1
|
Liao Q, Huang L, Yang J, Zhang S, Cai F, Tang B, Li L, Qin R, Yan X, Luo W, Mai B, Yu Y, Zheng J. Retrospective prediction of environmental emerging contaminants exposure using human hair: Insights into suitability, reliability, and availability. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138274. [PMID: 40239516 DOI: 10.1016/j.jhazmat.2025.138274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Hair is a widely utilized non-invasive matrix for human biomonitoring assessment. Nevertheless, its efficacy in reflecting various pollutants, along with the concentrations and time-scales of exposure, remains undetermined. In this panel study, hair and indoor dust samples were collected quarterly from May 2022 to June 2023. The concentrations of 34 types of plasticizers, belonging to three categories - organophosphate flame retardants (OPFRs), phthalate esters (PAEs), and alternative plasticizers (APs) - were measured. The study aimed to identify which pollutants hair is suitable for monitoring and to determine the exposure levels and time periods over which it can retrospectively predict contamination, using generalized linear mixed models. A one-unit increase in the hair concentration of acetyl tributyl citrate (ATBC) was associated with a 40.3 % (95 % CI: 7.2 %, 83.5 %) rise in its level in dust over the preceding 3 months. Retrospective predictions revealed that the levels of di (2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DOP) in dust increased by 83.6 % (95 % CI: 31.9 %, 155.7 %) and 76.7 % (95 % CI: 13.5 %, 174.9 %), respectively, over the previous 6-9 months. Furthermore, the DEHP and DOP concentrations in hair accounted for 99.60 % and 100 % of the variance in their levels in dust, respectively. Our findings provide valuable insights into the time-concentration relationships of plasticizers in paired hair and dust samples, advancing the understanding of hair as a retrospective biomarker for environmental exposure.
Collapse
Affiliation(s)
- Qilong Liao
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lulu Huang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Juanjuan Yang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Shiyi Zhang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Fengshan Cai
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bin Tang
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Li Li
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Ruixin Qin
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiao Yan
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Weikeng Luo
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yunjiang Yu
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Claessens J, Dufour P, Dardenne N, Charlier C, Pirard C. Contamination levels and distribution of persistent and non-persistent pollutants in paired hair, urine and serum samples from a Belgian non-occupationally exposed population. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:447-462. [PMID: 39815779 DOI: 10.1080/15287394.2025.2451676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Designing ideal human biomonitoring studies involves the selection of reliable markers of exposure in adequate biological matrix. Besides conventional matrices such as blood or urine, hair has been increasingly investigated as a promising noninvasive alternative. However, understanding the pollutant distribution between differing biological compartments is essential for reliable interpretation of data collected. Therefore, the contamination levels and the distribution of some persistent (8 perfluoroalkyl substances - PFAS - and 6 polychlorobiphenyls - PCBs) and non-persistent pollutants (2 bisphenols and 3 parabens) were investigated in paired serum and hair samples, or paired spot urine and hair samples obtained from 30 Belgian non-occupationally exposed individuals. The levels measured were close to those reported in recent larger-scale studies. PFAS, PCB and bisphenol distributions largely differed depending upon the matrix and within the same chemical family depending upon the congener. The correlation and agreement between pollutant levels in differing matrices demonstrated that the information provided is comparable only for highly chlorinated PCBs and parabens, while the classification of exposure for bisphenols was substantially different according to the matrix. The selection of the human matrix thus remains complex and might markedly bias the results obtained, especially when assessing the health risk related to chemical exposure.
Collapse
Affiliation(s)
- Julien Claessens
- Department of Clinical, Forensic, Environmental, and Industrial Toxicology, University Hospital of Liege, Liege, Belgium
- Center For Interdisciplinary Research on Medicines (C.I.R.M), University of Liege, Liege, Belgium
| | - Patrice Dufour
- Department of Clinical, Forensic, Environmental, and Industrial Toxicology, University Hospital of Liege, Liege, Belgium
- Center For Interdisciplinary Research on Medicines (C.I.R.M), University of Liege, Liege, Belgium
| | - Nadia Dardenne
- University and Hospital Biostatistics Center (B-STAT), Faculty of Medicine, University of Liège, Liège, Belgium
| | - Corinne Charlier
- Department of Clinical, Forensic, Environmental, and Industrial Toxicology, University Hospital of Liege, Liege, Belgium
- Center For Interdisciplinary Research on Medicines (C.I.R.M), University of Liege, Liege, Belgium
| | - Catherine Pirard
- Department of Clinical, Forensic, Environmental, and Industrial Toxicology, University Hospital of Liege, Liege, Belgium
- Center For Interdisciplinary Research on Medicines (C.I.R.M), University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Zheng J, Zhang S, Luo W, Yang Q, Qin R, Tang B, Zhang Y, Xia X, Luo X, Mai B, Yu Y. Tracing semi-quantitatively the absorption and removal of organic pollutants in human hair based on secondary ion mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135278. [PMID: 39047566 DOI: 10.1016/j.jhazmat.2024.135278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Human hair has become a promising non-invasive matrix in assessing exposure to environmental organic pollutants (OPs). However, exogenous contaminants, which were absorbed into the hair via sweat, sebum, and air particles/dust, could contribute to OP levels in hair and interfere with the precise exposure assessment. So far, the microscopic mechanisms underlying the absorption of exogenous OPs into hair remain inadequately understood. This study focused on the in-situ investigation of the diffusion processes of exogenous OPs into the hair structure using secondary ion mass spectrometry (SIMS) and isotopic tracer techniques. Results showed that the relative signal intensities of deuterium-labeled tris(1,3-dichloro-2-propyl) phosphate (TDCPP), 1-hydroxypyrene (1-OH-Pry), and bisphenol A (BPA) in the hair cortex were notably elevated after a 6-hour exposure. Diffusion coefficients of contaminants were related to their molecular weight, and absorption volumes to their water solubility and molecular structures. Exposure duration and solvent influenced the rate of diffusion and absorption volumes. The distribution of deuterium-labeled molecules in exposed hair samples after washing with two different solvents (acetone or water) was similar to that before washing. Our findings revealed the diffusion of OPs in hair cross-sections, indicating exogenous contributions to contaminants that are biologically incorporated into the hair.
Collapse
Affiliation(s)
- Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Shiyi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Qing Yang
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Ruixin Qin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yanqiang Zhang
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, PR China
| | - Xiaoping Xia
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Group of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| |
Collapse
|
4
|
Mohd Efendy Goon MD, Zulkifli S, Abdullah Soheimi SS, Ab Rahim S, Abd Latip N, Hashim N, Kerisnan ND, E M Yahaya NK, Mohamed A, Sheikh Abdul Kadir SH. Association between polychlorinated biphenyl (PCB) and dioxin with metabolic syndrome (METS): a systematic review and meta-analysis. Sci Rep 2024; 14:17941. [PMID: 39095444 PMCID: PMC11297331 DOI: 10.1038/s41598-024-68369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Polychlorinated biphenyls (PCBs) and dioxin are persistent endocrine disrupting chemicals (EDCs) and have been associated with an increased risk of metabolic syndrome (MetS). The aim of this systematic review and meta-analysis was to assess the associations of PCBs and dioxin with MetS and its risk factors, including obesity, hypertriglyceridaemia (HTG), hypertension (HTN) and diabetes mellitus (DM). We searched three electronic databases for epidemiological studies concerning PCBs and dioxin with MetS published up to the end of 2023. Meta-analysis was performed for MetS itself and each of the MetS risks based on a random-effects meta-analysis model, and odds ratios (ORs) with 95% confidence intervals (CIs) were obtained. Publication bias was assessed based on Egger's test. Eleven studies were included from three databases up to 2023. There were 40,528 participants aged 18-89, where 18-100% of them were males, included in our meta-analysis. The meta-analysis results showed a strong association between PCB exposure and DM (OR = 3.593, 95% CI 2.566, 5.031), while most of the risk factors for MetS, including obesity (OR = 1.875, 95% CI 0.883, 3.979), HTN (OR = 1.335, 95% CI 0.902, 1.976) and HTG (OR = 1.611, 95% CI 0.981, 2.643), were weakly associated with PCB. Furthermore, both PCBs (OR = 1.162, 95% CI 0.994, 1.357) and dioxin (OR = 2.742, 95% CI 1.936, 3.883) were found to be weakly and strongly associated with MetS, respectively. Meta-regression analysis showed that DM in the Asian population is associated with PCB exposure, while HTG in the Northern American population is associated with PCB exposure. Our meta-analysis has demonstrated a strong relationship between DM and PCBs, while the relationship between PCBs with MetS and other risk factors is less pronounced. Additionally, MetS is weakly associated with dioxin exposure. To improve primary care outcomes, healthcare providers should consider incorporating the assessment of patients' risk of exposure to PCBs and dioxins into their evaluation procedures for more targeted medical interventions.
Collapse
Affiliation(s)
- Mohd Danial Mohd Efendy Goon
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Sarah Zulkifli
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
- Institute of Molecular Medicine Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Suhana Abdullah Soheimi
- Institute of Molecular Medicine Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Sharaniza Ab Rahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia
| | - Normala Abd Latip
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Puncak Alam Campus, Puncak Alam, 40450, Shah Alam, Selangor, Malaysia
| | - Norbaya Hashim
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Nirmala Devi Kerisnan
- Sewerage Service Department (JPP), Block B, Level 2 and 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory of Putrajaya, Malaysia
| | - Nasehir Khan E M Yahaya
- National Water Research Institute of Malaysia (NAHRIM), Lot 5377, Jalan Putra Permai, 43300, Seri Kembangan, Selangor, Malaysia
| | - Alias Mohamed
- Sewerage Service Department (JPP), Block B, Level 2 and 3, Atmosphere PjH No 2, Jalan Tun Abdul Razak, Precinct 2, 62100, Federal Territory of Putrajaya, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerFoRM), Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Sungai Buloh Campus, 47000, Sungai Buloh, Selangor, Malaysia.
| |
Collapse
|
5
|
Wu Y, Zhu M, Ouyang X, Qi X, Guo Z, Yuan Y, Dang Z, Yin H. Integrated transcriptomics and metabolomics analyses reveal the aerobic biodegradation and molecular mechanisms of 2,3',4,4',5-pentachlorodiphenyl (PCB 118) in Methylorubrum sp. ZY-1. CHEMOSPHERE 2024; 356:141921. [PMID: 38588902 DOI: 10.1016/j.chemosphere.2024.141921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
2,3',4,4',5-pentachlorodiphenyl (PCB 118), a highly representative PCB congener, has been frequently detected in various environments, garnering much attention across the scientific community. The degradation of highly chlorinated PCBs by aerobic microorganisms is challenging due to their hydrophobicity and persistence. Herein, the biodegradation and adaptation mechanisms of Methylorubrum sp. ZY-1 to PCB 118 were comprehensively investigated using an integrative approach that combined degradation performance, product identification, metabolomic and transcriptomic analyses. The results indicated that the highest degradation efficiency of 0.5 mg L-1 PCB 118 reached 75.66% after seven days of inoculation when the bacteria dosage was 1.0 g L-1 at pH 7.0. A total of eleven products were identified during the degradation process, including low chlorinated PCBs, hydroxylated PCBs, and ring-opening products, suggesting that strain ZY-1 degraded PCB 118 through dechlorination, hydroxylation, and ring-opening pathways. Metabolomic analysis demonstrated that the energy supply and redox metabolism of strain ZY-1 was disturbed with exposure to PCB 118. To counteract this environmental stress, strain ZY-1 adjusted both the fatty acid synthesis and purine metabolism. The analysis of transcriptomics disclosed that multiple intracellular and extracellular oxidoreductases (e.g., monooxygenase, alpha/beta hydrolase and cytochrome P450) participated in the degradation of PCB 118. Besides, active efflux of PCB 118 and its degradation intermediates mediated by multiple transporters (e.g., MFS transporter and ABC transporter ATP-binding protein) might enhance bacterial resistance against these substances. These discoveries provided the inaugural insights into the biotransformation of strain ZY-1 to PCB 118 stress, illustrating its potential in the remediation of contaminated environments.
Collapse
Affiliation(s)
- Yuxuan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofang Ouyang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Xin Qi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, Wang J, Appenzeller BMR. A meta-analysis highlighting the increasing relevance of the hair matrix in exposure assessment to organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170535. [PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p < 0.05) for hair and blood concentrations were observed in majority of studies featuring pesticides and flame retardants. While among sociodemographic factors, gender and age significantly affected the hair concentrations in females and children in general exposure settings, whereas adult workers in occupational settings. Furthermore, the assessment of the hair burden of persistent organic pollutants in domestic and wild animals showed high concentrations for pesticides such as HCHs and DDTs whereas the laboratory-based studies using animals demonstrated strong correlations between exposure dose, exposure duration, and measured organic pollutant levels, mainly for chlorpyrifos, diazinon, terbuthylazine, aldrin, dieldrin and pyrethroid metabolites. Considering the critical analysis of the results obtained from literature review, hair is regarded as a reliable matrix for organic pollutant assessment; however, some limitations, as discussed in this review, need to be overcome to reinforce the status of hair as a suitable matrix for exposure assessment.
Collapse
Affiliation(s)
- Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China; Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - De-Sheng Pei
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China.
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Precision Health, Luxembourg Institute of Health, 1A-B, rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
7
|
Li Z, Li Z, Zhou Y, Meng W, Li J, Zhou Y, He C, Dong G, Yu Y. Co-occurrence of tetrabromobisphenol a and debromination products in human hair across China: Implications for exposure sources and health effects on metabolic syndrome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168514. [PMID: 37977374 DOI: 10.1016/j.scitotenv.2023.168514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The large usage of Tetrabromobisphenol A (TBBPA) in consumer products leads to ubiquitous distribution globally, however, studies on the occurrence of their debromination compounds were rather scarce. Also, though many studies illustrate the effectiveness of hair analysis to assess human exposure to organic pollutants, evidence on the associations with health implications is still fairly limited. Herein, 598 participants from across China were employed to investigate chronic, low-level exposure to TBBPA and debromination products by hair analysis. The geomean concentrations of TBBPA, 2,2',6-tribromobisphenol A (Tri-BBPA), 2,2'- and 2,6-dibromobisphenol A (Di-BBPA), and 2-monobromobisphenol A (Mo-BBPA) were 1.07, 0.145, 0.135, and 0.894 ng/g, respectively, indicating nonnegligible health risks of debromination products. Hair analyte levels correlated with population age and population density among sampling regions. Sexual- and spatial-variations were observed with higher concentrations in females and in E-waste recycling sites. Logistic regression models showed that TBBPA exposure (adjusted odds ratio (OR): 1.02, 95 % confidential interval (CI): 1.01-1.05) was positively associated with risk of metabolic syndrome by adjusting for various covariates. These findings imply usefulness of hair as an alternative biomonitoring tool to assess human exposure to TBBPA and relative health effects, which highlights public concerns on co-exposure to these chemicals.
Collapse
Affiliation(s)
- Zongrui Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Ying Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Wenjie Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jincheng Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chang He
- Institute of Environmental Health and Pollution control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
8
|
Gao X, Yan D, Li G, Wei Y, He H, Zhai J. Polychlorinated biphenyls and risk of metabolic syndrome and comparison with the risk of diabetes: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165773. [PMID: 37506918 DOI: 10.1016/j.scitotenv.2023.165773] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/07/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
With the increasing incidence of metabolic syndrome (MetS) worldwide and no consistent results on PCBs and MetS. A meta-analysis to explore their relationship was conducted. Given the high correlation and overlap of MetS with diabetes, analysis of diabetes risk, was used as a supplement to compare with MetS. Seven studies included MetS, 15 studies for diabetes, and one study included both outcomes. It was found that PCBs may not be a risk factor for MetS, but their high heterogeneity indicates that they are under-represented. In addition, our results showed that total PCBs might be a protective factor against diabetes. In the whole blood subgroup, which can reflect the accumulation of more than one body load, heterogeneity was reduced, and its OR value suggested that PCBs increased the risk of MetS in the whole blood biomaterial. DL-PCBs were positively associated with MetS and diabetes, while NDL-PCBs were negatively associated with diabetes. In the subgroup analysis of PCBs homologs, DL-PCB-126 and DL-PCB-118 were risk factors for MetS and diabetes, respectively. In addition, PCB-153 and 180 showed a dose-response relationship between them and diabetes mellitus, respectively. The results of total analysis of MetS and diabetes mellitus and subgroup analysis of PCBs were mixed, and this reason might be attributed to the different mechanisms of action and effect sizes of different PCBs, so based on subgroup results and in vivo and in vitro experiments, we considered PCBs to be a risk factor for MetS and diabetes. Due to various reasons, there are still many shortcomings in the evaluation of PCBs impact on human health, and more high-quality research are needed to further explore the role of PCBs of different species and congeners in MetS and diabetes.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, China.
| |
Collapse
|
9
|
González-Gómez X, Figueiredo-González M, Villar-López R, Martínez-Carballo E. Biomonitoring of organic pollutants in pet dog plasma samples in North-Western Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161462. [PMID: 36623653 DOI: 10.1016/j.scitotenv.2023.161462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Most of organic pollutants (OPs) have the ability to interfere with biological systems causing negative effects in living beings, including humans. In the last decades, pets have been used as bioindicators of human exposure because they share the same habitat with their homeowners. We sought to determine levels of approximately 70 OPs, including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polybrominated biphenyl ethers (PBDEs), organophosphate pesticides (OPPs), polycyclic aromatic hydrocarbons (PAHs) and pyrethroids (PYRs) in plasma samples from 39 pet dogs from Ourense (north-western Spain). The results revealed that PAHs were the dominant OPs (mean value 175 ± 319 ng/g lipid weight (lw)), followed by PYRs (132 ± 352 ng/g lw), PCBs (122 ± 96 ng/g lw), OCPs (33 ± 17 ng/g lw), PBDEs (19 ± 18 ng/g lw) and OPPs (2.1 ± 2.7 ng/g lw) in plasma samples. We have previously detected the target OPs in hair samples of pets, collected simultaneously and similar trend of some OPs has been observed. Moreover, pyrene and chrysene showed correlations between levels detected in both matrices.
Collapse
Affiliation(s)
- Xiana González-Gómez
- Department of Analytical Chemistry, Nutrition and Food Sciences, IAQBUS - Institute of Research on Chemical and Biological Analysis, Universidade de Santiago de Compostela, Constantino Candeira S/N, Santiago de Compostela 15782, Spain.
| | - María Figueiredo-González
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| | - Roberto Villar-López
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain
| | - Elena Martínez-Carballo
- Food and Health Omics, Department of Analytical and Food Chemistry, Faculty of Sciences, Campus da Auga, University of Vigo, Ourense 32004, Spain.
| |
Collapse
|
10
|
Tang B, Zheng J, Xiong SM, Cai FS, Li M, Ma Y, Gao B, Du DW, Yu YJ, Mai BX. The accumulation of organic contaminants in hair with different biological characteristics. CHEMOSPHERE 2023; 312:137064. [PMID: 36334734 DOI: 10.1016/j.chemosphere.2022.137064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Human hair has increasingly been used as a noninvasive biomonitoring matrix for assessment of human exposure to various organic contaminants (OCs). However, the accumulation processes of OCs in hair remains unclear thus far, which raised concerns on the reliability of hair analysis results for OCs. Herein, Chinese population was selected as the study subject, the effects of changes in hair biological characteristics, including length and color, on the accumulation of OCs in hair was investigated. With the growing of hair shaft and the increased distance from the scalp, a significant increasing trend was found for levels of polychlorinated biphenyls (PCBs) and organophosphate flame retardants (PFRs) along the hair shafts (p < 0.05). Source identification using Chemical Mass Balance model indicated that PCBs in hair were mainly from exogenous sources (air and dust). The accumulation rates of PCB and PFR individuals in the hair shaft decreased with increasing of log Kow values. Additionally, the levels of OCs in hair decreased with the change in color from black to white, probably because of the loss of melanin in white hair. The ratios (R) of Cblack/Cwhite were significantly correlated with the log Kow values for individual chemicals (p < 0.05), implying that OCs with high log Kow values tend to accumulate more readily in black hair. The results of this study demonstrated the growth and change in colors of hair, as well as the physicochemical properties of chemicals, play vital roles in the accumulation of OCs in hair. The present study provides fundamental basis for the precise assessment of human exposure to OCs using hair as a biomonitoring matrix in future studies.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China.
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Feng-Shan Cai
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yan Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bo Gao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Dong-Wei Du
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, PR China
| |
Collapse
|
11
|
Xu LL, Zhang QY, Chen YK, Chen LJ, Zhang KK, Wang Q, Xie XL. Gestational PCB52 exposure induces hepatotoxicity and intestinal injury by activating inflammation in dam and offspring mice: A maternal and progeny study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120186. [PMID: 36115491 DOI: 10.1016/j.envpol.2022.120186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Although Polychlorinated biphenyl (PCB) levels are decreased in the environment, the adverse effects of gestational exposure on the mother and offspring cannot be ignored due to the vulnerability of the fetus. In the present study, pregnant Balb/c mice were administered PCB52 (1 mg/kg BW/day) or corn oil vehicle by gavage until parturition. In the dams, PCB52 caused histopathological changes in the liver, higher serum levels of aminotransferase and alanine aminotransferase, and activated apoptosis and autophagy, suggesting hepatotoxicity. Overexpressed indicators of TLR4 pathway were observed in the liver of PCB52-exposed dams, indicated hepatic inflammation. Moreover, PCB52 exposure weakened the intestinal barrier and triggered inflammatory response, which might contribute to the hepatic inflammation by gut-liver axis. In the pups, prenatal PCB52 exposure affected the sex ratio at birth and reduced birth length and weights. Similar to the dams, prenatal PCB52 exposure induced hepatotoxicity in the pups without gender difference. Consistent with the alteration of gut microbiota, intestinal inflammation was confirmed, accompanying the disruption in the intestinal barrier and the activation of apoptosis and autophagy in the PCB52-exposed pups. Intestinal injury might be responsible for hepatotoxicity at least in part. Taken together, these findings suggested that gestational PCB52 exposure induced hepatic and intestinal injury in both maternal and offspring mice by arousing inflammation.
Collapse
Affiliation(s)
- Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Lin Y, Feng C, Le S, Qiu X, Xu Q, Jin S, Fang Y, Jin Y, Wen Y, Wang G, Lu D. Infant Exposure to PCBs and PBDEs Revealed by Hair and Human Milk Analysis: Evaluation of Hair as an Alternative Biomatrix. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15912-15919. [PMID: 36301106 DOI: 10.1021/acs.est.2c04045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Human hair, as an emerging biological monitoring matrix, has begun to be used in various human exposure studies, but little research has been done on persistent organic pollutants (POPs), especially for the body burden of POPs in infants. In this study, 36 breast-fed infants in Shanghai were recruited for a study to determine their exposure to POPs, including 12 dioxin-like polychlorinated biphenyls (dl-PCBs), 6 indicator PCBs, and 8 polybrominated diphenyl ethers (PBDEs) in the inner layer (internal) and outer layer (external) of infant hair and human milk. The similarity or difference of the POP distribution pattern or concentration among these matrices was investigated, and only weak correlations (r < 0.4) were observed between the POP concentration in human milk and infant hair (internal or external). POPs in human milk have a different profile than those in infant hair, while they have stable concentration ratios (0.58-2.72), similar distribution patterns, fine Spearman's rank correlations, and tangled principal component analysis (PCA) plots in each POP family between external and internal hair samples. The result suggested that POPs in internal hair can be easily affected by those in external hair, but POPs in human milk seem to have little contribution to the POP profile in internal hair. Although infant hair cannot reflect the POPs from diet or from body burden, it can be an ideal biomatrix that estimates infant exposure to POPs from exogenous sources like house dust when considering the similar pattern of POPs and their proper accumulation period in hair.
Collapse
Affiliation(s)
- Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Xinlei Qiu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Qian Xu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Shuping Jin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yamin Fang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yu'e Jin
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Yimin Wen
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention/State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, 1380 West Zhongshan Road, Shanghai 200336, China
| |
Collapse
|
13
|
Ma S, Ren G, Cui J, Lin M, Wang J, Yuan J, Yin W, Peng P, Yu Z. Chiral signatures of polychlorinated biphenyls in serum from e-waste workers and their correlation with hydroxylated metabolites. CHEMOSPHERE 2022; 304:135212. [PMID: 35690175 DOI: 10.1016/j.chemosphere.2022.135212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Elevated concentrations of polychlorinated biphenyls (PCBs) found in environmental media and biota from typical e-waste dismantling sites have raised concerns regarding their human body burden and potential negative health effects. In the present study, the enantiomeric compositions of three typical chiral congeners (PCB-95, PCB-132, and PCB-149) were measured in 24 serum samples from e-waste workers by using gas chromatography coupled to triple quadrupole tandem mass spectrometry. The mean enantiomer fractions (EFs) of chiral congeners in serum from the workers were 0.655 ± 0.103, 0.679 ± 0.164, and 0.548 ± 0.095 for PCB-95, PCB-132, and PCB-149, respectively. The (+) enantiomers of PCB-95, PCB-132, and PCB-149 were enantioselectively enriched in serum. Significant positive correlations were observed between the EF of the chiral congener PCB-95 and the total concentration of OH-PCBs, suggesting that EF values of chiral PCBs could be used to indicate the extent of biological metabolism. In addition, the EF of PCB-95 in serum samples increased with increasing work duration of the e-waste workers, thus demonstrating the usefulness of EF values of chiral PCBs as tracers of human exposure to PCBs. Because of the enantioselective enrichment of (+) enantiomers of PCB-95, PCB-132, and PCB-149, further studies are needed to explore the metabolism and toxicity of chiral contaminants in humans.
Collapse
Affiliation(s)
- Shengtao Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200072, China.
| | - Juntao Cui
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jingzhi Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jing Yuan
- Department of Occupational and Environmental Health and the MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjun Yin
- Department of Occupational and Environmental Health and the MOE Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Wuhan Prevention and Treatment Center for Occupational Diseases, Wuhan, 430015, Hubei, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
14
|
LI X, WANG L, SONG L, WAN Z, KOU J, ZHANG M, LÜ Y, WANG Y, MEI S. Simultaneous determination of 35 organochlorine pesticides and polychlorinated biphenyls in the serum of the general population in Wuhan by solid phase extraction-gas chromatography-tandem mass spectrometry. Se Pu 2022; 40:461-468. [PMID: 35478005 PMCID: PMC9404153 DOI: 10.3724/sp.j.1123.2021.12013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
有机氯农药(OCPs)和多氯联苯(PCBs)是两类重要的持久性有机污染物,可在环境介质中长期存在,并通过多种途径进入人体,导致人体的高暴露风险。OCPs和PCBs对人体存在诸多健康危害,精准定量人体内OCPs和PCBs的暴露水平是健康效应评价的关键。该研究基于固相萃取-气相色谱-串联质谱联用技术(SPE-GC-MS/MS)建立了同时检测100 μL血清中35种OCPs和PCBs的分析方法。血清样品经尿素沉淀蛋白后,采用Oasis® HLB小柱净化,正己烷-二氯甲烷混合溶液(1∶1, v/v)洗脱,氮吹近干,正己烷定容,多反应监测(MRM)模式检测,内标法定量分析。结果表明,OCPs和PCBs在0.05~50.0 ng/mL范围内线性关系良好,检出限在1.2~71.4 ng/L之间。35种目标分析物的加标回收率在72.6%~142%之间,相对标准偏差小于25%。利用所建立的方法检测了武汉市普通人群血清样本中OCPs和PCBs的浓度水平,结果表明武汉市普通人群广泛暴露于OCPs和PCBs,且以OCPs为主。有8种OCPs和7种PCBs检出率高于50%,其中p,p'-滴滴伊、p,p'-滴滴滴和甲氧滴滴涕检出率达100%,非类二噁英PCBs是PCBs的主要成分。血清中OCPs浓度随年龄增长呈升高趋势,在60岁以上存在性别差异;不同性别、年龄人群血清中PCBs浓度无统计学差异。该方法样本用量少,操作简便,具有较高的准确度和精密度,适用于环境健康研究中大量人群血清样本中痕量OCPs和PCBs的生物监测。
Collapse
|
15
|
Yang B, Ye Z, Wang Y, Guo H, Lehmler HJ, Huang R, Song E, Song Y. Evaluation of Early Biomarkers of Atherosclerosis Associated with Polychlorinated Biphenyl Exposure: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37011. [PMID: 35349355 PMCID: PMC8963524 DOI: 10.1289/ehp9833] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Miscellaneous cardiovascular risk factors have been defined, but the contribution of environmental pollutants exposure on cardiovascular disease (CVD) remains underappreciated. OBJECTIVE We investigated the potential impact of typical environmental pollutant exposure on atherogenesis and its underlying mechanisms. METHODS We used human umbilical vein endothelial cells (HUVECs) and apolipoprotein E knockout (ApoE-/-) mice to investigate how 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ, a toxic polychlorinated biphenyl metabolite) affects atherogenesis and identified early biomarkers of CVD associated with PCB29-pQ exposures. Then, we used long noncoding RNAs (lncRNAs) HDAC7-AS1-overexpressing ApoE-/- mice and apolipoprotein E/caveolin 1 double-knockout (ApoE-/-/CAV1-/-) mice to address the role of these early biomarkers in PCB29-pQ-induced atherogenesis. Plasma samples from patients with coronary heart disease (CHD) were also used to confirm our findings. RESULTS Our data indicate that lncRNA HDAC7-AS1 bound to MIR-7-5p via argonaute 2 in PCB29-pQ-challenged HUVECs. Our mRNA sequencing assay identified transforming growth factor-β2 (TGF-β2) as a possible target gene of MIR-7-5p; HDAC7-AS1 sponged MIR-7-5p and inhibited the binding of TGF-β2 to MIR-7-5p. The effect of PCB29-pQ-induced endothelial injury, vascular inflammation, development of plaques, and atherogenesis in ApoE-/- mice was greater with MIR-7-5p-mediated TGF-β2 inhibition, whereas HDAC7-AS1-overexpressing ApoE-/- mice and ApoE-/-/CAV1-/- mice showed the opposite effect. Consistently, plasma levels of HDAC7-AS1 and MIR-7-5p were found to be significantly associated individuals diagnosed with CHD. DISCUSSIONS These findings demonstrated that a mechanism-based, integrated-omics approach enabled the identification of potentially clinically relevant diagnostic indicators and therapeutic targets of CHD mediated by environmental contaminants using in vitro and in vivo models of HUVECs and ApoE-/- and ApoE-/-/CAV1-/- mice. https://doi.org/10.1289/EHP9833.
Collapse
Affiliation(s)
- Bingwei Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Zhishuai Ye
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yawen Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongzhou Guo
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - Rongchong Huang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Megson D, Brown T, Jones GR, Robson M, Johnson GW, Tiktak GP, Sandau CD, Reiner EJ. Polychlorinated biphenyl (PCB) concentrations and profiles in marine mammals from the North Atlantic Ocean. CHEMOSPHERE 2022; 288:132639. [PMID: 34687677 DOI: 10.1016/j.chemosphere.2021.132639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) can provide crucial information into the bioaccumulation and biomagnification of POPs in marine mammals. Muscle tissue samples were obtained for detailed PCB congener specific analysis of all 209 PCBs in 11 species of marine mammals stranded across the coast of the UK between 2010 and 2013. At least 145 PCB congeners were found in each individual. The highest concentrations of PCBs were recorded in a killer whale (318 mg/kg lipid) and the highest toxic equivalent in a Risso's dolphin (1687 pg/g TEQ2005 wet). Concentrations of PCBs in the majority of samples exceeded toxic thresholds (9 mg/kg lipid) for marine mammals, highlighting the health risk they face from PCB exposure. Many PCB profiles did not fit typical 'Aroclor' signatures, but instead indicated patterns of congeners that are resistant to biotransformation and elimination. However, this study identified a novel PCB signature in a sei whale that has not yet been previously observed in marine mammals. The whale had a PCB profile that included lighter and inadvertent PCB congeners such as PCB 11, suggesting that the main source of exposure was through atmospheric deposition, rather than terrestrial discharges. Seven subsamples were chosen for chiral analysis of PCB 95, 136 and 149. The enantiomer fractions (EFs) of C-PCBs 95 and 149 were non racemic suggesting there may be enantiomer selective metabolism in marine mammals. Although there has been a shift in the literature towards emerging pollutants, this study acts as a stark reminder that PCBs continue to pose a significant risk to wildlife.
Collapse
Affiliation(s)
- David Megson
- Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK; Chemistry Matters, Calgary, AB, Canada.
| | - Thomas Brown
- Scottish Association for Marine Science (SAMS), Oban, Scotland, UK
| | | | - Mathew Robson
- Ontario Ministry of the Environment, Conservation and Parks. 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | | | - Guuske P Tiktak
- Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK
| | | | - Eric J Reiner
- Ontario Ministry of the Environment, Conservation and Parks. 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| |
Collapse
|
17
|
Tang B, Chen SJ, Zheng J, Xiong SM, Yan X, Luo WK, Mai BX, Yu YJ. Changes in human hair levels of organic contaminants reflecting China's regulations on electronic waste recycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150411. [PMID: 34563899 DOI: 10.1016/j.scitotenv.2021.150411] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
To assess the impacts of regulations and laws enhancing the management of e-waste in China, hair samples of local residents and dismantling workers in a former e-waste area in 2016 and 2019, five and eight years after the implementation of legislation and regulations in this area since 2011, respectively. The temporal changes in levels of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organophosphorus flame retardants (OPFRs) in the hair samples were investigated. Besides, the levels of these organic contaminants in hair samples collected from the same area in 2009, 2011, and 2015 reported in previous studies were used as comparison. The highest median levels of Σ9PCBs (719 ng/g), Σ3Penta-BDEs (16.1 ng/g), and Σ3Octa-BDEs (8.46 ng/g) in hair were found in 2011, with a significant decrease trend was observed from 2011 to 2019 (p < 0.05). As for Deca-BDE, the levels reached the maximum in 2015 (133 ng/g), following by a significant decrease to 2016 (7.46 ng/g) and 2019 (2.61 ng/g) (p < 0.05). The median levels of Σ8OPFRs, also decreased significantly (p < 0.05) from 2015 (357 ng/g) to 2016 (264 ng/g) and 2019 (112 ng/g). Moreover, a significantly increasing trend was observed for the ratios of triphenyl phosphate (TPHP) and tris(2-chloropropyl) phosphate (TCIPP), two predominant OPFRs, to Deca-BDE from 2015 to 2019 (p < 0.01), suggesting a shift of "legacy" to "emerging" contaminants released from e-waste recycling in this area. The temporal changes in hair levels of typical organic contaminants in residents and dismantling workers indicated the effectiveness of the regulations on informal e-waste recycling activities and solid waste in China.
Collapse
Affiliation(s)
- Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China.
| | - Shi-Mao Xiong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China; School of Public Health, Key Laboratory of Environmental Pollution and Disease Monitoring of Ministry of Education, Guizhou Medical University, Guiyang 550000, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Wei-Keng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Yun-Jiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, PR China
| |
Collapse
|
18
|
Zhu M, Yuan Y, Yin H, Guo Z, Wei X, Qi X, Liu H, Dang Z. Environmental contamination and human exposure of polychlorinated biphenyls (PCBs) in China: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150270. [PMID: 34536863 DOI: 10.1016/j.scitotenv.2021.150270] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs), together with 11 other organic compounds, were initially listed as persistent organic pollutants (POPs) by the Stockholm Convention because of their potential threat to ecosystems and humans. In China, many monitoring studies have been undertaken to reveal the level of PCBs in environment since 2005 due to the introduced stricter environmental regulations. However, there are still significant gaps in understanding the overall spatial and temporal distributions of PCBs in China. This review systematically discusses the occurrence and distribution of PCBs in environmental matrices, organisms, and humans in China. Results showed that PCB contamination in northern and southern China was not significantly different, but the PCB levels in East China were commonly higher than those in West China, which might have been due to the widespread consumption of PCBs and intensive human activities in East China. Serious PCB contamination was found in e-waste disassembling areas (e.g., Taizhou of Zhejiang Province and Qingyuan and Guiyu of Guangdong Province). Higher PCB concentrations were also chronicled in megalopolises and industrial clusters. The unintentionally produced PCBs (UP-PCBs) formed during industrial thermal processes may play an increasingly significant role in PCB pollution in China. Low PCB levels were recorded in rural and underdeveloped districts, particularly in remote and high-altitude localities such as the Tibetan Plateau and the South China Sea. However, these data are limited. Human exposure to PCBs is closely related to the characteristics of environmental pollution. This review also discusses existing issues and future research prospects on PCBs in China. For instance, the accumulation characteristics and migration regularities of PCBs in food webs should be further studied. More investigations should be undertaken to assess the quantitative relationship between external and internal exposure to PCBs. For example, bioaccessibility and bioavailability studies should be supplemented to evaluate human health risks more accurately.
Collapse
Affiliation(s)
- Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Zhanyu Guo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Xin Qi
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hang Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
19
|
Baumer A, Jäsch S, Ulrich N, Bechmann I, Landmann J, Stöver A, Escher BI. Chemical mixtures in human post-mortem tissues assessed by a combination of chemical analysis and in vitro bioassays after extraction with silicone. ENVIRONMENT INTERNATIONAL 2021; 157:106867. [PMID: 34537519 DOI: 10.1016/j.envint.2021.106867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 05/12/2023]
Abstract
Passive equilibrium sampling of chemical mixtures from different human post-mortem tissues (liver, brain (cerebrum and cerebellum), adipose tissue) and blood was combined with instrumental analysis using direct sample introduction (DSI) GC-MS/MS and bioanalytical profiling using in vitro bioassays targeting the activation of the aryl hydrocarbon receptor (AhR-CALUX), the adaptive stress response (AREc32) and cytotoxicity. The tissues stemmed from pathology samples collected in two German cities and covered males and females aged 21 to 100 with a mean age of 67 years. Neutral organic chemicals were extracted using polydimethylsiloxane (PDMS) at mass ratios of tissue to PDMS of approximately 6 for blood, 3 for adipose tissue and 10 for liver and brain. Amounts of chemicals in PDMS were converted to lipid-associated concentrations using previously measured partition constants that were chemical-independent despite covering eight orders of magnitude in hydrophobicity. Up to 35 of 99 targeted chemicals were detected in 6 tissues of 16 individuals (88 samples in total), among them legacy persistent organic pollutants (POP) such as DDT and derivatives and polychlorinated biphenyls (PCB) but also modern pesticides and chemicals present in consumer products. POPs were highest in adipose tissue and lipid-associated concentrations increased with age, while concentrations of fragrance materials such as galaxolide were independent of age. In tissues from the same individual, chemical concentrations mostly increased from similar levels in brain and blood to higher levels in liver and highest in adipose tissue. However, easily degradable chemicals such as phenanthrene were mainly detected in blood and brain, and very hydrophilic chemicals were least abundant in adipose tissue. The passive sampling method allows a direct comparison of chemical burden between different tissues and may have forensic applications, for example to study internal distributions or to use one tissue type as a proxy for others. The sum of concentrations of the detected chemicals was positively correlated with the bioassay responses but mixture modeling showed that the detected chemicals explained less than 2% of the activation of the AhR and less than 0.5% of cytotoxicity. This means that more than 10,000 chemicals would need to be included in an analytical method to capture all the effects with many chemicals potentially being below detection limits but still contributing to mixture effects. Therefore, we propose a smart combination of chemical analysis and bioassays to quantify priority chemicals but use bioassay responses as effect-scaled concentrations to capture the entire exposome in future epidemiological studies.
Collapse
Affiliation(s)
- Andreas Baumer
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sandra Jäsch
- Department Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department Analytical Environmental Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany
| | - Julia Landmann
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, 04103 Leipzig, Germany
| | - Andreas Stöver
- Institute of Legal Medicine, Ludwig-Maximilians University Munich, Nußbaumstraße 26, 80336 Munich, Germany
| | - Beate I Escher
- Department Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany; Eberhard Karls University Tübingen, Environmental Toxicology, Centre for Applied Geosciences, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Guo F, Yin S, Wang H, Zhang J, Liu Y, Aamir M, Liu W. Polychlorinated biphenyls (PCBs) in the colostrum samples from the Yangtze River Region: Exposure profile and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117253. [PMID: 33957509 DOI: 10.1016/j.envpol.2021.117253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) may transfer into the neonates through the placental transfer and via breastfeeding after the delivery, thus might be harmful to the infant. Sixty colostrum samples in the Yangtze River Region were collected to investigate the concentration, distribution pattern, and enantiomer characteristic of the PCB exposure. Among all samples, over 90% of pollutants were tetra-to hepta-chlorinated PCBs. The sum concentration of the PCB was 512 (IQR: 322-856) ng g-1 lipid weight. Enantiomer fraction (EF) of PCB 95 and PCB 149 was found lower than the racemic value, while EFs of PCB 45 and PCB 136 were found higher and near-racemic state, respectively. The concentration pattern and enantiomeric properties of the PCBs indicated that the mothers from Mianyang had a recent exposure to PCBs. Among all samples, similar exposure and metabolic pathways of the PCB congeners were observed. PCB exposure showed no significant correlation with the birth outcome of the infants, but 43.3% of the infants have potential health risks via breastfeeding.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Shanshan Yin
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Haiyan Wang
- Quality and Safety Engineering Institute of Food and Drug, School of Management Engineering and Electronic Commerce, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China
| | - Jianyun Zhang
- Department of Nutrition and Toxicology, School of Public Health, Faculty of Medicine, Hangzhou Normal University, 311121, China
| | - Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institution of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Aamir
- Water-Energy Resilience Research Laboratory, Environmental Science and Engineering, School of Engineering, Westlake University, Hangzhou, 310024, China
| | - Weiping Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| |
Collapse
|
21
|
Ranasinghe P, Thorn RJ, Creton R, Lee CM. Enantioselective Toxicity Effects of 2,2',3,5',6-Pentachloro Biphenyl (PCB-95) on Developing Brains in Zebrafish Larvae. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 107:351-360. [PMID: 34230987 DOI: 10.1007/s00128-021-03294-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
2,2',3,5',6-Pentachlorobiphenyl (PCB-95) is an environmentally relevant, chiral PCB congener that has been shown to act as a developmental neurotoxicant (DNT), targeting the developing brain. However, understanding enantioselective toxic effects for PCB-95 is in its infancy. To investigate these toxic effects, zebrafish embryos were exposed to racemates and enantiomers of PCB-95. Brain areas and pathology were studied. Results indicated dose dependent reduction of brain sizes with increased brain cell death in racemic and Ra (-)-PCB-95 treated groups. To provide a mechanistic basis for the observed neurotoxicity, gene expressions of antioxidant proteins such as Cu/Zn-SOD, Mn-SOD, and GPx were analysed. Antioxidant genes were up regulated with the PCB-95 exposure and racemic PCB-95 showed higher toxicity. These results suggest that the exposure to PCB-95 contributed to developmental neurotoxicity in early developing zebrafish larvae and may confer risks associated with enantioselective enrichment of PCB-95 in the environment.
Collapse
Affiliation(s)
- Prabha Ranasinghe
- Environmental Toxicology Program, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA.
| | - Robert J Thorn
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Robbert Creton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Cindy M Lee
- Environmental Toxicology Program, Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| |
Collapse
|
22
|
Dai S, Qiu J, Wang M. Concentration-dependent enantioselective accumulation of chiral polychlorinated biphenyls in Nelumbo nucifera Gaertn. root from contaminative sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27878-27884. [PMID: 33517550 DOI: 10.1007/s11356-021-12530-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Nelumbo nucifera Gaertn. (lotus) roots were collected from contaminated sediments which were artificially adding different concentrations of chiral polychlorinated biphenyls (PCBs) to investigate the effect of concentration on the accumulation characteristics and chiral signatures of PCBs in lotus root during its growth period of 150 days. Under high PCB exposure concentration, the biota-sediment accumulation factors (BSAFs) of PCBs 91, 95, and 136 in the lotus root were up to 0.25-0.46 and 8.10-10.5 times higher than those under low-exposure concentration (0.024-0.052). The BSAFs of PCBs 149, 176, and 183 under high-exposure concentration were up to 0.24-0.44, while they were undetected at low concentration. The significant difference observed in the BSAFs based on different concentrations indicates that the lotus root accumulation efficiency toward chiral PCBs increases with the contaminate concentration. Although the (-)-enantiomers of PCBs 91, 95, and 136 were all preferentially accumulated in lotus root under two exposure concentrations, the extent of the preferential accumulation of (-)-PCB 95 decreased with increasing exposure concentration throughout the whole growth period (30-150 days). In addition, the (-)-enantiomers of PCBs 91 and 136 also showed the same tendency during most of the growth period. Conclusively, the exposure concentrations are an important influence factor on the enantioselective accumulation of chiral PCBs in lotus root.
Collapse
Affiliation(s)
- Shouhui Dai
- Equipment Public Service Center, Key Laboratory of Tropical Marine Bio-Resources and Ecology South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, People's Republic of China.
| | - Jing Qiu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Min Wang
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| |
Collapse
|
23
|
Huang D, Tao J, Cheng M, Deng R, Chen S, Yin L, Li R. Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124399. [PMID: 33191019 DOI: 10.1016/j.jhazmat.2020.124399] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 05/06/2023]
Abstract
Industrial progress has brought us an important polymer material, i.e. plastic. Because of mass production and use, and improper management and disposal, plastic pollution has become one of the most pivotal environmental issues in the world today. However, the current researches on microplastics/nanoplastics are mainly focused on individual aquatic, terrestrial and atmospheric environments, ignoring the fact that the natural environment is a whole. In this regard, the transport of microplastics/nanoplastics among the three environment compartments, including reciprocal contributions and inherent connections, and the impact of microplastics/nanoplastics on organisms living in multiple environments are research problems that we pay special attention to. Furthermore, this paper comprehensively reviews the transport and distribution of microplastics/nanoplastics in individual compartments and the toxicity of organisms, either alone or in combination with other pollutants. The properties of microplastics/nanoplastics, environment condition and the growth habit of organisms are critical to the transport, distribution and toxicity of microplastics/nanoplastics. These knowledge gaps need to be addressed urgently to improve cognition of the degree of plastic pollution and enhance our ability to deal with pollution. Meanwhile, it is hoped that the paper can provide a relatively complete theoretical knowledge system and multiple "leads" for future innovative ideas in this field.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
24
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
25
|
Huang C, Zeng Y, Luo X, Ren Z, Tian Y, Mai B. Comprehensive exploration of the ultraviolet degradation of polychlorinated biphenyls in different media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142590. [PMID: 33059143 DOI: 10.1016/j.scitotenv.2020.142590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
As one of the most important natural transformation processes, photodegradation deserves more attention and research. In the current work, we comprehensively explored the photochemical behaviors of polychlorinated biphenyls (PCBs) in n-hexane (Hex), methanol/water, and silica gel under UV-irradiation. Photodegradation rates were found to be faster in methanol/water than in Hex. All of the three photochemical systems generated sigmatropic rearrangement products. The dominant photodegradation pathways were dechlorination, dechlorination/methoxylation/hydroxylation, and hydroxylation in Hex, methanol/water, and silica gel systems, respectively. Furthermore, some new photodegradation products, such as polychlorinated biphenyl ethers, polychlorinated dibenzofurans, polychlorinated biphenylenes, and methylated polychlorinated biphenyls, are reported for the first time. These findings would provide deeper insight into the phototransformation behaviors of PCBs.
Collapse
Affiliation(s)
- Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zihe Ren
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yankuan Tian
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Peng FJ, Hardy EM, Béranger R, Mezzache S, Bourokba N, Bastien P, Li J, Zaros C, Chevrier C, Palazzi P, Soeur J, Appenzeller BMR. Human exposure to PCBs, PBDEs and bisphenols revealed by hair analysis: A comparison between two adult female populations in China and France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115425. [PMID: 32882460 DOI: 10.1016/j.envpol.2020.115425] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to various anthropogenic chemicals in daily life, including endocrine-disrupting chemicals (EDCs). However, there are limited data on chronic, low-level exposure to such contaminants among the general population. Here hair analysis was used to investigate the occurrence of four polychlorinated biphenyls (PCBs), seven polybrominated diphenyl ethers (PBDEs) and two bisphenols (BPs) in 204 Chinese women living in the urban areas of Baoding and Dalian and 311 pregnant French women. All the PCBs and PBDEs tested here were more frequently detected in the hair samples of the French women than in those of the Chinese women. In both cohorts, PCB 180 and BDE 47 were the dominant PCB and PBDE congener, respectively. PCB 180 was found in 82% of the French women and 44% of the Chinese women, while the corresponding values of BDE 47 were 54% and 11%, respectively. A discriminant analysis further demonstrated the difference in PCBs and PBDEs exposure profile between the two cohorts. These results demonstrate that hair analysis is sufficiently sensitive to detect exposure to these pollutants and highlight differences in exposure between populations even at environmental levels. Although BPA and BPS were found in 100% of the hair samples in both cohorts, the French women had significantly higher levels of BPA and BPS than the Chinese women. The median concentrations of BPA were one order of magnitude higher than BPS in both the Chinese (34.9 versus 2.84 pg/mg) and the French women (118 versus 8.01 pg/mg) respectively. Our results suggest that both French and Chinese populations were extensively exposed to BPA and BPS.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg.
| | - Emilie M Hardy
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Sakina Mezzache
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Nasrine Bourokba
- L'Oréal Research and Innovation, Biopolis Drive, Synapse, 138623, Singapore
| | - Philippe Bastien
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Jing Li
- L'Oréal Research and Innovation, No. 550 JinYu Rd., Pudong New Area, China
| | - Cécile Zaros
- INSERM, Joint Unit INED-INSERM-EFS, Aubervilliers, France
| | - Cécile Chevrier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | - Paul Palazzi
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| | - Jeremie Soeur
- L'Oréal Research and Innovation, 1 Avenue Eugène Schueller BP22, 93601, Aulnay-sous-Bois, France
| | - Brice M R Appenzeller
- Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445, Strassen, Luxembourg
| |
Collapse
|
27
|
Yang Y, Wang Y, Tan F, Zhang Z, Rodgers TFM, Chen J. Pet hair as a potential sentinel of human exposure: Investigating partitioning and exposures from OPEs and PAHs in indoor dust, air, and pet hair from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140934. [PMID: 32721615 DOI: 10.1016/j.scitotenv.2020.140934] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
We investigated the levels, compositions, and partitioning behaviors of organophosphate esters (OPEs) and polycyclic aromatic hydrocarbons (PAHs) in indoor air, dust, and pet hair from North China, as well as their potential exposures for humans and pets. The mean OPE concentrations in the indoor air (n = 19), dust (n = 26), and pet hair (n = 29) samples were 52.1 ng/m3, 3510 ng/g, and 1440 ng/g; while the mean PAH concentrations were 369 ng/m3, 6000 ng/g, and 22.6 ng/g, respectively. The matrix-air partitioning of OPEs and PAHs may reach equilibrium for compounds with octanol-air partition coefficients (logKoa) between 7 and 11 for dust and logKoa < 12 for pet hair. Correlation analysis suggested that pet hair could be used as a sentinel for the exposure to certain PAHs, e.g., phenanthrene (PHE) or fluoranthene (FLA), via exposure to indoor air. This work suggests that pet hair may be a better sentinel than air and dust for human exposure to OPEs and PAHs across different indoor microenvironments. Estimated daily intakes (EDIs) to OPEs and PAHs via air inhalation, dust ingestion, and dermal absorption were calculated for children, adults, and pets. The median ΣEDIs for children, adults, and pets were 26.7, 5.40, and 55.0 ng/kg/day for ΣOPEs, and 68.8, 19.1, and 130 ng/kg/day for ΣPAHs, respectively. Air inhalation was the main exposure route to PAHs and OPEs with logKoa < 10, whereas dust ingestion was the main exposure route to those with logKoa > 10.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zihao Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Timothy F M Rodgers
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 3E5, Canada
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
28
|
Li M, Tang B, Zheng J, Ma S, Zhuang X, Wang M, Zhang L, Yu Y, Mai B. PCDD/Fs in paired hair and serum of workers from a municipal solid waste incinerator plant in South China: Concentrations, correlations, and source identification. ENVIRONMENT INTERNATIONAL 2020; 144:106064. [PMID: 32889483 DOI: 10.1016/j.envint.2020.106064] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/24/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Human hair has been widely used to evaluate the exposure to drugs and organic pollutants. However, reports on the relationship between polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo-p-furans (PCDFs) in hair and the body burden of PCDD/Fs are limited. In this study, the association between PCDD/Fs in paired hair and serum samples from workers was examined in a municipal solid waste incinerator (MSWI) plant in South China. Fly ash and flue gas from the MSWI plant were also analyzed to determine the source apportionment of PCDD/Fs in the hair. The median international toxic equivalents (I-TEQs) of ΣPCDD/F in serum and hair were 28.0 pg TEQ/g (lipid weight) and 0.30 pg TEQ/g (dry weight), respectively. The indicator congener of PCDD/Fs for the TEQ levels was 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) in both hair and serum, the concentrations of which both exhibited significant and strong linear dependence on the total TEQ levels (p < 0.01, R2 = 0.966 and R2 = 0.670, respectively). Significant positive correlations were found in the 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD) and octachlorodibenzo-p-dioxin (OCDD) levels between the hair and serum samples (p < 0.05). Flue gas (which is an external source) was identified as the primary source of PCDD/Fs in human hair. Blood and flue gas were accountable for, on average, 37% and 61% of the PCDD/Fs in hair, respectively.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Shexia Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Xi Zhuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Meihuan Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
29
|
Meng HJ, Tang B, Zheng J, Ma SX, Cai FS, Zhuang X, Wang JL, Yu YJ. Levels and sources of PBDEs and PCBs in human nails from e-waste, urban, and rural areas in South China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1710-1717. [PMID: 32667371 DOI: 10.1039/d0em00221f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human nails have been increasingly used as a biomarker for human exposure to persistent organic pollutants (POPs). In the present study, the fingernails of e-waste-dismantling workers from Longtang town, Qingyuan city, rural residents from Shijiao town, Qingyuan city, and urban residents from Guangzhou city, respectively, were collected from South China to monitor the human burdens of polybrominated diphenyl ether (PBDEs) and polychlorinated biphenyl (PCBs). The median concentrations of in the nails of the e-waste-dismantling workers, and urban and rural residents were 412, 129, and 82.1 ng g-1, respectively, and the median concentrations of were 108, 8.4, and 22.1 ng g-1, respectively. The levels of PCBs and PBDEs in the nails of e-waste-dismantling workers were significantly higher as compared to those for urban and rural residents (p < 0.05), implying the continuous and greater exposure to these chemicals in the e-waste recycling areas. BDE 209 (92-98%) was the major congener of PBDEs and CB 52 (26-51%) was the main congener of PCB in nail samples. However, no significant gender difference was observed for PBDE and PCB levels in nails from all three investigated areas, and no significant correlation was found between their levels and the age of the participants. The enantiomer fractions (EFs) of CBs 95 and 132 indicated that the external sources (e.g. dust and/or air) were the primary sources for CBs 95 and 132 in human nails from the e-waste area, while the contribution from the internal sources (e.g. serum) could be in a small percentage. The results of this study indicate that human nails can be used as a proper indicator of human exposure to PCBs and PBDEs, and further studies are needed by a comprehensive investigation of the relationships between the PCB and PBDE levels in the nails and serum and/or other internal tissues.
Collapse
Affiliation(s)
- Hua-Jun Meng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ribeiro C, Gonçalves R, Tiritan M. Separation of Enantiomers Using Gas Chromatography: Application in Forensic Toxicology, Food and Environmental Analysis. Crit Rev Anal Chem 2020; 51:787-811. [DOI: 10.1080/10408347.2020.1777522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Cláudia Ribeiro
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, PRD, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Ricardo Gonçalves
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, PRD, Portugal
| | - M.E. Tiritan
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, PRD, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| |
Collapse
|
31
|
Sanganyado E, Lu Z, Liu W. Application of enantiomeric fractions in environmental forensics: Uncertainties and inconsistencies. ENVIRONMENTAL RESEARCH 2020; 184:109354. [PMID: 32182482 DOI: 10.1016/j.envres.2020.109354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 05/27/2023]
Abstract
The assumption that only biological processes are enantioselective introduces challenges in the reliability of enantioselective analysis as a tool for discriminating biotic and abiotic processes in the environmental fate of chiral pollutants. Enantioselectivity does not depend on the nature of the fate process a chiral contaminant undergoes but on the interaction of the chiral contaminant with homochirality inducing external agents (e.g. chiral molecules, macromolecules or surfaces such as enzymes, blood plasma, proteins, chiral co-pollutants, humic acid and soil organominerals). The environmental behavior of a chiral contaminant is difficult to anticipate because the interactions between the chiral contaminants and the homochirality inducing external agents is often complex and strongly influenced by local environment conditions such as pH, redox conditions, organic carbon, organic nitrogen, humic acid, and redox conditions. Furthermore, the use of enantioselective analysis in environmental forensics depend on the adequate separation and accurate identification and quantification of the enantiomers of the chiral contaminant. Matrix effects, instrument effects, inadequate enantioselective separation, and poor quantification techniques introduce uncertainties in the determination of enantiomeric composition. Here we present the weaknesses of this assumption and recommend using enantiomeric fractions as chemical markers of biotransformation with caution. We recommend using stable isotopes, including abiotic controls to determine if enantioselective sorption occurs, and determining stability of enantiomers in solvent or at elevated temperatures to account for confounding factors arising from matrix effects, enantioselective abiotic processes, and enantiomerization due solvent and thermal lability of the chiral analyte, respectively to maintain the integrity of the utility of enantiomeric composition changes as an environmental forensics tool.
Collapse
Affiliation(s)
- Edmond Sanganyado
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China
| | - Zhijiang Lu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, 515063, China.
| |
Collapse
|
32
|
Lin M, Tang J, Ma S, Yu Y, Li G, Fan R, Mai B, An T. Insights into biomonitoring of human exposure to polycyclic aromatic hydrocarbons with hair analysis: A case study in e-waste recycling area. ENVIRONMENT INTERNATIONAL 2020; 136:105432. [PMID: 31884415 DOI: 10.1016/j.envint.2019.105432] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, 96 pairs of hair and urine samples were collected from e-waste (EW) dismantling workers of an industrial park, as well as residents living in surrounding areas. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and hydroxylated PAH metabolites (OH-PAHs) were analyzed . The results show that concentrations of Σ15PAHs ranged from 6.24 to 692 ng/g dry weight (dw) and Σ12OH-PAHs from undetected to 187 ng/g dw in hair external (hair-Ex), and ranged from 31.7 to 738 ng/g dw and 21.6 to 1887 ng/g dw in hair internal (hair-In). There was no significant difference in exposure levels between EW dismantling workers and residents of the surrounding area. For the parent PAHs, the concentrations of Σ15PAHs of hair-In were comparable with those of hair-Ex for all populations except for the child residents. On the contrary, for the OH-PAHs, the concentrations of Σ12OH-PAHs of hair-In were 9-37 times higher than those of hair-Ex for populations. Moreover, the congener profiles of OH-PAHs of hair-In were different from those of hair-Ex, but similar to that of urine. Particularly, 3-OH-Bap, which is a carcinogenic metabolite, was only detected in the hair-In. These results indicate that OH-PAHs in hair-In, just like in urine, are mainly derived from endogenous metabolism and could be considered as reliable biomarkers for PAHs exposure. However, there was almost no significant correlations between hair-In and urine for OH-PAHs. This indicates that more attention should be paid to OH-PAHs when conducting PAHs exposure risk assessment using hair, which will help to obtain more reliable and comprehensive information on health risk assessments.
Collapse
Affiliation(s)
- Meiqing Lin
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengtao Ma
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Synergy Innovation Institute of GDUT, Shantou 515100, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, 510631, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 Guangdong, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
33
|
Fang X, Song Y, Huang Y, Yang G, Han C, Li H, Qu L. Two-dimensional MXene modified AgNRs as a surface-enhanced Raman scattering substrate for sensitive determination of polychlorinated biphenyls. Analyst 2020; 145:7421-7428. [DOI: 10.1039/d0an01489c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A MXene/AgNR substrate was prepared through a facile modification strategy. The substrate can perform sensitive SERS detection of polychlorinated biphenyls, which may have potential in environmental monitoring at the point of need.
Collapse
Affiliation(s)
- Xuejiao Fang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Yuhang Song
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices
- School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Yi Huang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Guohai Yang
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices
- School of Physics and Electronic Engineering
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Haitao Li
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| | - Lulu Qu
- School of Chemistry & Materials Science
- Jiangsu Normal University
- Xuzhou 221116
- China
| |
Collapse
|
34
|
Iglesias-González A, Hardy EM, Appenzeller BMR. Cumulative exposure to organic pollutants of French children assessed by hair analysis. ENVIRONMENT INTERNATIONAL 2020; 134:105332. [PMID: 31785528 DOI: 10.1016/j.envint.2019.105332] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Children represent one of the most vulnerable parts of the population regarding the effects of pollutants exposure on health. In this study, hair samples were collected between October 2013 and August 2015 from 142 French children originating from different geographical areas (urban and rural) and analysed with a GC/MS-MS method, allowing for the detection of 55 biomarkers for pesticides and metabolites both persistent and non-persistent from different families, including: organochlorines, organophosphates, pyrethroids, azoles, dinitroanilines, oxadiazines, phenylpyrazoles and carboxamidas; 4 polychlorobiphenyls (PCBs) and 5 polybromodiphenylethers (PBDEs). The number of compounds detected in each sample ranged from 9 up to 37 (21 on average), which clearly highlighted the cumulative exposure of the children. The results also showed a wide range of concentration of the pollutants in hair (often more than 100 times higher in the most exposed child compared to the less exposed), suggesting significant disparities in the exposure level, even in children living in the same area. In addition to the detection of currently used chemicals, the presence of persistent organic pollutants (POPs) in children also suggests that the French population is still exposed to POPs nowadays. PCP, DEP, PNP, 3Me4NP, trans-Cl2CA, 3PBA, fipronil and fipronil sulfone, presented statistically significant higher concentration in the hair of boys compared to girls. PCP, PNP and 3Me4NP presented statistically significant higher concentration in younger children. Finally, this study also suggests that local environmental contamination would not be the main source of exposure, and that individual specificities (habits, diet…) would be the main contributors to the exposure to the pollutants analysed here. The present study strongly supports the relevance of hair for the biomonitoring of exposure and provides the first values of organic pollutant concentration in the hair of French children.
Collapse
Affiliation(s)
- Alba Iglesias-González
- Luxembourg Institute of Health, 1-A-B rue Thomas Edison, L-1445 Strassen, Luxembourg; University of Luxembourg, 2, avenue de l'Université, L-4365 Esch-sur-Alzette, Luxembourg.
| | - Emily M Hardy
- Luxembourg Institute of Health, 1-A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| | - Brice M R Appenzeller
- Luxembourg Institute of Health, 1-A-B rue Thomas Edison, L-1445 Strassen, Luxembourg
| |
Collapse
|
35
|
Okeme J, Arrandale VH. Electronic Waste Recycling: Occupational Exposures and Work-Related Health Effects. Curr Environ Health Rep 2019; 6:256-268. [DOI: 10.1007/s40572-019-00255-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Liu LJ, Chen XC, Fu JP, Qing X, Huang JQ, Han JL. Male workers' exposure characteristics of ΣPCDD/F from a municipal solid waste incinerator in south China through hair analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 178:105-112. [PMID: 30999178 DOI: 10.1016/j.ecoenv.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Human hair, flue gas and fly ash from a municipal solid waste incinerator (MSWI) in south China were collected and analyzed for polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF). The ΣPCDD/F level in hair from male workers were higher than those from residents. The Principal Component Analysis (PCA) suggested that ΣPCDD/F in flue gas is an external source of male workers' hair ΣPCDD/F. Results of daily intake of ΣPCDD/F by inhaling flue gas suggested that the inhalation exposure of ΣPCDD/F was at a slight health risk. For the male workers directly exposed to the MSWI power plant, ΣPCDD/F levels in their hair were significantly higher than those who were non-directly exposed. Moreover, a significantly positive relationship was obtained between ΣPCDD/F levels in male workers' hair and the working time. The result of correlation analysis suggested that 1,2,3,4,6,7,8-HpCDD and OCDD could be level indicator congeners to estimate ΣPCDD/F levels. In addition, 2,3,7,8-TCDD could be applied as TEQ indicator congener to characterize the hair of MSWI male workers.
Collapse
Affiliation(s)
- Li Jun Liu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510000, China
| | - Xi Chao Chen
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510000, China
| | - Jian Ping Fu
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510000, China
| | - Xian Qing
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510000, China
| | - Jin Qiong Huang
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510000, China
| | - Jing Lei Han
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510000, China.
| |
Collapse
|
37
|
Ruan Y, Lalwani D, Kwok KY, Yamazaki E, Taniyasu S, Kumar NJI, Lam PKS, Yamashita N. Assessing exposure to legacy and emerging per- and polyfluoroalkyl substances via hair - The first nationwide survey in India. CHEMOSPHERE 2019; 229:366-373. [PMID: 31078894 DOI: 10.1016/j.chemosphere.2019.04.195] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 05/28/2023]
Abstract
In recent years, environmental issues emerging from per- and polyfluoroalkyl substances (PFAS) have raised high concern worldwide. Levels of human exposure to PFAS remain unknown in India. Biomonitoring data obtained from hair analysis have been evidenced to provide insight into retrospective human exposure to PFAS. In this study, 25 PFAS, including perfluoroalkyl acids and their precursors, were measured in 39 human hair samples collected from 14 cities in India. The inuflence of gender on the PFAS levels was also examined. To our knowledge, this is the first attempt to provide preliminary indicative data (due to the limited sample size and variability in hair-length sampling) on the levels of PFAS in Indian hair. The concentrations of total PFAS in hair varied from below matrix-specific limit of quantification (<0.02 ng/g) to 3.78 ng/g. Among 9 PFAS quantified, perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), and perfluorooctanoic acid (PFOA) were the predominant compounds. Categorized into 4 regions, PFAS contamination exhibited certain regional difference where South India may show higher levels than the other regions. Highly significant positive correlation was observed between PFHxS and PFOS (p ≪ 0.001; r = 0.644), suggesting similar pathways of exposure to the two compounds. Higher PFAS occurrence was generally observed in the hair of females. Our results highlighted the urgent need to investigate the deposition mechanism of PFAS in hair.
Collapse
Affiliation(s)
- Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Dipa Lalwani
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan; Institute of Science & Technology for Advanced Studies & Research (ISTAR), Sardar Patel Centre for Science and Technology, Vallabh Vidhyanagar, Anand, Gujarat, India
| | - Karen Y Kwok
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Eriko Yamazaki
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan; College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Nirmal J I Kumar
- Institute of Science & Technology for Advanced Studies & Research (ISTAR), Sardar Patel Centre for Science and Technology, Vallabh Vidhyanagar, Anand, Gujarat, India
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
38
|
Uwimana E, Cagle B, Yeung C, Li X, Patterson EV, Doorn JA, Lehmler HJ. Atropselective Oxidation of 2,2',3,3',4,6'-Hexachlorobiphenyl (PCB 132) to Hydroxylated Metabolites by Human Liver Microsomes and Its Implications for PCB 132 Neurotoxicity. Toxicol Sci 2019; 171:406-420. [PMID: 31268529 PMCID: PMC6760323 DOI: 10.1093/toxsci/kfz150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) have been associated with neurodevelopmental disorders. Several neurotoxic congeners display axial chirality and atropselectively affect cellular targets implicated in PCB neurotoxicity. Only limited information is available regarding the atropselective metabolism of these congeners in humans and their atropselective effects on neurotoxic outcomes. Here we investigate the hypothesis that the oxidation of 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) by human liver microsomes (HLMs) and their effects on dopaminergic cells in culture are atropselective. Racemic PCB 132 was incubated with pooled or single donor HLMs, and levels and enantiomeric fractions of PCB 132 and its metabolites were determined gas chromatographically. The major metabolite was either 2,2',3,4,4',6'-hexachlorobiphenyl-3'-ol (3'-140), a 1,2-shift product, or 2,2',3,3',4,6'-hexachlorobiphenyl-5'-ol (5'-132). The PCB 132 metabolite profiles displayed inter-individual differences and depended on the PCB 132 atropisomer. Computational studies suggested that 3'-140 is formed via a 3,4-arene oxide intermediate. The second eluting atropisomer of PCB 132, first eluting atropisomer of 3'-140, and second eluting atropisomer of 5'-132 were enriched in all HLM incubations. Enantiomeric fractions of the PCB 132 metabolites differed only slightly between the single donor HLM preparations investigated. Reactive oxygen species and levels of dopamine and its metabolites were not significantly altered after a 24 h exposure of dopaminergic cells to pure PCB 132 atropisomers. These findings suggest that there are inter-individual differences in the atropselective biotransformation of PCB 132 to its metabolites in humans; however, the resulting atropisomeric enrichment of PCB 132 is unlikely to affect neurotoxic outcomes associated with the endpoints investigated in the study.
Collapse
Affiliation(s)
- Eric Uwimana
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Brianna Cagle
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Coby Yeung
- Department of Chemistry, College of Arts and Sciences, Stony Brook University, Stony Brook, New York
| | - Xueshu Li
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Eric V Patterson
- Department of Chemistry, College of Arts and Sciences, Stony Brook University, Stony Brook, New York
| | - Jonathan A Doorn
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Hans-Joachim Lehmler
- Interdisciplinary Graduate Program in Human Toxicology and Department of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Xu G, Lu Q, Yu L, Wang S. Tetrachloroethene primes reductive dechlorination of polychlorinated biphenyls in a river sediment microcosm. WATER RESEARCH 2019; 152:87-95. [PMID: 30665163 DOI: 10.1016/j.watres.2018.12.061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Halo-priming is an effective approach to initiate microbial reductive dechlorination of polychlorinated biphenyls (PCBs) at contaminated sites, of which the application has been restricted by introducing extra pollutants generated from priming organohalides. In this study, tetrachloroethene (PCE) was demonstrated to be an effective priming compound to enhance PCB dechlorination both in a PCB-dechlorinating pure culture and a river sediment microcosm. In the isolated PCB-dechlorinating Dehalococcoides mccartyi CG1, PCB dechlorination activities were stimulated by adding 0.05-0.2 mM PCE, and were inhibited when further increasing PCE concentrations. Both in vivo and in vitro experiments showed that PCBs and PCE were synchronously dechlorinated in D. mccartyi CG1. In a river sediment microcosm, which was established to mimic in situ biostimulation of PCB dechlorination, 0.2 mM PCE could significantly improve para-chlorine removal from both PCB180 (2345-245-CB) and Aroclor 1260, and increase the relative abundance of indigenous dechlorinating Dehalococcoides for more than 20 times (from <0.1% to 2.3-5.0%). At the same time, PCE as a priming compound was completely dechlorinated to non-toxic ethene. Overall, this study provided an efficient strategy to stimulate in situ bioremediation of PCBs.
Collapse
Affiliation(s)
- Guofang Xu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Environmental Microbiome Research Center, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
| |
Collapse
|
40
|
Qiao L, Zheng XB, Zheng J, Chen SJ, Zhong CQ, Chen JH, Yang ZY, Mai BX. Legacy and Currently Used Organic Contaminants in Human Hair and Hand Wipes of Female E-Waste Dismantling Workers and Workplace Dust in South China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2820-2829. [PMID: 30761900 DOI: 10.1021/acs.est.8b05503] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Legacy organic contaminants, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), and several currently used organic contaminants, such as novel brominated retardants (NBFRs), organophosphate flame retardants (OPFRs), and Dechlorane Plus (DPs), were measured in the segmented hair and hand wipes of e-waste dismantling workers and in the dust from their workplace in an e-waste recycling site in South China to assess the accumulation and sources of organic contaminants in the hair shaft. The median concentrations of DPs, PBDEs, NBFRs, PCBs and OPFRs in hair samples were 23.5, 154, 156, 349, and 371 ng/g, respectively. A linear increase in organic contaminant concentrations was found along the hair shaft, with significant differences among each segment, while the age-related patterns were similar among the 7 hair segments. A linear relationship was found between the accumulation rates and the log KOW, indicating that the accumulation rates of organic contaminants along the hair shaft decreased with increasing log KOW values. Enantiomer fraction (EF) values of PCB-132 in distal segments were close to those in dust and air, while EFs in proximal segments were close to those in serum. The contributions of PCBs from external sources to hair increased with the distance from the scalp of hair segments, from 67.8% in 0-3 cm segments to 95.9% in 18-21 cm segments.
Collapse
Affiliation(s)
- Lin Qiao
- College of Tourism and Exhibition , Henan University of Economics and Law , Zhengzhou 450046 , China
| | - Xiao-Bo Zheng
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment , South China Institute of Environmental Sciences , Ministry of Environmental Protection, Guangzhou 510655 , China
| | - She-Jun Chen
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Chang-Qin Zhong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment , South China Institute of Environmental Sciences , Ministry of Environmental Protection, Guangzhou 510655 , China
| | - Jing-Hua Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment , South China Institute of Environmental Sciences , Ministry of Environmental Protection, Guangzhou 510655 , China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
41
|
Qin Q, Xu X, Dai Q, Ye K, Wang C, Huo X. Air pollution and body burden of persistent organic pollutants at an electronic waste recycling area of China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:93-123. [PMID: 30171476 DOI: 10.1007/s10653-018-0176-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/15/2018] [Indexed: 02/05/2023]
Abstract
This paper reviews the concentrations of persistent organic pollutants (POPs) in atmosphere of an electronic waste (e-waste) recycling town, Guiyu, in Southeast China, focusing on polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). We assess the evidence for the association between air pollution and human body burden, to provide an indication of the severity of respiratory exposure. Compared with standards and available existing data for other areas, it clearly shows that four typical POPs, derived from recycling processes, lead to serious atmospheric pollution and heavy body burden. From published data, the estimated respiratory exposure doses of Guiyu adults and children, varied between 2.48-10.37 and 3.25-13.6 ng kg-1 body weight (bw) day-1 for PBDEs, 2.31-7.6 and 4.09-13.58 pg World Health Organization-Toxic Equivalent Quantity (WHO-TEQ) kg-1 bw day-1 for PCDD/Fs, 5.57 and 20.52 ng kg-1 bw day-1 for PCBs, and 8.59-50.01 and 31.64-184.14 ng kg-1 bw day-1 for PAHs, respectively. These results show that air pollution is more harmful to children. Furthermore, except for PBDEs, the hazard quotient (HQ) of the other three pollutants was rated more than 1 by respiratory exposure only, and all of them are at risk of carcinogenesis. So we speculate these pollutants enter the body mainly through air inhalation, making respiratory exposure may be more important than dietary exposure in the Guiyu e-waste recycling area. Effective management policies and remediation techniques are urgently needed to prevent the deterioration of ambient air quality in the e-waste recycling area.
Collapse
Affiliation(s)
- Qilin Qin
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515063, Guangdong, China
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Kai Ye
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China
| | - Chenyang Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515063, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511486, Guangdong, China.
| |
Collapse
|
42
|
Huang Y, Yan M, Nie H, Wang W, Wang J. Persistent halogenated organic pollutants in follicular fluid of women undergoing in vitro fertilization from China: Occurrence, congener profiles, and possible sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:1-8. [PMID: 30317085 DOI: 10.1016/j.envpol.2018.09.134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
Analysis of persistent halogenated organic pollutants (HOPs) in human follicular fluid is important given previous reports of their adverse effects on the reproductivity of women. In the present work, HOPs, including polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs), were analyzed in 127 follicular fluid samples collected from patients who were undergoing in vitro fertilization in Central China. The concentrations of ∑7BDEs (sum of BDE-28, -47, -99, -100, -153, -154, and -183) in follicular fluid ranged from not detected (n.d.) to 110 ng/g lipid weight (lw), with an average of 50 ± 24 ng/g lw. BDE-100 was suggested to be an indicator of BDE congeners in follicular fluid, with the highest concentrations and showing a significantly high correlation (p < 0.01) with ∑7BDEs. Penta-BDE products were the principal source of PBDEs in follicular fluid samples. The concentrations of ∑7CBs (CB-28, -52, -101, -118, -138, -153, and -180) in follicular fluids ranged from n.d. to 250 ng/g lw, with an average of 77 ± 69 ng/g lw. CB-28 and CB-52 were considered to be indicator CB congeners, with tri-CBs and tetra-CBs dominating in follicular fluid. No significant correlation was observed between patient age and PBDE or PCB concentrations in follicular fluid, indicating that age was not the controlling factor influencing the bioaccumulation of most HOPs in this study.
Collapse
Affiliation(s)
- Yumei Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huayue Nie
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjing Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Awasthi AK, Wang M, Awasthi MK, Wang Z, Li J. Environmental pollution and human body burden from improper recycling of e-waste in China: A short-review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1310-1316. [PMID: 30268981 DOI: 10.1016/j.envpol.2018.08.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 05/07/2023]
Abstract
BRIEF BACKGROUND E-waste generation has become a serious environmental challenge worldwide. The global quantity of e-waste was estimated 44.7 million metric tons (Mt) in 2016. The improper recycling of e-waste is still a challenging issue in developing countries. OBJECTIVE The objectives of this a review article to present comprehensive information of recent studied on environment pollution and effect on human health in China. METHOD The search engines consulted, period of publications reviewed 2015-2018. For search study, we used different key words: 'improper recycling', 'primitive recycling,' 'backyard recycling,' 'e-waste,' 'WEEE', and the studies related to improper recycling of e-waste. RESULTS According to reports, the e-waste recycled by unorganized sectors in China. These unorganized sector workers daily go for work, such as e-waste collection from consumer house and manual dismantling of e-waste by using simple method, at unauthorized workshop. These backyard workshop are reported in small clusters in or around city e.g., Qingyuan village; Taizhou, Longtang Town, Guiyu, nearby Nanyang River and Beigang River in China. DISCUSSION The earlier reported studies directed the heavy metals effect (causing effects both acute and chronic effects; respiratory irritation, reproductive problem, cardiovascular and urinary infection/disease) on human health. According the reports, the improper recycling of e-waste which need to be address for the environment protection and prevention of public health risk. However, if e-waste exposure is not avoided very well, the associated contamination will be continuing, and simultaneously needful to increase the awareness for proper e-waste management in China. CONCLUSIONS In order to solve the e-waste problem in China, more detail research is needed. Furthermore, for environment protection and health safety, the proper e-waste dismantling techniques, environmentally sound management, and the regular monitoring are very important.
Collapse
Affiliation(s)
- Abhishek Kumar Awasthi
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China
| | - Mengmeng Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China
| | | | - Zhishi Wang
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Ministry of Education of China), Tsinghua University, Beijing 100084, China.
| |
Collapse
|
44
|
Xu C, Lin X, Yin S, Zhao L, Liu Y, Liu K, Li F, Yang F, Liu W. Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1274-1286. [PMID: 30268979 DOI: 10.1016/j.envpol.2018.09.095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/03/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Chirality is a critical topic in the medicinal and agrochemical fields. One quarter of all agrochemicals was chiral in 1996, and this proportion has increased remarkably with the introduction of new compounds over time. Despite scientists have made great efforts to probe the enantiomeric selectivity of chiral chemicals in the environment since early 1990s, the different behaviours of individual enantiomers in biologically mediated processes are still unclear. In the present review, we highlight state-of-the-knowledge on the stereoselective biotransformation and accumulation of chiral contaminants in organisms ranging from invertebrates to humans. Chiral insecticides, fungicides, and herbicides, polychlorinated biphenyls (PCBs), pharmaceuticals, flame retardants hexabromocyclododecane (HBCD), and perfluorooctane sulfonate (PFOS) are all included in the target compounds. Key findings included: a) Changes in the enantiomeric fractions in vitro and in vivo models revealed that enantioselectivity commonly occurs in biotransformation and bioaccumulation. b) Emerging contaminants have become more important in the field of enantioselectivity together with their metabolites in biological transformation process. c) Chiral signatures have also been regarded as powerful tools for tracking pollution sources when the contribution of precursor is unknown. Future studies are needed in order to understand not only preliminary enrichment results but also detailed molecular mechanisms in diverse models to comprehensively understand the behaviours of chiral compounds.
Collapse
Affiliation(s)
- Chenye Xu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xinmeng Lin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shanshan Yin
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lu Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxue Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Liu
- Department of Environmental Science and Engineering, W. M. Keck Laboratories, California Institute of Technology, 1200 East California Blvd., Pasadena, CA, 91125, USA
| | - Fang Li
- School of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fangxing Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weiping Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
45
|
He Z, Xu Y, Wang W, Liu X. Stereoselective bioaccumulation and elimination of chiral PCBs 95 and 149 in earthworm Eisenia fetida. CHEMOSPHERE 2018; 212:497-503. [PMID: 30153619 DOI: 10.1016/j.chemosphere.2018.08.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The chiral signatures and environmental behaviors of chiral polychlorinated biphenyls (PCBs) have been extensively studied. However, information regarding chiral PCBs in invertebrates, especially earthworms, is limited. This study aimed to investigate the stereoselective bioaccumulation, elimination, and biotransformation of chiral PCBs 95 and 149 in an earthworm-soil system. Preferential enrichment of (+)-atropisomers and elimination of (-)-atropisomers were observed, for both PCBs 95 and 149, during the uptake and elimination phases, respectively, leading to higher enantiomer fractions (EFs). A significant linear correlation between the total concentrations of chiral PCBs and EF values was found in earthworms. The EF values increased with the increase in exposure time and further increased during the elimination phase, indicating the biotransformation of chiral PCBs. Hydroxylated metabolites of PCB 95 were found in earthworms for the first time, thus verifying the ability of earthworms to metabolize chiral PCBs. However, no methylsulfonyl metabolites were observed for PCBs 95 and 149. These findings might be helpful for understanding the biological processes of chiral PCBs in species at lower trophic levels.
Collapse
Affiliation(s)
- Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | - Yaping Xu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | - Wenwen Wang
- Agilent Technologies (China) Company, Ltd., Beijing 100102, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China.
| |
Collapse
|
46
|
Lin M, Ma Y, Yuan H, Luo X, Wang Q, Liu A, Wang Y, Jin J. Temporal trends in dioxin-like polychlorinated biphenyl concentrations in serum from the general population of Shandong Province, China: A longitudinal study from 2011 to 2017. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:59-65. [PMID: 30172124 DOI: 10.1016/j.envpol.2018.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/30/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Temporal changes in the concentrations of dioxin-like (DL) polychlorinated biphenyls (PCBs) in environmental and biological matrices in China are not well understood. We determined the DL-PCB concentrations in pooled serum samples from the general population of Weifang City, Shandong Province, China in 2011 (n = 305) and 2017 (n = 495). The total DL-PCB concentration was 3.48 ± 1.31 ng/g lipid (mean ± standard deviation) in 2011 and 2.82 ± 1.73 ng/g lipid (19% lower) in 2017, but the difference was not statistically significant (p = 0.347). The DL-PCB concentrations and toxic equivalent concentrations were much lower in the serum from Weifang residents than have been found in serum from the inhabitants of other parts of the world. The concentrations of most of the DL-PCB congeners followed different downward temporal trends, but the PCB-118 concentration was higher in 2017 than in 2011. The temporal changes in the PCB concentrations and compositions in the samples from the general population of Weifang indicated that there may a new source of unintentionally produced PCBs in Weifang.
Collapse
Affiliation(s)
- Mu Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yulong Ma
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Haodong Yuan
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xinghua Luo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Qinghua Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; State Information Center, Beijing 100045, China
| | - Anming Liu
- Binhai Branch of the Weifang People's Hospital, Weifang 262737, China
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing 100081, China
| |
Collapse
|
47
|
Wang Y, Shi Y, Vestergren R, Zhou Z, Liang Y, Cai Y. Using hair, nail and urine samples for human exposure assessment of legacy and emerging per- and polyfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:383-391. [PMID: 29709855 DOI: 10.1016/j.scitotenv.2018.04.279] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Non-invasive samples present ethical and practical benefits for investigating human exposure to hazardous contaminants, but analytical challenges and difficulties to interpret the results limit their application in biomonitoring. Here we investigated the potential for using hair, nail and urine samples as a measure of internal exposure to an array of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in two populations with different exposure conditions. Paired urine-serum measurements of PFASs from a group of highly exposed fishery employees displayed strong correlations for PFASs with three to eight perfluorinated carbons (ρ > 0.653; p < 0.01). Consistent statistical correlations and transfer ratios in nails and hair from both populations demonstrated that these non-invasive samples can be used as a measure of internal exposure to perfluorooctane sulfonic acid and C8 chlorinated polyfluoralkyl ether sulfonic acid (C8 Cl-PFESA). Contrastingly, the infrequent detections and/or lack of consistent transfer ratios for perfluorooctanoic acid, perfluorononanoic acid and short-chain PFASs in hair and nail samples indicate passive uptake from the external environment rather than uptake and internal distribution. Collectively, the study supports the use of urine samples as a valid measure of internal exposure for a range of short- and medium-chain PFASs, while the validity of nail and hair samples as a measure of internal exposure may vary for different PFASs and populations. The ubiquitous detection of C8 Cl-PFESA in all sample matrices from both populations indicates widespread exposure to this contaminant of emerging concern in China.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Robin Vestergren
- IVL Swedish Environmental Research Institute, 114 27 Stockholm, Sweden; Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, Stockholm, SE 10691, Sweden
| | - Zhen Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, University of Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
48
|
Fan L, Zhang C, Shi H, Zhao G. Design of a simple and novel photoelectrochemical aptasensor for detection of 3,3',4,4'-tetrachlorobiphenyl. Biosens Bioelectron 2018; 124-125:8-14. [PMID: 30339976 DOI: 10.1016/j.bios.2018.09.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
In view of the urgent need of determining polychlorinated biphenyls in the environment, we developed a highly sensitive and selective photoelectrochemical (PEC) aptasensor for determination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) by immobilizing aptamer on N-doped TiO2 nanotubes (N-doped TiO2 NTs). To improve analytical performance of the PEC sensor, the complementary DNA functionalized CdS quantum dots (DNA-CdS QDs) were introduced onto N-doped TiO2 NTs by hybridization. In addition of PCB77, owing to high affinity of aptamer to PCB77, PCB77-aptamer complexes were formed by being bound of PCB77 whilst DNA-CdS QDs were released from the sensing surface. The complexes with poor conductivity hindered the interfacial electron transfer, leading to the photocurrent decrease. The more important is the release of DNA-CdS QDs enhanced the photocurrent decrease, playing the role of signal amplification. The photocurrent change was utilized to detect PCB77 quantitatively. The PEC aptasensor exhibited excellent analytical performance for detection of PCB77 with wide linear range of 0.1-100 ng/L and a low detection limit of 0.1 ng/L. It manifested outstanding selectivity for PCB77 in control experiments by employing six interferents which had similar structure or coexisted with PCB77. Besides, the PEC aptasensor was used to detect the content of PBC77 in the environment.
Collapse
Affiliation(s)
- Lifang Fan
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Caiyun Zhang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Huijie Shi
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
49
|
He Z, Wang Y, Zhang Y, Cheng H, Liu X. Stereoselective bioaccumulation of chiral PCB 91 in earthworm and its metabolomic and lipidomic responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:421-430. [PMID: 29587213 DOI: 10.1016/j.envpol.2018.03.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/03/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Stereoselective bioaccumulation, elimination, metabolomic and lipidomic responses of earthworm Eisenia fetida exposed to chiral polychlorinated biphenyl (PCB) 91 in an earthworm-soil system were investigated. Preferential bioaccumulation of (-)-PCB 91 and elimination of (+)-PCB 91 were observed following 50 and 500 μg/kgdwt exposures. Enantiomer fraction (EF) values decreased over time during the uptake and elimination periods. Metabolomics and lipidomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) revealed significant changes in 108 metabolites after earthworms exposure to (+)-, (-)-, and (±)-PCB 91, compared to control groups. Forty two of these metabolites were identified as amino acids, nucleosides, fatty acids, dicarboxylic acids, vitamins or others. Lysophospholipids including six lysophosphatidylcholines (LPC), six lysophosphatidylethanolamine (LPE), eight lysophosphatidylinositol (LPI) and five lysophosphatidylserine (LPS) were also differentially expressed between exposure and control groups. Alterations in the levels of metabolites and lipids indicated stereoselective effects of chiral PCB 91 on earthworm amino acid, energy, and nucleotide metabolism, neurodevelopment and gene expression. Overall, the effects of (+)-PCB 91 were more pronounced than that of (-)- and (±)-PCB 91.
Collapse
Affiliation(s)
- Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China
| | - Yuehua Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China
| | - Yanwei Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China
| | - Haiyan Cheng
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing, 100015, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China.
| |
Collapse
|
50
|
He MJ, Lu JF, Ma JY, Wang H, Du XF. Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:143-153. [PMID: 29482020 DOI: 10.1016/j.envpol.2018.02.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Human hair and street dust from rural and urban areas in Chongqing were collected to analyze Organophosphate esters (OPEs) and phthalate esters (PAEs). Concentrations of OPEs in urban hair were significantly higher than those in rural hair, whereas PAEs concentrations in rural hair were significantly higher than those in urban hair. Different composition patterns of OPEs were observed in rural and urban hair, where tris (2-chloroisopropyl) phosphate (TCIPP), tris (butyl) phosphate (TNBP) and triphenyl phosphate (TPHP) were the dominating analogues in rural hair, accounting for 62.1% of the OPEs burden, and tris (methylphenyl) phosphate (TMPP) exhibited a high contribution in urban hair, responsible for 51.3% of total OPEs, which differed from the composition profiles in corresponding street dust. Analogous composition patterns of PAEs were found in hair of both areas. Di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DNBP), diisobutyl phthalate (DIBP) and diethyl phthalate (DEP) were the most abundant analogues in hair samples, while DEHP was the predominant analogue in dust samples. No clear tendency was obtained between the increasing ages and the concentrations of both compounds. Most OPEs and PAEs congeners showed significantly positive correlation with one another in rural hair. On the contrary, different correlation patterns were observed in urban hair for OPEs and PAEs, indicating multiple or additional sources existed in urban areas. Significant correlations of OPEs and PAEs were found between hair and corresponding street dust samples, but poor correlations of OPEs and PAEs were observed between rural hair and rural indoor dust, suggesting that street dust may be a predominant exogenous source for human exposure to OPEs and PAEs in this area.
Collapse
Affiliation(s)
- Ming-Jing He
- College of Resources and Environment, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing 400716, China.
| | - Jun-Feng Lu
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jing-Ye Ma
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Huan Wang
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xiao-Fan Du
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| |
Collapse
|