1
|
Liu X, Kümmel S, Wu L, Richnow HH. Tracking the transformation of persistent organic pollutants in food webs using multi element isotope and enantiomer fractionation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134046. [PMID: 38513442 DOI: 10.1016/j.jhazmat.2024.134046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/14/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
In order to track the transformation of persistent organic pollutants (POPs) in food webs, field experiments were conducted at two sites using stable isotope and enantiomer fractionation concepts. The enantiomers of α-hexachlorocyclohexane (α-HCH) were selected as representative compounds for POPs. Isotope and enantiomer fractionation allowed the characterization of α-HCH enantiomer biotransformation processes along trophic levels of the food web - from soil and plants to animal livers, fat tissues and milk. The enrichment of heavy isotopes in soils, plants and sediments as well as the changes of enantiomer fractionation indicate that the biotransformation of α-HCH occurred in these compartments. Moreover, the increase of carbon and chlorine isotopic compositions as well as the changes of enantiomer fractionation of liver, fat tissues and milk demonstrated that the overall HCH exposure was much higher than estimates based on concentration levels, while the isotope and enantiomer fractionation revealed the enantiomer specific enantiomer uptake across the blood-brain barriers. Dual element isotope analysis suggested that complex transformation processes have occurred along the potential food web from the HCH sources over different environmental compartments to animal livers, fat tissues and milk. The results imply that the analyses of stable isotope compositions and concentrations has potential to reconstruct the exposure of higher organisms to POPs.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Ecometrix Incorporated, 6800 Campobello Road, Mississauga, ON L5N 2L8, Canada; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Isodetect GmbH, Deutscher Platz 5b, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Ahad JME, Martel R, Calderhead AI. Isotope forensics of polycyclic aromatic compounds (PACs) in a contaminated shallow aquifer. CHEMOSPHERE 2023; 342:140169. [PMID: 37709057 DOI: 10.1016/j.chemosphere.2023.140169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Diesel was accidently released into the shallow subsurface at an industrial site in the province of Québec, Canada, in the late 1980s. Subsequent remediation efforts removed much of the contamination; however, traces of petroleum hydrocarbons continue to impact the local aquifer. In addition to the historical diesel spill, more recent yet unconfirmed accidental releases from ongoing on-site and neighbouring industrial activities may have potentially contributed to elevated levels of polycyclic aromatic compounds (PACs) in groundwater. To identify the main source(s) of contamination, compound-specific stable carbon isotope ratios (δ13C) of PACs in groundwater monitoring wells were compared to those in asphalt produced from a nearby plant and in fuel oil #6 oil being used by local industry. The δ13C values of five individual compounds (biphenyl, C2-naphthalene, C1-fluorene, dibenzothiophene and phenanthrene) and two groups of combined C1-phenanthrenes/anthracenes in all groundwater samples were within analytical uncertainty (±0.5‰). Moreover, the δ13CPAC values in groundwater samples were distinct from those in asphalt and fuel oil #6, indicating negligible contributions from these sources. The similarity in δ13CPAC values across monitoring wells, including one situated in the former source zone containing a floating hydrocarbon phase, pointed to a common source of subsurface contamination that was attributed to the historical diesel spill. These results thus demonstrate that δ13CPAC values can be used for source apportionment in shallow aquifers decades after the original spill event.
Collapse
Affiliation(s)
- Jason M E Ahad
- Geological Survey of Canada, Natural Resources Canada, Québec, QC, G1K 9A9, Canada.
| | - Richard Martel
- INRS Eau Terre Environnement, Québec, QC, G1K 9A9, Canada
| | - Angus I Calderhead
- INRS Eau Terre Environnement, Québec, QC, G1K 9A9, Canada; Now at Environment and Climate Change Canada, Québec, QC, G1J 5E9, Canada
| |
Collapse
|
3
|
Guo Z, Kang Y, Wu H, Li M, Hu Z, Zhang J. Enhanced removal of phenanthrene and nutrients in wetland sediment with metallic biochar: Performance and mechanisms. CHEMOSPHERE 2023; 327:138523. [PMID: 36990361 DOI: 10.1016/j.chemosphere.2023.138523] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/16/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAHs) are persistent organic pollutants and pose high risk in aquatic environment. The utilization of biochar is a strategy for PAHs-contaminated remediation but is challenging due to the adsorption saturation and reoccurrence of PAHs desorbed back into water. In this study, iron (Fe) and manganese (Mn) were provided as electron acceptors for biochar modification to enhance anaerobic biodegradation of phenanthrene (Phe). Results revealed that, the Mn(Ⅳ) and Fe(Ⅲ) modification improved the removal of Phe by 24.2% and 31.4% than that of biochar, respectively. Additionally, nitrate removal was improved by 19.5% with Fe(Ⅲ) amendment. The Mn-and Fe-biochar decreased Phe contents by 8.7% and 17.4% in sediment, 10.3% and 13.8% in biochar than that of biochar. Much higher DOC contents were observed with Mn- and Fe-biochar, which provided bioavailable carbon source for microbes and contributed to microbial degradation of Phe. The greater degree of humification, higher proportions of humic and fulvic acid like components in metallic biochar participated in electron transport and further enhancing the degradation of PAHs. Microbial analysis proved the high abundance of Phe-degrading bacteria (e.g. PAH-RHDα, Flavobacterium and Vibrio), nitrogen removal microbes (e.g. amoA, nxrA, and nir), Fe and Mn bioreduction or oxidation (e. g. Bacillus, Thermomonas, Deferribacter) with metallic biochar. Based on the results, the Fe and Mn modification, especially Fe-modified biochar provided well performance for PAHs removal in aquatic sediment.
Collapse
Affiliation(s)
- Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Mei Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
4
|
Ouyang WY, Kümmel S, Adrian L, Zhu YG, Richnow HH. Carbon and hydrogen stable isotope fractionation of sulfamethoxazole during anaerobic transformation catalyzed by Desulfovibrio vulgaris Hildenborough. CHEMOSPHERE 2023; 311:136923. [PMID: 36349587 DOI: 10.1016/j.chemosphere.2022.136923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The fate of antibiotics in aquatic environments is of high concern and approaches are needed to assess the transformation of antibiotics in wastewater treatment plants. Here we used the model organism Desulfovibrio vulgaris Hildenborough to analyze compound specific isotope fractionation associated with anaerobic transformation of the antibiotic sulfamethoxazole (SMX). The results show that the rearrangement of the isoxazole ring in SMX is leading to significant carbon and hydrogen isotopic fractionation (εC = -5.8 ± 0.7‰, εH = -34 ± 9‰) during anaerobic transformation. The observed carbon isotopic fractionation is significantly higher than the values reported for aerobic degradation (εC = -0.6 ± 0.1‰) or abiotic reactions (εC = -0.8 to -4.8‰ for photolysis, εC = -0.8 to -2.2‰ for advanced oxidation). This indicates that carbon isotope fractionation can be used as a parameter to differentiate reaction mechanisms of SMX transformation. The corresponding apparent kinetic isotope effect (AKIEC) for anaerobic transformation of SMX was 1.029 ± 0.003, suggesting that the mechanism for anaerobic transformation is distinct from the mechanism reported for microbial aerobic degradation (AKIEC = 1.006 ± 0.001). In addition, dual-element (C-H) isotope analysis of SMX was performed in the present study, which was achieved by utilizing gas chromatography (GC) as the separation method instead of routine liquid chromatography. This dual-element isotope analysis resulted in a Λ value of 4.5 ± 2.2. Overall, compound specific isotope analysis can be a feasible tool to monitor the mitigation of SMX in wastewater treatment plants.
Collapse
Affiliation(s)
- Wei-Ying Ouyang
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany
| | - Steffen Kümmel
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany
| | - Lorenz Adrian
- Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany; Helmholtz Centre for Environmental Research - UFZ, Environmental Biotechnology, Leipzig, Germany
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hans H Richnow
- Helmholtz Centre for Environmental Research - UFZ, Isotope Biogeochemistry, Leipzig, Germany; Isodetect GmbH, Leipzig, Germany.
| |
Collapse
|
5
|
Li S, Diao M, Wang S, Zhu X, Dong X, Strous M, Ji G. Distinct oxygen isotope fractionations driven by different electron donors during microbial nitrate reduction in lake sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:812-821. [PMID: 35691702 DOI: 10.1111/1758-2229.13101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrate reduction can be driven by organic carbon oxidation, as well as by inorganic electron donors, such as reduced forms of sulfur and iron. An apparent inverse oxygen isotope fractionation effect was observed during nitrate reduction in sediment incubations from five sampling sites of a freshwater lake, Hongze Lake, China. Incubations with organic and inorganic electron donor additions were performed. Especially, the inverse oxygen isotope effect was intensified after glucose addition, whereas the incubations with sulfide and Fe2+ showed normal fractionation factors. Nitrate reductase encoding genes, napA and narG, were analysed with metagenomics. Higher napA/narG ratios were associated with higher oxygen fractionation factors. The most abundant clade (59%) of NapA in the incubation with glucose was affiliated with Rhodocyclales. In contrast, it only accounted for 8%-9% of NapA in the incubations with sulfide and Fe2+ . Differences in nitrate reductases might explain different oxygen isotope effects. Our findings also suggested that large variance of O-nitrate isotope fractionations might have to be considered in the interpretation of natural isotope records.
Collapse
Affiliation(s)
- Shengjie Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| | - Xiaoli Dong
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, China
| |
Collapse
|
6
|
Liu X, Yang A, Kümmel S, Richnow HH. Uptake and Metabolization of HCH Isomers in Trees Examined over an Annual Growth Period by Compound-Specific Isotope Analysis and Enantiomer Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10120-10130. [PMID: 35758406 DOI: 10.1021/acs.est.2c02697] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To understand the role of plants for natural attenuation, a field study was conducted to characterize the fate of HCH in trees over an annual growth period using compound-specific isotope analysis and enantiomer fractionation. Stable and slightly higher δ13C and δ37Cl values of HCH of host soil samples compared to the muck (consisting nearly exclusively of HCH) revealed that masking isotope effects caused by the limited bioavailability may underestimate the real extent of HCH transformation in soil. In contrast, an increase of δ13C and δ37Cl values in trees indicated the transformation of HCH. A large variability of δ13C and δ37Cl values in trees over the growth period was observed, representing different transformation extents among different growth times, which is further supported by the shift of the enantiomer fraction (EF), indicating the preferential transformation of enantiomers also varied over the different growth periods. Based on dual-element isotope analysis, different predominant transformation mechanisms were observed during the growing seasons. Our observation implies that plants are acting as biological pumps driving a cycle of uptake and metabolization of HCH and refeed during littering to soil catalyzing their transformation. The changes of the transformation mechanism in different seasons have implications for phytoscreening and shed new light on phytoremediation of HCH at field sites.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Ahyung Yang
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
- The Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, Landau in der Pfalz 76829, Germany
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
7
|
Zhao Z, Li J, Zhang X, Wang L, Wang J, Lin T. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater: current understandings and challenges to overcome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49513-49533. [PMID: 35593984 DOI: 10.1007/s11356-022-20755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/07/2022] [Indexed: 05/27/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) have been frequently detected in groundwater globally. With the phase-out of perfluorooctane sulfonate (PFOS) and perfluorooctanate (PFOA) due to their risk to the ecosystem and human population, various novel PFASs have been used as replacements and detected in groundwater. In order to summarize the current understanding and knowledge gaps on PFASs in groundwater, we reviewed the studies about environmental occurrence, transport, and risk of legacy and novel PFASs in groundwater published from 1999 to 2021. Our review suggests that PFOS and PFOA could still be detected in groundwater due to the long residence time and the retention in the soil-groundwater system. Firefighting training sites, industrial parks, and landfills were commonly hotspots of PFASs in groundwater. More novel PFASs have been detected via nontarget analysis using high-resolution mass spectrometry. Some novel PFASs had concentrations comparable to that of PFOS and PFOA. Both legacy and novel PFASs can pose a risk to human population who rely on contaminated groundwater as drinking water. Transport of PFASs to groundwater is influenced by various factors, i.e., the compound structure, the hydrochemical condition, and terrain. The exchange of PFASs between groundwater and surface water needs to be better characterized. Field monitoring, isotope tracing, nontarget screening, and modeling are useful approaches and should be integrated to get a comprehensive understanding of PFASs sources and behaviors in groundwater.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Jie Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Leien Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jamin Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
8
|
van Leeuwen JA, Gerritse J, Hartog N, Ertl S, Parsons JR, Hassanizadeh SM. Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume: Nitrate versus iron reducing conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104006. [PMID: 35439686 DOI: 10.1016/j.jconhyd.2022.104006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic degradation of aromatic hydrocarbons in a plume originating from a Pintsch gas tar-DNAPL zone was investigated using molecular, isotopic- and microbial analyses. Benzene concentrations diminished at the relatively small meter scale dimensions of the nitrate reducing plume fringe. The ratio of benzene to toluene, ethylbenzene, xylenes and naphthalene (BTEXN) in the fringe zone compared to the plume zone, indicated relatively more loss of benzene in the fringe zone than TEXN. This was substantiated by changes in relative concentrations of BTEXN, and multi-element compound specific isotope analysis for δ2H and δ13C. This was supported by the presence of (abcA) genes, indicating the presumed benzene carboxylase enzyme in the nitrate-reducing plume fringe. Biodegradation of most hydrocarbon contaminants at iron reducing conditions in the plume core, appears to be quantitatively of greater significance due to the large volume of the plume core, rather than relatively faster biodegradation under nitrate reducing conditions at the smaller volume of the plume fringe. Contaminant concentration reductions by biodegradation processes were shown to vary distinctively between the source, plume (both iron-reducing) and fringe (nitrate-reducing) zones of the plume. High anaerobic microbial activity was detected in the plume zone as well as in the dense non aqueous phase liquid (DNAPL) containing source zone. Biodegradation of most, if not all, other water-soluble Pintsch gas tar aromatic hydrocarbon contaminants occur at the relatively large dimensions of the anoxic plume core. The highest diversity and concentrations of metabolites were detected in the iron-reducing plume core, where the sum of parent compounds of aromatic hydrocarbons was greater than 10 mg/L. The relatively high concentrations of metabolites suggest a hot spot for anaerobic degradation in the core of the plume downgradient but relatively close to the DNAPL containing source zone.
Collapse
Affiliation(s)
- Johan A van Leeuwen
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands.
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - Niels Hartog
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Siegmund Ertl
- Hydroisotop GmbH, Woelkestrasse 9, Sweitenkirchen 85301, Germany
| | - John R Parsons
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - S Majid Hassanizadeh
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands
| |
Collapse
|
9
|
Wang B, Kuang S, Shao H, Wang L, Wang H. Anaerobic-petroleum degrading bacteria: Diversity and biotechnological applications for improving coastal soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112646. [PMID: 34399124 DOI: 10.1016/j.ecoenv.2021.112646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Due to the industrial emissions and accidental spills, the critical material for modern industrial society petroleum pollution causes severe ecological damage. The prosperous oil exploitation and transportation causes the recalcitrant, hazardous, and carcinogenic sludge widespread in the coastal wetlands. The costly physicochemical-based remediation remains the secondary and inadequate treatment for the derivatives along with the tailings. Anaerobic microbial petroleum degrading biotechnology has received extensive attention for its cost acceptable, eco-friendly, and fewer health hazards. As a result of the advances in biotechnology and microbiology, the anaerobic oil-degrading bacteria have been well developing to achieve the same remediation effects with lower operating costs. This review summarizes the advantages and potential scenarios of the anaerobic degrading bacteria, such as sulfate-reducing bacteria, denitrifying bacteria, and metal-reducing bacteria in the coastal area decomposing the alkanes, alkenes, aromatic hydrocarbons, polycyclic aromatic, and related derivatives. In the future, a complete theoretical basis of microbiological biotechnology, molecular biology, and electrochemistry is necessary to make efficient and environmental-friendly use of anaerobic degradation bacteria to mineralize oil sludge organic wastes.
Collapse
Affiliation(s)
- Bingchen Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hongbo Shao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Institute of Agriculture Resources and Environment, Jiangsu Academy of Agricultural Sciences (JAAS), Nanjing 210014, PR China; Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng 224002, China.
| | - Lei Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Huihui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
10
|
Xiong J, Li G, Peng P, Gelman F, Ronen Z, An T. Mechanism investigation and stable isotope change during photochemical degradation of tetrabromobisphenol A (TBBPA) in water under LED white light irradiation. CHEMOSPHERE 2020; 258:127378. [PMID: 32554023 DOI: 10.1016/j.chemosphere.2020.127378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Light driven degradation is very promising for pollutants remediation. In the present work, photochemical reaction of tetrabromobisphenol A (TBBPA) under LED white light (λ > 400 nm) irradiation system was investigated to figure out the TBBPA photochemical degradation pathways and isotope fractionation patterns associated with transformation mechanisms. Results indicated that photochemical degradation of TBBPA would happen only with addition to humic acid in air bubbling but not in N2 bubbling. For photochemical reaction of TBBPA, singlet oxygen (1O2) was found to be important reactive oxygen species for the photochemical degradation of TBBPA. 2,6-Dibromo-4-(propan-2-ylidene)cyclohexa-2,5-dienone and two isopropyl phenol derivatives were identified as the photochemical degradation intermediates by 1O2. 2,6-Dibromo-4-(1-methoxy-ethyl)-phenol was determined as an intermediate via oxidative skeletal rearrangement, reduction and O-methylation. Hydrolysis product hydroxyl-tribromobisphenol A was also observed in the reductive debromination process. In addition, to deeply explore the mechanism, carbon and bromine isotope analysis were performed using gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) and gas chromatography-multicollector inductively coupled plasma mass spectrometry (GC/MC/ICPMS) during the photochemical degradation of TBBPA. The results showed that photochemical degradation could not result in statistically significant isotope fractionation, indicated that the bond cleavage of C-C and C-Br were not the rate controlling process. Stable isotope of carbon being not fractionated will be useful for distinguishing the pathways of TBBPA and tracing TBBPA fate in water systems. This work sheds light on photochemical degradation mechanisms of brominated organic contaminants.
Collapse
Affiliation(s)
- Jukun Xiong
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Faina Gelman
- Geological Survey of Israel, 30 Malhei Israel Street, Jerusalem, 95501, Israel
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, Department of Environmental Hydrology and Microbiology, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Sede Boqer, 84990, Israel
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
11
|
Guo Z, Kang Y, Hu Z, Liang S, Xie H, Ngo HH, Zhang J. Removal pathways of benzofluoranthene in a constructed wetland amended with metallic ions embedded carbon. BIORESOURCE TECHNOLOGY 2020; 311:123481. [PMID: 32446233 DOI: 10.1016/j.biortech.2020.123481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The limited adsorption capacity of the substrate and the concentration of dissolved oxygen in constructed wetlands (CWs) have inhibited their ability to efficiently remove polycyclic aromatic hydrocarbons (PAHs) from wastewater. Presently, biochar and activated carbon modified with Fe3+ and Mn4+ were used as effective sorbents in the removal of benzofluoranthene (BbFA), a typical PAH, in CW microcosms. The addition of metallic ions embedded carbon increased NO3-N accumulation by the reduction of Fe3+ and Mn4+, which led to improved BbFA degradation. Additionally, plant adsorption in root and stem sections were observed separately. The abundance of PAH-degrading microbes in the rhizosphere substrate was higher with the metallic ions embedded carbon than control group. The Fe3+, Mn4+ and NO3-N served as electron acceptors increased BbFA microbial degradation. The removal pathways of BbFA in the modified CWs were proposed which involved settlement in the substrate, plant absorption, and microbial degradation.
Collapse
Affiliation(s)
- Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Wang G, Liu Y, Tao W, Zhao X, Wang H, Lou Y, Li N, Liu Y. Assessing microbial degradation degree and bioavailability of BDE-153 in natural wetland soils: Implication by compound-specific stable isotope analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114014. [PMID: 32000026 DOI: 10.1016/j.envpol.2020.114014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Microbial degradation is an important pathway for the attenuation of polybrominated diphenyl ethers (PBDEs) in natural soils. In this study, the compound-specific stable isotope analysis (CSIA) was applied to characterize microbial degradation of BDE-153, one of the prevailing and toxic PBDE congeners, in natural wetland soils. During the 45-day incubation, the residual percentages of BDE-153 decreased to 67.9% and 73.6% in non-sterilized soils spiked with 1.0 and 5.0 μg/g, respectively, which were both much lower than those in sterilized soils (96.0% and 97.2%). This result indicated that microbial degradation could accelerate BDE-153 elimination in wetland soils. Meanwhile, the significant carbon isotope fractionation was observed in non-sterilized soils, with δ13C of BDE-153 shifting from -29.4‰ to -26.7‰ for 1.0 μg/g and to -27.2‰ for 5.0 μg/g, respectively, whilst not in sterilized soils. This phenomenon indicated microbial degradation could induce stable carbon isotope fractionation of BDE-153. The carbon isotope enrichment factor (εc) for BDE-153 microbial degradation was first determined as -7.58‰, which could be used to assess the microbial degradation and bioavailability of BDE-153 in wetland soils. Based on δ13C and εc, the new methods were developed to dynamically and quantitatively estimate degradation degree and bioavailability of BDE-153 during degradation process, respectively, which could exclude interference of physical processes. This work revealed that CSIA was a promising method to investigate in situ microbial degradation of PBDEs in field studies.
Collapse
Affiliation(s)
- Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China
| | - Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China; Environmental Information Institute, Dalian Maritime University, Dalian, 116026, China.
| | - Wei Tao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinda Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, Dalian, 116026, China
| | - Yadi Lou
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Na Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yuxin Liu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| |
Collapse
|
13
|
Marozava S, Meyer AH, Pérez-de-Mora A, Gharasoo M, Zhuo L, Wang H, Cirpka OA, Meckenstock RU, Elsner M. Mass Transfer Limitation during Slow Anaerobic Biodegradation of 2-Methylnaphthalene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9481-9490. [PMID: 31262174 DOI: 10.1021/acs.est.9b01152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Sviatlana Marozava
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Armin H. Meyer
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Alfredo Pérez-de-Mora
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Mehdi Gharasoo
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
- University of Waterloo, Department of Earth and Environmental Sciences, Ecohydrology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lin Zhuo
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - He Wang
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Olaf A. Cirpka
- University of Tübingen, Center for Applied Geoscience, Hölderlinstrasse 12, 72074 Tübingen, Germany
| | - Rainer U. Meckenstock
- University Duisburg-Essen, Biofilm Centre, Universitätsstrasse 5, D-45141 Essen, Germany
| | - Martin Elsner
- Institute of Groundwater Ecology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
- Technical University of Munich, Chair of Analytical Chemistry and Water Chemistry, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
14
|
Chen G, Shouakar-Stash O, Phillips E, Justicia-Leon SD, Gilevska T, Sherwood Lollar B, Mack EE, Seger ES, Löffler FE. Dual Carbon-Chlorine Isotope Analysis Indicates Distinct Anaerobic Dichloromethane Degradation Pathways in Two Members of Peptococcaceae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8607-8616. [PMID: 29975517 DOI: 10.1021/acs.est.8b01583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dichloromethane (DCM) is a probable human carcinogen and frequent groundwater contaminant and contributes to stratospheric ozone layer depletion. DCM is degraded by aerobes harboring glutathione-dependent DCM dehalogenases; however, DCM contamination occurs in oxygen-deprived environments, and much less is known about anaerobic DCM metabolism. Some members of the Peptococcaceae family convert DCM to environmentally benign products including acetate, formate, hydrogen (H2), and inorganic chloride under strictly anoxic conditions. The current study applied stable carbon and chlorine isotope fractionation measurements to the axenic culture Dehalobacterium formicoaceticum and to the consortium RM comprising DCM degrader Candidatus Dichloromethanomonas elyunquensis. Degradation-associated carbon and chlorine isotope enrichment factors (εC and εCl) of -42.4 ± 0.7‰ and -5.3 ± 0.1‰, respectively, were measured in D. formicoaceticum cultures. A similar εCl of -5.2 ± 0.1‰, but a substantially lower εC of -18.3 ± 0.2‰, were determined for Ca. Dichloromethanomonas elyunquensis. The εC and εCl values resulted in distinctly different dual element C-Cl isotope correlations (ΛC/Cl = Δδ13C/Δδ37Cl) of 7.89 ± 0.12 and 3.40 ± 0.03 for D. formicoaceticum and Ca. Dichloromethanomonas elyunquensis, respectively. The distinct ΛC/Cl values obtained for the two cultures imply mechanistically distinct C-Cl bond cleavage reactions, suggesting that members of Peptococcaceae employ different pathways to metabolize DCM. These findings emphasize the utility of dual carbon-chlorine isotope analysis to pinpoint DCM degradation mechanisms and to provide an additional line of evidence that detoxification is occurring at DCM-contaminated sites.
Collapse
Affiliation(s)
- Gao Chen
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, and Department of Microbiology , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Orfan Shouakar-Stash
- Isotope Tracer Technologies Inc. (IT2) , Waterloo , Ontario N2 V 1Z5 , Canada
- Department of Earth and Environmental Sciences , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
- School of Engineering , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Elizabeth Phillips
- Department of Earth Sciences , University of Toronto , Toronto , Ontario M5S 3B1 , Canada
| | - Shandra D Justicia-Leon
- School of Biology , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Tetyana Gilevska
- Department of Earth Sciences , University of Toronto , Toronto , Ontario M5S 3B1 , Canada
| | | | - E Erin Mack
- DuPont Corporate Remediation Group , E. I. DuPont de Nemours and Company , Wilmington , Delaware 19805 , United States
| | - Edward S Seger
- The Chemours Company , Wilmington , Delaware 19899 , United States
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Civil and Environmental Engineering, and Department of Microbiology , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division , University of Tennessee and Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Biosystems Engineering and Soil Science , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
15
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
16
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 469] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
17
|
Franke S, Lihl C, Renpenning J, Elsner M, Nijenhuis I. Triple-element compound-specific stable isotope analysis of 1,2-dichloroethane for characterization of the underlying dehalogenation reaction in two Dehalococcoides mccartyi strains. FEMS Microbiol Ecol 2017; 93:4561051. [DOI: 10.1093/femsec/fix137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 10/17/2017] [Indexed: 11/12/2022] Open
|
18
|
Vogt C, Dorer C, Musat F, Richnow HH. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons — from enzymes to the environment. Curr Opin Biotechnol 2016; 41:90-98. [DOI: 10.1016/j.copbio.2016.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|