fe sites anchored carbon-rich g-C 3N 4: Boosting photodegradation of 2-Mercaptobenzothiazole though synergistic enhancement of Fe sites and C substitution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 377:124650. [PMID: 39986168 DOI: 10.1016/j.jenvman.2025.124650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
To expand the utilization of discarded walnut shells and enhance the photocatalytic activity of graphitic carbon nitride(g-C3N4), the carbon-rich graphitic carbon nitride anchored with Fe sites (FeW-CN) was synthesized via a walnut shell-based biochar-assisted strategy. Unlike the direct thermal copolymerization of melamine for g-C3N4, the iron-loaded walnut shell-based biochar (FeW) was first synthesized, followed by thermal copolymerization of melamine with FeW to form FeW-CN. The C substitution on the triazine ring enhanced the light absorption and electron migration for FeW-CN. And the Fe sites interacting with N-(C)3 further improved the migration and the utilization rate of photogenerated carriers. During the degradation of 2-Mercaptobenzothiazole, FeW-CN showed excellent photocatalytic performance and stability compared with g-C3N4. Moreover, FeW-CN maintained excellent photocatalytic performance in river water. Combination of electron paramagnetic resonance with active species quenching experiments, the synergistic mechanism of singlet oxygen, holes, and superoxide radicals was confirmed in the FeW-CN system. Compared to g-C3N4, the Fe sites and C substitution enhanced the production of singlet oxygen.
Collapse
Affiliation(s)
- Yaxing Bai
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Meng Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Zilong Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yuhuan Fei
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
23
|
Zhang T, Yang P, Ji Y, Lu J. The Role of Natural Organic Matter in the Degradation of Phenolic Pollutants by Sulfate Radical Oxidation: Radical Scavenging vs Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3325-3335. [PMID: 39916582 DOI: 10.1021/acs.est.4c12579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Dissolved natural organic matter (NOM) significantly influences the performance of water treatment processes. It is generally recognized that NOM acts as a radical scavenger, thus inhibiting the degradation of organic pollutants in advanced oxidation processes (AOPs). This study examined the impacts of 8 different NOM isolates on the degradation of 4-chlorophenol (CP), a representative phenolic pollutant, in sulfate radical (SO4•-)-based AOPs. We developed an improved probe method to measure the steady-state concentration of SO4•- ([SO4•-]ss) in both the absence and presence of NOM. Results show that adding 1.00 mgC L-1 NOM resulted in only a 1.3-3.4% decrease in [SO4•-]ss. However, the apparent rate constants of CP degradation decreased by 76-88%. This discrepancy indicates that radical scavenging cannot be the primary mechanism for observed inhibition. We proposed NOM primarily acts as a reducing agent, reacting with the phenoxy radical intermediates generated from the single-electron oxidation of CP by SO4•-. Based on this hypothesis, we developed and validated a kinetic model using experimental data. The reductive capacity of NOM, as determined by the kinetic model, correlates positively with its electron-donating capacity. These findings enhance the understanding of NOM's role in SO4•--based AOPs and provide a foundation for developing strategies to mitigate its adverse effects.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Sun Y, Zhang C, Jia Y, Zhang Y, Fan J. Synergistic activation of peroxymonosulfate by highly dispersed iron-based sulfur-nitrogen co-doped porous carbon for bisphenol a removal: mechanistic insights and selective oxidation. RSC Adv 2025; 15:4356-4368. [PMID: 39931408 PMCID: PMC11808356 DOI: 10.1039/d4ra08729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
Efficient and pervasive solutions are urgently needed to mitigate pollution from emerging contaminants in aquatic environments. Activation of peroxymonosulfate (PMS) is commonly employed to remove refractory organic pollutants from water. Herein, we synthesized sulfur-nitrogen co-doped porous carbon materials loaded with highly dispersed iron species (FeSNC) using template-assisted and ligand site construction methods. The uniform doping of N, S, and Fe in the carbon substrate, along with their synergistic effects, significantly enhanced catalytic activity by creating a high degree of defects in the catalyst (I D/I G = 1.47). This enhancement facilitated efficient removal of BPA, achieving an apparent rate constant of up to 2.83 min-1, which was 30 times higher than that of SNC and 6 times higher than that of FeNC. The FeSNC/PMS system demonstrated robust catalytic stability across the pH 3-9 range, and showed minimal sensitivity to environmental factors like the aqueous matrix, with low iron ion dissolution (<0.01 mg L-1) and certain reusability. Mechanistic investigations employing quenching experiments, EPR tests, probe experiments, and electrochemical tests elucidated that the system catalyzed the degradation of BPA via two non-radical pathways: high-valent iron oxidation and singlet oxygen pathways. Additionally, the system further exhibits selective degradation of electron-rich organics (e.g., 4-chlorophenol, sulfamethoxazole, ofloxacin, etc.).
Collapse
Affiliation(s)
- Yu Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University Shanghai 200092 P.R. China
| | - Chuning Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University Shanghai 200092 P.R. China
| | - Yan Jia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University Shanghai 200092 P.R. China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University Shanghai 200092 P.R. China
| | - Jianwei Fan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University Shanghai 200092 P.R. China
| |
Collapse
|
25
|
Zhao J, Zhi S, Li Y, Cao K, Ding Z, Song Y, Jiang K, Wang S, Wu D. Efficient degradation of sulfadiazine via facilitated electron transfer by iron-carbon catalyst with highly exposed active sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125439. [PMID: 39631656 DOI: 10.1016/j.envpol.2024.125439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The inaccessible active sites, excessive metal leaching and radical mediated degradation pathway greatly hinder the performances of Fe-C composite catalyst oxidation process in the advanced oxidation water treatment. Herein, a facile method was developed to in situ growth of MIL-53 (Fe) on the powder active carbon (PAC) surface by a mild condition, which finally yields PAC supported Fe3O4@C particles (PAC@MOFs-2T) after heat treatment. The detailed characterizations indicate that the fine Fe3O4 particles encapsulated with carbon layers were evenly anchored on the PAC as active sites, which made the catalytic centers highly accessible for the peroxydisulfate activation and sulfadiazine degradation. In addition, the carbon layers, coated on the active sites could prevent the metal leaching during the catalytic process resulting in the high stability in a wide pH range. More attractively, the density functional theory (DFT) simulations and emperimental evidences further proved that the oxidation was dominated by a electron transfer process (ETP), during which, the peroxydisulfate (PDS) was adsorbed on Fe3O4 to form PDS∗ with high oxidation potential to initiate the ETP. Meanwhile, it was also demonstrated that the optimized sample PAC@MOFs-2T enriched with electron donating groups could selectively degrade the sulfadiazine, which avoid the negative impacts from the co-existed foreign ions and organic matters during the oxidation process. In addition, the toxicity analysis of intermediate products revealed that the sulfadiazine can be degradated into low-toxic or non-toxic products, which further permits viability of this ETP mediated advanced oxidation processes.
Collapse
Affiliation(s)
- Jinglin Zhao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Songsong Zhi
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yangju Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Kun Cao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Zerui Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yadan Song
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Kai Jiang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Shasha Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Dapeng Wu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| |
Collapse
|
26
|
Hu C, Wu Y, Dong Z, Dong Z, Ji S, Hu L, Yang X, Liu H. Degradation of carbamazepine by the UVA-LED 365/ClO 2/NaClO process: Kinetics, mechanisms and DBPs yield. J Environ Sci (China) 2025; 148:399-408. [PMID: 39095175 DOI: 10.1016/j.jes.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 08/04/2024]
Abstract
A mixed oxidant of chlorine dioxide (ClO2) and NaClO was often used in water treatment. A novel UVA-LED (365 nm)-activated mixed ClO2/NaClO process was proposed for the degradation of micropollutants in this study. Carbamazepine (CBZ) was selected as the target pollutant. Compared with the UVA365/ClO2 process, the UVA365/ClO2/NaClO process can improve the degradation of CBZ, with the rate constant increasing from 2.11×10-4 sec-1 to 2.74×10-4 sec-1. In addition, the consumption of oxidants in the UVA365/ClO2/NaClO process (73.67%) can also be lower than that of UVA365/NaClO (86.42%). When the NaClO ratio increased, both the degradation efficiency of CBZ and the consumption of oxidants can increase in the UVA365/ClO2/NaClO process. The solution pH can affect the contribution of NaClO in the total oxidant ratio. When the pH range of 6.0-8.0, the combination process can generate more active species to promote the degradation of CBZ. The change of active species with oxidant molar ratio was investigated in the UVA365/ClO2/NaClO process. When ClO2 acted as the main oxidant, HO• and Cl• were the main active species, while when NaClO was the main oxidant, ClO• played a role in the system. Both chloride ion (Cl-), bicarbonate ion (HCO3-), and nitrate ion (NO3-) can promote the reaction system. As the concentration of NaClO in the reaction solution increased, the generation of chlorates will decrease. The UVA365/ClO2/NaClO process can effectively control the formation of volatile disinfection by-products (DBPs), and with the increase of ClO2 dosage, the formation of DBPs can also decrease.
Collapse
Affiliation(s)
- Chenyan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yihui Wu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhengyu Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China.
| | - Ziyi Dong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shengjie Ji
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Lili Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xinyu Yang
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hao Liu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy, Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| |
Collapse
|
27
|
Pei J, Liu J, Fu K, Fu Y, Yin K, Luo S, Yu D, Xing M, Luo J. Non-metallic iodine single-atom catalysts with optimized electronic structures for efficient Fenton-like reactions. Nat Commun 2025; 16:800. [PMID: 39824821 PMCID: PMC11742696 DOI: 10.1038/s41467-025-56246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
In this study, we introduce a highly effective non-metallic iodine single-atom catalyst (SAC), referred to as I-NC, which is strategically confined within a nitrogen-doped carbon (NC) scaffold. This configuration features a distinctive C-I coordination that optimizes the electronic structure of the nitrogen-adjacent carbon sites. As a result, this arrangement enhances electron transfer from peroxymonosulfate (PMS) to the active sites, particularly the electron-deficient carbon. This electron transfer is followed by a deprotonation process that generates the peroxymonosulfate radical (SO5•-). Subsequently, the SO5•- radical undergoes a disproportionation reaction, leading to the production of singlet oxygen (1O2). Furthermore, the energy barrier for the rate-limiting step of SO5•- generation in I-NC is significantly lower at 1.45 eV, compared to 1.65 eV in the NC scaffold. This reduction in energy barrier effectively overcomes kinetic obstacles, thereby facilitating an enhanced generation of 1O2. Consequently, the I-NC catalyst exhibits remarkable catalytic efficiency and unmatched reactivity for PMS activation. This leads to a significantly accelerated degradation of pollutants, evidenced by a relatively high observed kinetic rate constant (kobs ~ 0.436 min-1) compared to other metallic SACs. This study offers valuable insights into the rational design of effective non-metallic SACs, showcasing their promising potential for Fenton-like reactions in water treatment applications.
Collapse
Affiliation(s)
- Junjun Pei
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jianbin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, P.R. China
| | - Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yukui Fu
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Kai Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Shenglian Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, P.R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P.R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, P.R. China.
| |
Collapse
|
28
|
Wang Z, Jia X, Wang J, Li C, Song H, Zhao Q, Li Y, Tian S. Phenolic acid-containing compounds enhanced Fe 3+/peroxides processes for efficient removal of sulfamethoxazole in surface waters. ENVIRONMENTAL RESEARCH 2025; 265:120407. [PMID: 39577721 DOI: 10.1016/j.envres.2024.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Sulfamethoxazole (SMX) in surface waters has raised widespread concerns due to its potential environmental and biological hazards. In this study, the performance, mechanism, and environmental application of phenolic acid-containing compounds (PACCs) enhanced Fe3+/peroxides processes for SMX degradation were investigated. PACCs with two Ar-OH groups exhibited the lowest toxicity and the best enhancement performance (65%-66% of PDS, 47%-58% of PMS and 61%-63% of H2O2), which were attributed to the excellent chelating and reducing ability towards Fe3+. Free radicals played the predominant role in PDS (37% of SO4-·, 34% of ·OH), PMS (37% of SO4-·, 35% of ·OH) and H2O2 (61% of ·OH) oxidation processes. FeIVO2+ play a non-negligible role in PDS and PMS processes (ŋ[PMSO2] = 52%-80% and ŋ[PMSO2] = 59%-72%). PDS and PMS processes were suitable for a pH range of 3.0-9.0, while the H2O2 process was 3.0-10.0. PDS and PMS processes exhibited stronger resistance to the common anions in surface waters. PMS process exhibited higher adaptability to surface waters quality (92%-98%). This study provides a novel approach for enhancing the degradation of SMX in natural surface waters.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Xiaolei Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Jianfei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| |
Collapse
|
29
|
Zhou G, Yang F, Zhu X, Feng W, Chen D, Fang J. Copper-Copper Oxide Heterostructural Nanocrystals Anchored on g-C 3N 4 Nanosheets for Efficient Visible-Light-Driven Photo-Fenton-like Catalysis. Molecules 2025; 30:144. [PMID: 39795200 PMCID: PMC11722353 DOI: 10.3390/molecules30010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
The development of efficient and sustainable photocatalysts for wastewater treatment remains a critical challenge in environmental remediation. In this study, a ternary photocatalyst, Cu-Cu2O/g-C3N4, was synthesized by embedding copper-copper oxide heterostructural nanocrystals onto g-C3N4 nanosheets via a simple deposition method. Structural and optical characterization confirmed the successful formation of the heterostructure, which combines the narrow bandgap of Cu2O, the high stability of g-C3N4, and the surface plasmon resonance (SPR) effect of Cu nanoparticles. The photocatalytic performance was evaluated through the degradation of Rhodamine B (RhB) in a photo-Fenton-like reaction system under visible light irradiation. Among the catalysts tested, the 30 wt% Cu-Cu2O/g-C3N4 composite exhibited the highest catalytic efficiency, achieving a reaction rate constant approximately 3 times and 1.5 times higher than those of Cu-Cu2O and g-C3N4, respectively. Mechanistic studies suggest that the heterostructure facilitates efficient charge separation and promotes the reduction of Cu2+ to Cu+, thereby enhancing ∙OH radical generation. The catalyst also demonstrated excellent stability and reusability across a wide pH range. These findings provide a new strategy for designing highly efficient photocatalysts for organic pollutant degradation, contributing to the advancement of advanced oxidation processes for environmental applications.
Collapse
Affiliation(s)
- Guangying Zhou
- School of Environment, South China Normal University, Guangzhou 510006, China (X.Z.); (W.F.); (D.C.)
| | - Fan Yang
- School of Environment, South China Normal University, Guangzhou 510006, China (X.Z.); (W.F.); (D.C.)
| | - Ximiao Zhu
- School of Environment, South China Normal University, Guangzhou 510006, China (X.Z.); (W.F.); (D.C.)
| | - Weihua Feng
- School of Environment, South China Normal University, Guangzhou 510006, China (X.Z.); (W.F.); (D.C.)
| | - Dongdong Chen
- School of Environment, South China Normal University, Guangzhou 510006, China (X.Z.); (W.F.); (D.C.)
| | - Jianzhang Fang
- School of Environment, South China Normal University, Guangzhou 510006, China (X.Z.); (W.F.); (D.C.)
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
30
|
Lin Y, Qiao J, Sun Y, Dong H. The profound review of Fenton process: What's the next step? J Environ Sci (China) 2025; 147:114-130. [PMID: 39003034 DOI: 10.1016/j.jes.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 07/15/2024]
Abstract
Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
Collapse
Affiliation(s)
- Yimin Lin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yuankui Sun
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
31
|
Fan J, Xie L, Zhang X, Zou P, Zheng Y, Fan Y, Wang H, Jiang X, Chang Y. Mechanically Induced Green Targeted Conversion of Ammonia Nitrogen to N 2: Based on Cavitation Effects and ROS Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21569-21577. [PMID: 39520400 DOI: 10.1021/acs.est.4c08077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Addressing the mounting challenge of ammonia nitrogen pollution in aquatic ecosystems necessitates the selective oxidation of ammonia nitrogen to nitrogen gas, a pivotal aspect of eco-friendly nitrogen removal processes. Ultrasound cavitation, renowned for its capacity to generate reactive oxygen species (ROS), has garnered considerable attention in environmental remediation. This study reveals a highly synergistic mechanism in ultrasound coupled stirring (US-ST), establishing optimal coupling conditions through sound field monitoring and quantification of ROS. In comparison to ultrasound treatment alone (US), the sound pressure amplitude significantly increased from ±18 to ±30 kPa in US-ST, markedly reducing the cavitation nucleation threshold and augmenting the steady-state concentration of hydroxyl radicals (HO•) by 13-fold. Further, with appropriate charge transfer conditions enabled by the acoustoelectric characteristics of the passive film on stirring paddles, the concentrations of superoxide (•O2-) and singlet oxygen (1O2) elevated to 9.54 × 10-10 M and 8.43 × 10-13 M, respectively. Under the regulation of 500 rpm stirring vortex, a maximum sonochemical efficiency of 6.5 × 10-5 mg J-1 was achieved. In the context of domestic wastewater, ammonia nitrogen degradation was achieved through the oxidation and thermal dissociation effects of US-ST. The concentration decreased from 27.5 to 3.4 mg/L after 2 h, with an impressive N2 selectivity of 96.8%. This study elucidates the targeted conversion mechanism of ammonia nitrogen in US-ST, introducing an emerging water treatment technology propelled by mechanical energy.
Collapse
Affiliation(s)
- Jianan Fan
- College of Architecture & Environment, Sichuan University, Chengdu 610065, P.R. China
| | - Lu Xie
- Chengdu Municipal Engineering Design & Research Institude, Co.,Ltd, Chengdu 610023, P.R. China
| | - Xianggang Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, P.R. China
| | - Ping Zou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, P.R. China
| | - Yili Zheng
- Chengdu Municipal Engineering Design & Research Institude, Co.,Ltd, Chengdu 610023, P.R. China
| | - Ying Fan
- Chengdu Municipal Engineering Design & Research Institude, Co.,Ltd, Chengdu 610023, P.R. China
| | - Hualin Wang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xia Jiang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P.R. China
- Tianfu Yongxing Laboratory, Chengdu 610213, P.R. China
| | - Yulong Chang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P.R. China
- Tianfu Yongxing Laboratory, Chengdu 610213, P.R. China
| |
Collapse
|
32
|
Xiang W, Wan D, Zhou W, Zhang H, Mao S, Zhang F, Li J, Chen Y. Direct and indirect photodegradation mechanism of ractopamine in aquatic environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136082. [PMID: 39395394 DOI: 10.1016/j.jhazmat.2024.136082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
As a kind of typical lean meat essences and veterinary drugs, ractopamine (RAC) has been frequently detected in agricultural sewage and livestock, posing potential risk to both aquatic ecosystems and human health. Despite its widespread occurrence, the environmental fate of RAC remains unclear. Here, the mechanisms underlying the direct and indirect photodegradation of RAC was investigated under UV light irradiation at wavelengths of 275 and 365 nm, respectively. The effect of pH, initial concentration, and co-existing ions were examined. For direct photodegradation, the quantum yield of RAC increased with increasing pH values. In solutions containing dissolved organic matter (DOM), indirect photodegradation of RAC intensified with increasing pH values, and the initial concentration of DOM accelerated the process. The presence of Cu2+ was found to inhibit both direct and indirect photodegradation of RAC. Electron spin resonance (ESR) spectrometry and quenching experiments revealed that direct photodegradation was primarily attributed to the decomposition of the triplet state of RAC. Both the triplet state of DOM (3DOM*) and singlet oxygen contributed to the indirect photodegradation of RAC. LC-MS/MS analysis indicated that oxidation of the phenol group and subsequent decarboxylation were the principal photodegradation processes. The energies of each state of RAC and the active sites of RAC molecules were computed using frontier molecular orbitals and Fukui indices based on density functional theory. Combining the analysis of photoproducts with energy calculation, pathways of the direct and indirect photodegradation of RAC were proposed. These findings unveiled the photochemical behaviors of RAC concerning the removal and attenuation in aquatic environment.
Collapse
Affiliation(s)
- Weiming Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dong Wan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Wentao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Hongli Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiqin Mao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fei Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiali Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yong Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
33
|
Li L, Cheng M, Sun H, Yi H, Liu S, Zhang M, Fu Y, Zhou X, Xu F, Ma D, Zeng G, Yang Z, Lai C. Assessing the discrepant role of anions in the transformation of reactive oxygen species in H 2O 2 and PDS system: A comparative kinetic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136465. [PMID: 39547037 DOI: 10.1016/j.jhazmat.2024.136465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Clarifying reactive oxygen species (ROS) variation in the presence of co-existing anions is significant for understanding the catalytic effect of magnetite (Fe3O4)-induced advanced oxidation processes (AOPs) in natural environment, yet this remains controversial. Herein, we compare the specific impacts of NO3-, SO42-, and Cl- on ROS (•OH, SO4•-, O2•-, and 1O2) exposure concentration in H2O2 and peroxydisulfate (PDS) systems catalyzed by Fe3O4, as well as how these variations affect the catalytic efficiency by developing kinetic model. In both two systems, NO3- demonstrates no discernible effect on ROS, whereas SO42- inhibits the exposure of all ROS and thus micropollutants degradation. Through theoretical calculation, it is proposed that SO42- primarily exerts its influence through affecting the electronic structure over catalyst surface. Regarding Cl-, it affects ROS exposure mainly by reacting with ROS. It shows inhibitory effect on 1O2 in both systems, but its suppressive impact on •OH is markedly more pronounced in H2O2 system compared to PDS system, which may be related to its rapid reactivity with SO4•-. Besides, the chlorine radicals (mainly ClO•) generated through the reaction of Cl- may exert a selective influence on micropollutants degradation. This study can help to re-understand the influence behavior of co-existing anions during AOPs.
Collapse
Affiliation(s)
- Ling Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China; College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, PR China
| | - Min Cheng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Hao Sun
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Huan Yi
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Shiyu Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Mingming Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yukui Fu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuerong Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Fuhang Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Dengsheng Ma
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| | - Zhengjian Yang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, PR China.
| | - Cui Lai
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
34
|
Mao X, Cai J, Xie F, Yan P, Liu B. Effect of peroxydisulfate activated by B-doped NiFe 2O x for degrading contaminants and mitigating nanofiltration membrane fouling in the landfill leachate treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136239. [PMID: 39437471 DOI: 10.1016/j.jhazmat.2024.136239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/07/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Catalytic oxidation pretreatment is a significant focus in the field of membrane fouling control; however, traditional catalytic materials are plagued by limitations in catalytic sites and challenges in recovery. In this study, a novel catalyst, B-doped NiFe2Ox, was prepared with magnetic recovery capabilities and abundant oxygen vacancies to address landfill leachate treatment and mitigate membrane fouling. The results demonstrated the efficient activation of persulfate (PS) by the catalytic sites on B-NiFe2Ox, which significantly degraded the complex organic pollutants like conjugated double bonds and aromatic compounds in landfill leachate. A large amount of humic acid and soluble microbial products in the landfill leachate were efficiently degraded upon contact with sulfate and hydroxyl radicals produced by B-NiFe2Ox/PS, thereby resulting in achieving a chemical oxygen demand removal efficiency of up to 72 % and more than a twofold enhancement in filtration flux. Moreover, the characteristics of the fouled layer reveal that the B-NiFe2Ox/PS system facilitated the formation of a porous cake layer, maximizing the retention of functional groups on the NF270 membrane surface. Notably, a minor presence of B-NiFe2Ox is uniformly distributed within the cake layer, indicating the in-situ occurrence of weak catalytic oxidation reactions. This study provides an effective and innovative approach utilizing catalytic oxidation for membrane fouling control.
Collapse
Affiliation(s)
- Xin Mao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Junlong Cai
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Fazhi Xie
- Cultivated Land Protection Innovation Demonstration Center of Anhui Province, Anhui Jianzhu University, Hefei 230601, PR China
| | - Pengwei Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China; Cultivated Land Protection Innovation Demonstration Center of Anhui Province, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
35
|
Chen J, Ma H, Luo H, Pu S. Mechanistic insights into the pH-driven radical transformation of the Fe(II)/nCP in groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136334. [PMID: 39536352 DOI: 10.1016/j.jhazmat.2024.136334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Calcium peroxide nanoparticles (nCP) as a versatile and safe solid H2O2 source, have attracted significant research interst for their application potential in groundwater remediation. Compared to the traditional Fenton system, the nCP-based Fenton-like system has a wider pH-working window for contaminants degradation. This results from the dominant radical transformation under different pH. Unlike the traditional Fenton system which is only effective in acid conditions with hydroxyl radical (•OH) as the main active species, the release of H2O2 and O2 from nCP provides multiple contaminants degradation pathways. In acidic environments, •OH and Fe(IV) predominate as the active species, facilitated by substantial H2O2 production which activates the Fenton reaction. In neutral or alkaline conditions, the production of H2O2 was dramatically decreased. While the O2 released from nCP can be catalyzed by Fe(II) to form superoxide radical (•O2-), which subsequently generate singlet oxygen (1O2). The formation pathway of •O2- was tracked by O18 isotope labeling experiment. The impact of the water matrix on radical generation in the Fe(II)/nCP Fenton-like system was also studied. This research deepens the understanding of the radical formation mechanisms in nCP-based Fenton-like system, offering insights to support their application in remediating contaminated groundwater.
Collapse
Affiliation(s)
- Jinsong Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Haoyu Luo
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
36
|
Sun H, Zhang L, Wang Y, Zhang J, Dong D, Guo Z. Bromate-induced oxidation of carbamazepine and toxicity assessment of transformation products in the freezing-sunlight process: Effects of trivalent chromium. ENVIRONMENTAL RESEARCH 2024; 262:119815. [PMID: 39159778 DOI: 10.1016/j.envres.2024.119815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Bromate (BrO3-)-induced pharmaceutical and personal care products (PPCPs) oxidation is enhanced in freezing systems. Reduced forms of metals are widely present, often coexisting with various contaminants. However, their effects on the interaction of PPCPs with BrO3- in ice in cold regions may have been overlooked. Herein we investigated the effects of representative reducing metal Cr(III) on the interaction between the representative PPCP carbamazepine (CBZ) and BrO3- in the freezing system. Our findings demonstrated that the degradation rate constants of CBZ by BrO3- and Cr(III) were 29.4%-60.3% lower than those by BrO3- in ice, revealing the inhibition of Cr(III) on CBZ degradation by BrO3- in ice. In BrO3-/freezing/sunlight system, BrO3- contributed 62.8% to CBZ degradation. In BrO3-/Cr(III)/freezing/sunlight system, Cr(III) promoted the generation of hydroxyl radical (·OH), leading to 51.0% contribution of ·OH to CBZ degradation. Oxidants were consumed by Cr(III) to form Cr(VI) rather than reacting with CBZ, thereby decreasing CBZ degradation by BrO3- in ice. Due to sunlight-induced Cr(VI) reduction in ice, only 0.3% of Cr(III) was converted to Cr(VI) in BrO3-/Cr(III)/freezing/sunlight system. BrO3--induced CBZ degradation rate in ice decreased in order of Fe(II), Cr(III), and Mn(II), which was due to the different reducing capabilities. An effective reduction in comprehensive toxicity of systems followed the freezing-sunlight process, even in the presence of Cr(III). This work sheds new light on the environmental behaviors and fate of PPCPs, brominated disinfection by-products, and reducing metals during seasonal freezing.
Collapse
Affiliation(s)
- Heyang Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yakun Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jing Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
37
|
Li S, Jiang X, Xu W, Li M, Liu Z, Han W, Yu C, Li J, Wang H, Yeung KL. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. WATER RESEARCH 2024; 267:122456. [PMID: 39357158 DOI: 10.1016/j.watres.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m-3·order-1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
Collapse
Affiliation(s)
- Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
38
|
Song Z, Wang J, Ren N, Chen Y. Selective degradation of sulfonamide antibiotics by peracetic acid alone: Direct oxidation and radical mechanisms. ENVIRONMENTAL RESEARCH 2024; 262:119901. [PMID: 39241858 DOI: 10.1016/j.envres.2024.119901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
In this study, a peracetic acid (PAA) alone process was systematically demonstrated to give a high efficiency in the selective degradation of sulfonamide antibiotics (SAs). The employment of scavengers and probe compounds in this process demonstrates the predominant role of PAA in direct oxidation, and the limited role of carbon-centered radicals (R-O•) in the degradation of representative SA, sulfamethazine (SMT). The process also exhibits high tolerance towards solution pH and competing anions in wastewater, indicating its applicability in enhancing the biodegradation of SAs in wastewater. Furthermore, the relationships between the observed rate constants (kobs) and the molecule descriptors for ten SA compounds are demonstrated through the assessment of structure-activity relationships, calculated from density functional theory (DFT). This study gives new insights into the selectivity, performance and mechanism of PAA direct-oxidation in SA degradation.
Collapse
Affiliation(s)
- Zhao Song
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, PR China
| | - Jingwen Wang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Yidi Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| |
Collapse
|
39
|
Wang C, Sun M, He M, Zhao S, Lv M, Xu X, Ye C, Li L, Su L, Zhao Y. Photolysis of p-phenylenediamine rubber antioxidants in aqueous environment: Kinetics, pathways and their photo-induced toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135718. [PMID: 39236532 DOI: 10.1016/j.jhazmat.2024.135718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
The widespread use of rubber antioxidants, especially p-phenylenediamines (PPDs), has raised increasing concerns about their risk assessment. However, there is a notable lack of research on their transformation products (TPs). Photolysis, influenced by active components, plays a significant role in the environmental fates of PPDs. This study investigated four emerging PPDs (N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), N, N'-diphenyl-p-phenylenediamine (DPPD), N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD), and N-cyclohexyl-N'-phenyl-p-phenylenediamine (CPPD)) through a combination of experiments (photolysis kinetics, quenching experiments, acute toxicity test to Vibrio Fischeri (V. fischeri) and identification of photolytic products) and theoretical calculations. The results revealed different pathways for indirect photolysis mediated by the hydroxyl radicals (•OH) and singlet oxygen (1O2) of DPPD and IPPD under simulated sunlight irradiation. The effects of dissolved organic matter (DOM) and fulvic acid (FA) on the rates of photolysis of PPDs highlighted the complex interactions among the molecular structure, light absorption properties, and environmental variables. Quenching for reactive oxygen species (ROS) reduced photo-induced toxicity, whereas the addition of DOM and FA increased it, suggesting the crucial role of ROS in the formation of more toxic photolytic products. The study of photolysis pathways and the evaluation of the health risks provide a comprehensive understanding of the environmental effects of these pollutants.
Collapse
Affiliation(s)
- Chen Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Meichen Sun
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Minghui He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Siyu Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Meinuo Lv
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xiaotian Xu
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY, USA
| | - Chunbei Ye
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Linjing Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Limin Su
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China.
| | - Yuanhui Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, PR China
| |
Collapse
|
40
|
Yang S, Sun S, Xie Z, Dong Y, Zhou P, Zhang J, Xiong Z, He CS, Mu Y, Lai B. Comprehensive Insight into the Common Organic Radicals in Advanced Oxidation Processes for Water Decontamination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19571-19583. [PMID: 39442087 DOI: 10.1021/acs.est.4c06676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Radical-based advanced oxidation processes (AOPs) are among the most effective technologies employed to destroy organic pollutants. Compared to common inorganic radicals, such as •OH, O2•-, and SO4•-, organic radicals are widespread, and more selective, but are easily overlooked. Furthermore, a systematic understanding of the generation and contributions of organic radicals remains lacking. In this review, we systematically summarize the properties, possible generation pathways, detection methods, and contributions of organic radicals in AOPs. Notably, exploring organic radicals in AOPs is challenging due to (1) limited detection methods for generated organic radicals; (2) controversial organic radical-mediated reaction mechanisms; and (3) rapid transformation of organic radicals as reaction intermediates. In addition to their characteristics and reactivity, we examine potential scenarios of organic radical generation in AOPs, including during the peroxide activation process, in water matrices or with coexisting organic pollutants, and due to the addition of quenching agents. Subsequently, we summarize various methods for organic radical detection as reported previously, such as electron paramagnetic resonance spectroscopy (EPR), 31P nuclear magnetic resonance spectroscopy (31P NMR), liquid/gas chromatography-mass spectroscopy (GC/LC-MS), and fluorescence probes. Finally, we review the contributions of organic radicals to decontamination processes and provide recommendations for future research.
Collapse
Affiliation(s)
- Shurun Yang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Si Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhihui Xie
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yudan Dong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
41
|
Zhuang Y, Spahr S, Lutze HV, Reith CJ, Hagemann N, Paul A, Haderlein SB. Persulfate activation by biochar and iron: Effect of chloride on formation of reactive species and transformation of N,N-diethyl-m-toluamide (DEET). WATER RESEARCH 2024; 265:122267. [PMID: 39178590 DOI: 10.1016/j.watres.2024.122267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Fenton-like processes using persulfate for oxidative water treatment and contaminant removal can be enhanced by the addition of redox-active biochar, which accelerates the reduction of Fe(III) to Fe(II) and increases the yield of reactive species that react with organic contaminants. However, available data on the formation of non-radical or radical species in the biochar/Fe(III)/persulfate system are inconsistent, which limits the evaluation of treatment efficiency and applicability in different water matrices. Based on competition kinetics calculations, we employed different scavengers and probe compounds to systematically evaluate the effect of chloride in presence of organic matter on the formation of major reactive species in the biochar/Fe(III)/persulfate system for the transformation of the model compound N,N‑diethyl-m-toluamide (DEET) at pH 2.5. We show that the transformation of methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) cannot serve as a reliable indicator for Fe(IV), as previously suggested, because sulfate radicals also induce PMSO2 formation. Although the formation of Fe(IV) cannot be completely excluded, sulfate radicals were identified as the major reactive species in the biochar/Fe(III)/persulfate system in pure water. In the presence of dissolved organic matter, low chloride concentrations (0.1 mM) shifted the major reactive species likely to hydroxyl radicals. Higher chloride concentrations (1 mM), as present in a mining-impacted acidic surface water, resulted in the formation of another reactive species, possibly Cl2•-, and efficient DEET degradation. To tailor the application of this oxidation process, the water matrix must be considered as a decisive factor for reactive species formation and contaminant removal.
Collapse
Affiliation(s)
- Yiling Zhuang
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Stephanie Spahr
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
| | - Holger V Lutze
- Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | - Christoph J Reith
- Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| | - Nikolas Hagemann
- Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ithaka Institut gGmbH, Altmutterweg 21, 63773 Goldbach, Germany
| | - Andrea Paul
- BAM Federal Institute of Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | - Stefan B Haderlein
- Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany
| |
Collapse
|
42
|
Xie X, Wang J, Guo X, Sun J, Wang X, Duo Wu W, Wu L, Wu Z. Comparative study on CeO 2 catalysts with different morphologies and exposed facets for catalytic ozonation: performance, key factor and mechanism insight. J Colloid Interface Sci 2024; 673:847-859. [PMID: 38908284 DOI: 10.1016/j.jcis.2024.06.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024]
Abstract
Morphology and facet effects of metal oxides in heterogeneous catalytic ozonation (HCO) are attracting increasing interests. In this paper, the different HCO performances for degradation and mineralization of phenol of seven ceria (CeO2) catalysts, including four with different morphologies (nanorod, nanocube, nanooctahedron and nanopolyhedron) and three with the same nanorod morphology but different exposed facets, are comparatively studied. CeO2 nanorods with (110) and (100) facets exposed show the best performance, much better than that of single ozonation, while CeO2 nanocubes and nanooctahedra show performances close to single ozonation. The underlying reason for their different HCO performances is revealed using various experimental and density functional theory (DFT) calculation results and the possible catalytic reaction mechanism is proposed. The oxygen vacancy (OV) is found to be pivotal for the HCO performance of the different CeO2 catalysts regardless of their morphology or exposed facet. A linear correlation is discerned between the rate of catalytic decomposition of dissolved ozone (O3) and the density of Frenkel-type OV. DFT calculations and in-situ spectroscopic studies ascertain that the existence of OV can boost O3 activation on both the hydroxyl (OH) and Ce sites of CeO2. Conversely, various facets without OV exhibit similar O3 adsorption energies. The OH group plays an important role in activating O3 to produce hydroxyl radical (∙OH) for improved mineralization. This work may offer valuable insights for designing Facet- and OV-regulated catalysts in HCO for the abatement of refractory organic pollutants.
Collapse
Affiliation(s)
- Xianglin Xie
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jiaren Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xingchen Guo
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jinqiang Sun
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xiaoning Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Winston Duo Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Lei Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, PR China.
| | - Zhangxiong Wu
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China; Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
43
|
Luo D, Lin H, Li X, Wang Y, Ye L, Mai Y, Wu P, Ni Z, Lin Q, Qiu R. The Dual Role of Natural Organic Matter in the Degradation of Organic Pollutants by Persulfate-Based Advanced Oxidation Processes: A Mini-Review. TOXICS 2024; 12:770. [PMID: 39590951 PMCID: PMC11598379 DOI: 10.3390/toxics12110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented. This review systematically summarizes the dual effects of NOM in PS-AOPs, including inhibitory and promotional effects. It encompasses the entire process, detailing the interaction between PS and its activators, the fate of reactive oxygen species (ROS), and the transformation of OPs within PS-AOPs. Specifically, the inhibiting mechanisms include the prevention of PS activation, suppression of ROS fate, and conversion of intermediates to their parent compounds. In contrast, the promoting effects involve the enhancement of catalytic effectiveness, contributions to ROS generation, and improved interactions between NOM and OPs. Finally, further studies are required to elucidate the reaction mechanisms of NOM in PS-AOPs and explore the practical applications of PS-AOPs using actual NOM rather than model compounds.
Collapse
Affiliation(s)
- Dan Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Hansen Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Xingzhen Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Yu Wang
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institute, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Long Ye
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Yuebang Mai
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Peihao Wu
- Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510510, China; (L.Y.); (Y.M.); (P.W.)
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (D.L.); (H.L.); (X.L.); (Z.N.); (R.Q.)
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
44
|
Zhou H, Zhong S, Chen J, Ren S, Ren W, Lai B, Guan X, Ma T, Wang S, Duan X. Overlooked Complexation and Competition Effects of Phenolic Contaminants in a Mn(II)/Nitrilotriacetic Acid/Peroxymonosulfate System: Inhibited Generation of Primary and Secondary High-Valent Manganese Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19080-19089. [PMID: 39276341 DOI: 10.1021/acs.est.4c07370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Organic contaminants with lower Hammett constants are typically more prone to being attacked by reactive oxygen species (ROS) in advanced oxidation processes (AOPs). However, the interactions of an organic contaminant with catalytic centers and participating ROS are complex and lack an in-depth understanding. In this work, we observed an abnormal phenomenon in AOPs that the degradation of electron-rich phenolics, such as 4-methoxyphenol, acetaminophen, and 4-presol, was unexpectedly slower than electron-deficient phenolics in a Mn(II)/nitrilotriacetic acid/peroxymonosulfate (Mn(II)/NTA/PMS) system. The established quantitative structure-activity relationship revealed a volcano-type dependence of the degradation rates on the Hammett constants of pollutants. Leveraging substantial analytical techniques and modeling analysis, we concluded that the electron-rich phenolics would inhibit the generation of both primary (Mn(III)NTA) and secondary (Mn(V)NTA) high-valent manganese species through complexation and competition effects. Specifically, the electron-rich phenolics would form a hydrogen bond with Mn(II)/NTA/PMS through outer-sphere interactions, thereby reducing the electrophilic reactivity of PMS to accept the electron transfer from Mn(II)NTA, and slowing down the generation of reactive Mn(III)NTA. Furthermore, the generated Mn(III)NTA is more inclined to react with electron-rich phenolics than PMS due to their higher reaction rate constants (8314 ± 440, 6372 ± 146, and 6919 ± 31 M-1 s-1 for 4-methoxyphenol, acetaminophen, and 4-presol, respectively, as compared with 671 M-1 s-1 for PMS). Consequently, the two-stage inhibition impeded the generation of Mn(V)NTA. In contrast, the complexation and competition effects are insignificant for electron-deficient phenolics, leading to declined reaction rates when the Hammett constants of pollutants increase. For practical applications, such complexation and competition effects would cause the degradation of electron-rich phenolics to be more susceptible to water matrixes, whereas the degradation of electron-deficient phenolics remains largely unaffected. Overall, this study elucidated the intricate interaction mechanisms between contaminants and reactive metal species at both the electronic and kinetic levels, further illuminating their implications for practical treatment.
Collapse
Affiliation(s)
- Hongyu Zhou
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shuang Zhong
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Junwen Chen
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Shiying Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wei Ren
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
45
|
Wu JH, Yu HQ. Confronting the Mysteries of Oxidative Reactive Species in Advanced Oxidation Processes: An Elephant in the Room. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18496-18507. [PMID: 39382033 DOI: 10.1021/acs.est.4c06725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Advanced oxidation processes (AOPs) are rapidly evolving but still lack well-established protocols for reliably identifying oxidative reactive species (ORSs). This Perspective presents both the radical and nonradical ORSs that have been identified or proposed, along with the extensive controversies surrounding oxidative mechanisms. Conventional identification tools, such as quenchers, probes, and spin trappers, might be inadequate for the analytical demands of systems in which multiple ORSs coexist, often yielding misleading results. Therefore, the challenges of identifying these complex, short-lived, and transient ORSs must be fully acknowledged. Refining analytical methods for ORSs is necessary, supported by rigorous experiments and innovative paradigms, particularly through kinetic analysis based on in situ spectroscopic techniques and multiple-probe strategies. To demystify these complex ORSs, future efforts should be made to develop advanced tools and strategies to enhance the mechanism understanding. In addition, integrating real-world conditions into experimental designs will establish a reliable framework in fundamental studies, providing more accurate insights and effectively guiding the design of AOPs.
Collapse
Affiliation(s)
- Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
46
|
Zeng Y, He D, Sun J, Zhang A, Luo H, Pan X. Non-radical oxidation driven by iron-based materials without energy assistance in wastewater treatment. WATER RESEARCH 2024; 264:122255. [PMID: 39153313 DOI: 10.1016/j.watres.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Chemical oxidation is extensively utilized to mitigate the impact of organic pollutants in wastewater. The non-radical oxidation driven by iron-based materials is noted for its environmental friendliness and resistance to wastewater matrix, and it is a promising approach for practical wastewater treatment. However, the complexity of heterogeneous systems and the diversity of evolutionary pathways make the mechanisms of non-radical oxidation driven by iron-based materials elusive. This work provides a systematic review of various non-radical oxidation systems driven by iron-based materials, including singlet oxygen (1O2), reactive iron species (RFeS), and interfacial electron transfer. The unique mechanisms by which iron-based materials activate different oxidants (ozone, hydrogen peroxide, persulfate, periodate, and peracetic acid) to produce non-radical oxidation are described. The roles of active sites and the unique structures of iron-based materials in facilitating non-radical oxidation are discussed. Commonly employed identification methods in wastewater treatment are compared, such as quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing. According to the process of iron-based materials driving non-radical oxidation to remove organic pollutants, the driving factors at different stages are summarized. Finally, challenges and countermeasures are proposed in terms of mechanism exploration, detection methods and practical applications of non-radical oxidation driven by iron-based materials. This work provides valuable insights for understanding and developing non-radical oxidation systems.
Collapse
Affiliation(s)
- Yifeng Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
47
|
Wang H, Cao Y, Li B, Shen L, Wu XL, Li R, Lin H. Photothermal nano-confinement reactor with bimetallic sites for enhanced peroxymonosulfate activation in antibiotic degradation. WATER RESEARCH 2024; 268:122623. [PMID: 39418799 DOI: 10.1016/j.watres.2024.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
In recent years, photothermal-assisted Fenton-like degradation of organic pollutants has become a prominent green method in environmental pollution control. Nevertheless, the design of suitable catalysts remains a significant challenge for this approach. Herein, zeolite-imidazolate framework-derived CoMn bimetallic nanoparticles embedded in hollow carbon nanofibers (CoMnHCF) have been developed as a photothermal nano-confinement reactor with multiple active sites to enhance reaction performance and promote peroxymonosulfate (PMS) activation. Under light irradiation, the local temperature within the porous spaces of CoMnHCF was significantly higher than the liquid temperature. The confined space concentrated heat, minimized thermal loss, and effectively utilizes this feature to activate PMS for antibiotic degradation. The results demonstrated that this system efficiently degraded various antibiotics, including tetracycline hydrochloride, levofloxacin, sulfamethoxazole, norfloxacin and chlorotetracycline. Photothermal contribution analysis revealed that thermal effects predominate in this system. Further DFT simulations explored the coordination environment of metal elements and the properties of related pollutants, predicting potential structures and reaction sites. A series of water quality experiments and cyclic tests demonstrated the system's significant application potential. This study offered new insights into advancing the integrated use of photothermal conversion and nano-confinement reactor activation of PMS in sewage purification.
Collapse
Affiliation(s)
- Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Yuzhen Cao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
48
|
Atri S, Loni E, Dyrcikova Z, Zazimal F, Caplovicova M, Dvoranova D, Plesch G, Kabatova M, Brigante M, Naguib M, Monfort O. Tailored MXene-derived nano-heterostructure oxides for peroxymonosulfate activation in the treatment of municipal wastewaters. NANOSCALE 2024; 16:18430-18443. [PMID: 39258969 DOI: 10.1039/d4nr02819h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Nowadays, in the field of environmental protection, a huge effort is focused on efficient and sustainable processes to treat wastewaters. The current study emphasizes the photocatalytic performance of TiNbOx, a nano-heterostructure material derived from the oxidation of (Ti0.75Nb0.25)2CTx MXene. The TiNbOx nano-heterostructure exhibited remarkable performance in the degradation of caffeine (CAF) and sulfamethoxazole (SMX) under UVA irradiation in the presence of peroxymonosulfate (PMS). Under optimal conditions, 0.2 g L-1 of TiNbOx, 0.5 mM PMS and 50 μM concentration of pollutants and natural pH of deionized water, we observed a complete degradation of SMX and 91% degradation of CAF. Scavenging studies provided evidence for the involvement of ˙OH and SO4˙- in the degradation of the pollutants, which was also supported by indirect techniques of electron paramagnetic resonance (EPR) spectroscopy. The degradation pathway of the pollutants was analyzed by liquid chromatography-mass spectrometry (LC-MS) and several mechanisms were suggested including hydroxylation and isoxazole ring-opening reactions. In addition, X-ray photoelectron spectroscopy (XPS) supported the proposed degradation mechanism. The reusability test underscored the high stability and efficiency of TiNbOx. Moreover, the significance of this research was emphasized by conducting degradation studies in tap water (TW) and tertiary effluents of the wastewater (WW) treatment plant in Bratislava. Under optimal conditions, 49% and 30% CAF were degraded in TW and WW, respectively, after 12 hours of reaction. For SMX, 68% and 67% degradations were obtained in TW and WW, respectively.
Collapse
Affiliation(s)
- Shalu Atri
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, SK-842 15 Bratislava, Slovak Republic.
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Elham Loni
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
| | - Zuzana Dyrcikova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
| | - Frantisek Zazimal
- Department of Plasma Physics and Technology, Faculty of Science, Masaryk University, Kotlarska 267/2, 611 37 Brno, CZ-602 00, Czech Republic
| | - Maria Caplovicova
- STU Center for Nanodiagnostics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology in Bratislava, Vazovova 5, SK-81243 Bratislava, Slovak Republic
| | - Dana Dvoranova
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, SK-812 37 Bratislava, Slovak Republic
| | - Gustav Plesch
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, SK-842 15 Bratislava, Slovak Republic.
| | - Miroslava Kabatova
- Bratislavská vodárenská spoločnosť a.s., Prešovská 48, 826 46 Bratislava, Slovak Republic
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, Clermont-Ferrand, F-63000, France
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA.
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA
| | - Olivier Monfort
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, Mlynska Dolina, SK-842 15 Bratislava, Slovak Republic.
| |
Collapse
|
49
|
Li B, Chen B, Wei Z. Challenging established norms: The unanticipated role of alcohols in UV/PDS radical quenching. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135502. [PMID: 39173369 DOI: 10.1016/j.jhazmat.2024.135502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
UV/peroxydisulfate (UV/PDS) process is known to be highly efficient for degrading micropollutants from water by generating sulfate (SO4•-) and hydroxyl radicals (HO•). Reliable analyses of short-lived SO4•- and HO• are therefore critical for understanding reaction mechanisms and optimizing operating conditions. Currently, alcohols are commonly used as quenchers to distinguish radicals based on the assumption that they exclusively react with target radicals without other influences. However, this study for the first time reveals a series of unexpected effects that challenge this conventional wisdom because: 1) adding alcohols altered the decomposition rates of PDS by replacing the reactions between SO4•- and HO• with PDS by the reactions between secondary reactive species and PDS; and 2) SO4•- preferably reacted with alcohols to generate nonnegligible level of hydrogen peroxide (H2O2) under oxygen-rich conditions, which subsequently led to indirect formation of HO•. Additionally, the formation of H2O2 was substantially impacted by the types of alcohols, dosages, dissolved oxygen, and solution pH. Using probe tests as tools, we found that the actual SO4•- levels after dosing alcohols were only slightly different from assumed/expected levels, whereas the actually HO• levels were 43.7, 3364.9, and 12.5 times higher than assumed/expected conditions for samples dosed with methanol, iso-propanol, and tert-butanol, respectively. These unanticipated effects thus suggest that cautions are needed when using alcohols to qualitative and quantitative determine HO• and SO4•- in UV/PDS process.
Collapse
Affiliation(s)
- Boqiang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Ole Worms Alle 3, Aarhus C 8000 Denmark
| |
Collapse
|
50
|
Wang F, Liu J, Zhang L, Wang H, Zhao Z, Chen Y, Li J, Zhang X, Dong W. Efficient degradation of haloacetic acids by vacuum ultraviolet-activated peroxymonosulfate: Kinetics, mechanisms and theoretical calculations. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135539. [PMID: 39180995 DOI: 10.1016/j.jhazmat.2024.135539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Efficient degradation of haloacetic acids (HAAs) is crucial due to their potential risks. This study firstly proposed vacuum ultraviolet - activated peroxymonosulfate (VUV/PMS) to remove HAAs (i.e., monochloroacetic acid (MCAA), monobromoacetic acid (MBAA), dichloroacetic acid (DCAA), etc). VUV/PMS achieved 99.51 % MCAA and 63.29 % TOC removal within 10 min. Electron paramagnetic resonance (EPR), quenching and probe experiments demonstrated that •OH was responsible for MCAA degradation. MCAA degradation followed pathways of dehalogenation (major) and decarboxylation (minor). VUV/PMS showed application potential under various reaction parameters. Broad spectrum of VUV/PMS on various HAAs was further explored. Chlorinated HAAs (Cl-HAAs) were primarily degraded by oxidation reactions, while brominated HAAs (Br-HAAs) by direct VUV photolysis. The density functional theory-based calculations (DFT) revealed that reaction rates of HAAs correlated with the highest occupied molecular orbital (HOMO) and energy gap (ΔE), indicating that HAAs degradation depends on their chemical structures. The Fukui function (f0 values) and bond length showed vulnerability of the halogen atom in Cl-HAAs and C-Br bond in Br-HAAs. Overall, this study provides an in-depth perspective on the oxidation performance and mechanism of HAAs using VUV/PMS. It not only demonstrates a green and efficient method but also inspires new strategies for HAAs remediation.
Collapse
Affiliation(s)
- Feifei Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Jie Liu
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, PR China
| | - Liang Zhang
- Shenzhen Wanmu Water Services Co., Shenzhen 518000, PR China
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Zilong Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Yihua Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China.
| | - Wenyi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, PR China
| |
Collapse
|