1
|
Wang J, Ge Y. Unveiling the latitudinal dependency of global patterns in soil prokaryotic gene content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 974:179224. [PMID: 40147232 DOI: 10.1016/j.scitotenv.2025.179224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/11/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Prokaryotic genomic traits offer insights into their functional roles, evolutionary processes, and ecological interactions, but global patterns in soil microbial genomes remain poorly understood. In this study, we examined 6436 metagenome-assembled genomes (MAGs) from global soil environments to explore the driving factors of prokaryotic gene content. Through random forest analysis, we found that, among numerous potential influencing factors such as climate, soil physicochemical properties, and human activities, geographic latitude was the primary factor affecting prokaryotic gene content. Our results showed a marked decrease in gene content from the tropics to the poles, with polar MAGs containing 10.4 % and 13.3 % fewer genes than those in tropical and temperate zones, respectively. This decline correlates with shifts in key metabolic processes, such as nitrogen fixation and energy conversion. Furthermore, we assessed interspecies metabolic interactions using Metabolic Resource Overlap (MRO) and Metabolic Interaction Potential (MIP) metrics. Our analysis revealed significantly lower MRO in high-latitude microbial communities, yet comparable MIP values to those in lower latitudes, indicating that reduced competition may contribute to genomic streamlining. These findings highlight the significant influence of latitude and interspecies interactions on microbial genomic characteristics, advancing our comprehension of microbial ecological adaptations.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Li R, Liu X, Wu G, Li G, Chen JH, Jiang H, Dong H. Pyrite stimulates the growth and sulfur oxidation capacity of anoxygenic phototrophic sulfur bacteria in euxinic environments. SCIENCE ADVANCES 2025; 11:eadu7080. [PMID: 40249799 PMCID: PMC12007567 DOI: 10.1126/sciadv.adu7080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Anoxygenic phototrophic sulfur bacteria flourish in contemporary and ancient euxinic environments, driving the biogeochemical cycles of carbon and sulfur. However, it is unclear how these strict anaerobes meet their high demand for iron in iron-depleted environments. Here, we report that pyrite, a widespread and highly stable iron sulfide mineral in anoxic, low-temperature environments, can support the growth and metabolic activity of anoxygenic phototrophic sulfur bacteria by serving as the sole iron source under iron-depleted conditions. Transcriptomic and proteomic analyses revealed that pyrite addition substantially up-regulated genes and protein expression involved in photosynthesis, sulfur metabolism, and biosynthesis of organics. Anoxic microbial oxidation of pyritic sulfur and consequent destabilization of the pyrite structure were postulated to facilitate microbial iron acquisition. These findings advance our understanding of the survival strategies of anaerobes in iron-depleted environments and are important for revealing the previously underappreciated bioavailability of pyritic iron in anoxic environments and anoxic weathering of pyrite.
Collapse
Affiliation(s)
- Runjie Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaolei Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
- Key Laboratory of Polar Geology and Marine Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Geng Wu
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
- Key Laboratory of Polar Geology and Marine Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Zheng R, Kong L, Feng Y, Chen B, Gu Y, Wu X, Liu S. Siderophore-Mediated Cooperation in Anammox Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4003-4013. [PMID: 39960253 DOI: 10.1021/acs.est.4c11142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
It has been widely accepted that iron plays an important role in stimulating the activity of anammox bacteria, which contain many iron clusters for electron transport in cells. However, whether anammox bacteria could directly use and how to uptake Fe(III) have been long-time ignored. Here, we found that micrometer-scale magnetite with the size of 10-20 μm significantly promoted the anammox bacterial activity by iron core and iron uptake. Anammox bacteria cannot utilize Fe(III) directly as they are unable to secrete siderophore for the extracellular Fe(III) transfer to intracellular. In anaerobic anammox consortia at the presence of magnetite, siderophore synthesis bacteria belonging to Alphaproteobacteria, Candidate phylum, and Chloroflexi secreted abundant siderophores, which combined with Fe(III) ionized from magnetite to form siderophore-Fe(III) complexes. These complexes were then used by anammox bacteria via a specific outer membrane receptor and transported by the transporter protein to the periplasm, further releasing Fe(III). Cytochrome c was then formed by the siderophore-Fe(III) complex reduction, for assimilation and synthesis of Fe-S protein and heme B in anammox bacteria to increase electron transfer capability. This study reveals the siderophore-mediated bacterial cooperation in anammox consortia for Fe(III) assimilation and implies the important role of siderophore-mediated cooperation in driving nitrogen conversion in the artificial or natural system.
Collapse
Affiliation(s)
- Ru Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yiming Feng
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Baiyizhuo Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Yuanqi Gu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Xiaogang Wu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| | - Sitong Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Water and Sediment Sciences, Ministry of Education of China, Beijing 100871, China
| |
Collapse
|
4
|
Zhao Z, He X, Chen S, Ning L, Chen K, Wang Y. Quantifying the environmental fate and source of nitrate contamination using dual-isotope tracing coupled with nitrogen cascade model on the basin scale. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136594. [PMID: 39579703 DOI: 10.1016/j.jhazmat.2024.136594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Nitrate (NO3-) contamination in riverine networks has threatened the environment and human health. Clarifying the NO3- source and environmental fate within the basin under different underlying surfaces is essential for water body protection, especially China's two mother rivers. A series of combination methods were established i.e., field survey, index measurements, isotope-tracing techniques, and material flow analysis in four typical basins to investigate the spatiotemporal variation and source of NO3- pollution and nitrogen cascade characteristics. The dual-isotope coupled with MixSIAR model revealed that manure and sewage were the major NO3- source in the irrigation basin (WY, 76.7 %), hilly mountainous basin (YC, 52.3 %), and plateau lake basin (DC, 48.7 %). However, for the plain-river network basin (CZ), soil leachate was the main source (55.5 %). In terms of the N losses to water within agri-environment system, livestock-breeding system in three basins made the biggest contribution among the systems, WY (77.3 %), YC (47.3 %), and DC (41.8 %). While in CZ, about 34.4 % of N was delivered from the crop-production system. The N cascade model verified the results of isotope-tracing techniques for each basin. The study provides new insight into NO3--tracing combining hydrogeochemical indicators, isotopic-tracing techniques, and material flow analysis and guides strategies for mitigating the negative impacts of NO3- pollution on aquatic environments on basin scale.
Collapse
Affiliation(s)
- Zihan Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Xinghua He
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Sidi Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Letian Ning
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Kexin Chen
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yanhua Wang
- School of Geography, Nanjing Normal University, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China; Key Laboratory of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Guo D, Sheng Y, Baars O, Duckworth OW, Chen P, Zhu Z, Zhang X, Chukwuma E, Gooden DM, Verbrugge J, Dong H. Contrasting Effects of Catecholate and Hydroxamate Siderophores on Molybdenite Dissolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:533-544. [PMID: 39680096 DOI: 10.1021/acs.est.4c11212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Molybdenum (Mo) is essential for many enzymes but is often sequestered within minerals, rendering it not readily bioavailable. Metallophores, metabolites secreted by microorganisms and plants, promote mineral dissolution to increase the metal bioavailability. However, interactions between metallophores and Mo-bearing minerals remain unclear. In this study, catecholate protochelin and hydroxamate desferrioxamine B (DFOB) were utilized to examine their effects on dissolution of the common Mo-bearing mineral, molybdenite (MoS2), under both oxic and anoxic conditions. Protochelin promoted molybdenite dissolution under oxic conditions, with the formation of MoO3 on the surface and Mo-siderophore complexes in solution. This was attributed to air-oxidation of both molybdenite and protochelin, as evidenced by lack of dissolution under anoxic conditions but enhanced dissolution by either preoxidized protochelin or preoxidized molybdenite. Liquid chromatography-mass spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry analyses revealed degradation of protochelin and adsorptions of its byproducts on molybdenite surface to promote dissolution. Conversely, DFOB inhibited molybdenite dissolution under both oxic and anoxic conditions, likely attributed to surface adsorption of DFOB and its weak complexation with Mo(VI) at the circumneutral pH. This work highlights the need to consider the balance between promoting and inhibitory effects of different metallophores on Mo-mineral dissolution.
Collapse
Affiliation(s)
- Dongyi Guo
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Owen W Duckworth
- Department of Soil and Environmental Biogeochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ping Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zihua Zhu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Xiaowen Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Emmanuel Chukwuma
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David M Gooden
- Duke Small Molecule Synthesis Facility, Durham, North Carolina 27708, United States
| | - Jack Verbrugge
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Li S, Zhou H, Wang W, Ade H, Zhang Z, Ma L, Wang Z, Zhang Q, Wei J, Su H, Qin R, Shi Z, Hu X, Wu F. Effects of rocky desertification on soil bacterial community in alpine grasslands of the Qinghai-Tibet Plateau. Front Microbiol 2025; 15:1485069. [PMID: 39845040 PMCID: PMC11752751 DOI: 10.3389/fmicb.2024.1485069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The makeup of soil microbial communities may serve as a crucial predictor of the alpine grassland ecosystem. Climate change and human disturbance have resulted in intensified ecosystem degradation, such as grassland rocky desertification, which may modify the structures and composition of the microorganisms. However, little is known about the effects of rocky desertification on soil microbial communities of soil. Here, we investigated five different layers of rocky desertification grassland in the Qinghai-Tibet Plateau, including nil rock desertification (NRD); potential rocky desertification (PRD); light rocky desertification (LRD); moderate rocky desertification (MRD); and severe rocky desertification (SRD), we compared soil bacterial community with soil physiochemical properties in different rocky desertification conditions. The result showed that rocky desertification significantly altered the physiochemical properties of the soil but did not significantly affect the bacterial community microbial abundance and diversity. At the same time as rocky desertification increased, soil organic carbon (SOC), total nitrogen (TN), alkali hydrolyzable nitrogen (AN), available phosphorus (AP), and available potassium (AK) decreased significantly, while soil pH, total phosphorus (TP); and total potassium (TK) increased. Redundancy analysis revealed that pH, AK, TP, and SOC are key factors influencing soil bacterial communities. Our finding provides basic information and scientific reference for the restoration of the rocky desertification of alpine grasslands.
Collapse
Affiliation(s)
- Shan Li
- College of Geographical Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Wenying Wang
- College of Life Sciences, Qinghai Normal University, Xining, China
| | - Haze Ade
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Zhang
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Li Ma
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhen Wang
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Qiang Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Jingjing Wei
- College of Geographical Sciences, Qinghai Normal University, Xining, China
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Hongye Su
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruimin Qin
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengchen Shi
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- Qinghai Provincial Key Laboratory of Restoration Ecology in Cold Regions, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faliang Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| |
Collapse
|
7
|
Jiang W, Sheng Y, Shi Z, Guo H, Chen X, Mao H, Liu F, Ning H, Liu N, Wang G. Hydrogeochemical characteristics and evolution of formation water in the continental sedimentary basin: A case study in the Qaidam Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177672. [PMID: 39571804 DOI: 10.1016/j.scitotenv.2024.177672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
In deep formations, oil or gas reservoir rocks are generally accompanied by groundwater with high total dissolved solids (TDS), commonly referred to as "formation water". The enrichment of trace and/or metallic elements such as K, B, Li, Br, Sr in this type of groundwater holds significant industrial values and socioeconomic benefits. However, the processes involved in the burial and generation of formation water remain not fully understood. In this study, totally 468 sets of major ions and trace elements were collected from current study and literatures to investigate the hydrogeochemical characteristics and evolution mechanisms of formation water from different regional geological structure units in Qaidam Basin, China. The results indicated that TDS of formation water in Western (QW), Central (QC) and Northern (QN) units of Qaidam basin ranged from 173 to 290 g/L, 101 to 152 g/L and 32 to 73 g/L, respectively, which were several to dozens of times higher than those of seawater, but lower than those of intercrystalline brine and salt lake water. The enrichment of Ca, Li, B, Br and depletion of Mg and SO42- were observed in the formation water in comparison to seawater and salt lake water. Formation water especially in QC and QW was identified as typical dissolved brine of terrestrial rock origin, experiencing prolonged water-rock interactions. However, the time and degree of water-rock interaction and metamorphism differed regionally due to the sedimentary history and patterns of Qaidam Paleolake. Overall, the large paleolake deposits under the control of multiple tectonic movements laid the material foundation for the burial and generation of the formation water, and a variety of fluids and deep faults became the sources and migration channels for formation water. It mainly experienced two stages, including the sedimentary process of saline strata and the transformation in the later period.
Collapse
Affiliation(s)
- Wanjun Jiang
- Tianjin Center, China Geological Survey, Tianjin 300170, China; Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin 300170, China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Zheming Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Futian Liu
- Tianjin Center, China Geological Survey, Tianjin 300170, China; Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin 300170, China
| | - Hang Ning
- Tianjin Center, China Geological Survey, Tianjin 300170, China; Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin 300170, China
| | - Nannan Liu
- School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou 213164, China
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; MOE Key Laboratory of Groundwater Circulation and Evolution & School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
8
|
Zhang J, Zhu M, Lloyd JR, Shaw S, Coker VS, Xie J, Wen K, Lee S, Goût TL, Hao J, Ma L, Hu Y, Pan B. The Mobility of Mo during Microbially Mediated Ferrihydrite Phase Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21653-21661. [PMID: 39602585 DOI: 10.1021/acs.est.4c09144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Molybdenum (Mo) is an essential nutrient for almost all organisms. However, at high concentrations, it can be toxic to animals and plants. This study investigated the interactions of Mo(VI) with iron oxyhydroxides during ferrihydrite bioreduction in the presence of Fe(III)-reducing Geobacter sulfurreducens. Here, we showed that Mo concentration controlled ferrihydrite phase transformation, leading to Mo release. With the biotic reduction of ferrihydrite and Fe(II) production, Mo(VI) reduction and Mo(IV)O2 formation were observed for the first time, which further immobilized Mo after surface adsorption of Mo(VI). At low Mo levels (Mo/Fe molar ratios of 1-2%), sufficient Fe(II) adsorption onto ferrihydrite resulted in its transformation into magnetite nanoparticles (>80%, ∼25 nm), which catalyzed the reduction of Mo(VI) to form Mo(IV)O2 and immobilized Mo. Contrastingly, at high Mo concentrations (Mo/Fe molar ratios of 5-10%), Mo(VI)O42- adsorption onto ferrihydrite limited Fe(II) adsorption; subsequently, less magnetite (<8-12%) formed while more goethite (∼30-50%, width and length >15 and 100 nm, respectively) and siderite (∼20-30%, width and length >100 and 200 nm, respectively) with larger particle sizes formed instead, causing Mo(VI) release due to lower Mo adsorption. This study provides a comprehensive understanding of the interaction mechanisms among Geobacter sulfurreducens, Mo(VI), and iron oxyhydroxides, enabling predictions and controls of long-term Mo mobility and Fe mineral transformation under a variety of biogeochemical scenarios.
Collapse
Affiliation(s)
- Jing Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Mengqiang Zhu
- Department of Geology, University of Maryland, College Park, College Park, Maryland 20742, United States
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Samuel Shaw
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Victoria S Coker
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Jinxin Xie
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Ke Wen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Sungsik Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas L Goût
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jingyue Hao
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Lin Ma
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, U.K
| | - Yandi Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Southwest United Graduate School, Kunming 650092, China
| | - Bo Pan
- Southwest United Graduate School, Kunming 650092, China
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, College of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
9
|
Sheng Y, Zeng X, Zhao L, Li Y. Editorial: Microbial involvement in biogeochemical cycling and contaminant transformations at land-water ecotones. Front Microbiol 2024; 15:1525521. [PMID: 39703713 PMCID: PMC11655481 DOI: 10.3389/fmicb.2024.1525521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Affiliation(s)
- Yizhi Sheng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Linduo Zhao
- Prairie Research Institute-Illinois Sustainable Technology Centre/Illinois State Water Survey, University of Illinois at Urbana Champaign, Champaign, IL, United States
| | - Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
10
|
Yang X, Zhou Y, Hu J, Zheng Q, Zhao Y, Lv G, Liao L. Clay minerals and clay-based materials for heavy metals pollution control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176193. [PMID: 39278488 DOI: 10.1016/j.scitotenv.2024.176193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Heavy metal contamination is a huge hazard to the environment and human health, and research into removing heavy metals from their primary sources (industrial and agricultural wastes) has increased significantly. Adsorption has received interest due to its distinct benefits over other treatment approaches. The distinctive qualities of clay minerals, such as their high specific surface area, strong cation exchange capacity, and varied structures, make them particularly ideal for use in the manufacture of adsorbents. The customizable structure and performance of clay minerals allow for unprecedented diversity in adsorbent creation, opening up new possibilities for the development of high-efficiency and functional adsorption technologies. In this review, various approaches for developing optimal adsorbents from raw materials are presented. Then, the correlation between functionalization and performance is investigated, focusing on the effects of structural features and surface properties on adsorption performance. The research progress on the synthesis of adsorbents using clay minerals and other functional materials is systematically reported. Finally, the challenges and opportunities in designing and utilizing innovative clay mineral adsorbents are discussed.
Collapse
Affiliation(s)
- Xiaotong Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yi Zhou
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Jingjing Hu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qinwen Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yunpu Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Guocheng Lv
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Libing Liao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
11
|
Liu L, Zheng T, Ma H, Hao Y, Liu G, Guo B, Shi Q, Zheng X. Nitrate and nitrite reduction by adsorbed Fe(II) generated from ligand-promoted dissolution of biogenic iron minerals in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175635. [PMID: 39168337 DOI: 10.1016/j.scitotenv.2024.175635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/01/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Chemical denitrification by redox-active Fe(II) species is pivotal in the coupled iron and nitrogen cycles. The reductive dissolution of ferric minerals by ligand can generate Fe(II)-ligand complexes, but their reducing capability for electrophilic pollutants like nitrate and nitrite remains uncertain. Here, biogenic secondary iron minerals (SIM) after dissimilatory iron reduction were reductively dissolved by oxalate and the siderophore desferrioxamine B, and subsequently the partially-dissolved SIM (SIMD) effectively removed NO2- from groundwater via reduction, while exhibiting much lower reactivity towards NO3-. The dissolution and removal processes were well-fitted with the Kabai model and the pseudo-second-order adsorption model, respectively. The equilibrium NO2- removal capacity (qe) of SIMD reached 0.146-0.223 mmol/g, accompanied with the rate constants as 0.433-0.810 g/(mmol·h). The emission of N2O and NO verified the occurrence of chemical denitrification during NO2- removal by SIMD. From the perspective of Fe(II) reactivity, SIMD exhibited higher densities of surface Fe(II) and more negative Eh values than SIM, and these two indicators showed linear correlations with the removal rates. Combined with microscopic, electrochemical and spectral analysis, our results indicated the redox reaction of adsorbed Fe(II)-complexes with NO2- on SIMD surface. The concurrent substance biochar was also considered, as it indirectly influenced dissolution and pollutant removal by shifting the iron mineral phase in SIM from magnetite to goethite. These findings highlight the significant role of reductive dissolution of iron mineral in N transformation, expand the electron pool available to support chemical denitrification, and have implications for Fe and N cycling coupling with pollutant reduction.
Collapse
Affiliation(s)
- Lecheng Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Tianyuan Zheng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Haoran Ma
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujie Hao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Qing Shi
- Qingdao Hydrological Center, Qingdao 266101, Shandong, China
| | - Xilai Zheng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
Zhang D, Zeng Q, Chen H, Guo D, Li G, Dong H. Enhanced Rock Weathering as a Source of Metals to Promote Methanogenesis and Counteract CO 2 Sequestration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19679-19689. [PMID: 39432802 DOI: 10.1021/acs.est.4c04751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Enhanced weathering of (ultra)mafic rocks has been proposed as a promising approach to sequester atmospheric CO2 and mitigate climate change. However, these silicate rocks contain varying amounts of trace metals, which are essential cofactors of metallaenzymes in methanogens. We found that weathering of crushed peridotite and basalt significantly promoted the growth and methanogenesis of a model methanogen─Methanosarcina acetivorans C2A under the condition of excess substrate. The released trace metals from peridotite and basalt, especially Fe, Ni, and Co, accounted for the promotion effect. Observation at different spatial scales showed a close association between the rocks and cells. Proteomic analysis revealed that rock amendment significantly enhanced the expression of core metalloenzymes in the methylotrophic methanogenesis pathway. Our study uncovers a previously unrecognized but important negative effect of enhanced rock weathering on methane production, which may counteract the carbon sequestration effort.
Collapse
Affiliation(s)
- Donglei Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| | - Hongyu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
13
|
Zhang Y, Sun H, Lu C, Li H, Guo J. Role of molybdenum compounds in enhancing denitrification: Structure-activity relationship and the regulatory mechanisms. CHEMOSPHERE 2024; 367:143433. [PMID: 39393586 DOI: 10.1016/j.chemosphere.2024.143433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
The effect and regulatory mechanisms of molybdenum compounds (MoO2, MoS2, MoSe2 and MoSi2) on denitrification were investigated by structure-activity relationships, electrochemical characteristics, microbial metabolism analysis and bacterial community distribution. All the assessed molybdenum compounds exhibited the enhancement effect on denitrification, in the order of MoS2 > MoSi2 > MoSe2 > MoO2, with MoS2 increasing 7.08-fold in 12 h. Analysis of structure-activity relationships suggested that the molybdenum compounds with lower negative redox potential and higher redox reversibility were favorable for promoting denitrification. According to the morphology observation, the interactions between Mo compounds and denitrifying bacteria may be beneficial to extracellular electron transfer. Molybdenum compounds with electron transfer capability facilitated an increase in electron capacitance from 835.1 to 1011.3 μF, promoting the electron exchange rate during denitrification. In the denitrification electron transport chain, the molybdenum compounds upregulated nicotinamide adenine dinucleotide and denitrifying enzyme activity, as well as facilitated the abundance of quinone pools, ATP translocation, and cytochrome c related proteins. Moreover, Mo compounds enriched functional bacteria such as electroactive bacteria and denitrifying functional bacteria. Notably, Mo ions in molybdenum compounds may provide active sites for nitrate reductase, optimizing the electron distribution of the denitrification process and thus improved the partial denitrification efficiency. This work aimed to further understand the regulatory mechanisms of molybdenum on denitrification electron transfer in the compound state and to anticipate the catalytic role of Mo compounds for sustainable water treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hejiao Sun
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Caicai Lu
- Experimental Education Center, Beijing Normal University at Zhuhai, Jinfeng Road 18, Zhuhai, 519000, China.
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
14
|
Wannicke N, Stüeken EE, Bauersachs T, Gehringer MM. Exploring the influence of atmospheric CO 2 and O 2 levels on the utility of nitrogen isotopes as proxy for biological N 2 fixation. Appl Environ Microbiol 2024; 90:e0057424. [PMID: 39320082 PMCID: PMC11497790 DOI: 10.1128/aem.00574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Biological N2 fixation (BNF) is traced to the Archean. The nitrogen isotopic fractionation composition (δ15N) of sedimentary rocks is commonly used to reconstruct the presence of ancient diazotrophic ecosystems. While δ15N has been validated mostly using organisms grown under present-day conditions; it has not under the pre-Cambrian conditions, when atmospheric pO2 was lower and pCO2 was higher. Here, we explore δ15N signatures under three atmospheres with (i) elevated CO2 and no O2 (Archean), (ii) present-day CO2, and O2 and (iii) future elevated CO2, in marine and freshwater, heterocytous cyanobacteria. Additionally, we augment our data set from literature for more generalized dependencies of δ15N and the associated fractionation factor epsilon (ε = δ15Nbiomass - δ15NN2) during BNF in Archaea and Bacteria, including cyanobacteria, and habitats. The ε ranges between 3.70‰ and -4.96‰ with a mean ε value of -1.38 ± 0.95‰, for all bacteria, including cyanobacteria, across all tested conditions. The expanded data set revealed correlations of isotopic fractionation of BNF with CO2 concentrations, toxin production, and light, although within 1‰. Moreover, correlation showed significant dependency of ε to species type, C/N ratios and toxin production in cyanobacteria, albeit it within a small range (-1.44 ± 0.89‰). We therefore conclude that δ15N is likely robust when applied to the pre-Cambrian-like atmosphere, stressing the strong cyanobacterial bias. Interestingly, the increased fractionation (lower ε) observed in the toxin-producing Nodularia and Nostoc spp. suggests a heretofore unknown role of toxins in modulating nitrogen isotopic signals that warrants further investigation.IMPORTANCENitrogen is an essential element of life on Earth; however, despite its abundance, it is not biologically accessible. Biological nitrogen fixation is an essential process whereby microbes fix N2 into biologically usable NH3. During this process, the enzyme nitrogenase preferentially uses light 14N, resulting in 15N depleted biomass. This signature can be traced back in time in sediments on Earth, and possibly other planets. In this paper, we explore the influence of pO2 and pCO2 on this fractionation signal. We find the signal is stable, especially for the primary producers, cyanobacteria, with correlations to CO2, light, and toxin-producing status, within a small range. Unexpectedly, we identified higher fractionation signals in toxin-producing Nodularia and Nostoc species that offer insight into why some organisms produce these N-rich toxic secondary metabolites.
Collapse
Affiliation(s)
- Nicola Wannicke
- Leibniz Institute for Plasma Science and Technology e.V., Greifswald, Germany
| | - Eva E. Stüeken
- School of Earth & Environmental Sciences, University of St. Andrews, St. Andrews, United Kingdom
| | - Thorsten Bauersachs
- Institute of Organic Biochemistry in Geo-Systems, RWTH Aachen University, Aachen, Germany
| | - Michelle M. Gehringer
- Department of Microbiology, University of Kaiserslautern-Landau (RPTU), Kaiserslautern, Germany
| |
Collapse
|
15
|
Liu Y, Zhuang Z, Liu Y, Liu N, Li Y, Cheng Y, Yu J, Yu R, Wang D, Li H. Shear-Strained Pd Single-Atom Electrocatalysts for Nitrate Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202411396. [PMID: 39010646 DOI: 10.1002/anie.202411396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
Electrochemical nitrate reduction method (NitRR) is a low-carbon, environmentally friendly, and efficient method for synthesizing ammonia, which has received widespread attention in recent years. Copper-based catalysts have a leading edge in nitrate reduction due to their good adsorption of *NO3. However, the formation of active hydrogen (*H) on Cu surfaces is difficult and insufficient, resulting in a large amount of the by-product NO2 -. In this work, Pd single atoms suspended on the interlayer unsaturated bonds of CuO atoms formed due to dislocations (Pd-CuO) were prepared by low temperature treatment, and the Pd single atoms located on the dislocations were subjected to shear stress and the dynamic effect of support formation to promote the conversion of nitrate into ammonia. The catalysis had an ammonia yield of 4.2 mol. gcat -1. h-1, and a Faraday efficiency of 90 % for ammonia production at -0.5 V vs. RHE. Electrochemical in situ characterization and theoretical calculations indicate that the dynamic effects of Pd single atoms and carriers under shear stress obviously promote the production of active hydrogen, reduce the reaction energy barrier of the decision-making step for nitrate conversion to ammonia, further promote ammonia generation.
Collapse
Affiliation(s)
- Yunliang Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
- Department of Chemical Engineering, Columbia University, 10027, New York, USA
| | - Yixian Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Naiyun Liu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Yaxi Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Yuanyuan Cheng
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Jingwen Yu
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| | - Ruohan Yu
- The Sanya Science and Education Innovation Park, Wuhan University of Technology, 572000, Sanya, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Haitao Li
- Institute for Energy Research, Jiangsu University, 212013, Zhenjiang, China
| |
Collapse
|
16
|
Payne D, Keller LM, Larson J, Bothner B, Colman DR, Boyd ES. Alternative sources of molybdenum for Methanococcus maripaludis and their implication for the evolution of molybdoenzymes. Commun Biol 2024; 7:1337. [PMID: 39414898 PMCID: PMC11484787 DOI: 10.1038/s42003-024-07049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable. This presents a paradox for how organisms obtain Mo to support molybdoenzymes in these environments. Here, we show that tetrathiomolybdate and molybdenite sustain the high Mo demand of a model anaerobic methanogen, Methanococcus maripaludis, grown via Mo-dependent formate dehydrogenase, formylmethanofuran dehydrogenase, and nitrogenase. Cells grown with tetrathiomolybdate and molybdenite have similar growth kinetics, Mo content, and transcript levels of proteins involved in Mo transport and cofactor biosynthesis when compared to those grown with molybdate, implying similar mechanisms of transport and cofactor biosynthesis. These results help to reconcile the paradox of how Mo is acquired in modern and ancient anaerobes and provide new insight into how molybdoenzymes could have evolved prior to Earth's oxygenation.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
17
|
Guo L, Chen X, Sheng Y, Yang N, Hou E, Fang H. Impact of soil fissure status on microbial community in mining-disturbed area, the northern Shaanxi province. Front Microbiol 2024; 15:1463665. [PMID: 39268539 PMCID: PMC11390389 DOI: 10.3389/fmicb.2024.1463665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Mining disturbance has great impacts on soil physicochemical factors, causing notable differences between pre-mining and after-mining conditions, and between coal mining areas and non-mined areas. However, little is known about whether the fissure statuses induced by mining activities affect the edaphic factors and how soil microbial communities respond to these fissure development states. In this study, we systematically investigated the edaphic factors and microbial communities in a mining disturbance area exhibiting the full development status of soil fissures, where the sampling sites were divided into soil fissure development and closure zones. Microbial alpha-and beta-diversity, correlation coefficient matrix, non-metric multi-dimensional scaling, principal co-ordinates analysis, mantel test, and microbial co-occurrence network were employed to elucidate variations, correlations, and interactions between edaphic factors and microbial communities under the two different soil fissure states. Results suggested that soil physicochemical properties were significantly affected by fissure states, showing an increasing trend in soil moisture content and soil nutrients. The associations among edaphic factors have weakened during the soil fissure development process. Soil microbial communities showed different compositions and the underlying influential mechanisms between two soil fissure states. Soil moisture content, pH, particle compositions, organic matter, and heavy metals largely affected microbial communities. Rare species were vulnerable to mining disturbance and were keystone taxa that reinforced the overall interconnections of the soil microbial community (e.g., Nordella, Sphingomonas, Massilia, and Rubritepida). Our study revealed the impacts of distinct fissure states on the soil physicochemical properties and microbial communities, and the edaphic conditions showed key contributions to the soil microbial communities, particularly the abundance and ecological roles of rare species.
Collapse
Affiliation(s)
- Liang Guo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, China
| | - Nuan Yang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Enke Hou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Haisong Fang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| |
Collapse
|
18
|
Zhang Y, Xiao Y, Yang H, Wang L, Wang J, Hu W, Wang N, Xu Z, Liu G, Chen F, Guo X. Hydrogeochemical features, genesis, and quality appraisal of confined groundwater in a typical large sedimentary plain. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11088. [PMID: 39091045 DOI: 10.1002/wer.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
The confined groundwater of arid sedimentary plains has been disturbed by long-term anthropogenic extraction, and its hydrochemical quality is required for sustainable development. The present research investigates the hydrochemical characteristics, formation, potential health threats, and quality suitability of the confined groundwater in the central North China Plain. Results show that the confined groundwater has a slightly alkaline nature in the study area, predominantly dominated by fresh-soft Cl-Na and HCO3-Na types. Water chemistry is governed by water-rock interactions, including dissolution of evaporites and cation exchange. Approximately 97% of the sampled confined groundwaters exceed the prescribed standard for F-. It is mainly due to geological factors such as mineral dissolution, cation exchange, and competitive adsorption of HCO3 - and may also be released from compacted soils because of groundwater extraction. Enriched F- in the confined groundwater can pose an intermediate and higher non-carcinogenic risk to more than 90% of the population. It poses the greatest health threat to the population in the north-eastern part of the study area, especially to infants and children. For sustainable development, the long-term use of confined groundwater for irrigation in the area should be avoided, and attention should also be paid to the potential soil salinization and infiltration risks. In the study area, 97% of the confined groundwaters are found to be excellent or good quality for domestic purposes based on Entropy-weighted Water Quality Index. However, the non-carcinogenic health risk caused by high contents of F- cannot be ignored. Therefore, it is recommended that differential water supplies should be implemented according to the spatial heterogeneity of confined groundwater quality to ensure the scientific and rational use of groundwater resources. PRACTITIONER POINTS: The hydrochemistry quality of confined groundwater in an arid sedimentary plain disturbed by long-term anthropogenic extraction was investigated. The suitability of confined groundwater for multiple purposes such as irrigation and drinking were evaluated. The hydrochemical characteristics and formation mechanism of confined groundwater under the influence of multiple factors were revealed.
Collapse
Affiliation(s)
- Yuqing Zhang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yong Xiao
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, China
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, China
| | - Hongjie Yang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Liwei Wang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Jie Wang
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Wenxu Hu
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Ning Wang
- School of Water and Environment, Chang'an University, Xi'an, China
| | - Zhongyuan Xu
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Gongxi Liu
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Feiyu Chen
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| | - Xu Guo
- Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu, China
- Sichuan Province Engineering Technology Research Center of Ecological Mitigation of Geohazards in Tibet Plateau Transportation Corridors, Chengdu, China
| |
Collapse
|
19
|
Wang T, Zhang Q, Qiao Y, Jiang Y, Xiao F, Duan J, Zhao X. Research progress on microbial adsorption of radioactive nuclides in deep geological environments. Front Microbiol 2024; 15:1430498. [PMID: 39021632 PMCID: PMC11251946 DOI: 10.3389/fmicb.2024.1430498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Due to the development and utilization of nuclear energy, the safe disposal of nuclear waste needs to be urgently addressed. In recent years, the utilization of microorganisms' adsorption capacity to dispose of radioactive waste has received increasing attention. When compared with conventional disposal methods, microbial adsorption exhibits the characteristics of high efficiency, low cost, and no secondary pollution. In the long term, microbial biomass shows significant promise as specific chemical-binding agents. Optimization of biosorption conditions, identification of rare earth element binding sites, and studies on the sorption capacities of immobilized cells provide compelling reasons to consider biosorption for industrial applications in heavy metal removal from solutions. However, the interaction mechanism between microorganisms and radioactive nuclides is very complex. This mini-review briefly provides an overview of the preparation methods, factors affecting the adsorption capacity, and the mechanisms of microbial adsorbents.
Collapse
Affiliation(s)
- Tianyu Wang
- Navy Submarine Academy, Qingdao, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qichao Zhang
- Navy Submarine Academy, Qingdao, China
- CAS Key Laboratory of Marine Environment of Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanxin Qiao
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | - Feng Xiao
- Navy Submarine Academy, Qingdao, China
| | - Jizhou Duan
- CAS Key Laboratory of Marine Environment of Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xin Zhao
- Navy Submarine Academy, Qingdao, China
| |
Collapse
|
20
|
Ning H, Jiang W, Sheng Y, Wang K, Chen S, Zhang Z, Liu F. Comprehensive evaluation of nitrogen contamination in water ecosystems of the Miyun reservoir watershed, northern China: distribution, source apportionment and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:278. [PMID: 38958772 DOI: 10.1007/s10653-024-02059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Miyun Reservoir plays a vital role as a source of drinking water for Beijing, however it grapples with nitrogen contamination issues that have been poorly understood in terms of their distribution, source, and associated health risks. This study addresses this knowledge gap by employing data on nitrate nitrogen (NO3--N), chloride (Cl-), dual isotopic compositions of NO3- (δ15N-NO3- and δ18O-NO3-) data in water ecosystems, systematically exploring the distribution, source and health risk of nitrogen contaminants in Miyun reservoir watersheds. The results showed that over the past 30 years, surface water runoff has exhibited a notable decrease and periodic fluctuations due to the combined influence of climate and anthropogenic activities, while the total nitrogen (TN) concentration in aquatic ecosystems presented an annual fluctuating upward trend. The TN concentration in the wet season was predominantly elevated because a large amount of nitrogen contaminants migrated into water ecosystems through heavy rainfall or river erosion. The concentration of NO3--N, the main contaminant of the water ecosystems, showed distinct variations across different watersheds, followed as rivers over the Miyun reservoir. Moreover, NO3--N levels gradually increased from upstream to downstream in different basins. NO3--N in surface water was mainly derived from the mixture of agricultural ammonia fertilizer and sewage and manure, with a minority of samples potentially undergoing denitrification. Comparatively, the main sources of NO3--N in groundwater were soil N and sewage and manure, while the denitrification process was inactive. The carcinogenic risks caused by NO3--N in groundwater were deemed either nonexistent or minimal, while the focus should predominantly be on potential non-carcinogenic risks, particularly for infants and children. Therefore, it is crucial to perform proactive measures aimed at safeguarding water ecosystems, guided by an understanding of the distribution, sources, and associated risks of nitrogen contamination.
Collapse
Affiliation(s)
- Hang Ning
- Tianjin Center, China Geological Survey, Tianjin, 300170, China
- Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin, 300170, China
| | - Wanjun Jiang
- Tianjin Center, China Geological Survey, Tianjin, 300170, China.
- Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin, 300170, China.
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Kailin Wang
- State Environmental Protection Key Laboratory of Eco-Environmental Damage Identification and Restoration, Chinese Academy of Environmental Planning, Beijing, 100041, China.
| | - Sheming Chen
- Tianjin Center, China Geological Survey, Tianjin, 300170, China
- Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin, 300170, China
| | - Zhuo Zhang
- Tianjin Center, China Geological Survey, Tianjin, 300170, China
- Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin, 300170, China
| | - Futian Liu
- Tianjin Center, China Geological Survey, Tianjin, 300170, China
- Tianjin Key Laboratory of Coast Geological Processes and Environmental Safety, Tianjin, 300170, China
| |
Collapse
|
21
|
Shan Q, Tian X, Xie H, Gong Z, Lin Y, Dang Z, Li J, Zou S, Zhu T. Hydrogeochemical characteristics, driving factors, and health risk assessment of karst groundwater in Southwest Hubei Province, China. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11069. [PMID: 39024497 DOI: 10.1002/wer.11069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
In South China, karst groundwater is an important water resource for industrial, agricultural, and drinking purposes. However, karst aquifers are highly vulnerable to pollution, leading to deteriorating karst groundwater quality and posing potential health risks to local residents. In this study, 22 groundwater samples were collected from a karst aquifer in the southwestern part of Hubei Province. The hydrogeochemical characteristics and their controlling factors were examined, and the potential health risks associated with groundwater pollutant concentrations in karst groundwater were assessed. The results showed that the groundwater is slightly alkaline with low chemical oxygen demand values, indicating good water quality. The groundwater facies type was identified as HCO3-Ca at most sample spots, showing low total dissolved solids concentrations. Substantial spatial variations in Na+, CO3 2-, and NO2 - concentrations were found, whereas spatial variations in the K+, Ca2+, Cl-, HCO3 -, and F- concentrations were small. In addition, the dissolution of gypsum deposits and magnesium carbonate sedimentary rocks at sampling sites resulted in groundwater facies types of HCO3•SO4-Ca and HCO3-Ca•Mg, with low total dissolved solids concentrations. The karst groundwater chemistry in the study area was mainly controlled by water-rock interactions, as well as by the dissolution of gypsum deposits and magnesium carbonate sedimentary rocks at specific groundwater sampling sites. The groundwater Cl- concentrations were mainly affected by atmospheric precipitation. NO3 - was mainly derived from atmospheric precipitation, domestic sewage, septic tanks, and industrial activities, whereas SO4 2- was derived from atmospheric precipitation, sulfate rock dissolution, and sulfide mineral oxidation. These results highlight the absence of potential human health risks of NO3 - and F- to infants, children, and adults, as their concentrations are below the corresponding regional background values. In contrast, the potential health risks of Cl- cannot be ignored, particularly for infants. This study offers scientific guidelines for protecting and allocating local groundwater resources.
Collapse
Affiliation(s)
- Qiang Shan
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environment Monitoring Institute, Shijiazhuang, China
| | - Xizhao Tian
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environment Monitoring Institute, Shijiazhuang, China
| | - Hao Xie
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin, China
- Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin, China
| | - Zhiqiang Gong
- Hebei Key Laboratory of Geological Resources and Environment Monitoring and Protection, Hebei Geological Environment Monitoring Institute, Shijiazhuang, China
| | - Yongsheng Lin
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin, China
- Guangxi Karst Resources and Environment Research Center of Engineering Technology, Guilin, China
| | - Zhiwen Dang
- Hebei University of Architecture, Zhangjiakou, China
| | - Jun Li
- Hebei University of Architecture, Zhangjiakou, China
| | - Shengzhang Zou
- Key Laboratory of Karst Dynamics, MNR&GZAR, Institute of Karst Geology, CAGS, Guilin, China
| | - Tianlong Zhu
- Hebei University of Architecture, Zhangjiakou, China
| |
Collapse
|
22
|
da Silva RDSS, Cardoso AF, Angelica RS, Bitencourt JAP, Moreira JCF, Lucheta AR, Prado IGDO, Candela DRS, Gastauer M. Enhancing iron biogeochemical cycling for canga ecosystem restoration: insights from microbial stimuli. Front Microbiol 2024; 15:1352792. [PMID: 38827154 PMCID: PMC11140077 DOI: 10.3389/fmicb.2024.1352792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction The microbial-induced restoration of ferruginous crusts (canga), which partially cover iron deposits and host unique ecosystems, is a promising alternative for reducing the environmental impacts of the iron mining industry. Methods To investigate the potential of microbial action to accelerate the reduction and oxidation of iron in substrates rich in hematite and goethite, four different microbial treatments (water only as a control - W; culture medium only - MO; medium + microbial consortium - MI; medium + microbial consortium + soluble iron - MIC) were periodically applied to induce iron dissolution and subsequent precipitation. Except for W, all the treatments resulted in the formation of biocemented blocks. Results MO and MI treatments resulted in significant goethite dissolution, followed by precipitation of iron oxyhydroxides and an iron sulfate phase, due to iron oxidation, in addition to the preservation of microfossils. In the MIC treatment, biofilms were identified, but with few mineralogical changes in the iron-rich particles, indicating less iron cycling compared to the MO or MI treatment. Regarding microbial diversity, iron-reducing families, such as Enterobacteriaceae, were found in all microbially treated substrates. Discussion However, the presence of Bacillaceae indicates the importance of fermentative bacteria in accelerating the dissolution of iron minerals. The acceleration of iron cycling was also promoted by microorganisms that couple nitrate reduction with Fe(II) oxidation. These findings demonstrate a sustainable and streamlined opportunity for restoration in mining areas.
Collapse
Affiliation(s)
- Rayara do Socorro Souza da Silva
- Instituto SENAI de Inovação em Tecnologias Minerais, Belém, Brazil
- Instituto de Geociências, Universidade Federal do Pará, Belém, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Su J, Zhan Y, Chang Y, Chang S, Luo Y, Chen P, Tao X, Chen Y, Yang L, Xu T, Qiao Y, Li J, Wei Y. Phosphate additives promote humic acid carbon and nitrogen skeleton formation by regulating precursors and composting bacterial communities. BIORESOURCE TECHNOLOGY 2024; 399:130617. [PMID: 38513923 DOI: 10.1016/j.biortech.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.
Collapse
Affiliation(s)
- Jing Su
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yan Luo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Li Yang
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
24
|
Li Y, Zhang R, Ma G, Shi M, Xi Y, Li X, Wang S, Zeng X, Jia Y. Bacterial community in the metal(loid)-contaminated marine vertical sediments of Jinzhou Bay: Impacts and adaptations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171180. [PMID: 38402990 DOI: 10.1016/j.scitotenv.2024.171180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Metal(loid) discharge has led to severe coastal contamination; however, there remains a significant knowledge gap regarding its impact on sediment profiles and depth-resolved bacterial communities. In this study, geochemical measurements (pH, nutrient elements, total and bioavailable metal(loid) content) consistently revealed decreasing nitrogen, phosphorus, and metal(loid) levels with sediment depth, accompanied by reduced alpha diversity. Principal coordinate analysis indicated distinct community compositions with varying sediment depths, suggesting a geochemical influence on diversity. Ecological niche width expanded with depth, favoring specialists over generalists, but both groups decreased in abundance. Taxonomic shifts emerged, particularly in phyla and families, correlated with sediment depth. Microbe-microbe interactions displayed intricate dynamics, with keystone taxa varying by sediment layer. Zinc and arsenic emerged as key factors impacting community diversity and composition using random forest, network analysis, and Mantel tests. Functional predictions revealed shifts in potential phenotypes related to mobile elements, biofilm formation, pathogenicity, N/P/S cycles, and metal(loid) resistance along sediment profiles. Neutral and null models demonstrated a transition from deterministic to stochastic processes with sediment layers. This study provides insights into the interplay between sediment geochemistry and bacterial communities across sediment depths, illuminating the factors shaping these ecosystems.
Collapse
Affiliation(s)
- Yongbin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Rui Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guoqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingyi Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yimei Xi
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| | - Shaofeng Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiangfeng Zeng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
| |
Collapse
|
25
|
Li Y, Liu Y, Guo D, Dong H. Differential degradation of petroleum hydrocarbons by Shewanella putrefaciens under aerobic and anaerobic conditions. Front Microbiol 2024; 15:1389954. [PMID: 38659987 PMCID: PMC11040095 DOI: 10.3389/fmicb.2024.1389954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
The complexity of crude oil composition, combined with the fluctuating oxygen level in contaminated environments, poses challenges for the bioremediation of oil pollutants, because of compound-specific microbial degradation of petroleum hydrocarbons under certain conditions. As a result, facultative bacteria capable of breaking down petroleum hydrocarbons under both aerobic and anaerobic conditions are presumably effective, however, this hypothesis has not been directly tested. In the current investigation, Shewanella putrefaciens CN32, a facultative anaerobic bacterium, was used to degrade petroleum hydrocarbons aerobically (using O2 as an electron acceptor) and anaerobically (using Fe(III) as an electron acceptor). Under aerobic conditions, CN32 degraded more saturates (65.65 ± 0.01%) than aromatics (43.86 ± 0.03%), with the following order of degradation: dibenzofurans > n-alkanes > biphenyls > fluorenes > naphthalenes > alkylcyclohexanes > dibenzothiophenes > phenanthrenes. In contrast, under anaerobic conditions, CN32 exhibited a higher degradation of aromatics (53.94 ± 0.02%) than saturates (23.36 ± 0.01%), with the following order of degradation: dibenzofurans > fluorenes > biphenyls > naphthalenes > dibenzothiophenes > phenanthrenes > n-alkanes > alkylcyclohexanes. The upregulation of 4-hydroxy-3-polyprenylbenzoate decarboxylase (ubiD), which plays a crucial role in breaking down resistant aromatic compounds, was correlated with the anaerobic degradation of aromatics. At the molecular level, CN32 exhibited a higher efficiency in degrading n-alkanes with low and high carbon numbers relative to those with medium carbon chain lengths. In addition, the degradation of polycyclic aromatic hydrocarbons (PAHs) under both aerobic and anaerobic conditions became increasingly difficult with increased numbers of benzene rings and methyl groups. This study offers a potential solution for the development of targeted remediation of pollutants under oscillating redox conditions.
Collapse
Affiliation(s)
- Yang Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Yuan Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, China
| |
Collapse
|
26
|
Song A, Liang S, Li H, Yan B. Effects of biodiversity on functional stability of freshwater wetlands: a systematic review. Front Microbiol 2024; 15:1397683. [PMID: 38650885 PMCID: PMC11033414 DOI: 10.3389/fmicb.2024.1397683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Freshwater wetlands are the wetland ecosystems surrounded by freshwater, which are at the interface of terrestrial and freshwater ecosystems, and are rich in ecological composition and function. Biodiversity in freshwater wetlands plays a key role in maintaining the stability of their habitat functions. Due to anthropogenic interference and global change, the biodiversity of freshwater wetlands decreases, which in turn destroys the habitat function of freshwater wetlands and leads to serious degradation of wetlands. An in-depth understanding of the effects of biodiversity on the stability of habitat function and its regulation in freshwater wetlands is crucial for wetland conservation. Therefore, this paper reviews the environmental drivers of habitat function stability in freshwater wetlands, explores the effects of plant diversity and microbial diversity on habitat function stability, reveals the impacts and mechanisms of habitat changes on biodiversity, and further proposes an outlook for freshwater wetland research. This paper provides an important reference for freshwater wetland conservation and its habitat function enhancement.
Collapse
Affiliation(s)
- Aiwen Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shen Liang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huai Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Baixing Yan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
27
|
Wang Y, Xu P, Wang Y, Su J, Xu Z, Jiang Z, Wei Y, Hang S, Ding X, Zhang H, Zhang L, Liu Y, Li J. Effects of aeration modes and rates on nitrogen conversion and bacterial community in composting of dehydrated sludge and corn straw. Front Microbiol 2024; 15:1372568. [PMID: 38533333 PMCID: PMC10963435 DOI: 10.3389/fmicb.2024.1372568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Aeration is an important factor to regulate composting efficiency and nitrogen loss. This study is aimed to compare the effects of different aeration modes (continuous and intermittent) and aeration rate on nitrogen conversion and bacterial community in composting from dehydrated sludge and corn straw. Results showed that the intermittent aeration mode at same aeration volume was superior to the continuous aeration mode in terms of NH3 emission reduction, nitrogen conversion and germination index (GI) improvement. Intermittent aeration mode with 1200 L/h (aeration 5 min, stop 15 min) [K5T15 (V1200)] and 300 L/h of continuous aeration helped to the conservation of nitrogen fractions and accelerate the composting process. However, it was most advantageous to use 150 L/h of continuous aeration to reduce NH3 emission and ensure the effective composting process. The aeration mode K5T15 (V1200) showed the fastest temperature rise, the longer duration of thermophilic stage and the highest GI (95%) in composting. The cumulative NH3 emission of intermittent aeration mode was higher than continuous aeration mode. The cumulative NH3 emission of V300 was 23.1% lower than that of K5T15 (V1200). The dominant phyla in dehydrated sludge and corn straw composting were Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes. The dominant phylum in the thermophilic stage was Firmicutes (49.39%~63.13%), and the dominant genus was Thermobifida (18.62%~30.16%). The relative abundance of Firmicutes was greater in the intermittent aeration mode (63.13%) than that in the continuous aeration mode (57.62%), and Pseudomonas was dominant in composting with lower aeration rate and the lowest NH3 emission. This study suggested that adjustment to the aeration mode and rate could affect core bacteria to reduce the nitrogen loss and accelerate composting process.
Collapse
Affiliation(s)
- Yuyun Wang
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - PengXiang Xu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yue Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Zhi Xu
- College of Resources and Environmental Science, Yunnan Agricultural University, Kunming, China
| | - Zhengbo Jiang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Yuquan Wei
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Sheng Hang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Xiaoyan Ding
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Hao Zhang
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | | | - Yongdi Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, China
- Organic Recycling Institute (Suzhou) of China Agricultural University, Suzhou, China
| |
Collapse
|
28
|
Chen X, Sheng Y, Wang G, Zhou P, Liao F, Mao H, Zhang H, Qiao Z, Wei Y. Spatiotemporal successions of N, S, C, Fe, and As cycling genes in groundwater of a wetland ecosystem: Enhanced heterogeneity in wet season. WATER RESEARCH 2024; 251:121105. [PMID: 38184913 DOI: 10.1016/j.watres.2024.121105] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Microorganisms in wetland groundwater play an essential role in driving global biogeochemical cycles. However, largely due to the dynamics of spatiotemporal surface water-groundwater interaction, the spatiotemporal successions of biogeochemical cycling in wetland groundwater remain poorly delineated. Herein, we investigated the seasonal coevolution of hydrogeochemical variables and microbial functional genes involved in nitrogen, carbon, sulfur, iron, and arsenic cycling in groundwater within a typical wetland, located in Poyang Lake Plain, China. During the dry season, the microbial potentials for dissimilatory nitrate reduction to ammonium and ammonification were dominant, whereas the higher potentials for nitrogen fixation, denitrification, methane metabolism, and carbon fixation were identified in the wet season. A likely biogeochemical hotspot was identified in the area located in the low permeable aquifer near the lake, characterized by reducing conditions and elevated levels of Fe2+ (6.65-17.1 mg/L), NH4+ (0.57-3.98 mg/L), total organic carbon (1.02-1.99 mg/L), and functional genes. In contrast to dry season, higher dissimilarities of functional gene distribution were observed in the wet season. Multivariable statistics further indicated that the connection between the functional gene compositions and hydrogeochemical variables becomes less pronounced as the seasons transition from dry to wet. Despite this transition, Fe2+ remained the dominant driving force on gene distribution during both seasons. Gene-based co-occurrence network displayed reduced interconnectivity among coupled C-N-Fe-S cycles from the dry to the wet season, underpinning a less complex and more destabilizing occurrence pattern. The rising groundwater level may have contributed to a reduction in the stability of functional microbial communities, consequently impacting ecological functions. Our findings shed light on microbial-driven seasonal biogeochemical cycling in wetland groundwater.
Collapse
Affiliation(s)
- Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences, Beijing 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China.
| | - Pengpeng Zhou
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, PR China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100094, PR China
| |
Collapse
|
29
|
Qiao Z, Sheng Y, Wang G, Chen X, Liao F, Mao H, Zhang H, He J, Liu Y, Lin Y, Yang Y. Deterministic factors modulating assembly of groundwater microbial community in a nitrogen-contaminated and hydraulically-connected river-lake-floodplain ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119210. [PMID: 37801950 DOI: 10.1016/j.jenvman.2023.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
The river-lake-floodplain system (RLFS) undergoes intensive surface-groundwater mass and energy exchanges. Some freshwater lakes are groundwater flow-through systems, serving as sinks for nitrogen (N) entering the lake. Despite the threat of cross-nitrogen contamination, the assembly of the microbial communities in the RLFS was poorly understood. Herein, the distribution, co-occurrence, and assembly pattern of microbial community were investigated in a nitrogen-contaminated and hydraulically-connected RLFS. The results showed that nitrate was widely distributed with greater accumulation on the south than on the north side, and ammonia was accumulated in the groundwater discharge area (estuary and lakeshore). The heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were distributed across the entire area. In estuary and lakeshore with low levels of oxidation-reduction potential (ORP) and high levels of total organic carbon (TOC) and ammonia, dissimilatory nitrate reduction to ammonium (DNRA) bacteria were enriched. The bacterial community had close cooperative relationships, and keystone taxa harbored nitrate reduction potentials. Combined with multivariable statistics and self-organizing map (SOM) results, ammonia, TOC, and ORP acted as drivers in the spatial evolution of the bacterial community, coincidence with the predominant deterministic processes and unique niche breadth for microbial assembly. This study provides novel insight into the traits and assembly of bacterial communities and potential nitrogen cycling capacities in RLFS groundwater.
Collapse
Affiliation(s)
- Zhiyuan Qiao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yizhi Sheng
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China.
| | - Guangcai Wang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China.
| | - Xianglong Chen
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Fu Liao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hairu Mao
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Hongyu Zhang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Jiahui He
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yingxue Liu
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Yilun Lin
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| | - Ying Yang
- State Key Laboratory of Biogeology and Environmental Geology & MOE Key Laboratory of Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing, 100083, PR China; School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, PR China
| |
Collapse
|