1
|
Ullah A, Afzal A, Lim HJ. Real-time monitoring of aqueous total N-nitrosamines by UV photolysis and chemiluminescence. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1162. [PMID: 39496861 DOI: 10.1007/s10661-024-13328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2024] [Indexed: 11/06/2024]
Abstract
N-nitrosamines such as N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), and N-nitrosopyrrolidine (NPYR) have been established as potent carcinogens that can induce diverse types of cancer. Several studies have extensively investigated the accurate quantification of total N-nitrosamines (TONO) and the intricate nature of the matrix in which they are detected. The potential for the formation of N-nitrosamines in post-combustion CO2 capture (PCCC) and water treatment has raised concerns. This study outlines a unique method for the quantification of TONO in aqueous matrices using UV photolysis and the subsequent detection of NO by chemiluminescence. This method offers benefits such as operation in the continuous mode and handling of high sample flow rates to achieve a low limit of detection (LOD) and a low limit of quantification (LOQ). The observed LODs for the individual N-nitrosamines of NDMA, N-nitrosomorpholine (NMOR), N-nitrosodibutylamine (NDBA), and NPIP range between 0.06 and 0.2 µM at a sample flow rate of 0.25 mL/min, while the LOD range is reduced to between 0.02 and 0.06 µM at 0.75 mL/min. Linear responses for the NO produced from specific N-nitrosamines are observed between 0.5 and 10 µM. The developed method is resistant to interfering chemicals (i.e., nitrite, amines, and carbonyls) and exhibits high specificity.
Collapse
Affiliation(s)
- Atta Ullah
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Aqeel Afzal
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Ho-Jin Lim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Seid MG, Chae SH, Lee C, Cho K, Hong SW. Nitrosamine formation driven by electrochemical chlorination of urine-containing source waters: Effects of operational conditions. WATER RESEARCH 2024; 263:122190. [PMID: 39106622 DOI: 10.1016/j.watres.2024.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
We investigated the formation of nitrosamines from urine during electrochemical chlorination (EC) using dimensionally stable anodes. Short-term electrolysis (< 1 h) of urine at 25 mA cm-2 generated seven nitrosamines (0.1-7.4 µg L-1), where N-nitrosodimethylamine, N-nitrosomethylethylamine, and N-nitrosodiethylamine were predominant with concentrations ranging from 1.2 to 7.4 µg L-1. Mechanistic studies showed that the formation kinetics of nitrosamines was influenced by urine aging and composition, with fresh urine generating the highest levels (0.9-5.8 µg L-1) compared with aged, centrifuged, or filtered urine (0.2-4.1 µg L-1). Concurrently, studies on urine pretreatment through filtration and centrifugation underscored the significance of nitrogenous metabolites (such as protein-like products and urinary amino acids) and particle-associated humic fractions in nitrosamine formation during EC of urine. This finding was confirmed through chromatographic and spectroscopic studies utilizing LCOCD, Raman spectra, and 3DEEM fluorescence spectra. Parametric studies demonstrated that the ultimate [nitrosamines] increased at a pH range of 4.5-6.2, and with increasing [bromide], [ammonium], and current density. Conversely, sulfate and carbonate ions inhibited nitrosamine formation. Moreover, the implications of EC in urine-containing source waters were evaluated. The results indicate that regardless of the urine source (individual volunteers, septic tank, swimming pool, untreated municipal wastewater), high levels of nitrosamines (0.1-17.6 µg L-1) were generated, surpassing the potable reuse guideline of 10 ng L-1. Overall, this study provides insights to elucidate the mechanisms underlying nitrosamine formation and optimize the operating conditions. Such insights facilitate suppressing the generation of nitrosamine byproducts during electrochemical treatment of urine-containing wastewater.
Collapse
Affiliation(s)
- Mingizem Gashaw Seid
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sung Ho Chae
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University International Campus, Incheon 21983, Republic of Korea.
| | - Seok Won Hong
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
Pu C, Cavarra BR, Zeng T. Combining High-Resolution Mass Spectrometry and Chemiluminescence Analysis to Characterize the Composition and Fate of Total N-Nitrosamines in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39254226 PMCID: PMC11428135 DOI: 10.1021/acs.est.4c06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Monitoring the prevalence and persistence of N-nitrosamines and their precursors in wastewater treatment plants (WWTPs) and effluent-receiving aquatic compartments is a priority for utilities practicing wastewater recycling or exploiting wastewater-impacted source waters. In this work, we developed an analytical framework that combines liquid chromatography-high-resolution mass spectrometry (LC-HRMS) with acidic triiodide-chemiluminescence analysis to characterize the composition and fate of total N-nitrosamines (TONO) and their precursors along the treatment trains of eight WWTPs in New York. Through the parallel application of LC-HRMS and chemiluminescence methods, the TONO scores for 41 N-nitrosamines containing structurally diverse substituents on their amine nitrogen were derived based on their solid-phase extraction recoveries and conversion efficiencies to nitric oxide. Correcting the compositional analysis of TONO using the TONO scores of target N-nitrosamines refined the assessment of the reduction or accumulation of TONO and their precursors across treatment steps in WWTPs. Nontargeted analysis prioritized seven additional N-nitrosamines for confirmation by reference standards, including three previously uncharacterized species: N-nitroso-tert-butylphenylamine, N-nitroso-2-pyrrolidinmethanol, and N-nitrosodesloratadine, although they only served as minor components of TONO. Overall, our study establishes an adaptable methodological framework for advancing the quantitative and qualitative analysis of specific and unknown components of TONO across water treatment and reuse scenarios.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Benjamin R Cavarra
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
4
|
Hinneh KDC, Okabe J, Kosaka K, Echigo S, Itoh S. N-Nitrosodimethylamine formation from anthropogenic nitrogenous compounds during preozonation and post-chloramination with characteristic low treatment dose. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45913-45928. [PMID: 38980483 DOI: 10.1007/s11356-024-34236-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
One effective option to minimize N-nitrosodimethylamine (NDMA) in finished drinking water is to identify and control its precursors. However, previous works to identify significant precursors use formation potential (FP) tests using high doses to assure the maximum NDMA formation rather than the NDMA formation in finished waters. In this study, we applied characteristic low treatment doses of ozone (O3)-to-dissolved organic carbon (DOC) of target compounds of 0.8 mg/mg and NH2Cl of 2.5 ± 0.2 mg Cl2/L to evaluate the NDMAFP yields of organic compounds bearing N,N-dimethylamine (DMA) and N,N-dimethylhydrazine (DMH) during preozonation and post-chloramination. The results in pH-buffered Milli-Q water showed a significant decrease from ≤ 52% to non-detectable levels in the O3-NDMAFP yields of O3-reactive precursors (i.e., DMH-like compounds) after preozonation and post-chloramination. Similarly, a significant decrease from 0.5 to 12% to nonquantifiable levels was observed for the NH2Cl-NDMAFP yields of NH2Cl-reactive precursors; however, the NH2Cl-NDMAFP yields of N,N-dimethylbenzylamine (DMBzA)-like compounds only decreased from ~ 110 to ≤ 43%, suggesting that these compounds could contribute to NH2Cl-NDMAFPs even after preozonation. The effect of the matrix in sewage-effluent and lake water samples varied and was specific for precursors; for example, the O3-NDMAFP yield of 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene) disemicarbazide (TMDS), an important O3-reactive NDMA precursor, did not significantly decrease when tested in sewage-effluent samples. Based on the previous occurrence concentration of TMDS in sewage samples, we estimated an NDMAFP of ~ 315 ng/L. This estimate exceeds the guidance concentrations of NDMA (3-100 ng/L), highlighting the importance of TMDS and its related compounds for NDMA formation.
Collapse
Affiliation(s)
- Klon D C Hinneh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Nishikyo, 615-8540, Japan.
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, Sakyo, 606-8501, Japan.
| | - Junki Okabe
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Nishikyo, 615-8540, Japan
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, Wako, Saitama, 351-0197, Japan
| | - Shinya Echigo
- Graduate School of Global Environmental Studies, Kyoto University, Yoshidahonmachi, Kyoto, Sakyo, 606-8501, Japan
| | - Sadahiko Itoh
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Kyoto, Nishikyo, 615-8540, Japan
| |
Collapse
|
5
|
Yan X, Huang H, Chen W, Li H, Chen Y, Liang Y, Zeng H. Industrial effluents and N-nitrosamines in karst aquatic systems: a study on distribution and ecological implications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:255. [PMID: 38884657 DOI: 10.1007/s10653-024-02034-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024]
Abstract
The discharge of electroplating wastewater, containing high concentrations of N-nitrosamines, poses significant risks to human health and aquatic ecosystems. Karst aquatic environment is easily impacted by N-nitrosamines due to the fragile surface ecosystem. However, it's still unclear in understanding N-nitrosamine transformation in karst water systems. To explore the response and transport of nine N-nitrosamines in electroplating effluent within both karst surface water and groundwater, different river and groundwater samples were collected from both the upper and lower reaches of the effluent discharge areas in a typical karst industrial catchment in Southwest China. Results showed that the total average concentrations of N-nitrosamines (∑NAs) in electroplating effluent (1800 ng/L) was significantly higher than that in the receiving river water (130 ng/L) and groundwater (70 ng/L). The dynamic nature of karst aquifers resulted in comparable average concentrations of ∑NAs in groundwater (70 ng/L) and river water (79 ng/L) at this catchment. Based on the principal component analysis and multiple linear regression analysis, the electroplating effluent contributed 89% and 53% of N-nitrosamines to the river water and groundwater, respectively. The results based on the species sensitivity distribution model revealed N-nitrosodibutylamine as a particularly toxic compound to aquatic organisms. Furthermore, the average N-nitrosamine carcinogenic risk was significantly higher in lower groundwater reaches compared to upper reaches. This study represents a pioneering effort in considering specific N-nitrosamine properties in evaluating their toxicity and constructing species sensitivity curves. It underscores the significance of electroplating effluent as a primary N-nitrosamine source in aquatic environments, emphasizing their swift dissemination and significant accumulation in karst groundwater.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution ControlSouth China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510535, China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yanpeng Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
- Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
6
|
Huang H, Chen Z, Su Y, Zeng H, Li H, Chen Y, Qi S, Chen W, Chen W, Zhang G. N-nitrosamines in electroplating and printing/dyeing industrial wastewater treatment plants: Removal efficiency, environmental emission, and the influence on drinking water. WATER RESEARCH 2024; 255:121537. [PMID: 38555784 DOI: 10.1016/j.watres.2024.121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The discharge of industrial wastewater containing high concentrations of N-nitrosamines to the aquatic environment can impair downstream source waters and pose potential risks to human health. However, the transport and fate of N-nitrosamines in typical industrial wastewater treatment plants (IWWTPs) and the influence of these effluents on source water and drinking water are still unclear. This study investigated nine N-nitrosamines in four full-scale electroplating (E-) and printing/dyeing (PD-) IWWTPs, two drinking water treatment plants (DWTPs) in the lower reaches of these IWWTPs, and the corresponding tap water in South China. The total concentrations of N-nitrosamines (∑NAs) were 382-10,600, 480-1920, 494-789, and 27.9-427 ng/L in influents, effluents, source water, and tap water, respectively. The compositions of N-nitrosamine species in different influents varied a lot, while N-nitrosodi-n-butylamine (NDBA) and N-nitrosodimethylamine (NDMA) dominated in most of the effluents, source water, and tap water. More than 70 % N-nitrosamines were removed by wastewater treatment processes used in E-IWWTPs such as ferric-carbon micro-electrolysis (Fe/C-ME), while only about 50 % of N-nitrosamines were removed in PD-IWWTPs due to the use of chlorine reagent or other inefficient conventional processes such as flocculation by cationic amine-based polymers or bio-contact oxidation. Therefore, the mass fluxes of N-nitrosamines discharged from these industrial wastewaters to the environment in the selected two industrial towns were up to 14,700 mg/day. The results based on correlation and principal component analysis significantly demonstrated correlations between E-and PD-effluents and source water and tap water, suggesting that these effluents can serve as sources of N-nitrosamines to local drinking water systems. This study suggests that N-nitrosamines are prevalent in typical IWWTPs, which may infect drinking water systems. The findings of this study provide a basis data for the scientific evaluation of environmental processes of N-nitrosamines.
Collapse
Affiliation(s)
- Huanfang Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, PR China
| | - Zifeng Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yuru Su
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yingjie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
7
|
Chen Y, Zeng H, Huang H, Qin L, Qi S, Li H, Shahab A, Zhang H, Chen W. Occurrence and fate of N-nitrosamines in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Lijiang River, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133870. [PMID: 38430594 DOI: 10.1016/j.jhazmat.2024.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Domestic wastewaters contaminated with N-nitrosamines pose a significant threat to river ecosystems worldwide, particularly in urban areas with riparian cities. Despite widespread concern, the precise impact of these contaminants on receiving river waters remains uncertain. This study investigated eight N-nitrosamines in wastewater treatment plants (WWTPs) and their adjacent receiving river, the Lijiang River in Guilin City, Southwest China. By analyzing thirty wastewater samples from five full-scale WWTPs and twenty-three river water samples from Guilin, we quantified the mass loads of N-nitrosamines discharged into the surrounding watershed via domestic effluents. The results revealed that N-nitrosodimethylamine (10-60 ng/L), N-nitrosodiethylamine (3.4-22 ng/L), and N-nitrosopyrrolidine (not detected-4.5 ng/g) were predominant in influents, effluents, and sludge, respectively, with the overall removal efficiencies ranging from 17.7 to 65.6% during wastewater treatment. Cyclic activated sludge system and ultraviolet disinfection were effective in removing N-nitrosamines (rates of 59.6% and 24.3%), while chlorine dioxide disinfection promoted their formation. A total of 30.4 g/day of N-nitrosamine mass loads were observed in the Lijiang River water, with domestic effluents contributing about 31.3% (19.4 g/day), followed by livestock breeding wastewater (34.5%, 12.0 g/day), and unknown sources (24.7%, 7.5 g/day). These findings highlight the critical role of WWTPs in transporting N-nitrosamines to watersheds and emphasize the urgent need for further investigation into other potential sources of N-nitrosamine pollution within watersheds.
Collapse
Affiliation(s)
- Yingjie Chen
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China; School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, the United Kingdom
| | - Honghu Zeng
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Litang Qin
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Shihua Qi
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Haixiang Li
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Asfandyar Shahab
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, the United Kingdom
| | - Wenwen Chen
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
8
|
Chen Y, Huang H, Chen W, Huang X, Zhang Y, Liang Y, Zeng H, Zhang H, Qi S. Impact of agricultural activities on the occurrence of N-nitrosamines in an aquatic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:470-482. [PMID: 38282562 DOI: 10.1039/d3em00441d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
N-Nitrosamines, nitroso compounds with strong carcinogenic effects on humans, have been frequently detected in natural waters. In agricultural areas, there is typically a lack of drinking water treatment processes and distribution systems. As a result, residents often consume groundwater as drinking water which may contain N-nitrosamines, necessitating the investigation of the occurrence, sources, and carcinogenic risk of N-nitrosamines within the groundwater of agricultural areas. This study identified eight N-nitrosamines in groundwater and river water in the Jianghan Plain, a famous agricultural region in central China. N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosopyrrolidine (NPYR), and N-nitrosodi-n-butylamine (NDBA) were detected in groundwater, with NDMA being the main compound detected (up to 52 ng L-1). Comparable concentrations of these N-nitrosamines were also found in river water. From laboratory experiments, we found a tremendous potential for the formation of N-nitrosamines in groundwater. Principal component analysis and multiple linear regression analysis results showed that the primary sources of N-nitrosamines in groundwater were the uses of nitrogen fertilizers and pesticides carrying specific N-nitrosamines such as NPYR. The average total carcinogenic risk values of detected N-nitrosamines were higher than the acceptable risk level (10-5), suggesting a potential carcinogenic risk of groundwater. Further research is urgently needed to minimize N-nitrosamine levels in the groundwater of agricultural areas, particularly in those where pesticides and fertilizers are heavily used.
Collapse
Affiliation(s)
- Yingjie Chen
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
- Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, UK
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Xuelian Huang
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
| | - Yuan Zhang
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, UK
| | - Shihua Qi
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, No. 68 Jincheng Street, Hongshan District, Wuhan 430074, China.
| |
Collapse
|
9
|
Li J, Arnold WA, Hozalski RM. Animal Feedlots and Domestic Wastewater Discharges are Likely Sources of N-Nitrosodimethylamine (NDMA) Precursors in Midwestern Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2973-2983. [PMID: 38290429 DOI: 10.1021/acs.est.3c09251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
N-nitrosodimethylamine (NDMA) precursor concentrations along four major rivers in Minnesota, USA were quantified and correlated with watershed land cover types, anthropogenic activity, and organic matter characteristics. River water samples (36 in total) were chloraminated under uniform formation conditions (UFC) before and after lime-softening treatment, and the resulting NDMA concentrations were quantified (NDMAUFC). Regarding land cover, NDMAUFC in raw river water exhibited weak positive correlations with urban land (ρ = 0.33, p = 0.05) and cropland coverage (ρ = 0.35, p = 0.04). For anthropogenic activity, NDMAUFC in raw river water positively correlated with the number of feedlots (ρ = 0.57), total weight of animals (ρ = 0.68), and total number of domestic wastewater treatment plants (WWTPs; ρ = 0.63) with p < 0.01. NDMAUFC positively correlated with region IV fluorescence intensity from fluorescence excitation-emission spectra (ρ = 0.70, p < 0.01). Lime softening of river water typically increased NDMAUFC and preferentially removed organic matter that fluoresces in region V, suggesting that the organic matter in this region decreases NDMAUFC by competing for available chloramines. Overall, animal feedlots, along with domestic WWTPs, are predominant sources of NDMA precursors in the studied watersheds, while croplands and urban runoff are of lesser importance.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Xue B, Guo X, Cao J, Yang S, Qiu Z, Wang J, Shen Z. The occurrence, ecological risk, and control of disinfection by-products from intensified wastewater disinfection during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165602. [PMID: 37478942 DOI: 10.1016/j.scitotenv.2023.165602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
Increased disinfection of wastewater to preserve its microbiological quality during the coronavirus infectious disease-2019 (COVID-19) pandemic have inevitably led to increased production of toxic disinfection by-products (DBPs). However, there is limited information on such DBPs (i.e., trihalomethanes, haloacetic acids, nitrosamines, and haloacetonitriles). This review focused on the upsurge of chlorine-based disinfectants (such as chlorine, chloramine and chlorine dioxide) in wastewater treatment plants (WWTPs) in the global response to COVID-19. The formation and distribution of DBPs in wastewater were then analyzed to understand the impacts of these large-scale usage of disinfectants in WWTPs. In addition, potential ecological risks associated with DBPs derived from wastewater disinfection and its receiving water bodies were summarized. Finally, various approaches for mitigating DBP levels in wastewater and suggestions for further research into the environmental risks of increased wastewater disinfection were provided. Overall, this study presented a comprehensive overview of the formation, distribution, potential ecological risks, and mitigating approaches of DBPs derived from wastewater disinfection that will facilitate appropriate wastewater disinfection techniques selection, potential ecological risk assessment, and removal approaches and regulations consideration.
Collapse
Affiliation(s)
- Bin Xue
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Science, Beijing 102205, China
| | - Jinrui Cao
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Shuran Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Zhigang Qiu
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
11
|
Li J, Arnold WA, Hozalski RM. Spatiotemporal Variability in N-Nitrosodimethylamine Precursor Levels in a Watershed Impacted by Agricultural Activities and Municipal Wastewater Discharges and Effects of Lime Softening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13959-13969. [PMID: 37671798 DOI: 10.1021/acs.est.3c01767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The Crow River, a tributary of the Mississippi River in Minnesota, U.S.A., that is impacted by agricultural activities and municipal wastewater discharges, was sampled approximately monthly at 12 locations over 18 months to investigate temporal and spatial variations in N-nitrosodimethylamine (NDMA) precursor levels. NDMA precursors were quantified primarily by measuring NDMA formed under the low chloramine dose uniform formation conditions protocol (NDMAUFC) and occasionally using the high dose formation potential protocol (NDMAFP). Raw water NDMAUFC concentrations (2.2 to 128 ng/L) exhibited substantial temporal variation but relatively little spatial variation. An increase in NDMAUFC was observed for 126 of 169 water samples after lime-softening treatment. A kinetic model indicates that under chloramine-limited UFC test conditions, the increase in NDMAUFC can be attributed to a decrease in competition between precursors and natural organic matter (NOM) for chloramines and reduced interactions of precursors with NOM. NDMAUFC concentrations correlated positively with dissolved nitrogen concentration (ρ = 0.44, p < 0.01) when excluding the spring snowmelt period and negatively correlated with dissolved organic carbon concentration (ρ = -0.47, p < 0.01). Overall, NDMA precursor levels were highly dynamic and strongly affected by lime-softening treatment.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - William A Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
12
|
Farré MJ, Insa S, Gernjak W, Corominas L, Čelić M, Acuña V. N-Nitrosamines and their precursors in wastewater effluents from selected industries in Spain. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131159. [PMID: 36905908 DOI: 10.1016/j.jhazmat.2023.131159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
N-nitrosamines (NAs), and N-nitrosodimethylamine (NDMA) in particular, are hazardous disinfection byproducts (DBPs) relevant when wastewater impacts drinking water sources and, in water reuse practices. Our study investigates the concentrations of NDMA and five additional NAs and their precursors in industrial wastewater effluents. Aiming to identify potential differences between industrial typologies, wastewaters from 38 industries belonging to 11 types of the UN International Standard Industrial Classification of All Economic Activities system (ISIC) were analysed. Results show that the presence of most NAs and their precursors cannot be linked to a specific industry type as these were in general very different within the classes. Nevertheless, N-nitrosomethylethylamine (NMEA) and N-nitrosopiperidine (NPIP) as well as precursors for N-nitrosodiethylamine (NDEA), NPIP and N-nitrosodibuthylamine (NDBA) could be rank with different concentrations between ISIC classes (p-value < 0.05). Specific industrial wastewater with notable high concentrations of NAs and their precursors were identified too. The effluents with the highest concentration of NDMA belong to the ISIC C2011 class (Manufacture of basic chemical), while the effluents with the highest concentration of NDMA precursors were from the ISIC C1511 class (Tanning and dressing of leather; dressing and dyeing of fur). Other relevant NAs found were NDEA in ISIC class B0810 (Quarrying of stone, sand, and clay) and ISIC class C2029 (Manufacture of other chemical products).
Collapse
Affiliation(s)
- Maria José Farré
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain.
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - Wolfgang Gernjak
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Lluís Corominas
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain
| |
Collapse
|
13
|
Breider F, Gachet Aquillon C, von Gunten U. A survey of industrial N-nitrosamine discharges in Switzerland. JOURNAL OF HAZARDOUS MATERIALS 2023; 450:131094. [PMID: 36867906 DOI: 10.1016/j.jhazmat.2023.131094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
N-nitrosamines are formed during different industrial processes and are of significant concern due to their carcinogenic and mutagenic properties. This study reports concentrations of N-nitrosamines in eight different industrial wastewater treatment plants in Switzerland and the variability of their abundance. Only four N-nitrosamines species, N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodibutylamine (NDPA) and N-nitrosomorpholine (NMOR) were above the limit of quantification in this campaign. Remarkably high concentrations (i.e. up to 975 μg NDMA/L, 90.7 μg NDEA/L, 1.6 μg NDPA/L and 710 μg NMOR/L) of these N-nitrosamines were detected at seven of eight sites. These concentrations are two to five orders of magnitude higher than those typically detected in municipal wastewater effluents. These results suggest that industrial effluents may be a major source of N-nitrosamines. Although very high concentrations of N-nitrosamine have been detected in industrial discharges, various processes in surface water can partially mitigate their concentrations (e.g. photolysis, biodegradation and volatilization) and hence the risk to human health and aquatic ecosystems. Nevertheless, there is little information on long-term effects on aquatic organisms and therefore the discharge of N-nitrosamines to the environment should be avoided until the impact on ecosystems is assessed. During winter a less efficient mitigation of N-nitrosamines can be expected (lower biological activity, less sunlight) and therefore, emphasis should be put on this season in future risk assessment studies.
Collapse
Affiliation(s)
- Florian Breider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, CH-1015 Lausanne, Switzerland.
| | | | - Urs von Gunten
- Ecole Polytechnique Fédérale de Lausanne (EPFL), ENAC, IIE, CH-1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
14
|
Pu C, Zeng T. Comparative Evaluation of Chemical and Photolytic Denitrosation Methods for Chemiluminescence Detection of Total N-Nitrosamines in Wastewater Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7526-7536. [PMID: 37140470 DOI: 10.1021/acs.est.2c09769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
N-Nitrosamines form as byproducts during oxidative water treatment and occur as impurities in consumer and industrial products. To date, two methods based on chemiluminescence (CL) detection of nitric oxide liberated from N-nitrosamines via denitrosation with acidic triiodide (HI3) treatment or ultraviolet (UV) photolysis have been developed to enable the quantification of total N-nitrosamines (TONO) in environmental water samples. In this work, we configured an integrated experimental setup to compare the performance of HI3-CL and UV-CL methods with a focus on their applicability for TONO measurements in wastewater samples. With the use of a large-volume purge vessel for chemical denitrosation, the HI3-CL method achieved signal stability and detection limits comparable to those achieved by the UV-CL method which utilized a microphotochemical reactor for photolytic denitrosation. Sixty-six structurally diverse N-nitroso compounds (NOCs) yielded a range of conversion efficiencies relative to N-nitrosodimethylamine (NDMA) regardless of the conditions applied for denitrosation. On average, TONO measured in preconcentrated raw and chloraminated wastewater samples by the HI3-CL method were 2.1 ± 1.1 times those measured by the UV-CL method, pointing to potential matrix interferences as further confirmed by spike recovery tests. Overall, our comparative assessment of the HI3-CL and UV-CL methods serves as a basis for addressing methodological gaps in TONO analysis.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
15
|
Piotrowski A, Kinani S, Nesslany F, Aubert N, Ronga S, Boize M, Achawi S, Cabanes PA. Toxicokinetic and mass balance of morpholine in rats. Xenobiotica 2023; 53:412-420. [PMID: 37432873 DOI: 10.1080/00498254.2023.2234487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Morpholine (MOR) has a broad spectrum of use and represents high risk of human exposure. Ingested MOR can undergo endogenous N-nitrosation in the presence of nitrosating agents forming N-nitrosomorpholine (NMOR), classified as possible human carcinogen by the International Agency for Research on Cancer.In this study, we evaluated the MOR toxicokinetics in six groups of male Sprague-Dawley rats orally exposed to 14C-radiolabelled MOR and NaNO2. The major urinary metabolite of MOR, N-nitrosohydroxyethylglycine (NHEG), was measured through HPLC as an index of endogenous N-nitrosation. Mass balance and toxicokinetic profile of MOR were determined by measuring radioactivity in blood/plasma and excreta.MOR reached maximum blood concentration 30 minutes after administration. Elimination rate was rapid (70% in 8h). Most of the radioactivity was excreted in the urine (80.9 ± 0.5%) and unchanged 14C-MOR was the main compound excreted in the urine (84% of the dose recovered). 5.8% of MOR is not absorbed and/or was not recovered.Endogenous nitrosation of MOR was demonstrated by the detection of NHEG. The maximum conversion rate found was 13.3 ± 1.2% and seems to be impacted by the MOR/NaNO2 ratio.These results help refining our knowledge of the endogenous production of NMOR, a possible human carcinogen.
Collapse
Affiliation(s)
- Aleksandra Piotrowski
- EDF - Industrial Toxicology Division at EDF, General Direction of Safety and Health, Paris, France
| | - Saïd Kinani
- EDF R&D - National Hydraulics and Environment Laboratory, Paris, France
| | | | - Nicolas Aubert
- Charles River Laboratories Evreux, Saint-Germain-Nuelle, France
| | - Sylvaine Ronga
- EDF - Medical Studies Department, General Direction of Safety and Health, Paris, France
| | | | - Salma Achawi
- EDF - Nuclear Fleet and Environment Engineering Division, Villeurbanne, France
| | - Pierre-André Cabanes
- EDF - Medical Studies Department, General Direction of Safety and Health, Paris, France
| |
Collapse
|
16
|
Xia J, Chen Y, Huang H, Li H, Huang D, Liang Y, Zeng H, Chen W. Occurrence and mass loads of N-nitrosamines discharged from different anthropogenic activities in Desheng River, South China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57975-57988. [PMID: 36973615 DOI: 10.1007/s11356-023-26458-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 05/10/2023]
Abstract
N-nitrosamines are widespread in various bodies of water, which is of great concern due to their carcinogenic risks and harmful mutagenic effects. Livestock rearing, domestic, agricultural, and industrial wastewaters are the main sources of N-nitrosamines in environmental water. However, information on the amount of N-nitrosamines these different wastewaters contribute to environmental water is scarce. Here, we investigated eight N-nitrosamines and assessed their mass loadings in the Desheng River to quantify the contributions discharged from different anthropogenic activities. N-nitrosodimethylamine (NDMA) (< 1.6-18 ng/L), N-nitrosomethylethylamine (NMEA) (< 2.2 ng/L), N-nitrosodiethylamine (NDEA) (< 1.7-2.4 ng/L), N-nitrosopyrrolidine (NPYR) (< 1.8-18 ng/L), N-nitrosomorpholine (NMOR) (< 2.0-3.5 ng/L), N-nitrosopiperidine (NPIP) (< 2.2-2.5 ng/L), and N-nitrosodi-n-butylamine (NDBA) (< 3.3-16 ng/L) were detected. NDMA and NDBA were the dominant compounds contributing 89% and 92% to the total N-nitrosamine concentrations. The mean cumulative concentrations of N-nitrosamines in the livestock rearing area (26 ± 11 ng/L) and industrial area (24 ± 4.8 ng/L) were higher than those in the residential area (16 ± 6.3 ng/L) and farmland area (15 ± 5.1 ng/L). The mean concentration of N-nitrosamines in the tributaries (22 ng/L) was slightly higher than that in the mainstem (17 ng/L), probably due to the dilution effect of the mainstem. However, the mass loading assessment based on the river's flow and water concentrations suggested the negligible mass emission of N-nitrosamines into the mainstem from tributaries, which could be due to the small water flow of tributaries. The average mass loads of N-nitrosamines discharged into the mainstem were ranked as the livestock rearing area (742.7 g/d), industrial area (558.6 g/d), farmland area (93.9 g/d), and residential areas (83.2 g/d). In the livestock rearing, residential, and industrial area, NDMA (60.9%, 53.6%, and 46.7%) and NDBA (34.6%, 33.3%, and 44.9%) contributed the most mass loads; NDMA (23.4%), NDEA (15.8%), NPYR (10.1%), NPIP (12.8%), and NDBA (37.8%) contributed almost all the mass loads in the farmland area. Photodegradation amounts of NDMA (0.65 ~ 5.25 µg/(m3·day)), NDBA (0.37 ~ 0.91 µg/(m3·day)), and NDEA (0 ~ 0.66 µg/(m3·day)) were also calculated according to the mass loading. Quantifying the contribution of different anthropogenic activities to the river will provide important information for regional river water quality protection. Risk quotient (RQ) values showed the negligible ecological risks for fish, daphnid, and green algae.
Collapse
Affiliation(s)
- Jingxuan Xia
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology and School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Huanfang Huang
- Ministry of Ecology and Environment, South China Institute of Environmental Science, Guangzhou, 510530, China
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Dabao Huang
- Guangxi Shangshanruoshui Development Co., Ltd, Nanning, 530012, China
| | - Yanpeng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, No.319 Yanshan Street, Yanshan District, Guilin, 541006, People's Republic of China.
| |
Collapse
|
17
|
Research progress of N-nitrosamine detection methods: a review. Bioanalysis 2022; 14:1123-1135. [PMID: 36125029 DOI: 10.4155/bio-2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
N-Nitrosamines (nitrosamines) are attracting increased attention because of their high toxicity and wide distribution. They have been strictly restricted by regulations in many fields. Researchers around the world have conducted substantial work on nitrosamine detection. This paper reviews the progress of research on nitrosamine detection methods with emphasis on biological-matrix samples. After introducing the category, toxicity, regulatory limit and source of nitrosamines, the paper discusses the most commonly used sample-preparation techniques and instrumental-detection techniques for nitrosamine detection, including some typical application cases.
Collapse
|
18
|
Zhang X, Kim D, Karanfil T. Effect of activated sludge treatment on the formation of Nnitrosamines under different chloramination conditions. J Environ Sci (China) 2022; 117:242-252. [PMID: 35725076 DOI: 10.1016/j.jes.2022.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Municipal wastewater discharge is considered as one of the main sources of N-nitrosamine precursors which can impact the qualities of downstream source waters and reclaimed wastewaters for potable reuse. NNitrosamine precursors can be removed to various degrees during biological wastewater treatment (e.g., the activated sludge (AS) process). So far, little is known about the impact of the AS process on N-nitrosamine formation under practical disinfection condition (e.g., uniform formation condition (UFC)). In this study, N-nitrosamine UFC from selected model compounds, sewage components (i.e., blackwaters and greywaters) and sewage samples were comprehensively investigated during batch AS treatment tests. NNitrosodimethylamine (NDMA) formation from the tested precursor compounds (i.e., trimethylamine (TMA) and sumatriptan (SMTR)) under UFC chloramination decreased mostly after 6 or 24 hr treatment with different types of AS (i.e., domestic rural AS, domestic urban AS, and textile AS), and the reductions in NDMA UFC were comparable to their NDMA formation potential (FP) reductions. In urine and feces blackwaters, NDMA UFC increased after 6 or 24 hr treatment with the domestic (i.e., rural and urban) AS, while NDMA FP decreased substantially. The increases in NDMA UFC after AS treatment was presumably attributed to the removal of bulk organic matters (e.g., dissolved organic carbon (DOC)) which favored NDMA formation under UFC. On the other hand, in laundry greywaters having relatively abundant DOC, N-nitrosamine UFC was less affected by DOC removal before or after AS treatment, but decreased to similar degrees with N-nitrosamine FP. In sewage samples collected from wastewater treatment plants, N-nitrosamines UFC tended to increase or remain constant during AS treatment, despite the decreases in their FPs. These results suggest that biological wastewater treatment (e.g., the AS process) may not effectively reduce N-nitrosamine formation (e.g., measured under UFC) partially because the concurrent removal of bulk organic matters (e.g., DOC) favored N-nitrosamine formation in s econdary effluents.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
19
|
Zhao B, Wong Y, Ihara M, Nakada N, Yu Z, Sugie Y, Miao J, Tanaka H, Guan Y. Characterization of nitrosamines and nitrosamine precursors as non-point source pollutants during heavy rainfall events in an urban water environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127552. [PMID: 34736194 DOI: 10.1016/j.jhazmat.2021.127552] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) and their specific precursors (N,N-dimethylformamide [DMF] for NDMA and morpholine [MOR] for NMOR) were widely identified in runoff of urban area around the southern Lake Biwa basin, Japan. It was thought that this runoff might constitute a non-point source of the four compounds in rivers and sewage treatment plants (STPs) during heavy rainfall events. We investigated the spatiotemporal patterns of NDMA, NMOR, DMF and MOR in runoff and rivers in rainy days. NDMA and NMOR were detected in concentrations of up to 295 ng/L, while DMF and MOR were detected in concentrations of up to 33.7 µg/L. Continuous sequential sampling over periods of 24 or 48 h at the largest STP in the study area revealed that the four compounds in the primary effluent (PE) each had higher mass fluxes during heavy rainfall events than on dry days. This phenomenon might be contributed to non-point sources (e.g., runoff) from infiltration/inflow related to rainwater into sanitary sewers. Moreover, the four compounds were confirmed to have higher mass fluxes in the final effluent of the STP during periods of PE bypass (1.3-1.7 times for NDMA, NMOR, and MOR; over 200 times for DMF; on average) than that on dry days because of increasing inflow during heavy rain than during periods without PE bypass in dry weather.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Cooperative Research and Education Center for Environmental Technology of Kyoto University and Tsinghua University, Tsinghua University, Shenzhen 518055, China.
| | - Yongjie Wong
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Masaru Ihara
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Zaizhi Yu
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Yoshinori Sugie
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Jia Miao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan; Cooperative Research and Education Center for Environmental Technology of Kyoto University and Tsinghua University, Tsinghua University, Shenzhen 518055, China
| | - Yuntao Guan
- Cooperative Research and Education Center for Environmental Technology of Kyoto University and Tsinghua University, Tsinghua University, Shenzhen 518055, China; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
20
|
Glover CM, Liu Y, Liu J. Assessing the risk from trace organic contaminants released via greywater irrigation to the aquatic environment. WATER RESEARCH 2021; 205:117664. [PMID: 34583205 DOI: 10.1016/j.watres.2021.117664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Onsite non-potable reuse of greywater reduces the energy costs associated with the transport of wastewater and the stress on traditional source waters. However, greywater contains trace organic contaminants (TOrCs) that can be harmful to the aquatic environment when released via irrigation. In this work, the risk associated with TOrCs was evaluated for two potential irrigation scenarios, the use of untreated greywater and the use of greywater treated via conventional activated sludge. Risk quotient (RQ) ratios were calculated using the maximum concentration of each compound in the untreated or treated greywater divided by the relevant aquatic predicted no effect concentration. The TOrCs with RQs > 0.1 or 1 were classified as moderate and high priority, respectively. A review of greywater literature showed that a total of 350 compounds have been detected, with 132 classified as moderate or high priority in untreated greywater. Post-treatment 44 TOrCs remained as high priority due to high concentrations in greywater and/or poor removal during treatment, but only 14 of them were detected in multiple geographic locations. The final list of 14 TOrCs includes plasticizers/flame retardants (di-(2-ethylhexyl) phthalate, bisphenol A, and triphenyl phosphate), surfactants/preservatives/fragrances (4-nonylphenol, benzyldimethyl dodecylammonium chloride, tonalide, methylparaben, and 2-6-di-tert-butyl-4-methylphenol), UV-filters (benzophenone-3 and octocrylene), and pharmaceuticals/antibiotics (acetaminophen, trimethoprim, caffeine, and triclosan). This subset of TOrCs would be useful surrogates to monitor during greywater treatment for irrigation as potential hazards for nearby aquatic environments.
Collapse
Affiliation(s)
- Caitlin M Glover
- Department of Civil Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
| |
Collapse
|
21
|
Qiu Y, Bei E, Li X, Xie S, Xiao H, Luo Y, Wang Y, Wang J, Zhang X, Chen C. Quantitative analysis of source and fate of N-nitrosamines and their precursors in an urban water system in East China. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125700. [PMID: 34088188 DOI: 10.1016/j.jhazmat.2021.125700] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The source and fate of N-nitrosamines and their precursors in terms of formation potential (FP) was investigated quantitatively in the city level for the first time. Different sources of nitrosamines and their precursors were investigated in one city in the Yangtze River delta, China. The source water located downstream of the city contained 8.4 ng/L of N-nitrosodimethyamine (NDMA) and 153 ng/L of NDMA FP. The contribution of each discharge source was evaluated based on the concentration, the river water flux, and the amount of wastewater discharges. Textile printing and dyeing wastewater, and electroplating industrial wastewater contained high concentration of nitrosamines and were important discharge sources. Taking NDMA and NDMA FP attenuation by photolysis and biodegradation into consideration, the mass load calculation showed upstream surface water brought about 13 ± 4% of NDMA and 21 ± 3% of NDMA FP to downstream source water. Local wastewater discharges contributed 30 ± 8% of NDMA and 17 ± 2% of NDMA FP to downstream source water. Endogenous formation via amino acids metabolism could contribute 36% of NDMA FP (maximum) to downstream source water. Overall, this study provides a protocol for quantitative evaluation of the nitrosamine contribution to urban water supply from different contamination sources.
Collapse
Affiliation(s)
- Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Xiao Li
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, China, 215163
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China, 100871
| | - Hao Xiao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Yihua Luo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084
| | - Yu Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084; School of Resources and Environment, China University of Geosciences (Beijing), Beijing, China, 100083
| | - Jun Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, China, 215163
| | - Xiaojian Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, China, 215163
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China, 100084; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, China, 215163.
| |
Collapse
|
22
|
Li Z, Song G, Bi Y, Gao W, He A, Lu Y, Wang Y, Jiang G. Occurrence and Distribution of Disinfection Byproducts in Domestic Wastewater Effluent, Tap Water, and Surface Water during the SARS-CoV-2 Pandemic in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4103-4114. [PMID: 33523638 PMCID: PMC7875339 DOI: 10.1021/acs.est.0c06856] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 05/13/2023]
Abstract
Intensified efforts to curb transmission of the Severe Acute Respiratory Syndrome Coronavirus-2 might lead to an elevated concentration of disinfectants in domestic wastewater and drinking water in China, possibly resulting in the generation of numerous toxic disinfection byproducts (DBPs). In this study, the occurrence and distribution of five categories of DBPs, including six trihalomethanes (THMs), nine haloacetic acids (HAAs), two haloketones, nine nitrosamines, and nine aromatic halogenated DBPs, in domestic wastewater effluent, tap water, and surface water were investigated. The results showed that the total concentration level of measured DBPs in wastewater effluents (78.3 μg/L) was higher than that in tap water (56.0 μg/L, p = 0.05), followed by surface water (8.0 μg/L, p < 0.01). Moreover, HAAs and THMs were the two most dominant categories of DBPs in wastewater effluents, tap water, and surface water, accounting for >90%, respectively. Out of the regulated DBPs, none of the wastewater effluents and tap water samples exceeded the corresponding maximum guideline values of chloroform (300 μg/L), THM4 (80 μg/L), NDMA (100 ng/L), and only 2 of 35 tap water samples (67.6 and 63.3 μg/L) exceeded the HAA5 (60 μg/L) safe limit. HAAs in wastewater effluents showed higher values of risk quotient for green algae. This study illustrates that the elevated use of disinfectants within the guidance ranges during water disinfection did not result in a significant increase in the concentration of DBPs.
Collapse
Affiliation(s)
- Zhigang Li
- School of Environment, Hangzhou
Institute for Advanced Study, University of Chinese
Academy of Sciences, Hangzhou 310000,
People’s Republic of China
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Gaofei Song
- State Key Laboratory of Freshwater
Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072,
People’s Republic of China
| | - Yonghong Bi
- State Key Laboratory of Freshwater
Ecology and Biotechnology, Institute of Hydrobiology,
Chinese Academy of Sciences, Wuhan 430072,
People’s Republic of China
| | - Wei Gao
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Anen He
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Yao Lu
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| | - Yawei Wang
- School of Environment, Hangzhou
Institute for Advanced Study, University of Chinese
Academy of Sciences, Hangzhou 310000,
People’s Republic of China
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
- University of Chinese
Academy of Sciences, Beijing 100049,
People’s Republic of China
| | - Guibin Jiang
- State Key Laboratory of Environmental
Chemistry and Ecotoxicology, Research Center for
Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, People’s
Republic of China
| |
Collapse
|
23
|
Sack S, Avisar D, Kaplan A, Lester Y. Detection of N-nitrosodimethylamine (NDMA) and its formation potential in hospital wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14199-14206. [PMID: 33547606 DOI: 10.1007/s11356-021-12785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Hospital wastewaters contain high concentrations of pharmaceutical residues and other chemicals, and may present an important source for NDMA (N-nitrosodimethylamine) and its precursors in the aquatic environment. The present study evaluates the contribution of hospital wastewater to NDMA environmental load and identifies important sources within the hospital itself. For this purpose, wastewaters from five large hospitals in Israel were analyzed, and concentrations of NDMA were found in the range of 20.7-56.7 ng/L, which are similar to NDMA concentrations typically detected in domestic wastewater. The relative contribution of day surgery, oncology, laboratories, and central kitchen (in Sheba hospital) to the daily load of NDMA was calculated as 20.2%, 8.2%, 10%, and 43.2%, respectively. In addition, NDMA concentration in Sheba's mixed wastewater stream, measured throughout a complete working day, was highest at 14:00. This suggests the possible impact of lunchtime on NDMA concentration, and emphasizes the dominant contribution of central kitchen waste. Finally, formation potential of NDMA in the mixed stream was 7300 ng/L, in the upper range of domestic wastewater, but could be decreased by 70% during subsequent aerobic biological wastewater treatment.
Collapse
Affiliation(s)
- Shaanan Sack
- Environmental Technologies, Department of Material Engineering, Azrieli College of Engineering, 9103501, Jerusalem, Israel
| | - Dror Avisar
- The Water Research Center, Porter School for Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Aviv Kaplan
- The Water Research Center, Porter School for Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Yaal Lester
- Environmental Technologies, Department of Material Engineering, Azrieli College of Engineering, 9103501, Jerusalem, Israel.
| |
Collapse
|
24
|
Verdugo EM, Gifford M, Glover C, Cuthbertson AA, Trenholm RA, Kimura SY, Liberatore HK, Richardson SD, Stanford BD, Summers RS, Dickenson ER. Controlling disinfection byproducts from treated wastewater using adsorption with granular activated carbon: Impact of pre-ozonation and pre-chlorination. WATER RESEARCH X 2020; 9:100068. [PMID: 33015600 PMCID: PMC7522497 DOI: 10.1016/j.wroa.2020.100068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 05/24/2023]
Abstract
This study measured chlorine- and chloramine-reactive precursors using formation potential (FP) tests of nine U.S. Environmental Protection Agency (EPA) regulated and 57 unregulated disinfection byproducts (DBPs) in tertiary-filtered wastewater before and after pilot-scale granular activated carbon (GAC) adsorption. Using breakthrough of precursor concentration and of concentration associated calculated cytotoxicity and genotoxicity (by correlating known lethal concentrations reported elsewhere), the performance of three parallel GAC treatment trains were compared against tertiary-filtered wastewater: ozone/GAC, chlorine/GAC, and GAC alone. Results show GAC alone was the primary process, versus ozone or chlorine alone, to remove the largest fraction of total chlorine- and chloramine-reactive DBP precursors and calculated cytotoxicity and genotoxicity potencies. GAC with pre-ozonation removed the most chlorine- and chloramine-reactive DBP precursors followed by GAC with pre-chlorination and lastly GAC without pre-treatment. GAC with pre-ozonation produced an effluent with cytotoxicity and genotoxicity of DBPs from FP that generally matched that of GAC without pre-oxidation; meanwhile removal of toxicity was greater by GAC with pre-chlorination. The cytotoxicity and genotoxicity of DBPs from FP tests did not scale with DBP concentration; for example, more than 90% of the calculated cytotoxicity resulted from 20% of the DBPs, principally from haloacetaldehydes, haloacetamides, and haloacetonitriles. The calculated cytotoxicity and genotoxicity from DBPs associated with FP-chloramination were at times higher than with FP-chlorination though the concentration of DBPs was five times higher with FP-chlorination. The removal of DBP precursors using GAC based treatment was at least as effective as removal of DOC (except for halonitromethanes for GAC without pre-oxidation and with pre-chlorination), indicating DOC can be used as an indicator for DBP precursor adsorption efficacy. However, the DOC was not a good surrogate for total cytotoxicity and genotoxicity breakthrough behavior, therefore, unregulated DBPs could have negative health implications that are disconnected from general water quality parameters, such as DOC, and regulated classes of DBPs. Instead, cytotoxicity and genotoxicity correlate with the concentration of specific classes of unregulated DBPs.
Collapse
Affiliation(s)
- Edgard M. Verdugo
- Water Quality Research and Development, Southern Nevada Water Authority, 1299, Burkholder Blvd., Henderson, United States
| | - Mac Gifford
- Water Quality Research and Development, Southern Nevada Water Authority, 1299, Burkholder Blvd., Henderson, United States
| | - Caitlin Glover
- Water Quality Research and Development, Southern Nevada Water Authority, 1299, Burkholder Blvd., Henderson, United States
| | - Amy A. Cuthbertson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, United States
- Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California 94720, United States
| | - Rebecca A. Trenholm
- Water Quality Research and Development, Southern Nevada Water Authority, 1299, Burkholder Blvd., Henderson, United States
| | - Susana Y. Kimura
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, United States
- Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Hannah K. Liberatore
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, United States
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Susan D. Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC 29208, United States
| | - Benjamin D. Stanford
- Hazen and Sawyer, 143 Union Blvd., Suite 200, Lakewood, CO, 80228, United States
| | - R. Scott Summers
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Campus Box 428, Boulder, CO, 80309, United States
| | - Eric R.V. Dickenson
- Water Quality Research and Development, Southern Nevada Water Authority, 1299, Burkholder Blvd., Henderson, United States
| |
Collapse
|
25
|
Zhang X, Kim D, Freedman DL, Karanfil T. Impact of biological wastewater treatment on the reactivity of N-Nitrosodimethylamine precursors. WATER RESEARCH 2020; 186:116315. [PMID: 32846382 DOI: 10.1016/j.watres.2020.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a probable human carcinogen which forms during chloramination of wastewater-impacted drinking waters. Municipal wastewater effluents are considered as major sources of NDMA precursors affecting downstream water quality. To evaluate the deactivation mechanisms and efficiencies of NDMA precursors during secondary treatment with the activated sludge (AS) process, NDMA formation potentials (FPs) of selected model precursor compounds and sewage components (i.e., blackwaters and greywaters) were monitored in batch AS treatment tests. After 24-h incubation with four different types of AS (i.e., domestic rural, domestic urban, textile and lab-grown AS), NDMA FP of trimethylamine (TMA) and minocycline (MNCL) decreased by 77-100%, while there was only 29-46% reduction in NDMA FP of sumatriptan (SMTR). The reduction in NDMA FP associated with ranitidine (RNTD) varied between 34% and 87%. The decrease in NDMA FP of RNTD depended on the AS type, hydraulic retention time (HRT) and solids retention time (SRT). The domestic AS (rural and urban) achieved higher decreases in NDMA FPs of the tested model precursors than the textile AS or lab-grown AS. Increasing the HRT or SRT enhanced NDMA FP decrease for RNTD. Among different processes tested (i.e., biodegradation, biosorption and volatilization), biosorption was the major mechanism responsible for the NDMA FP decrease of RNTD, MNCL and SMTR, while biodegradation was the major NDMA FP reduction mechanism for TMA. The reduction in NDMA FP of RNTD via biodegradation depended on the AS activity which may vary with sampling seasons and SRT. NDMA FPs in all tested sewage components (i.e., blackwaters and greywaters) decreased after 24-h AS treatment. Urine in blackwater was the predominant (i.e., >90%) contributor to NDMA FP in domestic sewage and AS-treated effluents.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
26
|
Luo Q, Bei E, Liu C, Deng YL, Miao Y, Qiu Y, Lu WQ, Chen C, Zeng Q. Spatial, temporal variability and carcinogenic health risk assessment of nitrosamines in a drinking water system in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139695. [PMID: 32497885 DOI: 10.1016/j.scitotenv.2020.139695] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Nitrosamines, as a class of emerging frequently detected nitrogenous disinfection byproducts (N-DBPs) in drinking water, have gained increasing attention due to their potentially high health risk. Few studies focus on the occurrence variation and carcinogenic health risk of nitrosamines in drinking water systems. Our study aimed to investigate the spatial and temporal variability of nitrosamines in a drinking water system and to conduct a carcinogenic health risk assessment. Three types of water samples, including influent water, treated water and tap water, were collected monthly during an entire year in a drinking water system utilizing a combination of chlorine dioxide and chlorine in central China, and 9 nitrosamines were measured. The nitrosamine formation potentials (FPs) in influent water were also determined. N-nitrosodimethylamine (NDMA) was the most prevalent compound and was dominant in the water samples with average concentrations ranging from 2.5 to 67.4 ng/L, followed by N-nitrosodiethylamine (NDEA) and N-nitrosopiperidine (NPIP). Nitrosamine occurrence varied monthly, and significant seasonal differences were observed in tap water (p < .05). There were decreasing mean NDMA, NDEA and NPIP concentrations from influent water to treated water to tap water, but no significant spatial variability was observed within the water distribution system (p > .05). The average and 95th percentile total lifetime cancer risks for the three main nitrosamines were 4.83 × 10-5 and 4.48 × 10-4, respectively, exceeding the negligible risk level (10-6) proposed by the USEPA. Exposure to nitrosamines in drinking water posed a higher cancer risk for children than for adults, and children aged 0.75 to 1 years suffered the highest cancer risk. These results suggest that nitrosamine occurrence in tap water varied temporally but not spatially. Exposure to drinking water nitrosamines may pose a carcinogenic risk to human health, especially to children.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Er Bei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, PR China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
27
|
Hora PI, Pati SG, McNamara PJ, Arnold WA. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2020; 7:622-631. [PMID: 37566314 PMCID: PMC7341688 DOI: 10.1021/acs.estlett.0c00437] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 05/17/2023]
Abstract
Quaternary ammonium compounds (QACs) are active ingredients in over 200 disinfectants currently recommended by the U.S. EPA for use to inactivate the SARS-CoV-2 (COVID-19) virus. The amounts of these compounds used in household, workplace, and industry settings has very likely increased, and usage will continue to be elevated given the scope of the pandemic. QACs have been previously detected in wastewater, surface waters, and sediments, and effects on antibiotic resistance have been explored. Thus, it is important to assess potential environmental and engineering impacts of elevated QAC usage, which may include disruption of wastewater treatment unit operations, proliferation of antibiotic resistance, formation of nitrosamine disinfection byproducts, and impacts on biota in surface waters. The threat caused by COVID-19 is clear, and a reasonable response is elevated use of QACs to mitigate spread of infection. Exploration of potential effects, environmental fate, and technologies to minimize environmental releases of QACs, however, is warranted.
Collapse
Affiliation(s)
- Priya I. Hora
- Department of Civil, Environmental, and Geo-
Engineering, University of Minnesota − Twin Cities, 500
Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | - Sarah G. Pati
- Department of Environmental Sciences,
University of Basel, Bernoullistrasse 30, 4056 Basel,
Switzerland
| | - Patrick J. McNamara
- Department of Civil, Construction, and Environmental
Engineering, Marquette University, P.O. Box 1881, Milwaukee,
Wisconsin 53233, United States
| | - William A. Arnold
- Department of Civil, Environmental, and Geo-
Engineering, University of Minnesota − Twin Cities, 500
Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
28
|
Roccaro P, Finocchiaro R, Mamo J, Farré MJ. Monitoring NDMA precursors throughout membrane-based advanced wastewater treatment processes by organic matter fluorescence. WATER RESEARCH 2020; 175:115682. [PMID: 32193028 DOI: 10.1016/j.watres.2020.115682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
This study investigates the potential of fluorescence excitation/emission matrices (EEM) measurement as a tool to predict N-Nitrosodimethylamine (NDMA) formation in water reuse applications. In particular, samples from a pilot-scale membrane biological reactor (MBR) followed by nanofiltration (NF) advanced water treatment plant, are used for the study. Concentrations of both, specific NDMA precursors and NDMA formation potential (FP) are correlated with different EEM peaks. The specific precursors investigated are: erythromycin, azithromycin, clarithromycin, venlafaxine, o-desmethylvenlafaxine, ranitidine and citalopram, while the NDMA FP is conventionally measured by the NDMA formation potential test. EEM peaks investigated are obtained by fluorescence regional integration as well as by the peak picking method generating I1, I2, I3, I4, and I5 peaks. Results showed that protein-like materials are correlated with the bulk NDMA FP and specific NDMA precursors. Additionally, selected fluorescence peaks such as I1, I2 and I4 are strongly correlated with NDMA precursors throughout the MBR-NF pilot plant. The removal of NDMA precursors and EEM peaks also correlated well (R2 > 0.8). This data shows that fluorescence EEM can be a promising tool to monitor the concentration of NDMA precursors and their removal in water reuse application.
Collapse
Affiliation(s)
- Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| | - Renata Finocchiaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy.
| | - Julian Mamo
- Chemical and Environmental Engineering Laboratory (LEQUIA), Institut de Medi Ambient, Campus Montilivi s/n, University of Girona, E-17071, Girona, Catalonia, Spain
| | - Maria José Farré
- ICRA, Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, H2O Building, Emili Grahit 101, 17003, Girona, Spain; UdG, Universitat de Girona, 17003, Girona, Spain.
| |
Collapse
|
29
|
Zhang Z, Ma B, Hozalski RM, Russell CG, Evans AN, Led KO, Van Dyke M, Peldszus S, Huck PM, Szczuka A, Mitch WA. Bench-scale column evaluation of factors associated with changes in N-nitrosodimethylamine (NDMA) precursor concentrations during drinking water biofiltration. WATER RESEARCH 2019; 167:115103. [PMID: 31581035 DOI: 10.1016/j.watres.2019.115103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Biofiltration has been observed to increase or decrease the concentrations of N-nitrosodimethylamine (NDMA) precursors in the effluents of full-scale drinking water facilities, but these changes have been inconsistent over time. Bench-scale tests comparing biofiltration columns side-by-side exposed to different conditions were employed to characterize factors associated with changes in NDMA precursor concentrations, as measured by application of chloramines under uniform formation conditions (UFC). Side-by-side comparisons of biofiltration media from different facilities fed with water from each of these facilities demonstrated that differences in source water quality were far more important than any original differences in the microbial communities on the biofiltration media for determining whether NDMA precursor concentrations increased, decreased or remained constant across biofilters. Additional tests involving spiking of specific constituents hypothesized to promote increases in NDMA precursor concentrations demonstrated that inorganic nitrogen species associated with nitrification, including ammonia, hydroxylamine and chloramines, and biotransformation of known precursors (i.e., municipal wastewater and the cationic polymer, polyDADMAC) to more potent forms were not important. Biotransformation of uncharacterized components of source waters determined whether NDMA precursor concentrations increased or decreased across biofilters. These uncharacterized source water component concentrations varied temporally and across locations. Where biotransformation of source water precursors increased NDMA precursor concentrations, ∼30-60% of the levels observed in column effluents fed with biofiltration influent water remained associated with the media and could be rinsed therefrom in either the dissolved or particulate form. Ozone pre-treatment significantly reduced NDMA precursor concentrations at one facility, suggesting that pre-oxidation could be an effective technique to mitigate the increase in NDMA precursor concentrations during biofiltration. Biofiltration decreased the concentrations of halogenated disinfection byproduct precursors.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - Ben Ma
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN, USA
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, 500 Pillsbury Dr. SE, Minneapolis, MN, USA
| | - Caroline G Russell
- Carollo Engineers, Inc., 8911 Capital of Texas Highway North, Suite 2200, Austin, TX, 78759, USA
| | - Ashley N Evans
- Carollo Engineers, Inc., 8911 Capital of Texas Highway North, Suite 2200, Austin, TX, 78759, USA
| | - Katrine O Led
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2K 1X4, Canada
| | - Michele Van Dyke
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2K 1X4, Canada
| | - Sigrid Peldszus
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2K 1X4, Canada
| | - Peter M Huck
- NSERC Chair in Water Treatment, Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2K 1X4, Canada
| | - Aleksandra Szczuka
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States.
| |
Collapse
|
30
|
Chen W, Chen Y, Huang H, Lu Y, Khorram MS, Zhao W, Wang D, Qi S, Jin B, Zhang G. Occurrence of N-Nitrosamines in the Pearl River delta of China: Characterization and evaluation of different sources. WATER RESEARCH 2019; 164:114896. [PMID: 31377526 DOI: 10.1016/j.watres.2019.114896] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/25/2019] [Accepted: 07/21/2019] [Indexed: 06/10/2023]
Abstract
N-nitrosamines in water have drawn significant concerns for the health of water consumers due to their carcinogenic properties. N-nitrosamines are formed during disinfection of wastewater as well as different industrial and agricultural processes. This study characterized the N-nitrosamines compositions in eleven different wastewaters in the Pearl River Delta (PRD) in Southeast China, and the spatial distributions and the abundances of N-nitrosamines in the Pearl River water were detected. The results indicated that five N-nitrosamines species, including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosopyrrolidine (NPYR), N-nitrosomorpholine (NMOR) and N-nitrosodibutylamine (NDBA) were found in the industrial wastewater samples in the PRD. Remarkably high concentrations of NDMA (up to 4000 ng/L) were found in the wastewaters from the textile printing and dyeing as well as the electroplating, whereas NDMA, NDEA and NMOR were detected in the domestic wastewaters at concentrations lower than 15 ng/L. Moreover, we found that certain treatment processes for the electroplating wastewater could form a significant amount of NDMA, NPYR and NMOR. Analyses of the Pearl River water samples showed occurrences of different N-nitrosamines species, including NDMA (5.7 ng/L), NDEA (1.7 ng/L), NPYR (2.2 ng/L), NMOR (2.2 ng/L) and NDBA (4.9 ng/L). The abundances of N-nitrosamines species varied spatially due to the inputs from the different sources. Thus, our study provides unique and valuable information for occurrences, abundances and source characteristics of N-nitrosamines in the PRD.
Collapse
Affiliation(s)
- Wenwen Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Huanfang Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yijin Lu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Mahdi Safaei Khorram
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Wenyu Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Biao Jin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
31
|
Zhao B, Nakada N, Okumura K, Zhou J, Tanaka H. N-nitrosomorpholine behavior in sewage treatment plants and urban rivers. WATER RESEARCH 2019; 163:114868. [PMID: 31344505 DOI: 10.1016/j.watres.2019.114868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/09/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
The seasonal and diurnal patterns of N-nitrosomorpholine (NMOR) and its formation potential (NMOR FP) were examined with water samples taken from five outlets of four sewage treatment plants (STPs), seven main stream sites, and five tributary sites in the Yodo River basin. STPs were shown to be the main sources of downstream NMOR load. The highest NMOR levels were found in the discharge from one STP (26.4-171 ng/L). Continuous sequential samplings over a period of 24 h at this STP revealed that NMOR flux at the influent point fluctuated in both summer (0.4-3.2 g/h) and winter (0.3-5.4 g/h), while it was steady in the effluent. In addition, levels of NMOR remained stable during the biological treatment and disinfection processes. The present research demonstrated that NMOR could be formed from morpholine (MOR) in raw sewage treated by this STP, with a possible mechanism being formaldehyde-catalyzed nitrosation of MOR by nitrites, prior to raw sewage entering the STP. This implies that the NMOR detected here might not be a disinfection byproduct per se under low-chlorine disinfection (around 1.0 mg/L), but is primarily a contaminant that is difficult to remove during sewage treatment. NMOR attenuated significantly in the rivers in the daytime with production of MOR, but persisted during nights, which demonstrated the importance of monitoring NMOR levels in the water environment during periods of low UV intensity, especially nights.
Collapse
Affiliation(s)
- Bo Zhao
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Norihide Nakada
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan.
| | - Kohei Okumura
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Jiajun Zhou
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| |
Collapse
|
32
|
Li Z, Liu X, Huang Z, Hu S, Wang J, Qian Z, Feng J, Xian Q, Gong T. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China. WATER RESEARCH 2019; 157:247-257. [PMID: 30954700 DOI: 10.1016/j.watres.2019.03.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/23/2019] [Accepted: 03/02/2019] [Indexed: 05/04/2023]
Abstract
Effluents containing disinfection byproducts (DBPs) from wastewater treatment plants (WWTPs) may be discharged to the receiving water bodies or reused for irrigation, landscaping, and environmental supplies as well as a source to replenish groundwater. Thus the formation and risk of the DBPs in disinfected wastewater effluents should be concerned. In this study, the occurrence of 44 DBPs including 6 trihalomethanes (THMs), 9 haloaceticacids (HAAs), 2 haloketones (HKs), 9 halonitromethanes (HNMs), 9 haloacetonitriles (HANs) and 9 nitrosamines (NAs) was investigated in 12 chlorinated WWTP effluents from five cities of East China. The contribution of each class of DBPs to the total DBPs concentration and additive toxicity was calculated. The average concentrations of the 6 classes of DBPs were ranked as follows: HAAs (47.0 μg/L) > THMs (28.0 μg/L) > HANs (9.9 μg/L) > HNMs (2.9 μg/L) > HKs (0.79 μg/L) > NAs (0.69 μg/L). The significant positive correlations were observed between the formation of THMs and HAAs, THMs and HANs, as well as HAAs and HANs. The results showed that HAAs and THMs were the dominant DBPs on a mass concentration basis and accounted for 54% and 29%, respectively in the total measured DBPs, but they made a minor contribution to the calculated DBP-associated cytotoxicity. HANs and NAs dominated the DBP-associated cytotoxicity, accounting for 50% and 34% on an additive toxicity basis despite the minor contributions to the mass concentration with 10% and 1%, respectively. The risk quotients for three taxonomic groups (fish, daphnid, and green algae) were calculated to assess the ecological risk of DBPs, and the results demonstrated that both HAAs and HANs had high ecological risk for green algae in chlorinated wastewater effluents.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xinyao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhijun Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junjie Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zongyao Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jianfang Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Tingting Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
33
|
Di Tommaso C, Taylor-Edmonds L, Andrews SA, Andrews RC. The contribution of biofilm to nitrogenous disinfection by-product formation in full-scale cyclically-operated drinking water biofilters. WATER RESEARCH 2019; 155:403-409. [PMID: 30856522 DOI: 10.1016/j.watres.2019.02.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Biofiltration has been shown to be effective for disinfection by-product (DBP) precursor control, however few studies have considered its role in the potential formation of DBPs. Biofilm is composed of heterogeneous bacteria as well as extracellular polymeric substances (EPS). The objective of this study was to determine the contribution of biofilm-related materials such as EPS to form nitrogen-containing DBPs upon chloramination, and to determine the influence of cyclical (scheduled on-off) biofilter operation on DBP precursor removal. Biologically active media was sampled from a full-scale biofilter operating under cold-water conditions (3.6 ± 0.5 °C) and extracted using a cation exchange resin into a phosphate buffer solution. Biomass concentrations, as determined using adenosine triphosphate (ATP) measurements, remained stable at 298 ± 55 ng ATP/g media over the trial period. N-nitrosodimethylamine (NDMA) and haloacetonitrile (HAN4) formation potential (FP) tests conducted under uniform formation conditions (UFC) using extracted biofilm yielded 0.80 ± 0.27 ng NDMA/g media and 18.7 ± 3.3 ng dichloroacetonitrile (DCAN)/g media. Further analyses of extracted biofilm using fluorescence spectroscopy and liquid chromatography-organic carbon detection indicated the presence of proteins above 20 kDa and humic-like substances. Extracted proteins (93.5 ± 8.1 μg/g media) correlated well (R = 0.90) with UV 280 measurements, indicating that spectrophotometry may serve as a valuable tool to quantify proteins in extracted biofilms. While substances in biofilms can serve as NDMA and DCAN precursors, the full-scale cyclically-operated biofilter that was examined did not show release of NDMA precursors during start-up following stagnation periods of 6 h or more. These biofilters consistently removed 6.9 ± 4.3 ng/L of NDMA precursors; typical NDMA UFC-FP of biofilter effluent was 8.5 ± 2.6 ng/L.
Collapse
Affiliation(s)
- Caroline Di Tommaso
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St, Toronto, Ontario, M5S 1A4, Canada.
| | - Liz Taylor-Edmonds
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St, Toronto, Ontario, M5S 1A4, Canada.
| | - Susan A Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St, Toronto, Ontario, M5S 1A4, Canada.
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George St, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
34
|
Chuang YH, Shabani F, Munoz J, Aflaki R, Hammond SD, Mitch WA. Formation of N-nitrosamines during the analysis of municipal secondary biological nutrient removal process effluents by US EPA method 521. CHEMOSPHERE 2019; 221:597-605. [PMID: 30665089 DOI: 10.1016/j.chemosphere.2019.01.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
US EPA Method 521 employs activated carbon-based solid phase extraction (SPE) cartridges for analyzing N-nitrosamines. The analysis of N-nitrosamines and their chloramine-reactive and ozone-reactive precursors in nitrified municipal secondary effluent revealed the potential for NDMA to form as an artefact during the analysis. As samples passed through the SPE cartridge, the activated carbon mediated the reaction of nitrite with dimethylamine to form NDMA. The reaction was not significant with tertiary amines. Artefactual NDMA formation was important for nitrite concentrations >0.2 mg/L as N in the Biological Nitrogen Removal (BNR) process effluent. However, it is difficult to define a general threshold for nitrite concentrations, because the importance of the reaction also depends on secondary amine concentrations, which are usually poorly characterized. Pre-treatment of samples with sulfamic acid to destroy nitrite mitigated the artefact. This artefact did not affect NDMA analysis in a nitrified effluent from another facility, likely due to low dimethylamine concentrations. This artefact also did not affect the analysis of primary effluent, due to the lack of nitrite, or the analysis of other N-nitrosamines, likely due to the lack of their secondary amine precursors. Because chloramination does not significantly degrade nitrite, this artefact could affect the analysis of chloramine-reactive N-nitrosamine precursors. Because ozonation rapidly degrades nitrite, it should not affect the analysis of ozone-reactive precursors. However, ozonation at 0.8 mg ozone/mg dissolved organic carbon resulted in significant degradation of all N-nitrosamines, even though simultaneous NDMA formation from ozone-reactive precursors resulted in a net increase in NDMA concentration.
Collapse
Affiliation(s)
- Yi-Hsueh Chuang
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States
| | | | | | | | | | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA, 94305, United States.
| |
Collapse
|
35
|
Marron EL, Mitch WA, von Gunten U, Sedlak DL. A Tale of Two Treatments: The Multiple Barrier Approach to Removing Chemical Contaminants During Potable Water Reuse. Acc Chem Res 2019; 52:615-622. [PMID: 30821146 PMCID: PMC7653687 DOI: 10.1021/acs.accounts.8b00612] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In response to water scarcity and an increased recognition of the risks associated with the presence of chemical contaminants, environmental engineers have developed advanced water treatment systems that are capable of converting municipal wastewater effluent into drinking water. This practice, which is referred to as potable water reuse, typically relies upon reverse osmosis (RO) treatment followed by exposure to ultraviolet (UV) light and addition of hydrogen peroxide (H2O2). These two treatment processes individually are capable of controlling many of the chemical and microbial contaminants in wastewater; however, a few chemicals may still be present after treatment at concentrations that affect water quality. Low-molecular weight (<200 Da), uncharged compounds represent the greatest challenge for RO treatment. For potable water reuse systems, compounds of greatest concern include oxidation products formed during treatment (e.g., N-nitrosodimethylamine, halogenated disinfection byproducts) and compounds present in wastewater effluent (e.g., odorous compounds, organic solvents). Although the concentrations of most of these compounds decrease to levels where they no longer compromise water quality after they encounter the second treatment barrier (i.e., UV/H2O2), low-molecular weight compounds that are resistant to direct photolysis and exhibit low reactivity with hydroxyl radical (·OH) may persist. While attempts to identify the compounds that pass through both barriers have accounted for approximately half of the dissolved organic carbon remaining after treatment, it is unlikely that a significant fraction of the remaining unknowns will ever be identified with current analytical techniques. Nonetheless, the toxicity-weighted concentration of certain known compounds (e.g., disinfection byproducts) is typically lower in RO-UV/H2O2 treated water than conventional drinking water. To avoid the expense associated with managing the concentrate produced by RO, environmental engineers have begun to employ alternative treatment barriers. The use of alternatives such as nanofiltration, ozonation followed by biological filtration, or activated carbon filtration avoids the problems associated with the production and disposal of RO concentrate, but they may allow a larger number of chemical contaminants to pass through the treatment process. In addition to the transformation products and solvents that pose risks in the RO-UV/H2O2 system, these alternative barriers are challenged by larger, polar compounds that are not amenable to oxidation, such as perfluoroalkyl acids and phosphate-containing flame retardants. To fully protect consumers who rely upon potable water reuse systems, new policies are needed to prevent chemicals that are difficult to remove during advanced treatment from entering the sewer system. By using knowledge about the composition of municipal wastewater and the mechanisms through which contaminants are removed during treatment, it should be possible to safely reuse municipal wastewater effluent as a drinking water source.
Collapse
Affiliation(s)
- Emily L. Marron
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, Stanford University, Stanford, California 94305, United States
| | - William A. Mitch
- Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Urs von Gunten
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, CH-8600 Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéralé de Lausanne, CH-1015 Lausanne, Switzerland
| | - David L. Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Engineering Research Center for Reinventing the Nation’s Urban Water Infrastructure, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
36
|
Kümmerer K, Dionysiou DD, Olsson O, Fatta-Kassinos D. Reducing aquatic micropollutants - Increasing the focus on input prevention and integrated emission management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:836-850. [PMID: 30380490 DOI: 10.1016/j.scitotenv.2018.10.219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals and many other chemicals are an important basis for nearly all sectors including for example, food and agriculture, medicine, plastics, electronics, transport, communication, and many other products used nowadays. This comes along with a tremendous chemicalization of the globe, including ubiquitous presence of products of chemical and pharmaceutical industries in the aquatic environment. Use of these products will increase with population growth and living standard as will the need for clean water. In addition, climate change will exacerbate availability of water in sufficient quantity and quality. Since its implementation, conventional wastewater treatment has increasingly contributed to environmental protection and health of humans. However, with the increasing pollution of water by chemicals, conventional treatment turned out to be insufficient. It was also found that advanced effluent treatment methods such as extended filtration, the sorption to activated charcoal or advanced oxidation methods have their own limitations. These are, for example, increased demand for energy and hazardous chemicals, incomplete or even no removal of pollutants, the generation of unwanted products from parent compounds (transformation products, TPs) of often-unknown chemical structure, fate and toxicity. In many countries, effluent treatment is available only rarely if at all let alone advanced treatment. The past should teach us, that focusing only on technological approaches is not constructive for a sustainable water quality control. Therefore, in addition to conventional and advanced treatment optimization more emphasis on input prevention is urgently needed, including more and better control of what is present in the source water. Measures for input prevention are known for long. The main focus though has always been on the treatment, and measures taken at the source have gained only little attention so far. A more effective and efficient approach, however, would be to avoid pollution at the source, which would in turn allow more targeted treatment to meet treated water quality objectives globally. New developments within green and sustainable chemistry are offering new approaches that allow for input prevention and a more targeted treatment to succeed in pollution elimination in and at the source. To put this into practice, engineers, water scientists and chemists as well as microbiologists and scientists of other related disciplines need to cooperate more extensively than in the past. Applying principles such as the precautionary principle, or keeping water flows separate where possible will add to this. This implies not minimizing the efforts to improve wastewater treatment but to design effluents and chemicals in such a way that treatment systems and water environments can cope successfully with the challenge of micropollutants globally (Kümmerer et al., 2018). This paper therefore presents in its first part some of the limitations of effluent treatment in order to demonstrate the urgent need for minimizing water pollution at the source and, information on why source management is urgently needed to improve water quality and stimulate discussions how to protect water resources on a global level. Some principles of green and sustainable chemistry as well as other approaches, which are part of source management, are presented in the second part in order to stimulate discussion.
Collapse
Affiliation(s)
- Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany; International Sustainable Chemistry Collaboration Center (ISC(3)), Research and Education, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (DCEE), 705 Engineering Research Center, University of Cincinnati, Cincinnati, OH 45221-0012, USA; Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Oliver Olsson
- Institute of Sustainable and Environmental Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Despo Fatta-Kassinos
- Nireas-International Water Research Center, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus; Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
| |
Collapse
|
37
|
Kleywegt S, Payne M, Ng F, Fletcher T. Environmental loadings of Active Pharmaceutical Ingredients from manufacturing facilities in Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:257-264. [PMID: 30055488 DOI: 10.1016/j.scitotenv.2018.07.240] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Recent evidence has revealed that cities with pharmaceutical manufacturers have elevated concentrations of Active Pharmaceutical Ingredients (APIs) in their receiving water bodies. The purpose of this study was to gather information on direct sewer discharges of APIs during their manufacturing and processing from five pharmaceutical manufacturing facilities in Ontario, Canada. Drug classes and maximum reported concentrations (ng/L) for which APIs were directly discharged included: antidepressants (paroxetine - 3380 and sertraline - 5100); mood stabilizer (carbamazepine - 575,000); antibiotics (penicillin - 14,300); analgesics (acetaminophen - 461,000; codeine - 49,200; ibuprofen - 344,000; naproxen - 253,000 and oxycodone 21,000); cardiovascular drugs (atorvastatin - 893 and metoprolol - 7,333,600) and those drugs used for blood pressure control (amlodipine - 22,900; diltiazem - 1,160,000; furosemide - 1,200,000 and verapamil - 7340). Based on flow and water usage data from the individual facilities, the maximum concentrations for acetaminophen, ibuprofen, carbamazepine, diltiazem and metoprolol correlate to approximately 200, 220, 390, 420 and 14,200 g respectively, of lost product being directly discharged to the sewers daily during active manufacturing. This survey demonstrates that direct point source discharges from pharmaceutical manufacturers represent a key source of pharmaceutical pollution to receiving sewersheds. Onsite recovery of product or treatment at pharmaceutical manufacturing or processing facilities to reduce the sewage loadings to receiving treatment plants, product loss and potential environmental loadings is strongly recommended.
Collapse
Affiliation(s)
- Sonya Kleywegt
- Ontario Ministry of the Environment and Climate Change, ON, Canada.
| | - Mark Payne
- Environmental Services, The Regional Municipality of York, Newmarket, ON, Canada
| | - Fai Ng
- Environmental Services, The Regional Municipality of York, Newmarket, ON, Canada
| | - Tim Fletcher
- Ontario Ministry of the Environment and Climate Change, ON, Canada
| |
Collapse
|
38
|
Glover CM, Verdugo EM, Trenholm RA, Dickenson ERV. N-nitrosomorpholine in potable reuse. WATER RESEARCH 2019; 148:306-313. [PMID: 30390511 DOI: 10.1016/j.watres.2018.10.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
As potable reuse guidelines and regulations continue to develop, the presence of N-nitrosamines is a primary concern because of their associated health concerns. In this study, bench-, pilot-, and full-scale tests were conducted to focus on the occurrence and treatment of N-nitrosomorpholine (NMOR) in United States (U.S.) potable reuse systems. Out of twelve U.S. wastewater effluents collected, ambient NMOR was detected in eleven (average = 20 ± 18 ng/L); in contrast, only two of the thirteen surface water and stormwater samples had NMOR. Across all of these samples maximum formation potential by chloramination produced an average increase of 3.6 ± 1.8 ng/L. This result underscores the need to understand the sources of NMOR as it is not likely a disinfection byproduct and it is not known to be commercially produced within the U.S. At the pilot-scale, three potable reuse systems were evaluated for ambient NMOR with oxidation (i.e., chlorination and ozonation), biofiltration, and granular activated carbon (GAC). Both pre-oxidation and biofiltration were ineffective at mitigating NMOR during long-term pilot plant operation (at least eight-months). GAC adsorbers were the only pilot-scale treatment to remove NMOR; however, complete breakthrough occurred rapidly from <2000 to 10,000 bed volumes. For comparison, a full-scale reverse osmosis (RO) potable reuse system was monitored for a year and confirmed that RO effectively removes NMOR. Systematic bench-scale UV-advanced oxidation experiments were undertaken to assess the mitigation potential for NMOR. At a fluence dose of 325 ± 10 mJ/cm2, UV alone degraded 90% of the NMOR present. The addition of 5 mg/L hydrogen peroxide did not significantly decrease the UV dose required for one-log removal. These data illustrate that efficient NMOR removal from potable reuse systems is limited to RO or UV treatment.
Collapse
Affiliation(s)
- Caitlin M Glover
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| | - Edgard M Verdugo
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Rebecca A Trenholm
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV, 89193-9954, USA.
| |
Collapse
|
39
|
Kuyooro SE, Akintunde JK, Okekearu FC, Maduagwu EN. Toxicokinetics and Biliary Excretion of N-Nitrosodiethylamine in Rat Supplemented with Low and High Dietary Proteins. J Diet Suppl 2018; 16:506-520. [PMID: 30513225 DOI: 10.1080/19390211.2018.1471561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although biliary excretion is one of the biological elimination processes for foreign compounds, intake of high-protein diets was hypothesized to enhance their detoxification rates. Hence, this study investigates the effect of differential dietary protein intake on toxicokinetics and biliary excretion in rats following exposure to N-nitrosodiethylamine (NDEA) and aflatoxin B1 (AFB1). The animals were divided into five groups. Groups I and II were exposed to low and high dietary proteins following a single intraperitoneal dose of 43 µg NDEA/kg body weight, respectively. Groups III and IV were equally treated after a combined single intraperitoneal dose of 43 µg NDEA plus 0.022µg AFBI/kg body weight, respectively. Group V was fed with low-protein diets following a single intraperitoneal dose of 0.022µg AFB1/kg body weight. The experiment lasted 35 days. The bile excreted higher amounts of unchanged NDEA than nitrite. The groups placed on high-protein diets (HPD = 64%) eliminated higher amounts of the unchanged NDEA and nitrite than the lower-protein diet (LPD = 8%) groups. Furthermore, the animals fed with high dietary protein (HPD = 64%) depicted short half-life with corresponding increase in elimination rate constant. The presence of AFB1 heightened the excretion of bound NDEA with AFB1 than NDEA only. Generally, this study advocates that N-nitrosodiethylamine and the corresponding metabolites follow hepatobiliary system potentiated by high intake of dietary proteins.
Collapse
Affiliation(s)
- S E Kuyooro
- Department of Chemical Sciences, Biochemistry unit, College of Natural and Applied Sciences, Bells University of Technology , Ota , Nigeria.,Nutritional Biochemistry Research Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan , Ibadan , Nigeria
| | - J K Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry College of Biological Sciences, Federal University of Agriculture , Abeokuta , Nigeria
| | - F C Okekearu
- Nutritional Biochemistry Research Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan , Ibadan , Nigeria
| | - E N Maduagwu
- Nutritional Biochemistry Research Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan , Ibadan , Nigeria
| |
Collapse
|
40
|
Gushgari AJ, Halden RU. Critical review of major sources of human exposure to N-nitrosamines. CHEMOSPHERE 2018; 210:1124-1136. [PMID: 30208538 DOI: 10.1016/j.chemosphere.2018.07.098] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 05/21/2023]
Abstract
More than 24 N-nitrosamine compounds contribute to the total N-nitrosamine (TNA) burden monitored routinely to assess human exposure to this important group of known and suspected human carcinogens. A literature review (n = 122) identified multiple sources of human exposure to TNAs, including waters (40 ± 10.5 ng/L; average ± standard deviation), food and beverages (6.7 ± 0.8 ng/g), tobacco (16,100 ± 3650 ng/g) and personal care products (1500 ± 750 ng/g). Due to source control interventions, levels of TNAs in beer have dropped by about 96% between 1980 and 1990, whereas N-nitrosamine levels in other known sources have shown little to no change. Maximum daily TNA exposure in the U.S. in units of ng/d is estimated at 25,000 ± 4,950, driven by consumption of tobacco products (22,000 ± 4350), food (1900 ± 380), alcohol (1000 ± 200), and drinking water (120 ± 24). Behavioral choices of individuals in non-occupational settings were calculated to result in a spectrum of exposure values ranging from a lower bound of 1900 ± 380 ng/d to a higher bound of 25,000 ± 4950 ng/d, indicating opportunities for a possible 12-fold reduction in TNA exposure to 8% of the above maximum through deliberate choices in diet and lifestyle.
Collapse
Affiliation(s)
- Adam J Gushgari
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287, USA
| | - Rolf U Halden
- Biodesign Center for Environmental Health Engineering, The Biodesign Institute, School of Sustainable Engineering and the Built Environment, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287, USA.
| |
Collapse
|
41
|
Breider F, Salihu I, von Gunten U. Formation of N-nitrosamines by micelle-catalysed nitrosation of aliphatic secondary amines. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1479-1487. [PMID: 30252010 DOI: 10.1039/c8em00335a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
N-Nitrosamines are an important class of potent human carcinogens and mutagens that can be present in water and wastewater. For instance, N-nitrosamines can be formed by reaction of nitrosating agents such as NO+ or N2O3 formed from nitrite under acidic conditions with secondary amine precursors by an acid-catalysed nitrosation pathway. This study investigates the catalytic effect of cationic and anionic micelles on the nitrosation of secondary aliphatic amines in the presence of nitrite at different pH values. The results of this study demonstrate that the nitrosation of hydrophobic secondary amines (e.g., dipropylamine and dibutylamine) by nitrite was significantly enhanced in the presence of micelles of the cationic surfactant cetyltrimethylammonium chloride whereas anionic micelles formed by sodium dodecylsulfate did not significantly enhance the formation of N-nitrosamines. Rate enhancements of up to 100-fold were observed for the formation of N-nitrosodibutylamine in the presence of cetyltrimethylammonium chloride. The magnitude of the catalytic effect of cationic micelles on the nitrosation reaction depended mainly of the hydrophobicity of the amine precursors (i.e., alkyl chain length), the stability and the charge of the micelles and pH. One important enhancement factor is the lowering of the pKa of the precursor alkylammonium ion due to the electrical potential at the micelle-water interface by up to ∼2.5 pH units. These results suggest that cationic micelle-forming surfactants might play a role in the formation of N-nitrosamines in wastewater, consumer products and in industrial processes using high concentrations of cationic surfactants.
Collapse
Affiliation(s)
- Florian Breider
- School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
| | | | | |
Collapse
|
42
|
Furst KE, Pecson BM, Webber BD, Mitch WA. Tradeoffs between pathogen inactivation and disinfection byproduct formation during sequential chlorine and chloramine disinfection for wastewater reuse. WATER RESEARCH 2018; 143:579-588. [PMID: 30015098 DOI: 10.1016/j.watres.2018.05.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 05/27/2023]
Abstract
Treatment of fully nitrified municipal wastewater effluents with chlorine followed by chloramines (i.e., sequential chlorine disinfection) upstream of advanced treatment trains can contribute pathogen inactivation credits for potable reuse while leaving a chloramine residual to control biofouling on membrane units in the advanced treatment train. However, free chlorine exposures must be optimized to maximize pathogen inactivation while minimizing the formation of disinfection byproducts (DBPs) that are challenging to remove in the advanced treatment train. Using a pilot-scale disinfection contactor receiving fully-nitrified, tertiary municipal wastewater effluent, this study found that a 3 mg × min/L free chlorine CT (i.e., the product of the chlorine residual "C" and the contact time "T") followed by a 140 mg × min/L chloramine CT could reliably achieve 5-log inactivation of MS2 bacteriophage and reduce median total coliform concentrations below 2.2 MPN/100 mL. Free chlorine disinfection was equally effective when chlorine was dosed to exceed the breakpoint for 1 mg/L of ammonia as N. At this free chlorine exposure, regulated trihalomethane (THM) and haloacetic acid (HAA) formation remained below their Maximum Contaminant Levels (MCLs), but NDMA concentrations of ∼30 ng/L were above the 10 ng/L California Notification Level. Increasing the free chlorine exposure to ∼30 mg × min/L increased THM and HAA formation, with regulated THMs approaching or exceeding the MCL. Although this free chlorine exposure prevented NDMA formation during chloramination, the ∼10 ng/L background NDMA formation in the tertiary effluent remained. Increasing the free chlorine exposure also increased the formation of unregulated halogenated DBP classes that may be significant contributors to the DBP-associated toxicity of the disinfected wastewater. The results indicate that sequential chlorination can be used to optimize the benefits of free chlorine (virus and NDMA control) and chloramine disinfection (THM, HAA, and coliform control).
Collapse
Affiliation(s)
- Kirin E Furst
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Brian M Pecson
- Trussell Technologies, Inc., 1939 Harrison St., Suite 600, Oakland, CA 94612, United States
| | - Brie D Webber
- Trussell Technologies, Inc., 1939 Harrison St., Suite 600, Oakland, CA 94612, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States.
| |
Collapse
|
43
|
Krasner SW, Lee CFT, Mitch WA, von Gunten U. Impact of Combined Chlorination and Chloramination Conditions on N
-Nitrosodimethylamine Formation. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/awwa.1128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stuart W. Krasner
- Water Quality; Metropolitan Water District of Southern California; La Verne Calif
| | - Chih Fen Tiffany Lee
- Water Quality; Metropolitan Water District of Southern California; La Verne Calif
| | - William A. Mitch
- Department of Civil and Environmental Engineering; Stanford University; Stanford Calif
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology; Dübendorf Switzerland
- School of Architecture, Civil and Environmental Engineering; Ecole Polytechnique Fédérale de Lausanne; Lausanne Switzerland
| |
Collapse
|
44
|
Removal Characteristics of N-Nitrosamines and Their Precursors by Pilot-Scale Integrated Membrane Systems for Water Reuse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15091960. [PMID: 30205535 PMCID: PMC6163456 DOI: 10.3390/ijerph15091960] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
This study investigated the removal characteristics of N-Nitrosamines and their precursors at three pilot-scale water reclamation plants. These plants applies different integrated membrane systems: (1) microfiltration (MF)/nanofiltration (NF)/reverse osmosis (RO) membrane; (2) sand filtration/three-stage RO; and (3) ultrafiltration (UF)/NF and UF/RO. Variable removal of N-Nitrosodimethylamine (NDMA) by the RO processes could be attributed to membrane fouling and the feed water temperature. The effect of membrane fouling on N-Nitrosamine removal was extensively evaluated at one of the plants by conducting one month of operation and chemical cleaning of the RO element. Membrane fouling enhanced N-Nitrosamine removal by the pilot-scale RO process. This finding contributes to better understanding of the variable removal of NDMA by RO processes. This study also investigated the removal characteristics of N-Nitrosamine precursors. The NF and RO processes greatly reduced NDMA formation potential (FP), but the UF process had little effect. The contributions of MF, NF, and RO processes for reducing FPs of NDMA, N-Nitrosopyrrolidine and N-Nitrosodiethylamine were different, suggesting different size distributions of their precursors.
Collapse
|
45
|
Zou R, Liao X, Zhao L, Yuan B. Reduction of N-nitrosodimethylamine formation from ranitidine by ozonation preceding chloramination: influencing factors and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13489-13498. [PMID: 29492817 DOI: 10.1007/s11356-018-1470-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Formation of toxic N-nitrosodimethylamine (NDMA) by chloramination of ranitidine, a drug to block histamine, was still an ongoing issue and posed a risk to human health. In this study, the effect of ozonation prior to chloramination on NDMA formation and the transformation pathway were determined. Influencing factors, including ozone dosages, pH, hydroxyl radical scavenger, bromide, and NOM, were studied. The results demonstrated that small ozone dosage (0.5 mg/L) could effectively control NDMA formation from subsequent chloramination (from 40 to 0.8%). The NDMA molar conversion was not only influenced by pH but also by ozone dosages at various pre-ozonation pH (reached the highest value of 5% at pH 8 with 0.5 mg/L O3 but decreased with the increasing pH with 1 mg/L O3). The NDMA molar yield by chloramination of ranitidine without pre-ozonation was reduced by the presence of bromide ion due to the decomposition of disinfectant. However, due to the formation of brominated intermediate substances (i.e., dimethylamine (DMA), dimethyl-aminomethyl furfuryl alcohol (DFUR)) with higher NDMA molar yield than their parent substances, more NDMA was formed than that without bromide ion upon ozonation. Natural organic matter (NOM) and hydroxyl radical scavenger (tert-butyl alcohol, tBA) enhanced NDMA generation because of the competition of ozone and more ranitidine left. The NDMA reduction mechanism by pre-ozonation during chloramination of ranitidine may be due to the production of oxidation products with less NDMA yield (such as DMA) than parent compound. Based on the result of Q-TOF and GC-MS/MS analysis, three possible transformation pathways were proposed. Different influences of oxidation conditions and water quality parameters suggest that strategies to reduce NDMA formation should vary with drinking water sources and choose optimal ozone dosage.
Collapse
Affiliation(s)
- Rusen Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Lei Zhao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China
| | - Baoling Yuan
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
46
|
Sgroi M, Vagliasindi FGA, Snyder SA, Roccaro P. N-Nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal. CHEMOSPHERE 2018; 191:685-703. [PMID: 29078192 DOI: 10.1016/j.chemosphere.2017.10.089] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/05/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
This review summarizes major findings over the last decade related to N-Nitrosodimethylamine (NDMA) in water and wastewater. In particular, the review is focused on the removal of NDMA and of its precursors by conventional and advanced water and wastewater treatment processes. New information regarding formation mechanisms and precursors are discussed as well. NDMA precursors are generally of anthropogenic origin and their main source in water have been recognized to be wastewater discharges. Chloramination is the most common process that results in formation of NDMA during water and wastewater treatment. However, ozonation of wastewater or highly contaminated surface water can also generate significant levels of NDMA. Thus, NDMA formation control and remediation has become of increasing interest, particularly during treatment of wastewater-impacted water and during potable reuse application. NDMA formation has also been associated with the use of quaternary amine-based coagulants and anion exchange resins. UV photolysis with UV fluence far higher than typical disinfection doses is generally considered the most efficient technology for NDMA mitigation. However, recent studies on the optimization of biological processes offer a potentially lower-energy solution. Options for NDMA control include attenuation of precursor materials through physical removal, biological treatment, and/or deactivation by application of oxidants. Nevertheless, NDMA precursor identification and removal can be challenging and additional research and optimization is needed. As municipal wastewater becomes increasingly used as a source water for drinking, NDMA formation and mitigation strategies will become increasingly more important. The following review provides a summary of the most recent information available.
Collapse
Affiliation(s)
- Massimiliano Sgroi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Federico G A Vagliasindi
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ, 85721, USA; National University of Singapore, NUS Environmental Research Institute (NERI), 5A Engineering Drive 1; T-Lab Building, #02-01, 117411, Singapore
| | - Paolo Roccaro
- Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| |
Collapse
|
47
|
McCurry DL, Ishida KP, Oelker GL, Mitch WA. Reverse Osmosis Shifts Chloramine Speciation Causing Re-Formation of NDMA during Potable Reuse of Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8589-8596. [PMID: 28671841 DOI: 10.1021/acs.est.7b01641] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UV-based advanced oxidation processes (AOPs) effectively degrade N-nitrosodimethylamine (NDMA) passing through reverse osmosis (RO) units within advanced treatment trains for the potable reuse of municipal wastewater. However, certain utilities have observed the re-formation of NDMA after the AOP from reactions between residual chloramines and NDMA precursors in the AOP product water. Using kinetic modeling and bench-scale RO experiments, we demonstrate that the low pH in the RO permeate (∼5.5) coupled with the effective rejection of NH4+ promotes conversion of the residual monochloramine (NH2Cl) in the permeate to dichloramine (NHCl2) via the reaction: 2 NH2Cl + H+ ↔ NHCl2 + NH4+. Dichloramine is the chloramine species known to react with NDMA precursors to form NDMA. After UV/AOP, utilities generally use lime or other techniques to increase the pH of the finished water to prevent distribution system corrosion. Modeling indicated that, while the increase in pH halts dichloramine formation, it converts amine-based NDMA precursors to their more reactive, neutral forms. With modeling, and experiments at both bench-scale and field-scale, we demonstrate that reducing the time interval between RO treatment and final pH adjustment can significantly reduce NDMA re-formation by minimizing the amount of dichloramine formed prior to reaching the final target pH.
Collapse
Affiliation(s)
- Daniel L McCurry
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
| | - Kenneth P Ishida
- Orange County Water District , Fountain Valley, California 92708, United States
| | - Gregg L Oelker
- Suez, Edward C. Little Reclamation Facility , El Segundo, California 90245, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), 473 Via Ortega, Stanford, California 94305, United States
| |
Collapse
|
48
|
Breider F, von Gunten U. Quantification of Total N-Nitrosamine Concentrations in Aqueous Samples via UV-Photolysis and Chemiluminescence Detection of Nitric Oxide. Anal Chem 2017; 89:1574-1582. [DOI: 10.1021/acs.analchem.6b03595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Florian Breider
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Urs von Gunten
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
49
|
Zeng T, Glover CM, Marti EJ, Woods-Chabane GC, Karanfil T, Mitch WA, Dickenson ERV. Relative Importance of Different Water Categories as Sources of N-Nitrosamine Precursors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13239-13248. [PMID: 27993049 DOI: 10.1021/acs.est.6b04650] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A comparison of loadings of N-nitrosamines and their precursors from different source water categories is needed to design effective source water blending strategies. Previous research using Formation Potential (FP) chloramination protocols (high dose and prolonged contact times) raised concerns about precursor loadings from various source water categories, but differences in the protocols employed rendered comparisons difficult. In this study, we applied Uniform Formation Condition (UFC) chloramination and ozonation protocols mimicking typical disinfection practice to compare loadings of ambient specific and total N-nitrosamines as well as chloramine-reactive and ozone-reactive precursors in 47 samples, including 6 pristine headwaters, 16 eutrophic waters, 4 agricultural runoff samples, 9 stormwater runoff samples, and 12 municipal wastewater effluents. N-Nitrosodimethylamine (NDMA) formation from UFC and FP chloramination protocols did not correlate, with NDMA FP often being significant in samples where no NDMA formed under UFC conditions. N-Nitrosamines and their precursors were negligible in pristine headwaters. Conventional, and to a lesser degree, nutrient removal wastewater effluents were the dominant source of NDMA and its chloramine- and ozone-reactive precursors. While wastewater effluents were dominant sources of TONO and their precursors, algal blooms, and to a lesser degree agricultural or stormwater runoff, could be important where they affect a major fraction of the water supply.
Collapse
Affiliation(s)
- Teng Zeng
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
- National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), 473 Via Ortega, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Syracuse University , 151 Link Hall, Syracuse, New York 13244, United States
| | - Caitlin M Glover
- Water Quality Research and Development Division, Southern Nevada Water Authority , Henderson, Nevada 89015, United States
| | - Erica J Marti
- Water Quality Research and Development Division, Southern Nevada Water Authority , Henderson, Nevada 89015, United States
| | - Gwen C Woods-Chabane
- Water Quality Research and Development Division, Southern Nevada Water Authority , Henderson, Nevada 89015, United States
- HDR, Inc., 431 W Baseline Road, Claremont, California 91711, United States
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University , 342 Computer Court, Anderson, South Carolina 29625, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University , 473 Via Ortega, Stanford, California 94305, United States
- National Science Foundation Engineering Research Center for Re-Inventing the Nation's Urban Water Infrastructure (ReNUWIt), 473 Via Ortega, Stanford, California 94305, United States
| | - Eric R V Dickenson
- Water Quality Research and Development Division, Southern Nevada Water Authority , Henderson, Nevada 89015, United States
| |
Collapse
|
50
|
Jeon D, Kim J, Shin J, Hidayat ZR, Na S, Lee Y. Transformation of ranitidine during water chlorination and ozonation: Moiety-specific reaction kinetics and elimination efficiency of NDMA formation potential. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:802-809. [PMID: 27381234 DOI: 10.1016/j.jhazmat.2016.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Ranitidine can produce high yields of N-nitrosodimethylamine (NDMA) upon chloramination and its presence in water resources is a concern for water utilities using chloramine disinfection. This study assessed the efficiency of water chlorination and ozonation in transforming ranitidine and eliminating its NDMA formation potential (NDMA-FP) by determining moiety-specific reaction kinetics, stoichiometric factors, and elimination levels in real water matrices. Despite the fact that chlorine reacts rapidly with the acetamidine and thioether moieties of ranitidine (k>10(8)M(-1)s(-1) at pH 7), the NDMA-FP decreases significantly only when chlorine reacts with the less reactive tertiary amine (k=3×10(3)M(-1)s(-1) at pH 7) or furan moiety (k=81M(-1)s(-1) at pH 7). Ozone reacts rapidly with all four moieties of ranitidine (k=1.5×10(5)-1.6×10(6)M(-1)s(-1) at pH 7) and its reaction with the tertiary amine or furan moiety leads to complete elimination of the NDMA-FP. Treatments of ranitidine-spiked real water samples have shown that ozonation can efficiently deactivate ranitidine in water and wastewater treatment, while chlorination can be efficient for water containing low concentration of ammonia. This result can be applied to the other structurally similar, potent NDMA precursors.
Collapse
Affiliation(s)
- Dahee Jeon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Jisoo Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Jaedon Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Zahra Ramadhany Hidayat
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Soyoung Na
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea.
| |
Collapse
|