1
|
Cossaboon JM, Teh SJ, Sant KE. Reproductive toxicity of DDT in the Japanese medaka fish model: Revisiting the impacts of DDT+ on female reproductive health. CHEMOSPHERE 2024; 357:141967. [PMID: 38615950 PMCID: PMC11160350 DOI: 10.1016/j.chemosphere.2024.141967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The organochlorine pesticide dichlorodiphenyltrichloroethane (DDT) is an endocrine-disrupting compound (EDC) that has been banned by most countries for decades. However, it continues to be detected in nearly all humans and wildlife due to its biological and environmental persistence. The ovarian dysgenesis syndrome hypothesis speculates that exposure to EDCs during sensitive developmental windows such as early gonadal differentiation lead to reproductive disorders later in life. Yet, mechanisms by which DDT affects developing gonads remain unclear due to the inherent challenge of getting developmental exposure data from adults presenting with reproductive disease. The Japanese medaka (Oryzias latipes) is a valuable fish model for sex-specific toxicological studies due to its chromosomal sex determination, external embryonic development, short generation time, and extensively mapped genome. It is well documented that medaka exposed to DDT and its metabolites and byproducts (herein referred to as DDT+) at different developmental time points experience permanent alterations in gonadal morphology, reproductive success, and molecular and hormonal signaling. However, the overwhelming majority of studies focus primarily on functional and morphological outcomes in males and females and have rarely investigated long-term transcriptional or molecular effects. This review summarizes previous experimental findings and the state of our knowledge concerning toxic effects DDT + on reproductive development, fertility, and health in the valuable medaka model. It also identifies gaps in knowledge, emphasizing a need for more focus on molecular mechanisms of ovarian endocrine disruption using enhanced molecular tools that have become increasingly available over the past few decades. Furthermore, DDT forms a myriad of over 45 metabolites and transformation products in biota and the environment, very few of which have been evaluated for environmental abundance or health effects. This reinforces the demand for high throughput and economical in vivo models for predictive toxicology screening, and the Japanese medaka is uniquely positioned to meet this need.
Collapse
Affiliation(s)
| | - Swee J Teh
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Karilyn E Sant
- School of Public Health, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Wang L, Zhou L, Liu L, Yang Y, Zhao Q. Comparative in vitro and in silico study on the estrogenic effects of 2,2-bis(4-chlorophenyl)ethanol, 4,4'-dichlorobenzophenone and DDT analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162734. [PMID: 36907399 DOI: 10.1016/j.scitotenv.2023.162734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
DDT and its transformation products (DDTs) are frequently detected in environmental and biological media. Research suggests that DDT and its primary metabolites (DDD and DDE) could induce estrogenic effects by disturbing estrogen receptor (ER) pathways. However, the estrogenic effects of DDT high-order transformation products, and the exact mechanisms underlying the differences of responses in DDT and its metabolites (or transformation products) still remain unknown. Here, besides DDT, DDD and DDE, we selected two DDT high-order transformation products, 2,2-bis(4-chlorophenyl) ethanol (p,p'-DDOH) and 4,4'-dichlorobenzophenone (p,p'-DCBP). We aim to explore and reveal the relation between DDTs activity and their estrogenic effects by receptor binding, transcriptional activity, and ER-mediated pathways. Fluorescence assays showed that the tested 8 DDTs bound to the two isoforms (ERα and ERβ) of ER directly. Among them, p,p'-DDOH exhibited the highest binding affinity, with IC50 values of 0.43 μM and 0.97 μM to ERα and ERβ, respectively. Eight DDTs showed different agonistic activity toward ER pathways, with p,p'-DDOH exhibiting the strongest potency. In silico studies revealed that the eight DDTs bound to either ERα or ERβ in a similar manner to 17β-estradiol, in which specific polar and non-polar interactions and water-mediated hydrogen bonds were involved. Furthermore, we found that 8 DDTs (0.0008-5 μM) showed distinct pro-proliferative effects on MCF-7 cells in an ER-dependent manner. Overall, our results revealed not only for the first time the estrogenic effects of two DDT high-order transformation products by acting on ER-mediated pathways, but also the molecular basis for differential activity of 8 DDTs.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lantian Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Su M, Zhong Y, Xiang J, Chen Y, Liu N, Zhang J. Reproductive endocrine disruption and gonadal intersex induction in male Japanese medaka chronically exposed to betamethasone at environmentally relevant levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131493. [PMID: 37156043 DOI: 10.1016/j.jhazmat.2023.131493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
The broad utilization of betamethasone in medical treatments may pose a significant ecotoxicological risk to aquatic organisms, yet its potential reproductive toxicity remains unclear. The present study examined the impacts of environmental exposure on male reproduction using Japanese medaka (Oryzias latipes). After 110 days of betamethasone exposure at environmentally relevant concentrations (0, 20 and 200 ng/L), LH/FSH synthesis and release in the pituitary was inhibited, and the production of sex hormones and their signaling pathways in the gonads of male medaka were greatly influenced. This synthetic glucocorticoid restrained testosterone (T) synthesis and gave rise to a significant increase in E2/T and E2/11-KT ratios. Furthermore, chronic betamethasone exposure (20 and 200 ng/L) led to the suppression of androgen receptor (AR) signaling and enhancement of estrogen receptors (ERs) signaling. An increase in hepatic vitellogenin contents was also detected, and testicular oocytes were observed in both 20 and 200 ng/L betamethasone-treated groups. It showed that 20 and 200 ng/L betamethasone could induce male feminization and even intersex, triggering abnormal spermatogenesis in medaka males. With its adverse effects on male fertility, betamethasone could potentially influence the fishery productivity and population dynamics in aquatic ecosystems.
Collapse
Affiliation(s)
- Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Youling Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jiazhi Xiang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yuru Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nanxi Liu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Cui M, Wu X, Yuan L, Zhai Y, Liang X, Wang Z, Li J, Xu L, Song W. Exposure to tris(2,6-dimethylphenyl) phosphate interferes with sexual differentiation via estrogen receptors 2a and 2b in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130525. [PMID: 37055955 DOI: 10.1016/j.jhazmat.2022.130525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
Tris(2,6-dimethylphenyl) phosphate (TDMPP), an emerging organophosphate flame retardant, is frequently detected in multiple environmental media. Although TDMPP has been proven as a compound with estrogenic activity, its feminizing effects on reproductive system remain unclear. This study investigated the adverse effects of TDMPP on gonadal development by exposing zebrafish for 105 days from 15 days post-fertilization. Exposure to TDMPP (0.5 and 5 μM, corresponding to about 200 and 2000 μg/L) induced ovarian formation in aromatase mutant (cyp19a1a-/-) line which normally presents all-male phenotype for deficiency of endogenous estrogen (E2), suggesting its feminizing effect on sexual differentiation. In addition, TDMPP also interfered with other aspects of reproduction by delaying puberty onset, retarding sexual maturation, impairing gametogenesis and subfertility. Molecular docking and reporter gene assay indicated that all three nuclear estrogen receptors (nERs) can be binded to and activated by TDMPP. Using a series of nERs mutant lines, we confirmed the indispensable role of esr2a and esr2b in mediating the feminizing effects of TDMPP. Further analysis revealed that the prominent effects of TDMPP on sexual differentiation correlated to upregulation of female-promoting genes and downregulation of male-promoting genes. Taken together, the present study provided unequivocal genetic evidence for estrogenic effects of TDMPP on reproductive system and its molecular mechanisms of action.
Collapse
Affiliation(s)
- Mengqiao Cui
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiling Wu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Lei Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yue Zhai
- School of Public Health, Jilin University, Changchun, China
| | - Xin Liang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Zihan Wang
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, China
| | - Lichun Xu
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Weiyi Song
- Key Laboratory of Human Genetics and Environmental Medicine, Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Wang L, Qie Y, Yang Y, Zhao Q. Binding and Activation of Estrogen-Related Receptor γ: A Novel Molecular Mechanism for the Estrogenic Disruption Effects of DDT and Its Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12358-12367. [PMID: 35947429 DOI: 10.1021/acs.est.1c08624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DDT and its metabolites (DDTs) can induce estrogenic effects. Previous mechanistic investigations mainly concentrated on activating the genomic transcription of estrogen receptor (ER) pathways. Here, we identified whether estrogen-related receptor γ (ERRγ), an orphan nuclear receptor, is a potential target of DDTs by receptor binding, transcriptional activity, and receptor-mediated pathway assays. Fluorescence polarization-based binding assays showed that all eight DDTs bound to ERRγ directly, with Kd values ranging from 0.73-168.82 μM. Among them, 2,2-bis(4-chlorophenyl)ethanol (4,4'-DDOH) exhibited the highest binding affinity, which was 2.5-fold stronger than GSK4716, a well-known ERRγ agonist. Eight DDTs exhibited agonistic activity toward the ERRγ pathway, with 4,4'-DDOH showing the strongest potency. In silico studies revealed that DDTs tended to bind with ERRγ in the agonistic conformation. Using a SKBR3 breast cancer cell model, we further found that nanomolar or micromolar levels of DDTs significantly activated the ERRγ pathway in cells and induced cell proliferation through the ERRγ-modulated cell cycle. These results indicated that the binding and activation of DDTs to ERRγ might serve as molecular initiating events for subsequent ERRγ-mediated signaling pathways and adverse outcomes. Overall, our results demonstrated that ERRγ might be a crucial pathway involved in the estrogenic disruption effects of DDTs.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
6
|
Sun J, Xu C, Peng H, Wan Y, Luo K, Barrett H, Hu J. Behaviors and trophodynamics of o,p'-dichlorodiphenyltrichloroethane (o,p'-DDT) in the aquatic food web: Comparison with p,p'-DDT. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153447. [PMID: 35092765 DOI: 10.1016/j.scitotenv.2022.153447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/16/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
The broad-spectrum insecticide p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) has been banned in most countries since the 1970s on account of its environmental persistence as well as the high biomagnification of its major metabolite 1,1-dichloro-2,2-bis(4-chorophenyl)ethylene (p,p'-DDE). However, the information on the bioaccumulation and behavior of p,p'-DDTs in aquatic organisms is lacking. In this study, all 6 DDT isomers were detected in biota from the food web of the Liaodong Bay, China, and the total concentrations of DDT isomers in Chinese anchovy (Thrissa kammalensis) and Japanese Spanish mackerel (Scomberomrus niphonius) were 223 ± 42 ng/g ww and 242 ± 70 ng/g ww, respectively. In biota, o,p'-DDD dominated among the o,p'-isomers (80.5 ± 17.3%), while p,p'-DDE dominated among the p,p'-isomers (61.8 ± 15.2%). Contrastingly, sediment from the Liaodong Bay contained similar proportions of o,p'-DDT and p,p'-DDTs, suggesting an isomer-specific metabolism of the compounds in biota. A well-controlled laboratory exposure experiment with Japanese medaka (Oryzias latipes) demonstrated that o,p'-DDT was more difficult to metabolize to o,p'-DDE compared with that of p,p'-DDT. Significantly positive regressions were found between trophic levels and lipid equivalent concentrations for both o,p'-DDT and o,p'-DDD, and the trophic magnification factors (TMFs) were estimated as 12.3 and 9.12 (p < 0.05), respectively. The TMFs of o,p'-DDT and o,p'-DDD in the aquatic food web were higher than p,p'-DDT (7.76), p,p'-DDD (4.17), and p,p'-DDE (3.39), which may be explained by the isomer-specific metabolism differences in biota.
Collapse
Affiliation(s)
- Jianxian Sun
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Chenke Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Canada; School of the Environment, University of Toronto, Canada
| | - Yi Wan
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Kai Luo
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Canada
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China.
| |
Collapse
|
7
|
Abdel-Khalek AA, Al-Quraishy S, Abdel-Gaber R. Long-Term Exposure to the Water of Wadi El-Rayan Lakes Induced Testicular Damage and Endocrine Disruption in Mugil cephalus. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 108:663-671. [PMID: 34797380 DOI: 10.1007/s00128-021-03406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the testicular function of Mugil cephalus that inhabit Wadi El-Rayan lakes. Testes of fish inhabiting the upper lake (site 2) and the lower lake (site 3) of Wadi El-Rayan showed significant decreases in gonadosomatic index, high accumulation levels of six metals, and eight organochlorine pesticide residues. Compared to reference fish, high percentages of histological alterations as testicular degeneration, germ cell reduction, testicular inflammation, vacuolization, and loss of tubular arrangement were observed in sites 2 and 3. Moreover, endocrine disruption signs were recorded based on the percentage of ovotestis appearance and the ovotestis severity index values. The maximum defective testicular antioxidant mechanisms were recorded in site 3 as indicated by sharp decreases in catalase, superoxide dismutase, glutathione reduced levels, and high thiobarbituric acid reactive substances. Finally, long-term exposure to Wadi El-Rayan water may impair the reproductive health of fish via testicular oxidative damage and endocrine disruption.
Collapse
Affiliation(s)
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, P.O. Box 145111, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, P.O. Box 145111, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Piir G, Sild S, Maran U. Binary and multi-class classification for androgen receptor agonists, antagonists and binders. CHEMOSPHERE 2021; 262:128313. [PMID: 33182081 DOI: 10.1016/j.chemosphere.2020.128313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/24/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Androgens and androgen receptor regulate a variety of biological effects in the human body. The impaired functioning of androgen receptor may have different adverse health effects from cancer to infertility. Therefore, it is important to determine whether new chemicals have any binding activity and act as androgen agonists or antagonists before commercial use. Due to the large number of chemicals that require experimental testing, the computational methods are a viable alternative. Therefore, the aim of the present study was to develop predictive QSAR models for classifying compounds according to their activity at the androgen receptor. A large data set of chemicals from the CoMPARA project was used for this purpose and random forest classification models have been developed for androgen binding, agonistic, and antagonistic activity. In addition, a unique effort has been made for multi-class approach that discriminates between inactive compounds, agonists and antagonists simultaneously. For the evaluation set, the classification models predicted agonists with 80% of accuracy and for the antagonists' and binders' the respective metrics were 72% and 78%. Combining agonists, antagonists and inactive compounds into a multi-class approach added complexity to the modelling task and resulted to 64% prediction accuracy for the evaluation set. Considering the size of the training data sets and their imbalance, the achieved evaluation accuracy is very good. The final classification models are available for exploring and predicting at QsarDB repository (https://doi.org/10.15152/QDB.236).
Collapse
Affiliation(s)
- Geven Piir
- University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, 50411, Estonia
| | - Sulev Sild
- University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, 50411, Estonia
| | - Uko Maran
- University of Tartu, Institute of Chemistry, Ravila 14A, Tartu, 50411, Estonia.
| |
Collapse
|
9
|
Wang C, An L, Wu S, Jia A, Sun J, Huang C, Mu D, Hu J. Potential Link between Equol Pollution and Field-Observed Intersex in Wild So-iuy Mullets ( Mugil soiuy). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12393-12401. [PMID: 32876436 DOI: 10.1021/acs.est.0c04083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gonadal intersex has been observed in wild fishes and is attributed to endocrine-disrupting chemicals but the specific causes remain controversial. Here, a forensic analysis utilizing field and laboratory studies was conducted to explore the causal agent(s). In a 2008-2009 survey of Liaodong Bay, China, 20.7-33.3% incidences of gonadal intersex were observed in male so-iuy mullets (Mugil soiuy), a wild sentinel fish species. Steroidal estrogen (estrone, 17β-estradiol, estriol, and ethinylestradiol) and phytoestrogen (equol) were detected in seawater where the fishes were collected with median concentrations of 0.42 ng/L (0.02-1.42 ng/L) E2 equivalent (EEQ-E2) and 22.81 ng/L (0.10-155.99 ng/L) equol. A probabilistic model was used to evaluate the ecological risk of these estrogenic chemicals based on their distribution in the field and dose-response relationship from the laboratory surrogate Japanese medaka (Oryzias latipes) fish. The probability of the incidences of gonadal intersex due to equol exposure was estimated to be 13.5 ± 12.1%, which is considerably higher than that for EEQ-E2, (7.2 ± 68.8) × 10-4. The agonistic activity of equol to the estrogen receptor α of so-iuy mullets was 3.5-fold higher than that to the estrogen receptor α of Japanese medaka, indicating that equol shows a stronger potential for inducing intersex in so-iuy mullets than in medaka. These results demonstrate that equol, rather than steroid estrogens, is a more likely causal agent for the field-observed intersex in male wild so-iuy mullets.
Collapse
Affiliation(s)
- Chen Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui An
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shimin Wu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ai Jia
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianxian Sun
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chong Huang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Di Mu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Martyniuk CJ, Mehinto AC, Denslow ND. Organochlorine pesticides: Agrochemicals with potent endocrine-disrupting properties in fish. Mol Cell Endocrinol 2020; 507:110764. [PMID: 32112812 PMCID: PMC10603819 DOI: 10.1016/j.mce.2020.110764] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/01/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
Abstract
Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alvine C Mehinto
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, 92626, CA, USA
| | - Nancy D Denslow
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, UF, USA; Genetics Institute, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
11
|
Zhang W, Li D, Zhang J, Jiang L, Li Z, Lin JS. Preparation and Characterization of Aptamers Against O,p'-DDT. Int J Mol Sci 2020; 21:ijms21062211. [PMID: 32210057 PMCID: PMC7139375 DOI: 10.3390/ijms21062211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023] Open
Abstract
The compound 1,1,1-trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p’-DDT) has been identified as one of the endocrine-disrupting chemicals causing adverse effects on wildlife and even humans through bioaccumulation. Its detection has become increasingly important. We have obtained candidate aptamers binding to o,p’-DDT by a systematic evolution of ligands by exponential enrichment (SELEX) protocol. Five out of seventeen candidate sequences were selected for preliminary characterization by SYBR Green I assay. One sequence with highest fluorescence response with o,p’-DDT, designated DDT_13, was chosen for further characterization. Its dissociation constant (Kd) was determined to be 412.3 ± 124.6 nM. DDT_13 exhibited low cross-binding activities on other tested small molecules. The good bioactivities of DDT_13 were demonstrated for the analysis of spiked lake water and tap water samples. This study provides a novel o,p’-DDT-specific probe for its future applications.
Collapse
|
12
|
Li Y, Chen R, He J, Ma H, Zhao F, Tao S, Liu J, Hu J. Triphenyl Phosphate at Environmental Levels Retarded Ovary Development and Reduced Egg Production in Japanese Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14709-14715. [PMID: 31751126 DOI: 10.1021/acs.est.9b05669] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Since triphenyl phosphate (TPhP) elicits both antiestrogenic activities via blocking the estrogen receptor (ER) and estrogenic activity by elevating 17β-estradiol (17β-E2) synthesis, its adverse effect on female reproduction is uncertain. In this study, we exposed Japanese medaka to TPhP at 131, 363, and 1773 ng/L for 100 days following hatching. TPhP significantly induced ovary retardation in all exposure groups (incidence: from 11.9 to 37.8%) and reduced egg production by 38.9 and 50.9% in the 363 and 1773 ng/L exposure groups, respectively. Vitellogenin (vtg) transcription was significantly downregulated by 35.4-57.4% after TPhP exposure, explaining the ovary retardation. Considering that 17β-E2 was only significantly decreased in the 1773 ng/L exposure group, ER antagonism could be the dominant contributor to the inhibition of vtg transcription and female reproductive toxicity of TPhP. As 4-hydroxyphenyl diphenyl phosphate, a metabolite of TPhP, was detected in livers with similar concentration [68.4-1237 ng/g lipid weight (lw)] to that of TPhP (485-1594 ng/g lw) and elicited medaka ER antagonistic activity (50% inhibitory concentration = 78.1 μM), TPhP and its metabolite should both contribute to the reproductive inhibition. We demonstrate that TPhP at environmentally relevant concentrations is toxic to female reproduction, which poses an ecological risk to wild fish at the population level.
Collapse
Affiliation(s)
- Yu Li
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Ruichao Chen
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianwu He
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Haojia Ma
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Fanrong Zhao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shu Tao
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Junfeng Liu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Jianying Hu
- MOE Laboratory for Earth Surface Process, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
13
|
Wu L, Ru H, Ni Z, Zhang X, Xie H, Yao F, Zhang H, Li Y, Zhong L. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105280. [PMID: 31518776 DOI: 10.1016/j.aquatox.2019.105280] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
1,1-Trichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethane (o,p'-DDT) and 1,1-dichloro-2,2-bis (p-chlorophenyl)-ethylene (p,p'-DDE) cause thyroid disruption, but the underlying mechanisms of these disturbances in fish remain unclear. To explore the potential mechanisms of thyroid dysfunction caused by o,p'-DDT and p,p'-DDE, thyroid hormone and gene expression levels in the hypothalamic-pituitary-thyroid (HPT) axis were measured, and the developmental toxicity were recorded in zebrafish larvae. Zebrafish embryos/larvae were exposed to o,p'-DDT (0, 0.28, 2.8, and 28 nM; or 0, 0.1, 1, and 10 μg/L) and p,p'-DDE (0, 1.57, 15.7, and 157 nM; or 0, 0.5, 5, and 50 μg/L) for 7 days. The genes related to thyroid hormone synthesis (crh, tshβ, tg, nis and tpo) and thyroid development (nkx2.1 and pax8) were up-regulated in both the o,p'-DDT and p,p'-DDE exposure groups. Zebrafish embryos/larvae exposed to o,p'-DDT showed significantly increased total whole-body T4 and T3 levels, with the expression of ugt1ab and dio3 being significantly down-regulated. However, the p,p'-DDE exposure groups showed significantly lowered whole-body total T4 and T3 levels, which were associated with up-regulation and down-regulation expression of the expression of dio2 and ugt1ab, respectively. Interestingly, the ratio of T3 to T4 was significantly decreased in the o,p'-DDT (28 nM) and p,p'-DDE (157 nM) exposure groups, suggesting an impairment of thyroid function. In addition, reduced survival rates and body lengths and increased malformation rates were recorded after treatment with either o,p'-DDT or p,p'-DDE. In summary, our study indicates that the disruption of thyroid states was different in response to o,p'-DDT and p,p'-DDE exposure in zebrafish larvae.
Collapse
Affiliation(s)
- Luyin Wu
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Huijun Ru
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Zhaohui Ni
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Huaxiao Xie
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Fan Yao
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - He Zhang
- State Key Laboratory of Optometry, Ophthalmology, and Visual Science, School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325003, China
| | - Yunfeng Li
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Liqiao Zhong
- Observation Station for Fishery Resource and Environment in Upper-Middle Reaches of Yangtze River (Ministry of Agriculture), Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
14
|
Wu L, Li Y, Ru H, Xie H, Yao F, Ni Z, Zhong L. Parental exposure to 2,2′,4,4′5 - pentain polybrominated diphenyl ethers (BDE-99) causes thyroid disruption and developmental toxicity in zebrafish. Toxicol Appl Pharmacol 2019; 372:11-18. [DOI: 10.1016/j.taap.2019.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 01/23/2023]
|
15
|
Matsushima A. A Novel Action of Endocrine-Disrupting Chemicals on Wildlife; DDT and Its Derivatives Have Remained in the Environment. Int J Mol Sci 2018; 19:E1377. [PMID: 29734751 PMCID: PMC5983739 DOI: 10.3390/ijms19051377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 02/08/2023] Open
Abstract
Huge numbers of chemicals are released uncontrolled into the environment and some of these chemicals induce unwanted biological effects, both on wildlife and humans. One class of these chemicals are endocrine-disrupting chemicals (EDCs), which are released even though EDCs can affect not only the functions of steroid hormones but also of various signaling molecules, including any ligand-mediated signal transduction pathways. Dichlorodiphenyltrichloroethane (DDT), a pesticide that is already banned, is one of the best-publicized EDCs and its metabolites have been considered to cause adverse effects on wildlife, even though the exact molecular mechanisms of the abnormalities it causes still remain obscure. Recently, an industrial raw material, bisphenol A (BPA), has attracted worldwide attention as an EDC because it induces developmental abnormalities even at low-dose exposures. DDT and BPA derivatives have structural similarities in their chemical features. In this short review, unclear points on the molecular mechanisms of adverse effects of DDT found on alligators are summarized from data in the literature, and recent experimental and molecular research on BPA derivatives is investigated to introduce novel perspectives on BPA derivatives. Especially, a recently developed BPA derivative, bisphenol C (BPC), is structurally similar to a DDT derivative called dichlorodiphenyldichloroethylene (DDE).
Collapse
Affiliation(s)
- Ayami Matsushima
- Laboratory of Structure-Function Biochemistry, Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
16
|
Olsvik PA, Søfteland L. Metabolic effects of p,p′-DDE on Atlantic salmon hepatocytes. J Appl Toxicol 2017; 38:489-503. [DOI: 10.1002/jat.3556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Pål A. Olsvik
- National Institute of Nutrition and Seafood Research (NIFES), Bergen; Norway
- Faculty of Biosciences and Aquaculture; Nord University; Bodø Norway
| | - Liv Søfteland
- National Institute of Nutrition and Seafood Research (NIFES), Bergen; Norway
| |
Collapse
|
17
|
Medlock Kakaley EK, Eytcheson SA, LeBlanc GA. Ligand-Mediated Receptor Assembly as an End Point for High-Throughput Chemical Toxicity Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9327-9333. [PMID: 28708939 PMCID: PMC5831241 DOI: 10.1021/acs.est.7b02882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The high throughput screening of chemicals for interaction with intracellular targets is gaining prominence in the toxicity evaluation of environmental chemicals. We describe ligand-mediated receptor assembly as an early event in receptor signaling and its application to the screening of chemicals for interaction with targeted receptors. We utilized bioluminescence resonance energy transfer (BRET) to detect and quantify assembly of the methyl farnesoate receptor (MfR) in response to various high-production volume and other chemicals. The hormone methyl farnesoate binds to the MfR to regulate various aspects of reproduction and development in crustaceans. The MfR protein subunits Met and SRC, cloned from Daphnia pulex, were fused to the fluorophore, mAmetrine and the photon generator, Rluc2, respectively. Ligand-mediated receptor assembly was measured by photon transfer from the photon donor to the fluorophore resulting in fluorescence emission. Overall, the BRET assay had comparable or greater sensitivity as compared to a traditional reporter gene assay. Further, chemicals that screened positive in the BRET assay also stimulated phenotypic outcomes in daphnids that result from MfR signaling. We concluded the BRET assay is an accurate, sensitive, and cost/time efficient alternative to traditional screening assays.
Collapse
Affiliation(s)
| | | | - Gerald A. LeBlanc
- Corresponding author: Address, Department of Biological Sciences, Campus Box 7614, North Carolina State University, Raleigh, NC, 27695-7614, USA, Phone, (919) 515-7404,
| |
Collapse
|
18
|
Jürgens MD, Crosse J, Hamilton PB, Johnson AC, Jones KC. The long shadow of our chemical past - High DDT concentrations in fish near a former agrochemicals factory in England. CHEMOSPHERE 2016; 162:333-344. [PMID: 27518925 DOI: 10.1016/j.chemosphere.2016.07.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/19/2016] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
A total of 81 roach (Rutilus rutilus) collected from 13 southern English river sites between 2007 and 2012, were analysed for organochlorine pesticides, PCBs, PBDEs and some metals. Unexpectedly high concentrations of the banned insecticide DDT and its degradation products DDE and DDD (∑DDTs) were found in the 10 fish from the river Lee (or Lea) which averaged 88 ± 70 (standard deviation) μg/kg ww, almost 20 times higher than the average for the remaining sites (4.8 ± 3.1 μg/kg). All fish from that site exceeded the Canadian Tissue Residue Guideline (environmental quality standard) of 14 μg/kg ∑DDTs. Concentrations of the insecticides chlordane and lindane as well as copper, which is often used as a fungicide, were also elevated in fish from the Lee, though not as much as those of DDTs. A likely explanation for these observations was found in a nearby former pesticide factory, which had stopped production about three decades earlier. An extensive review of recent literature data on DDT in wild European fish found that, while levels are now generally low, there were several other hotspots with ∑DDTs levels that may still be of concern.
Collapse
Affiliation(s)
| | - John Crosse
- Lancaster University, Lancaster Environment Centre, LA1 4YQ, UK.
| | | | | | - Kevin C Jones
- Lancaster University, Lancaster Environment Centre, LA1 4YQ, UK.
| |
Collapse
|
19
|
Wang C, Zhang S, Zhou Y, Huang C, Mu D, Giesy JP, Hu J. Equol Induces Gonadal Intersex in Japanese Medaka (Oryzias latipes) at Environmentally Relevant Concentrations: Comparison with 17β-Estradiol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7852-60. [PMID: 27305592 DOI: 10.1021/acs.est.6b02211] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Equol is present in the aquatic environment via livestock waste and runoff discharge; however, it remains unclear whether it can induce gonadal intersex in fish at environmentally relevant concentrations. This study evaluated adverse effects of equol on gonadal development by exposing transgenic Japanese medaka (Oryzias latipes) from hatching for 100 days. Equol induced intersex incidence in male medaka in a dose-dependent manner, and the benchmark dose corresponding to 10% intersex incidence (BMD10) was 11.5 ng/L (95% confidence interval (CI): 5.8 ng/L, 19.8 ng/L), which was comparable to the required dose of 17β-estradiol (E2β) (9.0 ng/L, 95% CI: 6.6 ng/L, 11.0 ng/L). Equol exposure resulted in reduced plasma 11-ketotestosterone (11-KT) concentrations in male medaka at 1.3 ng/L, while reduced plasma 11-KT concentrations were observed at a relatively high concentration (6.4 ng/L) of E2β. Such antiandrogenic property could partly explain the comparable potency of equol with that of E2β to induce intersex at relatively low concentrations, although the binding affinity of equol to medaka estrogen receptor α (EC50 939.4 nM) was 230-fold lower than that (4.07 nM) of E2β. This study for the first time demonstrated that equol could induce intersex in medaka fish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Chen Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing, 100871, China
| | - Shiyi Zhang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing, 100871, China
| | - Yuyin Zhou
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing, 100871, China
| | - Chong Huang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing, 100871, China
| | - Di Mu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing, 100871, China
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Center, University of Saskatchewan , 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Jianying Hu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University , Beijing, 100871, China
| |
Collapse
|