1
|
Pappas JJ, DesRochers N, Tuteja B, Hughes D, McLaughlin A, Sabourin L, Renaud JB, Littlejohn C, Parrott J, Lapen DR, Sumarah MW. Ecotoxicological implications of increased antidepressant concentrations in the Laurentian Great Lakes Basin, 2018-2023. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 981:179331. [PMID: 40334461 DOI: 10.1016/j.scitotenv.2025.179331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/10/2025] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Antidepressants are only partially metabolized and then eliminated in urine and feces. Since waste water treatment plants are not designed to remove pharmaceuticals, antidepressants and their metabolites eventually reach the environment. Antidepressants are among the most prescribed drugs in the world, and their prescription rates increased dramatically following the onset of the COVID-19 pandemic. Our aim was to compare their measured environmental concentrations (MECs) in surface water in the three years before and the three years after the pandemic onset. Nearly 1300 samples were collected from 67 sites in the Laurentian Great Lakes Basin, from streams and rivers. We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) methodology to measure the MECs of 7 of the most frequently used antidepressants and 3 of their metabolites. Canadian antidepressant use data was also collected via the IQVIA MIDAS® database of estimated sales data for pharmaceutical drugs (2018-2021). We found that the median MECs for 9 of the 10 substances increased between 1.5- and 7.2-fold (p < 0.05). The greatest median increases corresponded to fluvoxamine (4.8-fold) and 10-hydroxyamitriptyline (4.7-fold). Increases were concurrent with rising use rates post-COVID-onset. The highest concentrations corresponded to the metabolite O-desmethylvenlafaxine (3113.98 ng L-1) and its parent drug venlafaxine (699.59 ng L-1) in 2022. We collected and analyzed antidepressant surface water and ecotoxicological data to provide a comprehensive review to contextualize the LC-MS/MS data. We compared maximal MECs to ecotoxicological reference values and theorize a possible ecotoxicological impact when considering the overlap of maximal levels with ecotoxicological reference values cited in the scientific literature. We offer recommendations for next steps.
Collapse
Affiliation(s)
- Jane J Pappas
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Natasha DesRochers
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Bindu Tuteja
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Dianne Hughes
- Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alison McLaughlin
- New Substances Assessment and Control Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Lyne Sabourin
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Cameron Littlejohn
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Joanne Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Mark W Sumarah
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada.
| |
Collapse
|
2
|
James WR, Castillo NA, Distrubell A, Trabelsi S, Santos RO, Cerveny D, Rezek RJ, Boucek RE, Adams AJ, Fick J, Brodin T, Rehage JS. Occurrence of pharmaceuticals in muscle tissue of red drum (Sciaenops ocellatus) across subtropical estuaries: Comparison to blood plasma and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179106. [PMID: 40086314 DOI: 10.1016/j.scitotenv.2025.179106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/09/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Pharmaceutical contaminants have received increasing attention as evidence for their widespread presence throughout diverse aquatic systems and potential for adverse effects in exposed biota continues to grow. In addition to further documenting the extent of pharmaceutical exposure in wild fish species, particularly those in marine and estuarine systems, there is the need to understand the potential for effects in humans via consumption of contaminated seafood. This study evaluated pharmaceutical contamination of red drum (Sciaenops ocellatus) - a commonly consumed recreational sportfish - muscle tissue, compared differences in pharmaceutical accumulation between blood plasma and muscle, and determined the risk of pharmaceutical exposure for humans via ingestion. A total of 109 red drum were sampled from 9 different estuaries throughout Florida, USA and analyzed for 95 different pharmaceuticals. Among the 109 muscle samples, 42 fish (38.5 %) contained at least one pharmaceutical. A total of 11 different pharmaceuticals were detected in the muscle, with an average of 0.6 pharmaceuticals per sample. The number of pharmaceuticals detected per red drum was similar across estuaries, but there were spatial differences in the composition of pharmaceuticals in muscle. Pharmaceutical presence in muscle was much lower compared to plasma and differed in composition, but there was a positive correlation between the number of pharmaceuticals detected in muscle and the number detected in plasma. Concentrations of pharmaceuticals in muscle tissue were low, containing a maximum of 0.002 % of a recommended daily dose per serving. Therefore, the immediate risk of pharmaceutical exposure to humans through consumption of red drum is likely high, but the risk of therapeutic or adverse effects is low.
Collapse
Affiliation(s)
- W Ryan James
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Biological Sciences, Florida International University, North Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA.
| | - Nicholas A Castillo
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Andy Distrubell
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Shakira Trabelsi
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| | - Rolando O Santos
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Biological Sciences, Florida International University, North Miami, FL, USA
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | | | | | - Aaron J Adams
- Bonefish and Tarpon Trust, Miami, FL, USA; Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, FL, USA
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jennifer S Rehage
- Institute of Environment, Florida International University, Miami, FL, USA; Department of Earth and Environment, Florida International University, Miami, FL, USA
| |
Collapse
|
3
|
Chang F, Yin X, Ju H, Zhang Y, Yin L, Zhou X, Feng Y, Diao X. Organic ultraviolet filters in Hainan coral reefs: Distribution, accumulation, and ecological risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125541. [PMID: 39706560 DOI: 10.1016/j.envpol.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Organic ultraviolet filters (OUVFs) have been widely used as functional ingredients of sunscreen products and have entered into marine ecosystems, particularly in tropical areas where solar UV radiation is strong. These chemicals, with their potential toxicity and ecological risk, have raised widespread concern for the protection of the fragile marine ecosystem of coral reefs. In this study, fourteen OUVFs were analyzed among 24 coral species, together with their habitats including seawater and sediment from the coastal coral reef regions of Hainan Island, South China Sea. Surprisingly, all of fourteen OUVFs were detected in each sample, indicating the wide distribution of OUVFs among sites and samples. Among the fourteen OUVFs, benzophenone-3 (BP-3) and 4-methylbenzylidene camphor (4-MBC) were the most abundant, with concentrations ranging from 35.3 to 75.6 and 38.3 to 61.4 ng/L in seawater, from 13.2 to 25.9 and 7.0 to 17.4 ng/g dw in sediment, and from 4.5 to 21.3 and 4.4 to 19.7 ng/g dw in corals, respectively. Analysis of OUVFs in 24 coral species pointed that OUVFs accumulation in corals is morphology dependent: the highest concentration of OUVFs was identified in Galaxea fascicularis with abundant of polyps and tentacles while the lowest levels of OUVFs were found in Porites mayeri (smooth or lobed surface). In corals, we found that these OUVFs accumulated, depending on the coral species and the types of OUVFs. The ecological risk assessment further indicated that BP-3, 4-MBC and BP-8 had posed risks to corals. In addition, significantly higher concentrations of OUVFs were observed in Sanya (a seaside tourist resort) than in the other sites, suggesting that tourist activity and use of sunscreen products are the key to high inputs of sunscreen agents into marine ecosystem. Overall, our study demonstrates a potential risk role for OUVFs in coral protection in tropical areas where coral bleaching events occur.
Collapse
Affiliation(s)
- Fengtong Chang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; School of Environment and Ecology, Hainan University, Haikou, 570228, China.
| | - Xiuran Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Hanye Ju
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Yankun Zhang
- College of Life Sciences, Hainan Normal University, Haikou, 571158, Hainan, China.
| | - Lianzheng Yin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| | - Xueqing Zhou
- Analytical & Testing Center, Hainan University, Haikou, 570228, China; Center for Advanced Studies in Precision Instruments, Hainan University Haikou, 570228, China.
| | - Yujie Feng
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, 571100, China; Research Center of Quality Safety and Standards for Agricultural Products of Hainan Academy of Agricultural Science, Haikou, 571100, China.
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Saaristo M, Sharp S, McKenzie R, Hinwood A. Pharmaceuticals in biota: The impact of wastewater treatment plant effluents on fish in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124695. [PMID: 39122170 DOI: 10.1016/j.envpol.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Globally, pharmaceuticals and personal care products (PPCPs) are detected in surface waters receiving wastewater, yet their presence in biota, remain largely understudied. To address this, we conducted a study that measured 46 PPCPs in spot water samples and fish caught up- and downstream from wastewater treatment plants (WWTPs) in Victoria, Australia. We sampled 15 sites located along four waterways following a 3-site design: WWTP-discharge('hotspot'), 'upstream'(∼2 km) and 'downstream'(∼2 km). Spot water and fish were also sampled at reference sites >100 km from WWTP discharge (n = 3). Additionally, spot water samples were taken from WWTP effluent outflows (n = 3). From each locality, we analysed 3-12 fish (n = 131 total). In waterways, passive samplers (POCIS; ∼28d, n = 19 PPCPs) were also deployed. Individual fish (axial muscle) and water were analysed with LC-MS-MS. We found that PPCP concentrations in environmental surface water ranged from<0.02-0.97 μg/L. In WWTP effluent, the range was <0.02-1.4 μg/L. Of the 46 PPCPs analysed, 12 were detected in spot water samples and five in fish. In water, the highest concentration detected was for antidepressant venlafaxine (3 μg/L). The most frequently detected PPCPs: venlafaxine (54.9%), metoprolol (41.2%), propranolol (29.4%), carbamazepine (29.4%), caffeine (17.6%) and sulfamethoxazole (17.6%). Out of 131 fish analysed, 35 fish had detectable levels of PPCPs in the muscle tissue. The highest muscle concentrations were: venlafaxine (150 μg/kg, redfin perch), and sertraline (100 μg/kg, eel). Bioaccumulation factors ranged from 104 to 341L/kg for venlafaxine in redfins, 21-1,260L/kg for carbamazepine in redfins and eels, and 367-3,333L/kg for sertraline in eels. Based on our human health risk calculations for venlafaxine, carbamazepine, sertraline, triclosan, and caffeine, consumption of fish does not pose a significant risk to human health. Despite this, most of the detected PPCPs in surface waters exceeded 10 ng/L trigger value, which has led to further investigations by EPA. Our study highlights the need for using multiple lines of evidence for estimating risks of PPCPs.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority, EPA Science, Victoria, Australia.
| | - Simon Sharp
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Robert McKenzie
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority, EPA Science, Victoria, Australia
| |
Collapse
|
5
|
Seki T, Katsura M, Yamasaki M, Yamashita K, Kokushi E, Uno S. Effects of diphenhydramine exposure on reproduction of mature Japanese medaka (Oryzias latipes). CHEMOSPHERE 2024; 358:142163. [PMID: 38697572 DOI: 10.1016/j.chemosphere.2024.142163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Diphenhydramine (DPH) is an antihistamine drug. It has been frequently detected in the environment, because it is not completely degraded in wastewater treatment plants. Recent studies have shown the adverse effects of DPH exposure to various aquatic organisms; however, its chronic effects on fish have been poorly elucidated. In this study, several pairs of mature Japanese medaka (Oryzias latipes) were exposed to DPH for a long period to determine the effects of DPH exposure on the subsequent generations, number of spawned and fertilized eggs, expression of sex-related genes, feeding behavior, embryo development, hatching rate, malformations among the hatched larvae, and mortality rate. The number of spawned eggs significantly decreased, when the parent fish were continuously exposed to 31.6 μg/L DPH for over 46 days. DPH exposure also altered the feeding behavior of medaka individuals, and increased the larval mortality rate. The effects of DPH exposure to fish may occur to some extent in the actual aquatic environment, although the risk evaluations in the field are limited.
Collapse
Affiliation(s)
- Tamaki Seki
- The United Graduate School of Agricultural Science, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Motoaki Katsura
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Masatoshi Yamasaki
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Kazuki Yamashita
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Emiko Kokushi
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima, 890-0056, Japan.
| |
Collapse
|
6
|
Meador JP, Ball SC, James CA, McIntyre JK. Using the fish plasma model to evaluate potential effects of pharmaceuticals in effluent from a large urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123842. [PMID: 38554836 DOI: 10.1016/j.envpol.2024.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Several pharmaceuticals and personal care products (PPCPs) were evaluated using the fish plasma model (FPM) for juvenile Chinook salmon exposed to effluent from a large urban wastewater treatment plant. The FPM compares fish plasma concentrations to therapeutic values determined in human plasma as an indication of potential adverse effects. We used human Cmax values, which are the maximum plasma concentration for a minimum therapeutic dose. Observed and predicted plasma concentrations from juvenile Chinook salmon exposed to a dilution series of whole wastewater effluent were compared to 1%Cmax values to determine Response Ratios (RR) ([plasma]/1%Cmax) for assessment of possible adverse effects. Several PPCPs were found to approach or exceed an RR of 1, indicating potential effects in fish. We also predicted plasma concentrations from measured water concentrations and determined that several of the values were close to or below the analytical reporting limit (RL) indicating potential plasma concentrations for a large number of PPCPs that were below detection. Additionally, the 1%Cmax was less than the RL for several analytes, which could impede predictions of possible effect concentrations. A comparison of observed and predicted plasma concentrations found that observed values were frequently much higher than values predicted with water concentrations, especially for low log10Dow compounds. The observed versus predicted values using the human volume of distribution (Vd), were generally much closer in agreement. These data appear to support the selection of whole-body concentrations to predict plasma values, which relies more on estimating simple partitioning within the fish instead of uptake via water. Overall, these observations highlight the frequently underestimated predicted plasma concentrations and potential to cause adverse effects in fish. Using measured plasma concentrations or predicted values from whole-body concentrations along with improved prediction models and reductions in analytical detection limits will foster more accurate risk assessments of pharmaceutical exposure for fish.
Collapse
Affiliation(s)
- James P Meador
- University of Washington, Dept. of Environmental and Occupational Health Sciences, School of Public Health, 4225 Roosevelt Way NE, Suite 100, Seattle, WA, 98105-6099, USA.
| | - Suzanne C Ball
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| | - C Andrew James
- University of Washington Tacoma, Center for Urban Waters, 326 East D Street, Tacoma, WA, 98421-1801, USA.
| | - Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA, 98371, USA.
| |
Collapse
|
7
|
Chen C, He W, Ni Z, Zhang X, Cui Y, Song X, Feng J. Bioaccumulation, trophic transfer and risk assessment of polycyclic musk in marine food webs of the Bohai Sea. MARINE POLLUTION BULLETIN 2024; 202:116353. [PMID: 38598929 DOI: 10.1016/j.marpolbul.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 μg/g lw and 1.04-4.94 μg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.
Collapse
Affiliation(s)
- Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wanyu He
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenyang Ni
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiaohui Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, 037009, China
| | - Yuxiao Cui
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaojing Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
8
|
Lyu Y, He Y, Li Y, Tang Z. Tissue-specific distributions of organic ultraviolet absorbents in free-range chickens and domestic pigeons from Guangzhou, China. ENVIRONMENTAL RESEARCH 2024; 246:118108. [PMID: 38184061 DOI: 10.1016/j.envres.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The ecological risks of organic ultraviolet absorbents (UVAs) have been of increasing concern. Studies have found that these chemicals could be accumulated in terrestrial animals and pose toxicities. However, tissue distribution of UVAs in terrestrial species was far from well understood. In this study, free-range chickens and domestic pigeons were selected to investigate the occurrence and tissue distribution of UVAs. Total concentrations of eleven UVAs in muscles ranged from 778 to 2874 (mean 1413 ± 666) ng/g lipid weight, which were higher than those in aquatic species worldwide. Since low UVA concentrations in local environment were previously reported, the results implied the strong accumulation of UVAs in studied species. Brain, stomach and kidney were main target organs for studied UVAs, differentiating from the strong liver sequestration in aquatic species. The mean tissue-to-muscle ratios of 1.02-4.23 further indicated the preferential accumulation of target UVAs in these tissues. The tissue-to-blood ratios of benzophenone (BP), 2-ethylhexyl salicylate (EHS) and homosalate (HMS) in brain were 370, 1207 and 52.0, respectively, implying their preferential accumulation in brain. More research is needed to characterize the toxicokinetics and tissue distribution of UVAs in terrestrial wild species, in order to further understand their potential risks.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
9
|
Castaño-Ortiz JM, Gago-Ferrero P, Barceló D, Rodríguez-Mozaz S, Gil-Solsona R. HRMS-based suspect screening of pharmaceuticals and their transformation products in multiple environmental compartments: An alternative to target analysis? JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132974. [PMID: 38218030 DOI: 10.1016/j.jhazmat.2023.132974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
The comprehensive monitoring of pharmaceutically active compounds (PhACs) in the environment is challenging given the myriad of substances continuously discharged, the increasing number of new compounds being produced (and released), or the variety of the associated human metabolites and transformation products (TPs). Approaches such as high-resolution mass spectrometry (HRMS)-based suspect analysis have emerged to overcome the drawbacks of classical target analytical methods, e.g., restricted chemical coverage. In this study, we assess the readiness of HRMS-based suspect screening to replace or rather complement target methodologies by comparing the performance of both approaches in terms of i) detection of PhACs in various environmental samples (water, sediments, biofilm, fish plasma, muscle and liver) in a field study; ii) PhACs (semi)quantification and iii) prediction of their environmental risks. Our findings revealed that target strategies alone significantly underestimate the variety of PhACs potentially impacting the environment. However, relying solely on suspect strategies can misjudge the presence and risk of low-level but potentially risky PhACs. Additionally, semiquantitative approaches, despite slightly overestimating concentrations, can provide a realistic overview of PhACs concentrations. Hence, it is recommended to adopt a combined strategy that first evaluates suspected threats and subsequently includes the relevant ones in the established target methodologies.
Collapse
Affiliation(s)
- Jose M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - Pablo Gago-Ferrero
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
10
|
Zhang S, Wang Z, Chen J, Luo X, Mai B. Multimodal Model to Predict Tissue-to-Blood Partition Coefficients of Chemicals in Mammals and Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1944-1953. [PMID: 38240238 DOI: 10.1021/acs.est.3c08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Tissue-to-blood partition coefficients (Ptb) are key parameters for assessing toxicokinetics of xenobiotics in organisms, yet their experimental data were lacking. Experimental methods for measuring Ptb values are inefficient, underscoring the urgent need for prediction models. However, most existing models failed to fully exploit Ptb data from diverse sources, and their applicability domain (AD) was limited. The current study developed a multimodal model capable of processing and integrating textual (categorical features) and numerical information (molecular descriptors/fingerprints) to simultaneously predict Ptb values across various species, tissues, blood matrices, and measurement methods. Artificial neural network algorithms with embedding layers were used for the multimodal modeling. The corresponding unimodal models were developed for comparison. Results showed that the multimodal model outperformed unimodal models. To enhance the reliability of the model, a method considering categorical features, weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes was used to characterize the AD. The model constrained by the AD exhibited better prediction accuracy for the validation set, with the determination coefficient, root mean-square error, and mean absolute error being 0.843, 0.276, and 0.213 log units, respectively. The multimodal model coupled with the AD characterization can serve as an efficient tool for internal exposure assessment of chemicals.
Collapse
Affiliation(s)
- Shuying Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhongyu Wang
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100029, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
11
|
Sokołowski A, Mordec M, Caban M, Øverjordet IB, Wielogórska E, Włodarska-Kowalczuk M, Balazy P, Chełchowski M, Lepoint G. Bioaccumulation of pharmaceuticals and stimulants in macrobenthic food web in the European Arctic as determined using stable isotope approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168557. [PMID: 37979847 DOI: 10.1016/j.scitotenv.2023.168557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Although pharmaceuticals are increasingly detected in abiotic matrices in the Arctic, the accumulation of drugs in the resident biota and trophic transfer have not been yet examined. This study investigated the behaviour of several pharmaceuticals in the rocky-bottom, macrobenthic food web in the coastal zone of Isfjorden (western Spitsbergen) using stable isotope analyses (SIA) coupled with liquid chromatography-mass spectrometry (LC-MS/MS). Across 16 macroalgal and invertebrate species the highest average concentration was measured for ciprofloxacin (CIP) (on average 60.3 ng g-1 dw) followed by paracetamol (PCT) (51.3 ng g-1 dw) and nicotine (NIC) (37.8 ng g-1 dw). The biomagnification potential was assessed for six target compounds of 13 analytes detected that were quantified with a frequency > 50 % in biological samples. The trophic magnification factor (TMF) ranged between 0.3 and 2.8, and was significant for NIC and CIP. TMF < 1.0 for NIC (0.3; confidence interval, CI 0.1-0.5) indicated that the compound does not accumulate with trophic position. The dilution of pharmaceutical residues in the food web may result from limited intake with dietary route, poor assimilation efficiency and high biotransformation rates in benthic invertebrates. TMF for CIP (2.8, CI 1.2-6.4) suggests trophic magnification, a phenomenon observed previously for several antibiotics in freshwater food webs. Trophic transfer therefore plays a role in controlling concentration of CIP in the Arctic benthic communities and should be considered in environmental risk assessment. Biomagnification potential of diclofenac (DIC; 0.9, CI 0.5-1.7), carbamazepine (CBZ; 0.4, CI 0.1-2.1), caffeine (CAF; 0.9, CI 0.5-1.9) and PCT (1.3, CI 0.7-2.7) was not evident due to large 95 % confidence of their TMFs. This study provides the first evidence of drug bioaccumulation in the Arctic food web and indicates that behaviour of pharmaceuticals varies among target compounds.
Collapse
Affiliation(s)
- Adam Sokołowski
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Marlena Mordec
- University of Gdańsk, Faculty of Oceanography and Geography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- University of Gdańsk, Faculty of Chemistry, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | | | | | - Maria Włodarska-Kowalczuk
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Piotr Balazy
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Maciej Chełchowski
- Institute of Oceanology Polish Academy of Sciences, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Gilles Lepoint
- Université de Liège, UR FOCUS, Laboratory of Trophic and Isotope Ecology (LETIS), allée du six Août 11, 4000 Liège 1, Belgium
| |
Collapse
|
12
|
Zhang S, Luo X, Mai B. Multi-task machine learning models for simultaneous prediction of tissue-to-blood partition coefficients of chemicals in mammals. ENVIRONMENTAL RESEARCH 2024; 241:117603. [PMID: 37939805 DOI: 10.1016/j.envres.2023.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Tissue-to-blood partition coefficients (Ptb) are crucial for assessing the distribution of chemicals in organisms. Given the lack of experimental data and laborious nature of experimental methods, there is an urgent need to develop efficient predictive models. With the help of machine learning algorithms, i,e., random forest (RF), and artificial neural network (ANN), this study developed multi-task (MT) models that can simultaneously predict Ptb values for various mammalian tissues, including liver, muscle, brain, lung, and adipose. Single-task (ST) models using partial least squares regression, RF, and ANN algorithms for each endpoint were established for comparison. Overall, the performances of MT models were superior to those of ST models. The MT model using ANN algorithms showed the highest prediction accuracy with determination coefficients ranging from 0.704 to 0.886, root mean square errors between 0.223 and 0.410, and mean absolute errors ranging from 0.178 to 0.285 log units. Results showed that lipophilicity and polarizability of molecules significantly influence their partition behavior in organisms. Applicability domains (ADs) of the models were characterized by weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes. When constrained by ADs, the models displayed enhanced predictive accuracy, making them valuable tools for the risk assessment and management of chemicals.
Collapse
Affiliation(s)
- Shuying Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
13
|
Castaño-Ortiz JM, Gil-Solsona R, Ospina-Álvarez N, Alcaraz-Hernández JD, Farré M, León VM, Barceló D, Santos LHMLM, Rodríguez-Mozaz S. Fate of pharmaceuticals in the Ebro River Delta region: The combined evaluation of water, sediment, plastic litter, and biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167467. [PMID: 37778570 DOI: 10.1016/j.scitotenv.2023.167467] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The increasing consumption of pharmaceuticals, alongside their limited removal in wastewater treatment plants (WWTPs), have led to their ubiquitous occurrence in receiving aquatic environments. This study addresses the occurrence of 68 pharmaceuticals (PhACs) in the Ebro River Delta region (NE Spain), as well as their distribution in different environmental compartments, including surface water, sediments, biota (river biofilm and fish tissues), and field-collected plastic litter. In addition, their concentrations in serving WWTPs, as possible sources of environmental contamination, were also determined. Our study confirmed the widespread occurrence of PhACs in riverine and, to a more limited extent, coastal environments. Most frequently detected PhACs belonged to analgesics/anti-inflammatories (e.g., ibuprofen) and psychiatric drugs (e.g., venlafaxine) therapeutic groups, followed by antihypertensives (e.g., valsartan) and antibiotics (e.g., azithromycin). Seasonal differences in cumulative levels of PhACs were reported for water and sediments (winter>summer). Despite spatial gradients were not clear along the river, a non-negligible contribution of upstream Ebro sites (reference area) was highlighted, which was unexpected based on the low anthropogenic pressure. Sediments represented a minor attenuation pathway for the selected PhACs, whereas they were more heavily accumulated in biota: fish liver (up to 166 ng/g dw), river biofilms (up to 108 ng/g dw), fish plasma (up to 63 ng/mL), and fish muscle (up to 31 ng/g dw). These findings highlight the importance of biomonitoring in the characterization of polluted areas and prioritization of hazardous substances (e.g., psychiatric drugs) in aquatic systems, and a particular interest of fish plasma as non-destructive biomonitoring matrix. PhACs were also detected on plastic litter, demonstrating their role as environmental sinks for certain PhACs (e.g., analgesics/anti-inflammatories, psychiatric drugs). Overall, the widespread detection of PhACs in a variety of biotic and abiotic matrices from the lower Ebro River and Delta warns about their possible environmental implications.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Ospina-Álvarez
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Atlantic International Research Centre (AIR Centre), 9700-702 Angra do Heroísmo, Azores, Portugal
| | | | - M Farré
- IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Varadero 1, San Pedro del Pinatar, 30740 Murcia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
14
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Song Z, Li B, Chen L. Occurrence, Distribution, and Trophic Transfer of Pharmaceuticals and Personal Care Products in the Bohai Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21823-21834. [PMID: 38078887 DOI: 10.1021/acs.est.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihua Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
15
|
Jyoti D, Sinha R. Physiological impact of personal care product constituents on non-target aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167229. [PMID: 37741406 DOI: 10.1016/j.scitotenv.2023.167229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Personal care products (PCPs) are products used in cleaning, beautification, grooming, and personal hygiene. The rise in diversity, usage, and availability of PCPs has resulted in their higher accumulation in the environment. Thus, these constitute an emerging category of environmental contaminants due to the potential of its constituents (chemical and non-chemical) to induce various physiological effects even at lower concentrations (ng/L). For analyzing the impact of the PCPs constituents on the non-target organism about 300 article including research articles, review articles and guidelines were studied from 2000 to 2023. This review aims to firstly discuss the fate and accumulation of PCPs in the aquatic environment and organisms; secondly provides overview of environmental risks that are linked to PCPs; thirdly review the trends, current status of regulations and risks associated with PCPs and finally discuss the knowledge gaps and future perspectives for future research. The article discusses important constituents of PCPs such as antimicrobials, cleansing agents and disinfectants, fragrances, insect repellent, moisturizers, plasticizers, preservatives, surfactants, UV filters, and UV stabilizers. Each of them has been found to display certain toxic impact on the aquatic organisms especially the plasticizers and UV filters. These continuously and persistently release biologically active and inactive components which interferes with the physiological system of the non-target organism such as fish, corals, shrimps, bivalves, algae, etc. With a rise in the number of toxicity reports, concerns are being raised over the potential impacts of these contaminant on aquatic organism and humans. The rate of adoption of nanotechnology in PCPs is greater than the evaluation of the safety risk associated with the nano-additives. Hence, this review article presents the current state of knowledge on PCPs in aquatic ecosystems.
Collapse
Affiliation(s)
- Divya Jyoti
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Science, Solan, India
| | - Reshma Sinha
- Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, India.
| |
Collapse
|
16
|
Kim DH, Choi S, Park J, Kim K, Oh JE. Phenolic compounds in the freshwater environment in South Korea: Occurrence and tissue-specific distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166914. [PMID: 37689198 DOI: 10.1016/j.scitotenv.2023.166914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
In this study, we investigated the occurrence and distribution of phenolic compounds, including phenol, cresols, chlorophenols, nitrophenol, and bromophenols, in freshwater environments. We also focused on phenolic compounds in crucian carp (Carassius auratus) tissues, specifically the muscle, gills, brain, blood, liver, and gonads, to assess their potential bioaccumulation in fish and human health risks. Phenolic compounds were found to be widespread in various freshwater environments throughout South Korea. Phenol was predominant in all matrices, with median concentrations of 57.0 ng/L in freshwater, 54.3 ng/g dry weight (dw) in sediment, and ranging from 71 ng/g wet weight (ww) to 621 ng/g ww in crucian carp tissues. Cresols were the second most dominant compound, with m-cresol exhibiting the highest prevalence. Most of the compounds detected in crucian carp samples were also detected in freshwater and sediment, whereas pentachlorophenol and 2,4,6-tribromophenol were exclusively detected in crucian carp tissues. A high bioaccumulation potential in the liver was observed for most phenolic compounds [median log bioconcentration factor (BCF): 3.2-3.7]. Interestingly, only m-cresol showed high bioaccumulation potential in the gills (median log BCF: 3.1). The estimated daily intake of phenolic compounds suggested that it does not pose an immediate concern for human exposure owing to crucian carp consumption. These findings enhance our understanding of the exposure status, distribution, and bioaccumulation potency of phenolic compounds in aquatic ecosystems and emphasize the importance of ongoing monitoring and risk assessment efforts.
Collapse
Affiliation(s)
- Da-Hye Kim
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Sol Choi
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeyeon Park
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyungtae Kim
- Risk Assessment Division, National Institute of Environmental Research (NIER), Incheon 22689, Republic of Korea
| | - Jeong-Eun Oh
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea; Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
17
|
Shahi Khalaf Ansar B, Kavusi E, Dehghanian Z, Pandey J, Asgari Lajayer B, Price GW, Astatkie T. Removal of organic and inorganic contaminants from the air, soil, and water by algae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116538-116566. [PMID: 35680750 DOI: 10.1007/s11356-022-21283-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Rapid increases in human populations and development has led to a significant exploitation of natural resources around the world. On the other hand, humans have come to terms with the consequences of their past mistakes and started to address current and future resource utilization challenges. Today's primary challenge is figuring out and implementing eco-friendly, inexpensive, and innovative solutions for conservation issues such as environmental pollution, carbon neutrality, and manufacturing effluent/wastewater treatment, along with xenobiotic contamination of the natural ecosystem. One of the most promising approaches to reduce the environmental contamination load is the utilization of algae for bioremediation. Owing to their significant biosorption capacity to deactivate hazardous chemicals, macro-/microalgae are among the primary microorganisms that can be utilized for phytoremediation as a safe method for curtailing environmental pollution. In recent years, the use of algae to overcome environmental problems has advanced technologically, such as through synthetic biology and high-throughput phenomics, which is increasing the likelihood of attaining sustainability. As the research progresses, there is a promise for a greener future and the preservation of healthy ecosystems by using algae. They might act as a valuable tool in creating new products.
Collapse
Affiliation(s)
- Behnaz Shahi Khalaf Ansar
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Elaheh Kavusi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Janhvi Pandey
- Division of Agronomy and Soil Science, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, Uttar Pradesh, India
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Gordon W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
18
|
Yang W, Bao Y, Hao J, Hu X, Xu T, Yin D. Effects of carbamazepine on the central nervous system of zebrafish at human therapeutic plasma levels. iScience 2023; 26:107688. [PMID: 37701572 PMCID: PMC10494213 DOI: 10.1016/j.isci.2023.107688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023] Open
Abstract
The fish plasma model (FPM) facilitated the environmental risk assessment of human drugs by using existing data on human therapeutic plasma concentrations (HTPCs) and predicted fish plasma concentrations (FPCs). However, studies on carbamazepine (CMZ) with both the mode of action (MOA) based biological effects at molecular level (such as neurotransmitter and gene level) and measured FPCs are lacking. Bioconcentration of CMZ in adult zebrafish demonstrated that the FPM underestimated the bioconcentration factors (BCFs) in plasma at environmental CMZ exposure concentrations (1-100 μg/L). CMZ significantly increased Glu and GABA, decreased ACh and AChE as well as inhibited the transcription levels of gabra1, grin1b, grin2b, gad1b, and abat when the actual FPCs were in the ranges of 1/1000 HTPC to HTPC. It is the first read-across study of CMZ integrating MOA-based biological effects at molecular level and FPCs. This study facilitates model performance against a range of different drug classes.
Collapse
Affiliation(s)
- Weiwei Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifan Bao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiaoyang Hao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tinggi University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
19
|
Rojo MG, Cristos D, Carriquiriborde P. Bioconcentration of carbamazepine, enalapril, and sildenafil in neotropical fish species. FRONTIERS IN TOXICOLOGY 2023; 5:1247453. [PMID: 37854253 PMCID: PMC10579815 DOI: 10.3389/ftox.2023.1247453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Sewage effluents are the main source of entry of Human Pharmaceutical Active Ingredients (HPAIs) to surface water bodies. Carbamazepine (CBZ), psychiatric drug, enalapril (ENA) antihypertensive, and sildenafil (SIL), to treat erectile dysfunction, have been frequently detected in receiving wastewater and in wild fish species from Argentina. This study aimed to assess the bioconcentration of selected HPAIs in native fish species of the Del Plata Basin. In a first trial, the bioconcentration factors of CBZ, ENA, and SIL were obtained by exposing Cnesterodon decemmaculatus, respectively, to 135, 309, and 70 μg/L during 96 h. Then the bioconcentration kinetic of SIL was comparatively assessed in C. decemmaculatus and Piaractus mesopotamicus exposed, respectively, to 44.1 and 16.2 μg/L during a one-week, followed by a four-day depuration phase. HPAIs concentrations in water and tissue were measured by HPLC-MS after 0.22 μm filtration and direct injection or solid-liquid extraction, respectively. Bioconcentration factors obtained empirically (BCFe) for C. decemmaculatus were CBZ = 1.5, SIL = 1.4, and ENA = 0.007. Parameters estimated by the SIL bioconcentration kinetic model for C. decemmaculatus were: uptake rate constant (k1) = 5.5 L/kg d, elimination rate constant during uptake phase (k2u) = 0.00175 d-1, maximum predicted tissue concentration (Ct(max)) = 138588 μg/kg, estimated bioconcentration factor (BCFm) = 3143, lag time between the exposure and the first detection in tissue (tlag) = 0 d, elimination rate constant in the depuration phase (k2d) = 0.49 d-1 and half-life in the tissue (t1/2) = 1.4 d. The model parameters for P. mesopotamicus were k1: 7.3 L/kg d, k2u: 0.0836 d-1, Ct(max): 1423 μg/kg, BCFm: 88, tlag: 3.8 d in the uptake phase and k2d: 0.31 d-1 and t1/2: 2.3 d in the depuration phase. The reached conclusions were: 1) the bioconcentration capacity of CBZ and SIL are similar but around 200 times higher than ENA, 2) the time to reach the bioconcentration equilibrium for SIL is longer than 1 week, then estimated BCFm are between 1 and 3 orders of magnitude higher than BCFe obtained after 96 h exposure, but actual values need to be verified, 3) substantial differences (≈30 fold) were observed in the estimated BCF of SIL among species, indicating the need for further studies toward understanding such diversity to improve HPAIs ecological risk assessment worldwide.
Collapse
Affiliation(s)
- Macarena Gisele Rojo
- Centro de Investigaciones del Medio Ambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina
| | - Diego Cristos
- Centro de Investigaciones de Agroindustria, Instituto Nacional de Tecnología Agropecuaria, (CIA-INTA), Buenos Aires, Argentina
| | - Pedro Carriquiriborde
- Centro de Investigaciones del Medio Ambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Buenos Aires, Argentina
| |
Collapse
|
20
|
Hawkins C, Foster G, Glaberman S. Chemical prioritization of pharmaceuticals and personal care products in an urban tributary of the Potomac River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163514. [PMID: 37068687 DOI: 10.1016/j.scitotenv.2023.163514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are incredibly diverse in terms of chemical structures, physicochemical properties, and modes of action, making their environmental impacts challenging to assess. New chemical prioritization methodologies have emerged that compare contaminant monitoring concentrations to multiple toxicity data sources, including whole organism and high-throughput data, to develop a list of "high priority" chemicals requiring further study. We applied such an approach to assess PPCPs in Hunting Creek, an urban tributary of the Potomac River near Washington, DC, which has experienced extensive human population growth. We estimated potential risks of 99 PPCPs from surface water and sediment collected upstream and downstream of a major wastewater treatment plant (WWTP), nearby combined sewer overflows (CSO), and in the adjacent Potomac River. The greatest potential risks to the aquatic ecosystem occurred near WWTP and CSO outfalls, but risk levels rapidly dropped below thresholds of concern - established by previous chemical prioritization studies - in the Potomac mainstem. These results suggest that urban tributaries, rather than larger rivers, are important to monitor because their lower or intermittent flow may not adequately dilute contaminants of concern. Common psychotropics, such as fluoxetine and venlafaxine, presented the highest potential risks, with toxicity quotients often > 10 in surface water and > 1000 in sediment, indicating the need for further field studies. Several ubiquitous chemicals such as caffeine and carbamazepine also exceeded thresholds of concern throughout our study area and point to specific neurotoxic and endocrine modes of action that warrant further investigation. Since many "high priority" chemicals in our analysis have also triggered concerns in other areas around the world, better coordination is needed among environmental monitoring programs to improve global chemical prioritization efforts.
Collapse
Affiliation(s)
- Cheyenne Hawkins
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA
| | - Gregory Foster
- George Mason University, Department of Chemistry and Biochemistry, Fairfax, VA, USA
| | - Scott Glaberman
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA.
| |
Collapse
|
21
|
Castaño-Ortiz JM, Courant F, Gomez E, García-Pimentel MM, León VM, Campillo JA, Santos LHMLM, Barceló D, Rodríguez-Mozaz S. Combined exposure of the bivalve Mytilus galloprovincialis to polyethylene microplastics and two pharmaceuticals (citalopram and bezafibrate): Bioaccumulation and metabolomic studies. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131904. [PMID: 37356174 DOI: 10.1016/j.jhazmat.2023.131904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Pharmaceuticals and microplastics constitute potential hazards in aquatic systems, but their combined effects and underlying toxicity mechanisms remain largely unknown. In this study, a simultaneous characterization of bioaccumulation, associated metabolomic alterations and potential recovery mechanisms was performed. Specifically, a bioassay on Mediterranean mussels (Mytilus galloprovincialis) was carried out with polyethylene microplastics (PE-MPLs, 1 mg/L) and citalopram or bezafibrate (500 ng/L). Single and co-exposure scenarios lasted 21 days, followed by a 7-day depuration period to assess their potential recovery. PE-MPLs delayed the bioaccumulation of citalopram (lower mean at 10 d: 447 compared to 770 ng/g dw under single exposure), although reaching similar tissue concentrations after 21 d. A more limited accumulation of bezafibrate was observed overall, regardless of PE-MPLs co-exposure (<MQL-3.2 ng/g dw). Metabolic profiles showed a strong effect of pharmaceuticals, generally independent of PE-MPLs co-exposure. Alterations of the citrate cycle (bezafibrate exposure) and steroid and prostaglandin metabolism (citalopram and bezafibrate exposures) were highlighted. PE-MPLs alone also impacted metabolic pathways, such as neurotransmitters or purine metabolism. After depuration, relevant latent or long-lasting effects were demonstrated as, for instance, the effect of citalopram on neurotransmitters metabolism. Altogether, the observed molecular-level responses to pharmaceuticals and/or PE-MPLs may lead to a dysregulation of mussels' reproduction, energy metabolism, and/or immunity.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain.
| | - F Courant
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - E Gomez
- HydroSciences Montpellier, University of Montpellier, IRD, CNRS, Montpellier, France
| | - M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, C/Varadero 1, San Pedro del Pinatar, Murcia, Spain
| | - L H M L M Santos
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| | - D Barceló
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research (IDAEA-CSIC) Severo Ochoa Excellence Centre, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - S Rodríguez-Mozaz
- University of Girona, Girona, Spain; Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain
| |
Collapse
|
22
|
Wang Z, Wang W, Yang F. Species-specific bioaccumulation and risk prioritization of psychoactive substances in cultured fish. CHEMOSPHERE 2023; 325:138440. [PMID: 36934481 DOI: 10.1016/j.chemosphere.2023.138440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Psychoactive substances are becoming new concern in environmental research with their increasing applications and the potential threats to fishery production as these substances could alter the behavior of fish and consequently affect the yield and quality of cultured fish. In this study, the accumulation and risk of twenty psychoactive substances were investigated in five species of cultured fish in Eastern China. The results showed that the total concentrations of these twenty psychoactive substances ranged from 0.15 to 0.92 ng mL-1 in the plasma among the five species of cultured fish with an order of perch > crucian carp > bighead carp > grass carp > silver carp. Diazepam (DIAZ) and methamphetamine (MAMP) were identified as the most frequently detected compounds, which were found in 100% and 93% of the samples with a median concentration of 0.15 and 0.12 ng mL-1 in the plasma, respectively. Although all of the psychoactive substances posed low or negligible risk, species-specific analysis of risk prioritization revealed that alprazolam, MAMP, temazepam and DIAZ exhibited the greatest potentials of hazard to all species of the cultured fish but with a species-dependent variation. These findings suggest that the adverse effects of psychoactive substances on fishery production, especially on different species, should be considered.
Collapse
Affiliation(s)
- Zeyuan Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China
| | - Wei Wang
- Zhejiang Institute of Hydraulics and Estuary, Hangzhou, 310020, China
| | - Fangxing Yang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Natural Resources and Environmental Science, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
23
|
Hu T, Zhang J, Xu X, Wang X, Yang C, Song C, Wang S, Zhao S. Bioaccumulation and trophic transfer of antibiotics in the aquatic and terrestrial food webs of the Yellow River Delta. CHEMOSPHERE 2023; 323:138211. [PMID: 36828112 DOI: 10.1016/j.chemosphere.2023.138211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Antibiotic pollution caused by aquaculture industries is a common problem in the wetland of the Yellow River Delta (YRD). Aquatic and terrestrial food webs coexist and interact in wetlands. However, there are few comparative studies on antibiotics in these two food webs. This study investigated the occurrence, bioaccumulation, and trophic transfer of 19 antibiotics in the aquatic and terrestrial food webs of the YRD, and discussed the effects of physicochemical parameters in different food webs. The total concentrations of antibiotics in aquatic organisms and terrestrial organisms ranged from 11.61 to 63.08 ng/g dry weight (dw) and 4.21-9.11 ng/g dw, respectively. BAF (bioaccumulation factor), BSAFa (biota sediment accumulation factor), and BSAFt (biota soil accumulation factor) were used to explore the bioaccumulation capacity of antibiotics. The calculation results of these three factors showed that fluoroquinolones (FQs) had the highest bioaccumulation capacity. As for the trophic transfer, the total concentrations of antibiotics were biodiluted in the aquatic food web while biomagnified in the terrestrial food web. Physicochemical parameters of the antibiotics showed that log Kow (octanol-water partition coefficient)/log Dow (pH-dependent distribution coefficient) and log Koa (octanol-air partition coefficient) were good predictors for antibiotic bioaccumulation in the aquatic and terrestrial organisms of the YRD, respectively. In addition, the increasing log Dow and log Koa led to a rise of TMF (trophic magnification factor) in the aquatic food web while a decrease of TMF in the terrestrial food web. Overall, these results provide insights into the mechanisms on bioaccumulation and trophic transfer of antibiotics in different food webs.
Collapse
Affiliation(s)
- Tao Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jiachao Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xueyan Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaoli Wang
- Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Changzhi Yang
- Shandong Yellow River Delta National Nature Reserve Administration Committee, Dongying, 257091, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
24
|
Salahinejad A, Meuthen D, Attaran A, Chivers DP, Ferrari MCO. Effects of common antiepileptic drugs on teleost fishes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161324. [PMID: 36608821 DOI: 10.1016/j.scitotenv.2022.161324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Antiepileptic drugs (AEDs) are globally prescribed to treat epilepsy and many other psychiatric disorders in humans. Their high consumption, low metabolic rate in the human body and low efficiency of wastewater treatment plants (WWTPs) in eliminating these chemicals results in the frequent occurrence of these pharmaceutical drugs in aquatic systems. Therefore, aquatic organisms, including ecologically and economically important teleost fishes, may be inadvertently exposed to these chemicals. Due to their physiological similarity with humans, fishes may be particularly vulnerable to AEDs. Almost all AED drugs are detectable in natural aquatic ecosystems, but diazepam (DZP) and carbamazepine (CBZ) are among the most widely detected AEDs to date. Recent studies suggest that these drugs have a substantial capacity to induce neurotoxicity and behavioral abnormality in fishes. Here we review the current state of knowledge regarding the potential mode of action of DZP and CBZ as well as that of some other AEDs on teleosts and put observable behavioral effects into a mechanistic context. We find that following their intended mode of action in humans, AEDs also disrupt the GABAergic, glutamatergic and serotonergic systems as well as parasympathetic neurotransmitters in fishes. Moreover, AEDs have non-specific modes of action in teleosts ranging from estrogenic activity to oxidative stress. These physiological changes are often accompanied by dose-dependent disruptions of anxiety, locomotor activity, social behaviors, food uptake, and learning and memory, but DZP and CBZ consistently induced anxiolytic effects. Thereby, AED exposure severely compromises individual fitness across teleost fish species, which may lead to population and ecosystem impairment. We also showcase promising avenues for future research by highlighting where we lack data when it comes to effects of certain AEDs, AED concentrations and behavioral endpoints.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada.
| | - Denis Meuthen
- Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Anoosha Attaran
- Robart Research Institute, The University of Western Ontario, London, ON N6A5K8, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
25
|
Nozaki K, Tanoue R, Kunisue T, Tue NM, Fujii S, Sudo N, Isobe T, Nakayama K, Sudaryanto A, Subramanian A, Bulbule KA, Parthasarathy P, Tuyen LH, Viet PH, Kondo M, Tanabe S, Nomiyama K. Pharmaceuticals and personal care products (PPCPs) in surface water and fish from three Asian countries: Species-specific bioaccumulation and potential ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161258. [PMID: 36587684 DOI: 10.1016/j.scitotenv.2022.161258] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
In Asian developing countries, undeveloped and ineffective sewer systems are causing surface water pollution by a lot of contaminants, especially pharmaceuticals and personal care products (PPCPs). Therefore, the risks for freshwater fauna need to be assessed. The present study aimed at: i) elucidating the contamination status; ii) evaluating the bioaccumulation; and iii) assessing the potential risks of PPCP residues in surface water and freshwater fish from three Asian countries. We measured 43 PPCPs in the plasma of several fish species as well as ambient water samples collected from India (Chennai and Bengaluru), Indonesia (Jakarta and Tangerang), and Vietnam (Hanoi and Hoa Binh). In addition, the validity of the existing fish blood-water partitioning model based solely on the lipophilicity of chemicals is assessed for ionizable and readily metabolizable PPCPs. When comparing bioaccumulation factors calculated from the PPCP concentrations measured in the fish and water (BAFmeasured) with bioconcentration factors predicted from their pH-dependent octanol-water partition coefficient (BCFpredicted), close values (within an order of magnitude) were observed for 58-91 % of the detected compounds. Nevertheless, up to 110 times higher plasma BAFmeasured than the BCFpredicted were found for the antihistamine chlorpheniramine in tilapia but not in other fish species. The plasma BAFmeasured values of the compound were significantly different in the three fish species (tilapia > carp > catfish), possibly due to species-specific differences in toxicokinetics (e.g., plasma protein binding and hepatic metabolism). Results of potential risk evaluation based on the PPCP concentrations measured in the fish plasma suggested that chlorpheniramine, triclosan, haloperidol, triclocarban, diclofenac, and diphenhydramine can pose potential adverse effects on wild fish. Results of potential risk evaluation based on the PPCP concentrations measured in the surface water indicated high ecological risks of carbamazepine, sulfamethoxazole, erythromycin, and triclosan on Asian freshwater ecosystems.
Collapse
Affiliation(s)
- Kazusa Nozaki
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan; Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Sadahiko Fujii
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Nao Sudo
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Tomohiko Isobe
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305 8506, Japan
| | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency (BRIN), Building 820, Puspiptek Serpong, South Tangerang, Banten, Indonesia
| | - Annamalai Subramanian
- Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Keshav A Bulbule
- KLE Society's S. Nijalingappa College, 2nd Block, Rajajinagar, Bangaluru 560 010, India
| | - Peethambaram Parthasarathy
- E-Parisaraa Pvt. Ltd., Plot No. 30-P3, Karnataka Industrial Area Development Board, Dobaspet Industrial Area, Bengaluru 562 111, India
| | - Le Huu Tuyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Pham Hung Viet
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi 11400, Viet Nam
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Yamaguchi 759 6595, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790 8577, Japan
| |
Collapse
|
26
|
Jin L, Wang Q, Yan M, Gu J, Zhang K, Lam PKS, Ruan Y. Enantiospecific Uptake and Depuration Kinetics of Chiral Metoprolol and Venlafaxine in Marine Medaka ( Oryzias melastigma): Tissue Distribution and Metabolite Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4471-4480. [PMID: 36877486 DOI: 10.1021/acs.est.2c08379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing use of chiral pharmaceuticals has led to their widespread presence in the environment. However, their toxicokinetics have rarely been reported. Therefore, the tissue-specific uptake and depuration kinetics of two pairs of pharmaceutical enantiomers, S-(-)-metoprolol versus R-(+)-metoprolol and S-(+)-venlafaxine versus R-(-)-venlafaxine, were studied in marine medaka (Oryzias melastigma) during a 28-day exposure and 14-day clearance period. The toxicokinetics of the studied pharmaceuticals, including uptake and depuration rate constants, depuration half-life (t1/2), and bioconcentration factor (BCF), were reported for the first time. The whole-fish results demonstrated a higher S- than R-venlafaxine bioaccumulation potential, whereas no significant difference was observed between S- and R-metoprolol. O-desmethyl-metoprolol (ODM) and α-hydroxy-metoprolol (AHM) were the main metoprolol metabolites identified by suspect screening, and the ratios of ODM to AHM were 3.08 and 1.35 for S- and R-metoprolol, respectively. N,O-Didesmethyl-venlafaxine (NODDV) and N-desmethyl-venlafaxine (NDV) were the main venlafaxine metabolites, and the ratios of NODDV to NDV were 1.55 and 0.73 for S- and R-venlafaxine, respectively. The highest tissue-specific BCFs of the four enantiomers were all found in the eyes, meriting in-depth investigation.
Collapse
Affiliation(s)
- Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Jiarui Gu
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa 999078, Macao SAR, China
| | - Paul K S Lam
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon 999077, Hong Kong SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| |
Collapse
|
27
|
Duarte IA, Reis-Santos P, Fick J, Cabral HN, Duarte B, Fonseca VF. Neuroactive pharmaceuticals in estuaries: Occurrence and tissue-specific bioaccumulation in multiple fish species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120531. [PMID: 36397612 DOI: 10.1016/j.envpol.2022.120531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Contamination of surface waters by pharmaceuticals is an emerging problem globally. This is because the increased access and use of pharmaceuticals by a growing world population lead to environmental contamination, threatening non-target species in their natural environment. Of particular concern are neuroactive pharmaceuticals, which are known to bioaccumulate in fish and impact a variety of individual processes such as fish reproduction or behaviour, which can have ecological impacts and compromise fish populations. In this work, we investigate the occurrence and bioaccumulation of 33 neuroactive pharmaceuticals in brain, muscle and liver tissues of multiple fish species collected in four different estuaries (Douro, Tejo, Sado and Mira). In total, 28 neuroactive pharmaceuticals were detected in water and 13 in fish tissues, with individual pharmaceuticals reaching maximum concentrations of 1590 ng/L and 207 ng/g ww, respectively. The neuroactive pharmaceuticals with the highest levels and highest frequency of detection in the water samples were psychostimulants, antidepressants, opioids and anxiolytics, whereas in fish tissues, antiepileptics, psychostimulants, anxiolytics and antidepressants showed highest concentrations. Bioaccumulation was ubiquitous, occurring in all seven estuarine and marine fish species. Notably, neuroactive compounds were detected in every water and fish brain samples, and in 95% of fish liver and muscle tissues. Despite variations in pharmaceutical occurrence among estuaries, bioaccumulation patterns were consistent among estuarine systems, with generally higher bioaccumulation in fish brain followed by liver and muscle. Moreover, no link between bioaccumulation and compounds' lipophilicity, species habitat use patterns or trophic levels was observed. Overall, this work highlights the occurrence of a highly diverse suite of neuroactive pharmaceuticals and their pervasiveness in waters and fish from estuarine systems with contrasting hydromorphology and urban development and emphasizes the urgent need for toxicity assessment of these compounds in natural ecosystems, linked to internalized body concentration in non-target species.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| | - Patrick Reis-Santos
- Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Bernardo Duarte
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
28
|
Shen QC, Wang DD, Qu YY, Zhang J, Zhang XQ. Occurrence, transport and environmental risk assessment of pharmaceuticals and personal care products (PPCPs) at the mouth of Jiaozhou Bay, China based on stir bar sorptive extraction. MARINE POLLUTION BULLETIN 2022; 184:114130. [PMID: 36137439 DOI: 10.1016/j.marpolbul.2022.114130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
In recent years, research on pharmaceuticals and personal care products (PPCPs) in the marine environment has attracted increasing attention worldwide. However, more work is needed to improve PPCPs detection methods, specifically for seawater environments. An analytical method based on stir bar sorptive extraction (SBSE) had been developed and fully optimized for the pretreatment and detection of ten widely used PPCPs that are commonly found in seawater samples. By optimizing several variables including the material of the stir bars, extraction temperature, extraction time, ionic strength, desorption solvent, and desorption time, the optimized method has achieved excellent results in the detection and quantification of target PPCPs with detection limits ranging from 0.03 to 1 ng/L. The distribution of target PPCPs at the mouth of Jiaozhou Bay was successfully determined by this method, and the concentrations and detection frequencies of PPCPs varied greatly from N.D. to 449.36 ng/L and from 9.1 % to 100 %, respectively. Moreover, the distributions of PPCPs were explained by the Lagrangian particle-tracking model, and the results showed that the Tuandao sewage treatment plant had the most significant impact on the study area. The environmental risk assessment results showed that several target PPCPs might pose risks to aquatic organisms. In particular, triclocarban should receive more attention and the risk quotients of the mixtures (MRQ) should not be ignored.
Collapse
Affiliation(s)
- Qiu-Cen Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Dan-Dan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yu-Ying Qu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.
| | - Xue-Qing Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
29
|
Wang H, Dong F, Zhao Y, Fu S, Zhao H, Liu S, Zhang W, Hu F. Exposure to diclofenac alters thyroid hormone levels and transcription of genes involved in the hypothalamic-pituitary-thyroid axis in zebrafish embryos/larvae. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109335. [PMID: 35351617 DOI: 10.1016/j.cbpc.2022.109335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Diclofenac (DCF), one of typical non-steroidal anti-inflammatory drugs (NSAIDs), has been frequently detected in various environmental media. Nevertheless,the potential endocrine disrupting effects of DCF on fish were poorly understood. In the present study, zebrafish embryos/larvae were used as a model to evaluate the adverse effects of DCF on development and thyroid system. The results demonstrated that DCF only significantly decreased the heart rate at 72 h post-fertilization (hpf), exhibiting limited influence on the embryonic development of zebrafish. Treatment with DCF significantly reduced whole-body thyroxine (T4) levels, and changed transcriptional levels of several genes related to the hypothalamic-pituitary-thyroid (HPT) axis. These findings provide important information regarding to the mechanisms of DCF-induced developmental toxicity and thyroid disruption in fish.
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shirong Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haocheng Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shangshu Liu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
30
|
Wang J, Nolte TM, Owen SF, Beaudouin R, Hendriks AJ, Ragas AM. A Generalized Physiologically Based Kinetic Model for Fish for Environmental Risk Assessment of Pharmaceuticals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6500-6510. [PMID: 35472258 PMCID: PMC9118555 DOI: 10.1021/acs.est.1c08068] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An increasing number of pharmaceuticals found in the environment potentially impose adverse effects on organisms such as fish. Physiologically based kinetic (PBK) models are essential risk assessment tools, allowing a mechanistic approach to understanding chemical effects within organisms. However, fish PBK models have been restricted to a few species, limiting the overall applicability given the countless species. Moreover, many pharmaceuticals are ionizable, and fish PBK models accounting for ionization are rare. Here, we developed a generalized PBK model, estimating required parameters as functions of fish and chemical properties. We assessed the model performance for five pharmaceuticals (covering neutral and ionic structures). With biotransformation half-lives (HLs) from EPI Suite, 73 and 41% of the time-course estimations were within a 10-fold and a 3-fold difference from measurements, respectively. The performance improved using experimental biotransformation HLs (87 and 59%, respectively). Estimations for ionizable substances were more accurate than any of the existing species-specific PBK models. The present study is the first to develop a generalized fish PBK model focusing on mechanism-based parameterization and explicitly accounting for ionization. Our generalized model facilitates its application across chemicals and species, improving efficiency for environmental risk assessment and supporting an animal-free toxicity testing paradigm.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Tom M. Nolte
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Stewart F. Owen
- AstraZeneca,
Global Sustainability, Macclesfield, Cheshire SK10 2NA, United Kingdom
| | - Rémy Beaudouin
- Institut
national de l’environnement industriel et des risques (INERIS), Verneuil-en-Halatte 60550, France
| | - A. Jan Hendriks
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
| | - Ad M.J. Ragas
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences, Radboud University, Nijmegen 6500 GL, The Netherlands
- Department
of Environmental Sciences, Faculty of Science, Open University, Heerlen 6419 AT, The Netherlands
| |
Collapse
|
31
|
Environmental Occurrence and Predicted Pharmacological Risk to Freshwater Fish of over 200 Neuroactive Pharmaceuticals in Widespread Use. TOXICS 2022; 10:toxics10050233. [PMID: 35622646 PMCID: PMC9143194 DOI: 10.3390/toxics10050233] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022]
Abstract
There is a growing concern that neuroactive chemicals released into the environment can perturb wildlife behaviour. Among these chemicals, pharmaceuticals such as antidepressants and anxiolytics have been receiving increasing attention, as they are specifically prescribed to modify behavioural responses. Many laboratory studies have demonstrated that some of these compounds can affect various aspects of the behaviour of a range of aquatic organisms; however, these investigations are focused on a very small set of neuroactive pharmaceuticals, and they often consider one compound at a time. In this study, to better understand the environmental and toxicological dimension of the problem, we considered all pharmaceuticals explicitly intended to modulate the central nervous system (CNS), and we hypothesised that these compounds have higher probability of perturbing animal behaviour. Based on this hypothesis, we used the classification of pharmaceuticals provided by the British National Formulary (based on their clinical applications) and identified 210 different CNS-acting pharmaceuticals prescribed in the UK to treat a variety of CNS-related conditions, including mental health and sleep disorders, dementia, epilepsy, nausea, and pain. The analysis of existing databases revealed that 84 of these compounds were already detected in surface waters worldwide. Using a biological read-across approach based on the extrapolation of clinical data, we predicted that the concentration of 32 of these neuroactive pharmaceuticals in surface waters in England may be high enough to elicit pharmacological effects in wild fish. The ecotoxicological effects of the vast majority of these compounds are currently uncharacterised. Overall, these results highlight the importance of addressing this environmental challenge from a mixture toxicology and systems perspective. The knowledge platform developed in the present study can guide future region-specific prioritisation efforts, inform the design of mixture studies, and foster interdisciplinary efforts aimed at identifying novel approaches to predict and interpret the ecological implications of chemical-induced behaviour disruption.
Collapse
|
32
|
Tang D, Chen X, Yan J, Xiong Z, Lou X, Ye C, Chen J, Qiu T. Facile one-pot synthesis of a BiOBr/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity for tetracycline degradation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Lu S, Wang B, Xin M, Wang J, Gu X, Lian M, Li Y, Lin C, Ouyang W, Liu X, He M. Insights into the spatiotemporal occurrence and mixture risk assessment of household and personal care products in the waters from rivers to Laizhou Bay, southern Bohai Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152290. [PMID: 34902407 DOI: 10.1016/j.scitotenv.2021.152290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/21/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Household and personal care products (HPCPs) are a kind of contaminants closely related to daily life, capturing worldwide concern. To our knowledge, this is the first attempt focusing on the spatiotemporal occurrence and mixture risk of HPCPs in the waters from rivers to Laizhou Bay. Nine HPCPs were quantitated in 216 water samples gathered from Laizhou Bay and its adjacent rivers in 2018, 2019, and 2021 to reveal the spatiotemporal occurrence and mixture ecological risks in Laizhou Bay. Eight HPCPs were detected with detection frequencies ranging from 74% to 100%. The total concentrations were in the ranges 105-721 ng L-1 in river water and 51.3-332 ng L-1 in seawater. The HPCPs were dominated by p-hydroxybenzoic and triclosan, which together contributed over 75% of the total HPCPs. The average level of the total HPCP concentration in the summer of 2018 (96.1 ng L-1) was slightly exceed that in the spring of 2019 (91.6 ng L-1), which is associated with the higher usage of HPCPs and enhanced tourism during summer. However, the highest total concentrations were found in spring of 2021 (124 ng L-1 in average), which was attribute to a higher level of methylparaben, a predominant paraben used as preservatives in commercial pharmaceuticals of China. Influenced by riverine inputs and ocean currents, higher HPCP concentrations in Laizhou Bay were found nearby the estuary of Yellow River and the southern part of the bay. Triclosan should be given constant concern considering its medium to high risks (RQ > 0.1) in nearly 80% of the water samples. The cumulative risk assessment in two approaches revealed that HPCP mixtures generally elicit medium or high risk to three main aquatic taxa. Considering the worldwide outbreak of COVID-19, the levels and risks of multiple HPCPs in natural waters requires constant attention in future studies.
Collapse
Affiliation(s)
- Shuang Lu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baodong Wang
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jing Wang
- College of Water Science, Beijing Normal University, Beijing 100875, China.
| | - Xiang Gu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yun Li
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Xitao Liu
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
34
|
Duan Y, Zhou W, Shao H, Zhang Z, Shi W, Xu G. Electron beam induced degradation of indomethacin in aqueous solution: kinetics, degradation mechanism, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19283-19294. [PMID: 34716550 DOI: 10.1007/s11356-021-16348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical compounds were emerging contaminants, and the accumulation of pharmaceutical compounds in the environment increased the risk to humans and ecosystems. In this study, electron beam irradiation was applied to degrade indomethacin (IDM) in aqueous solution. IDM degradation followed pseudo-first-order kinetics and 300 μM IDM could be completely degraded at only 2 kGy. According to the quenching experiment, the dose constant ratios of oxidative radicals (•OH) and reductive radicals (e-aq and •H) could be calculated as k•OH: ke aq and •H=4.79:1. As the concentration of H2O2 increased from 0 to 10 mM, the dose constant increased from 1.883 to 2.582 kGy-1. However, degradation effect would be restrained in the existence of NO-3, NO-2, CO2-3, HCO-3, SO2-, and humic acid due to their competition for the active species. Theoretical calculation revealed the radical attacking sites of IDM molecule and the most probable pathways were proposed with identification of intermediates. The attack of •OH mainly resulted in the cleavage of amide bond, indole ring opening, demethoxylation, and •OH addition. Dechlorination and the reduction of the carbonyl group occurred on IDM molecular through the reduction of e-aq and •H. The intermediates could continue to be degraded to small molecule acid, such as formic acid, acetic acid, and oxalic acid. Furthermore, highly toxic IDM transformed into less toxic products during the irradiation process.
Collapse
Affiliation(s)
- Yu Duan
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wei Zhou
- Baowu Water Technology Co., Ltd., 550 Keshan Road, Shanghai, 201999, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Zhibo Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Wenyan Shi
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai, 200444, PR China.
| |
Collapse
|
35
|
Świacka K, Maculewicz J, Kowalska D, Caban M, Smolarz K, Świeżak J. Presence of pharmaceuticals and their metabolites in wild-living aquatic organisms - Current state of knowledge. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127350. [PMID: 34607031 DOI: 10.1016/j.jhazmat.2021.127350] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
In the last decades an increasing number of studies has been published concerning contamination of aquatic ecosystems with pharmaceuticals. Yet, the distribution of these chemical compounds in aquatic environments raises many questions and uncertainties. Data on the presence of selected pharmaceuticals in the same water bodies varies significantly between different studies. Therefore, since early 1990 s, wild organisms have been used in research on environmental contamination with pharmaceuticals. Indeed, pharmaceutical levels measured in biological matrices may better reflect their overall presence in the aquatic environments as such levels include not only direct exposure of a given organisms to a specific pollutant but also processes such as bioaccumulation and biomagnification. In the present paper, data concerning occurrence of pharmaceuticals in aquatic biota was reviewed. So far, pharmaceuticals have been studied mainly in fish and molluscs, with only a few papers available on crustaceans and macroalgae. The most commonly found pharmaceuticals both in freshwater and marine organisms are antibiotics, antidepressants and NSAIDS while there is no information about the presence of anticancer drugs in aquatic organisms. Furthermore, only single studies were conducted in Africa and Australia. Hence, systematization of up-to-date knowledge, the main aim of this review, is needed for further research targeting.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Dorota Kowalska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Justyna Świeżak
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
36
|
Goswami P, Guruge KS, Tanoue R, Tamamura YA, Jinadasa KBSN, Nomiyama K, Kunisue T, Tanabe S. Occurrence of Pharmaceutically Active Compounds and Potential Ecological Risks in Wastewater from Hospitals and Receiving Waters in Sri Lanka. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:298-311. [PMID: 34529856 DOI: 10.1002/etc.5212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The presence of pharmaceutically active compounds (PACs) in the environment and their associated hazards is a major global health concern; however, data on these compounds are scarce in developing nations. In the present study, the existence of 39 non-antimicrobial PACs and six of their metabolites in wastewater from hospitals and adjacent surface waters in Sri Lanka was investigated from 2016 to 2018. The highest amounts of the measured chemicals, including the highest concentrations of atorvastatin (14,620 ng/L) and two metabolites, mefenamic acid (12,120 ng/L) and o-desmethyl tramadol (8700 ng/L), were detected in wastewater from the largest facility. Mefenamic acid, gemfibrozil, losartan, cetirizine, carbamazepine, and phenytoin were detected in all the samples. The removal rates in wastewater treatment were 100% for zolpidem, norsertaline, quetiapine, chlorpromazine, and alprazolam. There was substantial variation in removal rates of PACs among facilities, and the overall data suggest that treatment processes in facilities were ineffective and that some PAC concentrations in the effluents were increased. The estimated risk quotients revealed that 14 PACs detected in water samples could pose low to high ecological risk to various aquatic organisms. Compounds such as ibuprofen, tramadol, and chlorpromazine detected in untreated and treated wastewater at these facilities pose a high risk to several aquatic organisms. Our study provides novel monitoring data for non-antimicrobial PAC abundance and the associated potential ecological risk related to hospitals and urban surface waters in Sri Lanka and further offers valuable information on pre-COVID-19 era PAC distribution in the country. Environ Toxicol Chem 2022;41:298-311. © 2021 SETAC.
Collapse
Affiliation(s)
- Prasun Goswami
- Atal Centre for Ocean Science and Technology for Islands, ESSO-National Institute of Ocean Technology, Dollygunj, Port Blair, Andaman and Nicobar Islands, India
| | - Keerthi S Guruge
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
- National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Rumi Tanoue
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Yukino A Tamamura
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - K B S N Jinadasa
- Department of Civil Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
37
|
Gould SL, Winter MJ, Norton WHJ, Tyler CR. The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16299-16312. [PMID: 34856105 DOI: 10.1021/acs.est.1c04724] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.
Collapse
Affiliation(s)
- Sophie L Gould
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| |
Collapse
|
38
|
Sharma P, Hanigan D. Evidence of low levels of trace organic contaminants in terminal lakes. CHEMOSPHERE 2021; 285:131408. [PMID: 34242983 DOI: 10.1016/j.chemosphere.2021.131408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Endorheic lakes (or terminal lakes, TLs) have no natural outlet other than evaporation and slow infiltration. Some TLs receive reclaimed wastewater which contains poorly removed trace organic contaminants (TrOCs). To determine if TLs accumulate TrOCs we conducted a preliminary assessment of the occurrence of ten TrOCs in three TLs receiving reclaimed wastewater and one TL which does not directly receive reclaimed wastewater. Five of ten TrOCs (carbamazepine, DEET, fluoxetine, primidone, and trimethoprim) were present in all four TLs' surface waters (~0.3-1109 ng/L), six (caffeine, carbamazepine, DEET, diphenhydramine, primidone, and trimethoprim) were present in sediment samples (0.1-77 ng/gDW) and in soil samples (0.1-137 ng/gDW). Concentrations of caffeine, carbamazepine, diphenhydramine, fluoxetine and meprobamate were significantly higher in TLs receiving wastewater from a secondary treatment plant compared to those TLs which received tertiary treated wastewater. Carbamazepine, fluoxetine, sulfamethoxazole, and trimethoprim were present at concentrations greater than is typical of other U.S. freshwater lakes, but other TrOC concentrations were present at lower concentrations than in other freshwater lakes. We conclude that some TrOCs may accumulate in TLs, but to a lesser extent than would be expected based on the accumulation of dissolved constituents alone, which indicates that there are other unidentified processes in TLs that contribute to TrOC losses. Other TLs across the globe may have similar levels of TrOCs due to anthropogenic influence and treated wastewater inputs.
Collapse
Affiliation(s)
- Priyamvada Sharma
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, 89557-0258, USA.
| |
Collapse
|
39
|
Wang W, Cho HS, Kim K, Park K, Oh JE. Tissue-specific distribution and bioaccumulation of cyclic and linear siloxanes in South Korean crucian carp (carassius carassius). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117789. [PMID: 34274646 DOI: 10.1016/j.envpol.2021.117789] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and distribution of cyclic and linear siloxanes were investigated in South Korean river water and sediment, with a special focus on crucian carp tissues, to evaluate the residual status and potential bioaccumulation of siloxanes. The total siloxanes median concentrations observed in this study were 1495 ng/L in river water, 39.2 ng/g-dry weight [dw] in sediment, and 41.7 ng/g-wet weight [ww] in crucian carp muscle. Cyclic siloxanes (D3-D6) were predominant in all matrices, and D5 (mean: > 81%) was more abundant in biota tissues than in river water (30%) and sediment (26%) samples. Specifically, positive correlations between D5 concentrations and crucian carp sizes (p < 0.01, Spearman) as well as the relatively high estimated biota-sediment accumulation factor value of D5 (D5: 2.31), suggest the high bioaccumulative property of D5 in biota. However, no bioaccumulation potentials were observed for D3, D4, D6, and L3-L17 in this field-scale study. The distributions of major linear siloxanes (L7-L14) in crucian carp gills (17%) and gonads (21%) were higher than in other tissues (brain, 9.6%; liver, 2.6%; muscle, 1.5%). Moreover, relatively high tissue/plasma ratios were observed for linear siloxanes (L7-L10: 1.79-2.12) compared to cyclic siloxanes (D4-D6: 0.829-1.18) (p < 0.01, Mann Whitney U test), which indicated the higher transportability of linear siloxanes to fish tissues than cyclic siloxanes.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences, Chonnam National University, Yeosu, 61186, Republic of Korea
| | - Kyungtae Kim
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Kyunghwa Park
- National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
40
|
Balakrishnan P, Mohan S. Treatment of triclosan through enhanced microbial biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126430. [PMID: 34252677 DOI: 10.1016/j.jhazmat.2021.126430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is extensively used in healthcare and personal care products as an antibacterial agent. Due to the persistent and toxic nature of TCS, it is not completely degraded in the biological wastewater treatment process. In this research work, identification of TCS degrading bacteria from municipal wastewater sludge and applying the same as bioaugmentation treatment for wastewater have been reported. Based on the 16S rRNA analysis of wastewater sludge, it was found that Providencia rettgeri MB-IIT strain was active and able to grow in higher TCS concentration. The identified bacterial strain was able to use TCS as carbon and energy source for its growth. The biodegradation experiment was optimized for the operational parameters viz. pH (5-10), inoculum size (1-5% (v/v)) and different initial concentration (2, 5, and 10 mg/L) of TCS. During the TCS degradation process, manganese peroxidase (MnP) and laccase (LAC) enzyme activity and specific growth rate of P. rettgeri strain were maximum at pH=7% and 2% (v/v) inoculum size, resulting in 98% of TCS removal efficiency. A total of six intermediate products were identified from the Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analysis, and the two mechanisms responsible for the degradation of TCS have been elucidated. The study highlights that P. rettgeri MB-IIT strain could be advantageously used to degrade triclosan present in the wastewater.
Collapse
Affiliation(s)
- P Balakrishnan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| | - S Mohan
- Environmental and Water Resources Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India.
| |
Collapse
|
41
|
Ren B, Geng J, Wang Y, Wang P. Emission and ecological risk of pharmaceuticals and personal care products affected by tourism in Sanya City, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3083-3097. [PMID: 33502681 DOI: 10.1007/s10653-021-00828-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
In recent years, concern around the impact of pharmaceuticals and personal care products (PPCPs) on the environment has grown. In order to investigate the influence of tourists on emissions and ecological risk of PPCPs, the concentrations of thirty PPCPs were measured in influent and effluent from the four largest wastewater treatment plants, as well as surface river water at six sites in a famous tourist city (Sanya City, China). Substantial increasing trends on PPCPs levels were observed from low to high tourist season (ng/L to µg/L, or µg/L to mg/L). Caffeine (CAF) was dominant with concentrations as high as 185 µg/L. Emission load per capita was estimated to explore the contribution of different populations. Tourist migrant population might be a dominant contributor, as they were mostly elderly people who took long-term medication. The predicted no-effect concentration was derived using the species sensitivity distribution method to calculate the ecological risk quotient (RQ) of the dominant PPCPs. Additionally, RQs of seven dominant PPCPs in rivers were > 1, indicating high chronic ecological risk for freshwater ecosystems. The results of this study will assist in raising the awareness and improving management of emerging pollutants in less industrialized regions.
Collapse
Affiliation(s)
- Bingnan Ren
- Zhai Mingguo Academician Workstation, University of Sanya, Hainan, 572000, China
- School of Health Industry Management, University of Sanya, Hainan, 572000, China
| | - Jing Geng
- Zhai Mingguo Academician Workstation, University of Sanya, Hainan, 572000, China
| | - Yu Wang
- Environmental Science Research and Design Institute of Taizhou City, Zhejiang, 318000, China
| | - Pei Wang
- Key Laboratory of the Ministry of Education for Coastal Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Fujian, 361102, China.
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
42
|
Vimalkumar K, Nikhil NP, Arun E, Mayilsamy M, Babu-Rajendran R. Synthetic musks in surface water and fish from the rivers in India: Seasonal distribution and toxicological risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125558. [PMID: 34030411 DOI: 10.1016/j.jhazmat.2021.125558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/31/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Synthetic musks (SMs), a class of organic compounds added to various personal care products (PCPs) to enhance aroma, are increasingly released into the environment and become one emerging contaminants of concern in India. Some SMs like Galaxolide, Tonalide and Musk Ketone (MK) are lipophilic and found ubiquitously in the environment, posing health and ecological risks, especially affecting aquatic organisms. Hence, monitoring the synthetic musks contamination in these rivers become environmentally inevitable. Consequently, three major rivers, the Kaveri (Cauvery), Vellar and Thamirabarani Rivers in Tamil Nadu, India, were investigated to understand the occurrence and fate of SMs. The concentration of Galaxolide, Tonalide and MK in surface water ranged as not detected (ND)-198, ND-77 and ND-62 ng/L, respectively. The levels of SMs in the Kaveri River were comparable with Vellar and Thamirabarani Rivers; however, the detection frequency was low in Thamirabarani river. Fish samples from the Kaveri river had higher concentrations of SMs (galaxolide 36-350 ng/g > MK 2-33 ng/g > Tonalide 1-9 ng/g ww (wet weight)) than in the Vellar River. Based on Hazard Quotient, SMs pose no risks to freshwater systems and the resident organisms in this study. In India, the dry season starts from March to July (35-42 °C) and wet season starts from November to February (25-35 °C). Bioconcentration factor (BCF) values for Galaxolide were found higher during the wet season and lower during the dry season, whereas it is reverse for Tonalide. Among fish Gebilion catla may be a good indicator species for SMs, despite the seasons, it accumulates more. This is the first study of SMs in surface water and fish from the rivers in India.
Collapse
Affiliation(s)
- Krishnamoorthi Vimalkumar
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Nishikant Patil Nikhil
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Elaiyaraja Arun
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Murugasamy Mayilsamy
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India; Hiyoshi India Ecological Services Private Limited, TICEL Biopark Ltd., Module No: 201 & 202 (Phase I, Second Floor), Taramani Road (CSIR Road), Taramani, Chennai, Tamil Nadu, India
| | - Ramaswamy Babu-Rajendran
- Ecotoxicology and Toxicogenomics Lab, Department of Environmental Biotechnology, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
43
|
Ihara M, Zhang H, Ihara MO, Kato D, Tanaka H. Proposal for fluorescence-based in vitro assay using human and zebrafish monoamine transporters to detect biological activities of antidepressants in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144665. [PMID: 33513512 DOI: 10.1016/j.scitotenv.2020.144665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Antidepressants are among the most commonly detected pharmaceuticals in the aquatic environment. As they modulate neurotransmission in nervous systems, behavioural abnormalities among aquatic species are of concern. It is possible to measure the concentrations of selected antidepressants by chemical analysis, but other non-target antidepressants and active metabolites might also be present. Here, we propose an "in vitro monoamine transporter inhibition assay" to measure the biological activity of antidepressants, particularly monoamine transporter inhibitors, in wastewater. We used APP, a fluorescent substrate for monoamine transporters, to measure the activity of wastewater extracts at inhibiting APP uptake through the human serotonin transporter (hSERT), norepinephrine transporter (hNET), and dopamine transporter, and the zebrafish SERT (zSERT). We confirmed that the assay could measure the biological activity of test antidepressants. Interestingly, the IC50 values of antidepressants (the concentration that gave a 50% reduction of APP uptake) for the zSERT were smaller than those for the hSERT. For example, IC50 value of desipramine for the zSERT was 1/200 of that for the hSERT. These results indicate that antidepressants inhibited zSERT more strongly than hSERT. Then we applied the assay to extracts of effluent from municipal wastewater treatment plants and detected biological activity of antidepressants specifically against the hSERT, hNET, and zSERT for the first time. For the hSERT, antidepressant-equivalent quantities (EQs) ranged from 2.2 × 101 to 2.5 × 102 ng-clomipramine-EQ/L. For the hNET, EQs ranged from below limit of detection to 8.2 × 101 ng-desipramine-EQ/L. For the zSERT, EQs ranged from 2.8 × 102 to 3.3 × 102 ng-duloxetine-EQ/L. The in vitro monoamine transporter inhibition assay is thus useful for measuring the biological activity of antidepressants in the aquatic environment.
Collapse
Affiliation(s)
- Masaru Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan.
| | - Han Zhang
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Mariko O Ihara
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Daisuke Kato
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
44
|
Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. WATER 2021. [DOI: 10.3390/w13091159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The procedures for analyzing pharmaceuticals and personal care products (PPCPs) are typically tedious and expensive and thus, it is necessary to synthesize all available information from previously conducted research. An extensive collection of PPCP data from the published literature was compiled to determine the occurrence, pathways, and the effectiveness of current treatment technologies for the removal of PPCPs in water and wastewater. Approximately 90% of the compiled published papers originated from Asia, Europe, and the North American regions. The incomplete removal of PPCPs in different water and wastewater treatment processes was widely reported, thus resulting in the occurrence of PPCP compounds in various environmental compartments. Caffeine, carbamazepine, diclofenac, ibuprofen, triclosan, and triclocarban were among the most commonly reported compounds detected in water and solid matrices. Trace concentrations of PPCPs were also detected on plants and animal tissues, indicating the bioaccumulative properties of some PPCP compounds. A significant lack of studies regarding the presence of PPCPs in animal and plant samples was identified in the review. Furthermore, there were still knowledge gaps on the ecotoxicity, sub-lethal effects, and effective treatment processes for PPCPs. The knowledge gaps identified in this study can be used to devise a more effective research paradigm and guidelines for PPCP management.
Collapse
|
45
|
Lyu Y, Ren S, Zhong F, Han X, He Y, Tang Z. Occurrence and trophic transfer of synthetic musks in the freshwater food web of a large subtropical lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 213:112074. [PMID: 33631637 DOI: 10.1016/j.ecoenv.2021.112074] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Synthetic musks (SMs) have drawn worldwide attention, as they are persistent, bioaccumulative, and toxic to many organisms. There is not enough information on the bioaccumulation and trophodynamic behavior of SMs in freshwater food webs to reliably understand the associated ecological risks. In this study, the concentrations of six SM congeners in fifteen aquatic species from Lake Chaohu, China, was investigated. The total concentrations of the six SMs ranged from 0.29 to 59.7 ng/g dry weight (median, 4.41) in fish muscle tissue and in the whole body tissues of small fish species and shrimps. Galaxolide (HHCB) and tonalide (AHTN) were the predominant congeners, accounting for 65.0% and 28.5% of the total SM concentration, respectively. On the whole, the total concentrations of SMs in livers and gills were 0.18-32.8 and 0.84-254 times higher than those in muscle tissues in fish species, respectively. In the food web of Lake Chaohu, cashmeran (DPMI) and HHCB showed a trend towards trophic magnification, and AHTN tended to show trophic dilution, but these trends were not statistically significant. This suggested that the trophic transfer of these chemicals through the food web was strongly influenced by many factors, including tissue-specific distribution within individuals at higher trophic levels. More investigation into the trophic transfer of SMs in aquatic ecosystems and the factors influencing uptake is needed.
Collapse
Affiliation(s)
- Yang Lyu
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Shan Ren
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Fuyong Zhong
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xue Han
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ying He
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
46
|
Rojo M, Cristos D, González P, López-Aca V, Dománico A, Carriquiriborde P. Accumulation of human pharmaceuticals and activity of biotransformation enzymes in fish from two areas of the lower Rio de la Plata Basin. CHEMOSPHERE 2021; 266:129012. [PMID: 33272666 DOI: 10.1016/j.chemosphere.2020.129012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The accumulation of four human pharmaceuticals active compounds (HPhAC) in the muscle of four fish species of the Rio de la Plata Basin were assessed regarding the compound logP and pKa, and fish trophic levels. For Prochilodus lineatus, accumulation was compared to hepatic biotransformation enzymes and fish from two sampling areas with different urbanization degree. Species were the detritivore Prochilodus lineatus, the omnivores Megaleporinus obtusidens and Pimelodus maculatus, and the piscivorous Salminus brasiliensis. Sampling areas were the Inner Rio de la Plata Estuary (RLP), in front of the Buenos Aires Metropolitan Area, and at the Lower Uruguay River (URU), a relatively unpopulated area. Carbamazepine, atenolol, enalapril, and sildenafil concentrations in fish muscle were analyzed by HPLC-MS. EROD, BROD, and GST activities were measured in P. lineatus liver. Average (maximum) concentrations and detection frequency were: Atenolol 24.4 (69.4) μg kg-1, 60%; carbamazepine 5.5 (45.8) μg kg-1, 19%; enalapril 7.0 (56.9) μg kg-1, 28%; sildenafil 17.1 (71.6) μg kg-1, 56%. Enalapril and sildenafil detection in fish was first-time reported. Atenolol and carbamazepine concentrations were positively correlated. No correlation was observed between HPhAC accumulation and logP or pKa. A potential biomagnification trend was observed for atenolol, showing higher accumulation in S. brasiliensis. HPhACs accumulation was higher for P. lineatus collected at URU, but GST and BROD were significantly higher for individuals sampled at RLP and were positively correlated. A significant negative correlation was observed for enalapril and BROD. The study contributes to the knowledge of the accumulation of HPhACs in fish.
Collapse
Affiliation(s)
- M Rojo
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Argentina
| | - D Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Argentina
| | - P González
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Argentina
| | - V López-Aca
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Argentina
| | - A Dománico
- Dirección de Pesca Continental- Subsecretaría de Pesca y Acuicultura de La Nación, Argentina; Comisión de Investigaciones Científicas de La Provincia de Buenos Aires (CIC), Argentina; Comisión Administradora Del Río Uruguay (CARU), Argentina
| | - P Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, Argentina; Comisión Administradora Del Río Uruguay (CARU), Argentina.
| |
Collapse
|
47
|
Li JY, Wen J, Chen Y, Wang Q, Yin J. Antibiotics in cultured freshwater products in Eastern China: Occurrence, human health risks, sources, and bioaccumulation potential. CHEMOSPHERE 2021; 264:128441. [PMID: 33032217 DOI: 10.1016/j.chemosphere.2020.128441] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
The adverse effects of antibiotics residues on aquaculture ecosystems and humans raised increasing concerns globally. To assess the occurrence, human health risks, sources, and bioaccumulation potential of antibiotics in cultured freshwater products in Eastern China, 12 and 13 aquaculture ponds were selected in 2018 and 2019, respectively, both covering 8 aquatic species. Concentrations of 12 commonly-used antibiotics were measured in muscle tissue of aquaculture products, water, sediment, and suspended particles. At least two antibiotics were found simultaneously in all muscle tissue samples. The concentrations of most antibiotics in freshwater cultured products were at a medium or lower level in comparison with other studies in China and worldwide, but slightly higher than the concentrations in cultured marine products. The potential risks from the intake of these aquatic products were also evaluated. The results showed limited adverse effects due to the consumption of these products with an exception of fluoroquinolone antibiotics. The bioaccumulation potential from water varied widely in different collection years, but the bioaccumulation factor (BAF) values for antibiotics were all <50 L/kg. BSAF values of antibiotics were all far below 1, except for one site in Zhejiang province in 2018, indicating that the bioavailability from surface sediments was low, in a particular pond environment. The low repeatability of BAF and BSAF calculated in two years indicated a relatively unsteady status in terms of bioaccumulation potential of cultured freshwater ponds yearly.
Collapse
Affiliation(s)
- Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ju Wen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Yiqin Chen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Qian Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Yin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
48
|
Cerveny D, Grabic R, Grabicová K, Randák T, Larsson DGJ, Johnson AC, Jürgens MD, Tysklind M, Lindberg RH, Fick J. Neuroactive drugs and other pharmaceuticals found in blood plasma of wild European fish. ENVIRONMENT INTERNATIONAL 2021; 146:106188. [PMID: 33096467 DOI: 10.1016/j.envint.2020.106188] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
To gain a better understanding of which pharmaceuticals could pose a risk to fish, 94 pharmaceuticals representing 23 classes were analyzed in blood plasma from wild bream, chub, and roach captured at 18 sites in Germany, the Czech Republic and the UK, respectively. Based on read across from humans, we evaluated the risks of pharmacological effects occurring in the fish for each measured pharmaceutical. Twenty-three compounds were found in fish plasma, with the highest levels measured in chub from the Czech Republic. None of the German bream had detectable levels of pharmaceuticals, whereas roach from the Thames had mostly low concentrations. For two pharmaceuticals, four individual Czech fish had plasma concentrations higher than the concentrations reached in the blood of human patients taking the corresponding medication. For nine additional compounds, determined concentrations exceeded 10% of the corresponding human therapeutic plasma concentration in 12 fish. The majority of the pharmaceuticals where a clear risk for pharmacological effects was identified targets the central nervous system. These include e.g. flupentixol, haloperidol, and risperidone, all of which have the potential to affect fish behavior. In addition to identifying pharmaceuticals of environmental concern, the results emphasize the value of environmental monitoring of internal drug levels in aquatic wildlife, as well as the need for more research to establish concentration-response relationships.
Collapse
Affiliation(s)
- Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, Czech Republic
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe) at the University of Gothenburg, Sweden
| | - Andrew C Johnson
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Monika D Jürgens
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Mats Tysklind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Jerker Fick
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
49
|
Sun Y, Zhang L, Zhang X, Chen T, Dong D, Hua X, Guo Z. Enhanced bioaccumulation of fluorinated antibiotics in crucian carp (Carassius carassius): Influence of fluorine substituent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141567. [PMID: 32814302 DOI: 10.1016/j.scitotenv.2020.141567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The negative impact of residual fluorinated antibiotics on the ecosystem and human health are of great concern. However, only a few studies have been conducted on the factors that influence the bioaccumulation of fluorinated antibiotics in aquatic organisms. To investigate the effects of fluorine substituent, environmental concentration of antibiotics, and temperature on the bioaccumulation of florfenicol (FLO), thiamphenicol (TAP), ofloxacin (OFX), and pipemidic acid (PPA), crucian carp (Carassius carassius) were exposed to different concentrations of antibiotics and different temperatures for 21 days. The liver exhibited the highest antibiotic concentrations, with 315.4 ± 13.6 ng g-1 wet weight (ww), followed by the bile (279.4 ± 12.4 ng mL-1), muscle (53.1 ± 4.3 ng g-1 ww), and gills (37.1 ± 2.6 ng g-1 ww). The FLO and OFX containing the fluorine substituent were much easier to accumulate in crucian carp compared with their isonomic TAP and PPA, respectively. The fluorine substituent increased the bioaccumulation of the targeted antibiotics in crucian carp. In addition, the lower levels of antibiotics presented higher bioaccumulation potential, but the temperature had little effect on the bioaccumulation. These findings in the present study can provide further insight into the environmental behaviors and ecological risks of fluorinated antibiotics in the aquatic environment.
Collapse
Affiliation(s)
- Yidian Sun
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Liwen Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xun Zhang
- Changchun Customs District P.R. China, Changchun 130062, China
| | - Tianyi Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
50
|
Boulard L, Parrhysius P, Jacobs B, Dierkes G, Wick A, Buchmeier G, Koschorreck J, Ternes TA. Development of an analytical method to quantify pharmaceuticals in fish tissues by liquid chromatography-tandem mass spectrometry detection and application to environmental samples. J Chromatogr A 2020; 1633:461612. [PMID: 33130421 DOI: 10.1016/j.chroma.2020.461612] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 01/09/2023]
Abstract
A sensitive multiresidue method was developed to quantify 35 pharmaceuticals and 28 metabolites/transformation products (TPs) in fish liver, fish fillet and fish plasma via LC-MS/MS. The method was designed to cover a broad range of substance polarities. This objective was realized by using non-discriminating sample clean-ups including separation technique based on size exclusion, namely restricted access media (RAM) chromatography. This universal clean-up allows for an easy integration of further organic micropollutants into the analytical method. Limits of quantification (LOQ) ranged from 0.05 to 5.5 ng/mL in fish plasma, from 0.1 to 19 ng/g d.w. (dry weight) in fish fillet and from 0.46 to 48 ng/g d.w. in fish liver. The method was applied for the analysis of fillets and livers of breams from the rivers Rhine and Saar, the Teltow Canal as well as carps kept in fish monitoring ponds fed by effluent from municipal wastewater treatment plants. This allowed for the first detection of 17 analytes including 10 metabolites/TPs such as gabapentin lactam and norlidocaine in fish tissues. These results highlight the importance of including metabolites and transformation products of pharmaceuticals in fish monitoring campaigns and further investigating their potential effects.
Collapse
Affiliation(s)
- Lise Boulard
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Pia Parrhysius
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Björn Jacobs
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Arne Wick
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany
| | - Georgia Buchmeier
- Unit Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environmental Agency, Demollstr. 31, Wielenbach 82407, Germany
| | - Jan Koschorreck
- Federal Environmental Agency (Umweltbundesamt), Bismarckplatz 1, Berlin 10643, Germany
| | - Thomas A Ternes
- Federal Institute of Hydrology, Am Mainzer Tor 1, Koblenz 56068, Germany.
| |
Collapse
|