1
|
Burić P, Kovačić I, Ilić K, Šižgorić Winter D, Buršić M. A decade of toxicity research on sea urchins: A review. Toxicon 2025:108420. [PMID: 40404058 DOI: 10.1016/j.toxicon.2025.108420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/17/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
Sea urchins have been used extensively in toxicity studies worldwide. In this review, toxicity studies that used sea urchins as the organism of choice during the last decade (from 2014 to 2023) were assessed. The selected articles were analysed for the following main points: (i) the world regions where sea urchins are predominantly utilized in toxicological studies, (ii) the sea urchin species most frequently employed, (iii) the most frequently used toxicological assays, and (iv) the chemical under examination. The results indicate that the scientists in Europe most often decide to work with this organism. Specifically, sea urchins were sampled from the Tyrrhenian Sea and the Atlantic coast of Spain and Portugal for the toxicity studies. The most frequently selected species of sea urchin is Paracentrotus lividus, followed by Arbacia lixula and Strongylocentrotus purpuratus. Furthermore, the toxicity experimental method that is most often applied is the embryotoxicity that includes a version of the sea urchin embryo-larval development test endpoints. Currently metals are the most frequently researched pollutant of this species as target organism, followed by environmental samples (e.g. sediment or wastewaters), plastics and nanoparticles (metal and metal oxide nanoparticles, silicate nanoparticles, polystyrene nanoparticles and carbon nanotubes). At the end, the obtained results were discussed and recommendations for further work with sea urchins in toxicological studies were proposed.
Collapse
Affiliation(s)
- Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| | - Ines Kovačić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| | - Kornelija Ilić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| | - Dora Šižgorić Winter
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| | - Moira Buršić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia.
| |
Collapse
|
2
|
Morris C, Martins C, Zulian S, Smith DS, Brauner CJ, Wood CM. The effects of dissolved organic carbon and model compounds (DOC analogues) on diffusive water flux, oxygen consumption, nitrogenous waste excretion rates and gill transepithelial potential in Pacific sanddab (Citharichthys sordidus) at two salinities. J Comp Physiol B 2024; 194:805-825. [PMID: 39245661 DOI: 10.1007/s00360-024-01580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.
Collapse
Affiliation(s)
- Carolyn Morris
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada.
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Camila Martins
- Institute of Biological Sciences, Federal University of Rio Grande - FURG, Italia avenue, s/n, Carreiros, Rio Grande, 96203-900, RS, Brazil
| | - Samantha Zulian
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, ON, N2L 3C5, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Chris M Wood
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, BC, V0R 1B0, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
3
|
Zhao F, Huang Y, Wei H, Wang M. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173585. [PMID: 38810735 DOI: 10.1016/j.scitotenv.2024.173585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 μatm) and Ni (6 μg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.
Collapse
Affiliation(s)
- Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Tsai KP. Toxic effects of thallium (Tl +) on prokaryotic alga Microcystis aeruginosa: Short and long-term influences by potassium and humic acid. CHEMOSPHERE 2024; 346:140618. [PMID: 37949181 DOI: 10.1016/j.chemosphere.2023.140618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Thallium (Tl) is a priority pollutant regulated by the US EPA. It is also a critical element commonly used in high technology industries; with an increasing demand for semiconductors nowadays, wastewater discharges from manufacturing plants or metal mining activities may result in elevated levels of thallium in receiving water harming aquatic organisms. Regarding the impact of thallium on freshwater algae, little attention has been paid to prokaryotic physiology through various exposure periods. In this bench-scale study, prokaryotic alga Microcystis aeruginosa PCC 7806 was cultured in modified BG11 medium and exposed to Tl+ (TlNO3) ranging from 250 to 1250 μg/L for 4 and 14 days. Throughout the experiment using flow cytometry assays, algal population, cell membrane integrity, oxidation stress level, and chlorophyll fluorescence were exacerbated following the exposure to 750 μg Tl/L (approximately 4-day effective concentration of Tl+ for reducing 50% of algal population). Potassium and humic acid (HA) (1-5 mg/L) were added to study their influences on the thallium toxicity. With the additions of potassium, thallium toxicities to algal population and physiology were not significantly changed within 4 days, while they were alleviated within 14 days. With the addition of HA at 1 mg/L, cell membrane integrity was significantly attenuated within 4 days; ameliorating effects on algal population and oxidative stress were not observed until day 14. Thallium toxicities on oxidative stress level and photosynthesis activity were exacerbated in the presence of HA at 3-5 mg/L. The study provides useful information for further studies on the mode of toxic action of Tl+ in prokaryotic algae; it also demonstrates the necessity of considering short and long-term exposure durations while incorporating water chemistry into assessment of thallium toxicity to algae.
Collapse
Affiliation(s)
- Kuo-Pei Tsai
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
5
|
Santos J, Rodríguez-Romero A, Cifrian E, Maldonado-Alameda A, Chimenos JM, Andrés A. Eco-toxicity assessment of industrial by-product-based alkali-activated binders using the sea urchin embryogenesis bioassay. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118100. [PMID: 37209591 DOI: 10.1016/j.jenvman.2023.118100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
New cement-based materials such as alkali-activated binders (AABs) or geopolymers allow the incorporation of waste or industrial by-products in their formulation, resulting an interesting valorization technique. Therefore, it is essential to inquire about the potential environmental and health impacts throughout their life cycle. In the European context, a minimum aquatic toxicity tests battery has been recommended for construction products, but their potential biological effects on marine ecosystems have not been considered. In this study, three industrial by-products, PAVAL® (PV) aluminum oxide, weathered bottom ash (WBA) resulting from incinerator bottom ash and glass cullet recycling waste (CSP), were evaluated as precursors in the AAB formulation from an environmental point of view. To determine the potential effects on marine environment caused by the leaching of contaminants from these materials into seawater, the leaching test EN-12457-2 and an ecotoxicity test using the model organism sea urchin Paracentrotus lividus were conducted. The percentage of abnormal larval development was selected as endpoint of the toxicity test. Based on the results obtained from the toxicity tests, AABs have less damaging impact (EC50 values: 49.2%-51.9%) on the marine environment in general than raw materials. The results highlight the need to stablish a specific battery of toxicity tests for the environmental assessment of construction products on marine ecosystem.
Collapse
Affiliation(s)
- J Santos
- GER Green Engineering and Resources Group, Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, 39005, Santander, Spain
| | - A Rodríguez-Romero
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Institute of Marine Research (INMAR), University of Cádiz, Puerto Real, 11510, Cádiz, Spain
| | - E Cifrian
- GER Green Engineering and Resources Group, Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, 39005, Santander, Spain
| | - A Maldonado-Alameda
- DIOPMA Design and Optimization of Processes and Materials, Department of Materials Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | - J M Chimenos
- DIOPMA Design and Optimization of Processes and Materials, Department of Materials Science and Physical Chemistry, University of Barcelona, 08028, Barcelona, Spain
| | - A Andrés
- GER Green Engineering and Resources Group, Department of Chemistry and Process & Resource Engineering, ETSIIT, University of Cantabria, 39005, Santander, Spain.
| |
Collapse
|
6
|
Descoteaux AE, Zuch DT, Bradham CA. Polychrome labeling reveals skeletal triradiate and elongation dynamics and abnormalities in patterning cue-perturbed embryos. Dev Biol 2023; 498:1-13. [PMID: 36948411 DOI: 10.1016/j.ydbio.2023.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The larval skeleton of the sea urchin Lytechinus variegatus is an ideal model system for studying skeletal patterning; however, our understanding of the etiology of skeletal patterning in sea urchin larvae is limited due to the lack of approaches to live-image skeleton formation. Calcium-binding fluorochromes have been used to study the temporal dynamics of bone growth and healing. To date, only calcein green has been used in sea urchin larvae to fluorescently label the larval skeleton. Here, we optimize labeling protocols for two additional calcium-binding fluorochromes: xylenol orange and calcein blue- and demonstrate that these fluorochromes can be used individually or in nested pulse-chase experiments to understand the temporal dynamics of skeletogenesis and patterning. Using a pulse-chase approach, we show that the initiation of skeletogenesis begins around 15 h post fertilization. We also assess the timing of triradiate formation in embryos treated with a range of patterning perturbagens and demonstrate that triradiate formation is delayed and asynchronous in embryos ventralized via treatment with either nickel or chlorate. Finally, we measure the extent of fluorochrome incorporation in triple-labeled embryos to determine the elongation rate of numerous skeletal elements throughout early skeletal patterning and compare this to the rate of skeletal growth in embryos treated with axitinib to inhibit VEGFR. We find that skeletal elements elongate much more slowly in axitinib-treated embryos, and that axitinib treatment is sufficient to induce abnormal orientation of the triradiates.
Collapse
Affiliation(s)
- Abigail E Descoteaux
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States
| | - Daniel T Zuch
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States
| | - Cynthia A Bradham
- Department of Biology, Boston University, Boston, MA, 02215, United States; Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, 02215, United States; Biological Design Center, Boston University, Boston, MA, 02215, United States; Program in Bioinformatics, Boston University, Boston, MA, 02215, United States.
| |
Collapse
|
7
|
El Idrissi O, Gobert S, Delmas A, Demolliens M, Aiello A, Pasqualini V, Ternengo S. Effects of trace elements contaminations on the larval development of Paracentrotus lividus using an innovative experimental approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106152. [PMID: 35381413 DOI: 10.1016/j.aquatox.2022.106152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Several experiments were performed using larvae of Paracentrotus lividus (Lamarck, 1816) in order to determine the consequences of different chronic contamination with mixtures of (i) fifteen trace elements from concentrations measured in the world ocean seawater, and (ii) seven trace elements from contamination resulting from mining. To predict the impact of increased marine pollution, higher concentrations were also used. These bioassays were conducted using spawners collected from Calvi (reference site, Corsica), and Albo (mining area, Corsica). The effects of trace elements have been studied on the entire larval development. The results show wider arms and delayed development as the number and concentration of trace elements increases. Therefore, the synergy between the different trace elements is of paramount importance with regard to the impact on organisms. Probably due to a hormesis phenomenon, larvae contaminated with seven trace elements at average concentrations developed more quickly. This work also highlighted the importance of the origin of spawners in ecotoxicological studies. To our knowledge, this is the first study to investigate the effects of such a broad combination of trace elements for chronic contamination on the entire larval stage of Paracentrotus lividus.
Collapse
Affiliation(s)
- O El Idrissi
- Université de Corse, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse, UAR CNRS 3514 Stella Mare, 20620 Biguglia, France; Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium.
| | - S Gobert
- Université de Liège, Centre MARE, Focus, Laboratoire d'Océanologie, Sart Tilman, B6c, 4000 Liège, Belgium; STAtion de REcherche Sous-marines et Océanographiques (STARESO), 20260 Calvi, France
| | - A Delmas
- Université de Corse, UAR CNRS 3514 Stella Mare, 20620 Biguglia, France
| | - M Demolliens
- Université de Corse, UAR CNRS 3514 Stella Mare, 20620 Biguglia, France
| | - A Aiello
- Université de Corse, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse, UAR CNRS 3514 Stella Mare, 20620 Biguglia, France
| | - V Pasqualini
- Université de Corse, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse, UAR CNRS 3514 Stella Mare, 20620 Biguglia, France
| | - S Ternengo
- Université de Corse, UMR CNRS 6134 Sciences pour l'Environnement, 20250 Corte, France; Université de Corse, UAR CNRS 3514 Stella Mare, 20620 Biguglia, France
| |
Collapse
|
8
|
Blewett TA, Leonard EM, Glover CN, McClelland GB, Wood CM, McGeer JC, Santore RC, Smith DS. The effect of marine dissolved organic carbon on nickel accumulation in early life-stages of the sea urchin, Strongylocentrotus purpuratus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109150. [PMID: 34352398 DOI: 10.1016/j.cbpc.2021.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Dissolved organic carbon (DOC) is known to ameliorate the toxicity of the trace metal nickel (Ni) to aquatic animals. In theory, this effect is mediated by the capacity of DOC to bind Ni, rendering it less bioavailable, with the resulting reduction in accumulation limiting toxicological effects. However, there is a lack of experimental data examining Ni accumulation in marine settings with natural sources of DOC. In the current study, radiolabelled Ni was used to examine the time- and concentration-dependence of Ni accumulation, using naturally sourced DOC, on developing larvae of the sea urchin Strongylocentrotus purpuratus. Contrary to prediction, the two tested natural DOC samples (collected from the eastern United States, DOC 2 (Seaview park, Rhode Island (SVP)) and DOC 7 (Aubudon Coastal Center, Connecticut)) which had previously been shown to protect against Ni toxicity, did not limit accumulation. The control (artificial seawater with no added DOC), and the DOC 2 sample could mostly be described as having saturable Ni uptake, whereas Ni uptake in the presence of DOC 7 was mostly linear. These data provide evidence that DOC modifies the bioavailability of Ni, through either indirect effects (e.g. membrane permeability) or by the absorption of DOC-Ni complexes. There was some evidence for regulation of Ni accumulation in later-stage embryos (96-h) where the bioconcentration factor for Ni declined with increasing Ni exposure concentration. These data have implications for predictive modelling approaches that rely on known relationships between Ni speciation, bioavailability and bioreactivity, by suggesting that these relationships may not hold for natural marine DOC samples in the developing sea urchin model system.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biological Sciences, University of Alberta, AB, Canada; Department of Biology, McMaster University, Hamilton, ON, Canada.
| | - Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Chris N Glover
- Department of Biological Sciences, University of Alberta, AB, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, AB, Canada
| | | | - Chris M Wood
- Department of Biology, McMaster University, Hamilton, ON, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - James C McGeer
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | - D Scott Smith
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| |
Collapse
|
9
|
Gauthier PT, Blewett TA, Garman ER, Schlekat CE, Middleton ET, Suominen E, Crémazy A. Environmental risk of nickel in aquatic Arctic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148921. [PMID: 34346380 DOI: 10.1016/j.scitotenv.2021.148921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
The Arctic faces many environmental challenges, including the continued exploitation of its mineral resources such as nickel (Ni). The responsible development of Ni mining in the Arctic requires establishing a risk assessment framework that accounts for the specificities of this unique region. We set out to conduct preliminary assessments of Ni exposure and effects in aquatic Arctic ecosystems. Our analysis of Ni source and transport processes in the Arctic suggests that fresh, estuarine, coastal, and marine waters are potential Ni-receiving environments, with both pelagic and benthic communities being at risk of exposure. Environmental concentrations of Ni show that sites with elevated Ni concentrations are located near Ni mining operations in freshwater environments, but there is a lack of data for coastal and estuarine environments near such operations. Nickel bioavailability in Arctic freshwaters seems to be mainly driven by dissolved organic carbon (DOC) concentrations with bioavailability being the highest in the High Arctic, where DOC levels are the lowest. However, this assessment is based on bioavailability models developed from non-Arctic species. At present, the lack of chronic Ni toxicity data on Arctic species constitutes the greatest hurdle toward the development of Ni quality standards in this region. Although there are some indications that polar organisms may not be more sensitive to contaminants than non-Arctic species, biological adaptations necessary for life in polar environments may have led to differences in species sensitivities, and this must be addressed in risk assessment frameworks. Finally, Ni polar risk assessment is further complicated by climate change, which affects the Arctic at a faster rate than the rest of the world. Herein we discuss the source, fate, and toxicity of Ni in Arctic aquatic environments, and discuss how climate change effects (e.g., permafrost thawing, increased precipitation, and warming) will influence risk assessments of Ni in the Arctic.
Collapse
Affiliation(s)
- Patrick T Gauthier
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2M9, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2M9, Canada
| | | | | | | | - Emily Suominen
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Anne Crémazy
- Department of Biological Sciences, University of New Brunswick, Saint John, NB E2L 4L5, Canada.
| |
Collapse
|
10
|
Liu K, Song J, Chi W, Liu H, Ge S, Yu D. Developmental toxicity in marine medaka (Oryzias melastigma) embryos and larvae exposed to nickel. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109082. [PMID: 34004282 DOI: 10.1016/j.cbpc.2021.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
As an important trace metal, nickel (Ni) has been reported extensively in the studies on freshwater animals. However, the toxic effects of Ni on marine organisms are not clearly understood. Therefore, in order to investigate the toxic effects of Ni on the early development of marine fish, the marine medaka (Oryzias melastigma) embryos and larvae were immersed in 0.13-65.80 mg/L Ni solution. The results showed that Ni exposure changed the egg size and heart rate of the embryos, lowered the hatchability, increased the deformity rate, and shortened the total body length of newly hatched larvae. Besides, it was found that before organogenesis and post-hatching periods were the sensitive periods of embryos to Ni. The 25 d LC50 value of embryos was 49.28 mg/L, and the 5 d LC50 of larvae was 55.92 mg/L, indicating that the embryos were more sensitive to Ni than the larvae. Furthermore, the expressions of the metallothionein (MT) gene, the skeletal development-related gene (Cyp26b1) and the cardiac development-related genes (ATPase, smyd1, cox2 and bmp4) were determined, and the results showed that the expressions of ATPase and smyd1 were up-regulated, while MT, Cyp26b1 and cox2 were significantly down-regulated at 9 days post-fertilization (dpf). Overall, Ni exposure caused a significant toxic effect on the early development of the O. melastigma embryos and larvae. Our findings could provide an important supplement to the toxicity data of tropical Ni and provide a reference for the exploration of the molecular mechanisms of Ni toxicity.
Collapse
Affiliation(s)
- Kaikai Liu
- Marine Science Research Institute of Shandong Province, QingDao, 266104, China
| | - Jingjing Song
- Marine Science Research Institute of Shandong Province, QingDao, 266104, China.
| | - Wendan Chi
- Marine Science Research Institute of Shandong Province, QingDao, 266104, China
| | - Hongjun Liu
- Marine Science Research Institute of Shandong Province, QingDao, 266104, China
| | - Shanshan Ge
- Marine Science Research Institute of Shandong Province, QingDao, 266104, China
| | - Daode Yu
- Marine Science Research Institute of Shandong Province, QingDao, 266104, China.
| |
Collapse
|
11
|
Macoustra GK, Jolley DF, Stauber JL, Koppel DJ, Holland A. Speciation of nickel and its toxicity to Chlorella sp. in the presence of three distinct dissolved organic matter (DOM). CHEMOSPHERE 2021; 273:128454. [PMID: 33077193 DOI: 10.1016/j.chemosphere.2020.128454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Nickel is often a metal of interest in regulatory settings given its increasing prevalence in disturbed freshwaters and as a known toxicant to fish and algae. Dissolved organic matter (DOM) is a toxicity modifying factor for nickel and a ubiquitous water physicochemical parameter. This study investigated the effect of DOM concentration and source on the chronic toxicity of nickel to Chlorella sp. using three DOM at two concentrations (3.1 ± 1.8 and 12 ± 1.3 mg C/L). Nickel toxicity to Chlorella sp. was not strongly influenced by DOM concentration. In the absence of DOM, the 72-h EC50 for Chlorella sp. was 120 μg Ni/L. In the low DOM treatment, nickel toxicity was either unchanged or slightly increased (87-140 μg Ni/L) and unchanged or slightly decreased in the high DOM treatment (130-240 μg Ni/L). DOM source also had little effect on nickel toxicity, the largest differences in nickel toxicity occurring in the high DOM treatment. Labile nickel (measured by diffusive gradients in thin-films, DGT) followed strong linear relationships with dissolved nickel (R2 > 0.97). DOM concentration and source had limited effect on DGT-labile nickel. DGT-labile nickel decreased with increasing DOM concentration for only one of the three DOM. Modelled labile nickel concentrations (expressed as maximum dynamic concentrations, cdynmax) largely agreed with DGT-labile nickel and suggested that toxicity is explained by free Ni2+ concentrations. This study confirms that nickel toxicity is largely unaffected by DOM concentration or source and that both measured (DGT) and modelled (cdynmax and free Ni2+) nickel concentrations can explain nickel toxicity.
Collapse
Affiliation(s)
- Gabriella K Macoustra
- School of Earth, Atmosphere and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia
| | - Dianne F Jolley
- School of Earth, Atmosphere and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, NSW, 2522, Australia; CSIRO Land and Water, Lucas Heights, NSW, 2232, Australia
| | | | - Darren J Koppel
- CSIRO Land and Water, Lucas Heights, NSW, 2232, Australia; Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Aleicia Holland
- CSIRO Land and Water, Lucas Heights, NSW, 2232, Australia; La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, VIC, 3690, Australia.
| |
Collapse
|
12
|
Sherman S, Chen W, Blewett TA, Smith S, Middleton E, Garman E, Schlekat C, McGeer JC. Complexation reduces nickel toxicity to purple sea urchin embryos (Strongylocentrotus purpuratus), a test of biotic ligand principles in seawater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112156. [PMID: 33823367 DOI: 10.1016/j.ecoenv.2021.112156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
The potential for Ni toxicity in seawater is of concern because of mining and processing activities in coastal regions. Determining Ni speciation is vital to understanding and predicting Ni toxicity and for bioavailability-based nickel risk assessment. The goal of this study was to characterize the complexation of Ni in relation to toxicity using embryological development of purple sea urchin (S. purpuratus). It was predicted that free ion [Ni2+] would be a better predictor of toxicity than total dissolved Ni concentrations (NiD). Synthetic ligands with known logKf values (Ethylenediaminetetraacetic acid (EDTA), Nitrilotriacetic acid (NTA), tryptophan (TRP), glutamic acid (GA), histidine (HD), and citric acid (CA)) were used to test the assumptions of the biotic ligand model (BLM) for Ni in seawater. [NiD] was measured by graphite furnace atomic absorption spectroscopy (GFAAS) and Ni2+ was first quantified using the ion-exchange technique (IET) and then concentrations were measured by GFAAS; [Ni2+] was also estimated using aquatic geochemistry modelling software (Visual Minteq). The mean EC50 values for [NiD] in unmodified artificial seawater control was 3.6 µM (95% CI 3.0-4.5) [211 µg/L 95% CI 176-264] and the addition of ligands provided protection, up to 6.5-fold higher [NiD] EC50 for EDTA. Compared to the control, measured EC50 values based on total dissolved nickel were higher in the presence of ligands. As predicted by BLM theory, [Ni2+] was a better predictor of Ni toxicity with 17% variability in EDTA and CA media while there was 72% variability in the prediction of Ni toxicity with total dissolved Ni. The results of this research provide support for the application of BLM- based prediction models for estimating Ni impacts in seawater.
Collapse
Affiliation(s)
- S Sherman
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - W Chen
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - T A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - S Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | | | | | | | - J C McGeer
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
13
|
Nogueira LS, Domingos-Moreira FXV, Klein RD, Bianchini A, Wood CM. Influence of environmentally relevant concentrations of Zn, Cd and Ni and their binary mixtures on metal uptake, bioaccumulation and development in larvae of the purple sea urchin Strongylocentrotus purpuratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 230:105709. [PMID: 33296850 DOI: 10.1016/j.aquatox.2020.105709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Metal accumulation, disturbance of Ca2+ homeostasis, and occurrence of abnormalities are well-established consequences of single metal exposure during early development stages of sea urchins. However, the effects caused by low concentrations of metals and metal mixtures need to be better understood in marine invertebrates. Therefore, the present study investigated the effects of environmentally relevant concentrations of Zn (9 μg/L), Cd (30 μg/L) and Ni (5 μg/L) in single and binary exposures (Zn + Cd, Cd + Ni and Ni + Zn) to the early life stages of the purple sea urchin Strongylocentrotus purpuratus. Endpoints checked in all treatments after 48-h exposure were unidirectional metal influx rates, bioaccumulation, and Ca2+ influx rates. Additionally, the presence of abnormal larvae and developmental delay was evaluated at 24 h, 48 h and 72 h of exposure. Unidirectional influx rates of all three metals were significantly higher than control background rates in all single exposures and binary mixtures, and were generally not different between them. Net accumulation (body burden) of both Zn and Cd increased significantly as a result of their respective single exposures, while Ni accumulation decreased considerably. When Zn or Cd were presented in binary exposures with other metals, the net accumulations of Zn or Cd were reduced relative to single exposures to these metals, whereas this did not occur for Ni accumulation. Thus, bioaccumulation proved to be a better metric than influx rate measurements to analyze metal competition at a whole organism level at these low metal concentrations. Short-term Ca2+ influx also did not appear to be a sensitive metric, as the measured rates did not vary among all single and binary exposures, with the exception of a lower rate in Ni + Zn binary exposure. A critical aspect observed was the relationship between bioaccumulation versus influx measurements, which proved positive for Cd, but negative for Zn and Ni, demonstrating possible capacities for both Zn and Ni regulation by sea urchin larvae. Increases in larval abnormalities relative to controls occurred only after binary mixtures, starting at 48 h exposure and maintained until 72 h. However, delay of the sea urchin development by the presence of gastrula stage at 72 h exposure occurred in Zn and Ni single exposures and all metal mixtures, with very high abnormal development when Ni was present.
Collapse
Affiliation(s)
- Lygia S Nogueira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T 1Z4, Canada; CAPES Foundation, Ministry of Education of Brazil, Brasília, DF 70040-020, Brazil.
| | - Fabíola Xochilt Valdez Domingos-Moreira
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T 1Z4, Canada; Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecotoxicologia Aquática na Amazônia, Manaus, Amazonas, CEP 69067-375, Brazil
| | - Roberta Daniele Klein
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (ICB/FURG), Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil
| | - Chris M Wood
- Bamfield Marine Science Centre, Bamfield, British Columbia, V0R 1B0, Canada; University of British Columbia, Department of Zoology, Vancouver, British Columbia, V6T 1Z4, Canada; McMaster University, Dept. of Biology, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
14
|
Gissi F, Wang Z, Batley GE, Leung KM, Schlekat CE, Garman ER, Stauber JL. Deriving a Chronic Guideline Value for Nickel in Tropical and Temperate Marine Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2540-2551. [PMID: 32955772 PMCID: PMC7756218 DOI: 10.1002/etc.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 09/17/2020] [Indexed: 05/15/2023]
Abstract
The absence of chronic toxicity data for tropical marine waters has limited our ability to derive appropriate water quality guideline values for metals in tropical regions. To aid environmental management, temperate data are usually extrapolated to other climatic (e.g., tropical) regions. However, differences in climate, water chemistry, and endemic biota between temperate and tropical systems make such extrapolations uncertain. Chronic nickel (Ni) toxicity data were compiled for temperate (24 species) and tropical (16 species) marine biota and their sensitivities to Ni compared. Concentrations to cause a 10% effect for temperate biota ranged from 2.9 to 20 300 µg Ni/L, with sea urchin larval development being the most sensitive endpoint. Values for tropical data ranged from 5.5 to 3700 µg Ni/L, with copepod early-life stage development being the most sensitive test. There was little difference in temperate and tropical marine sensitivities to Ni, with 5% hazardous concentrations (95% confidence interval) of 4.4 (1.8-17), 9.6 (1.7-26), and 5.8 (2.8-15) µg Ni/L for temperate, tropical, and combined temperate and tropical species, respectively. To ensure greater taxonomic coverage and based on guidance provided in Australia and New Zealand, it is recommended that the combined data set be used as the basis to generate a jurisdiction-specific water quality guideline of 6 µg Ni/L for 95% species protection applicable to both temperate and tropical marine environments. Environ Toxicol Chem 2020;39:2540-2551. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Francesca Gissi
- CSIRO Oceans and Atmosphere, Lucas Heights, New South WalesAustralia
| | - Zhen Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou UniversityShantouChina
| | | | - Kenneth M.Y. Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, KowloonHong KongChina
| | | | | | | |
Collapse
|
15
|
Meyer JS, Lyons‐Darden T, Garman ER, Middleton ET, Schlekat CE. Toxicity of Nanoparticulate Nickel to Aquatic Organisms: Review and Recommendations for Improvement of Toxicity Tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1861-1883. [PMID: 32619073 PMCID: PMC7590136 DOI: 10.1002/etc.4812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We reviewed the literature on toxicity of nanoparticulate nickel (nano-Ni) to aquatic organisms, from the perspective of relevance and reliability in a regulatory framework. Our main findings were 1) much of the published nano-Ni toxicity data is of low or medium quality in terms of reporting key physical-chemical properties, methodologies, and results, compared with published dissolved nickel studies; and 2) based on the available information, some common findings about nanoparticle (NP) toxicity are not supported for nano-Ni. First, we concluded that nanoparticulate elemental nickel and nickel oxide, which differ in chemical composition, generally did not differ in their toxicity. Second, there is no evidence that the toxicity of nano-Ni increases as the size of the NPs decreases. Third, for most organisms tested, nano-Ni was not more toxic on a mass-concentration basis than dissolved Ni. Fourth, there is conflicting evidence about whether the toxicity is directly caused by the NPs or by the dissolved fraction released from the NPs. However, no evidence suggests that any of the molecular, physiological, and structural mechanisms of nano-Ni toxicity differ from the general pattern for many metal-based nanomaterials, wherein oxidative stress underlies the observed effects. Physical-chemical factors in the design and conduct of nano-Ni toxicity tests are important, but often they are not adequately reported (e.g., characteristics of dry nano-Ni particles and of wetted particles in exposure waters; exposure-water chemistry). Environ Toxicol Chem 2020;39:1861-1883 © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
16
|
In vitro characterisation of calcium influx across skin and gut epithelia of the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2020; 190:149-160. [DOI: 10.1007/s00360-020-01262-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/30/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
|
17
|
Abstract
Nickel (Ni) metal and Ni compounds are widely used in applications like stainless steel, alloys, and batteries. Nickel is a naturally occurring element in water, soil, air, and living organisms, and is essential to microorganisms and plants. Thus, human and environmental nickel exposures are ubiquitous. Production and use of nickel and its compounds can, however, result in additional exposures to humans and the environment. Notable human health toxicity effects identified from human and/or animal studies include respiratory cancer, non-cancer toxicity effects following inhalation, dermatitis, and reproductive effects. These effects have thresholds, with indirect genotoxic and epigenetic events underlying the threshold mode of action for nickel carcinogenicity. Differences in human toxicity potencies/potentials of different nickel chemical forms are correlated with the bioavailability of the Ni2+ ion at target sites. Likewise, Ni2+ has been demonstrated to be the toxic chemical species in the environment, and models have been developed that account for the influence of abiotic factors on the bioavailability and toxicity of Ni2+ in different habitats. Emerging issues regarding the toxicity of nickel nanoforms and metal mixtures are briefly discussed. This review is unique in its covering of both human and environmental nickel toxicity data.
Collapse
|
18
|
Blewett TA, Dow EM, Wood CM, McGeer JC, Smith DS. The role of dissolved organic carbon concentration and composition on nickel toxicity to early life-stages of the blue mussel Mytilus edulis and purple sea urchin Strongylocentrotus purpuratus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:162-170. [PMID: 29804012 DOI: 10.1016/j.ecoenv.2018.05.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 04/09/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Nickel (Ni) emissions resulting from production and transportation raise concerns about the impact of Ni exposure to marine ecosystems. Ni bioavailability models are established for FW systems, but the influence of chemical parameters (e.g. dissolved organic carbon (DOC)) on Ni toxicity within marine systems is less well understood. To examine the effects of DOC concentration and composition on Ni toxicity, acute toxicity tests were conducted on early life-stages of blue mussels (Mytilus edulis) and sea urchin embryos (Strongylocentrotus purpuratus) in full strength sea water (32 ppt). Nine different field collected samples of water with varying concentration (up to 4.5 mg C/L) and composition of DOC were collected from the east coast of the United States. Organic matter compositional analysis included molecular fluorescence and absorbance spectroscopy. The different DOC sources had different protective effects against embryo toxicity. The control (no DOC) Ni 48 h-EC50 for Mytilus embryos was 133 µg/L (95% confidence interval (C.I.) of 123-144 µg/L), while Strongylocentrotus embryos displayed control 96-h EC50 values of 207 µg/L (167-247 µg/L). The most significantly protective sample had high humic acid concentrations (as determined from fluorescence spectroscopy), which yielded an EC50 of 195 µg/L (169-222 µg/L) for Mytilus, and an EC50 of 394 µg/L (369-419 µg/L) for S. purpuratus. Among all samples, protection was related to both DOC quantity and quality, with fluorescence-resolved humic and fulvic acid concentrations showing the strongest correlations with protection for both species. These data suggest that DOC is protective against Ni toxicity in M. edulis and S. purpuratus, and that accounting for a DOC quality factor will improve predictive toxicity models such as the biotic ligand model.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Elissa M Dow
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - James C McGeer
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, Canada.
| |
Collapse
|
19
|
Bonaventura R, Zito F, Chiaramonte M, Costa C, Russo R. Nickel toxicity in P. lividus embryos: Dose dependent effects and gene expression analysis. MARINE ENVIRONMENTAL RESEARCH 2018; 139:113-121. [PMID: 29773318 DOI: 10.1016/j.marenvres.2018.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/29/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells. At the lowest dose used, Ni mainly induced a multi-spicule phenotype observed at 24 h after treatment. On the contrary, at the highest dose of Ni (0.5 mM), 90% of embryos showed no skeleton and no pigment cells. Therefore, we focused on this dose to study protein and gene expression patterns at 24 and 48 h after exposure. Among the proteins analyzed, i.e. p38MAPK, Grp78 and Mn-SOD, only p38MAPK was induced by Ni treatment. Moreover, we analyzed the mRNA profiles of a pool of genes that are involved in stress response and in development mechanisms, i.e. the transcription factors Pl-NFkB and Pl-FOXO; a marker of DNA repair, Pl-XPB/ERCC3; a mitogen-activated protein kinase (MAPK), Pl-p38; an ER stress gene, Pl-grp78; an adapter protein, Pl-14-3-3ε; two markers of pigment cells, Pl-PKS1 and Pl-gcm. The spatial expression of mesenchymal marker genes has been evaluated in Ni-treated embryos at both 24 and 48 h after exposure. Our results indicated that Ni acts at several levels in P. lividus sea urchin, by affecting embryo development, influencing the embryonic immune response and activating stress response pathways to counteract the suffered injury and to promote embryos surviving.
Collapse
Affiliation(s)
- Rosa Bonaventura
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Francesca Zito
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Marco Chiaramonte
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Caterina Costa
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Roberta Russo
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Via Ugo La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|
20
|
da Silva Aires M, Paganini CL, Bianchini A. Biochemical and physiological effects of nickel in the euryhaline crab Neohelice granulata (Dana, 1851) acclimated to different salinities. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:51-62. [PMID: 29191712 DOI: 10.1016/j.cbpc.2017.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 11/30/2022]
Abstract
The estuarine crab Neohelice granulata was maintained under control condition or exposed to sublethal concentrations of dissolved Ni (measured: 128 and 1010μg/L) for 96h at different salinities (2 and 30ppt). After metal exposure, whole-body oxygen consumption was measured and tissue (hemolymph, gills, hepatopancreas and muscle) samples were collected. Control crabs acclimated to 2ppt salinity showed lower hemolymph concentrations of Na+ (33%), Mg2+ (19%) and K+ (30%), as well as increased LPO levels in anterior gills (379%), posterior gills (457%) and hepatopancreas (35%) with respect to those acclimated to 30ppt salinity. In crabs acclimated to 2ppt salinity, Ni exposure increased whole-body oxygen consumption (75%), hemolymph K+ concentration (52%), hemolymph (135%) and hepatopancreas (62%) LDH activity. Also, it reduced hemolymph Cl- concentration (16%) and muscle LDH activity (33%). In crabs acclimated to 30ppt salinity, Ni exposure increased LDH activity in hemolymph (195%), hepatopancreas (126%) and muscle (53%), as well as hemolymph osmolality (10%), Cl- (26%) and Ca2+ (20%) concentration. It also reduced hepatopancreas lipid peroxidation (20%) and hemolymph Mg2+ (29%) and K+ (31%) concentration. These findings indicate that N. granulata is hyper-osmoregulating in 2ppt salinity and hypo-regulating in 30ppt salinity, showing adjustments of hemolymph ionic composition and metabolic rates, with consequent higher oxidative damage to lipids in low salinity (2ppt). Ni effects are associated with metabolic (aerobic and anaerobic) disturbances in crabs acclimated to 2ppt salinity, while osmotic and ionoregulatory disturbances were more evident in crabs acclimated to 30ppt salinity.
Collapse
Affiliation(s)
- Michele da Silva Aires
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Christianne Lorea Paganini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália km 8, 96.201-900 Rio Grande, Rio Grande do Sul, Brazil.
| |
Collapse
|
21
|
Vopel K, Pook C, Wilson P, Robertson J. Offshore iron sand extraction in New Zealand: Potential trace metal exposure of benthic and pelagic biota. MARINE POLLUTION BULLETIN 2017; 123:324-328. [PMID: 28916349 DOI: 10.1016/j.marpolbul.2017.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Plans to exploit an offshore source of iron sand in South Taranaki Bight (STB), New Zealand, caused concerns that such exploitation may expose benthic and pelagic biota to elevated trace metal concentrations. We conducted dilute-acid extractions and standard elutriate tests to investigate the potential of this exploitation to (1) create a new seafloor with elevated trace metal content, (2) mobilise trace metals during iron sand extraction and, (3) enrich the returning process seawater, which feeds iron sand through mills, with trace metals. We found that recruits of freshly uncovered sediment may encounter higher-than-natural concentrations of cadmium, nickel and chromium (but not of copper, lead, and zinc) and propose to investigate the bioavailability of these metals. Elutriate test with raw and milled iron sand revealed that, for nickel and copper, dilution of the process seawater may be required to meet the local water quality guideline. We argue that this dilution can be achieved by adjustment of the mass and seawater balance of the offshore extraction process.
Collapse
Affiliation(s)
- Kay Vopel
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Chris Pook
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Peter Wilson
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - John Robertson
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
22
|
Savorelli F, Manfra L, Croppo M, Tornambè A, Palazzi D, Canepa S, Trentini PL, Cicero AM, Faggio C. Fitness Evaluation of Ruditapes philippinarum Exposed to Ni. Biol Trace Elem Res 2017; 177:384-393. [PMID: 27826804 DOI: 10.1007/s12011-016-0885-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/21/2016] [Indexed: 12/16/2022]
Abstract
In this study, long-term effects of Ni, a widespread heavy metal in the aquatic ecosystems, have been determined on growth and lethality of the clam Ruditapes philippinarum, a known bioindicator of the marine environment. Three/four-month-old bivalves have been exposed to different concentrations of Ni dissolved in synthetic seawater. Growth and lethality as endpoints after 28 days of treatment have been observed. Obtained results are the following: EC25 = 3.97 ± 0.94 and 9.45 ± 1.59 mg/L and NOEC = 1.56 and 6.25 mg/L for growth and mortality, respectively. Moreover, this study can be considered a new tool for the evaluation of fitness of bivalve clam, together with other biological responses following to the biological impacts of metal pollution.
Collapse
Affiliation(s)
- F Savorelli
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - L Manfra
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy.
- Institute for the Coastal Marine Environment, National Research Council (CNR IAMC), Taranto, Italy.
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| | - M Croppo
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - A Tornambè
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - D Palazzi
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - S Canepa
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - P L Trentini
- Regional Agency for Environmental Protection in Emilia-Romagna (ARPA ER), Ferrara, Italy
| | - A M Cicero
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - C Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
23
|
Nogueira LS, Bianchini A, Smith S, Jorge MB, Diamond RL, Wood CM. Physiological effects of five different marine natural organic matters (NOMs) and three different metals (Cu, Pb, Zn) on early life stages of the blue mussel ( Mytilus galloprovincialis). PeerJ 2017; 5:e3141. [PMID: 28413723 PMCID: PMC5391792 DOI: 10.7717/peerj.3141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
Metals are present in aquatic environments as a result of natural and anthropogenic inputs, and may induce toxicity to organisms. One of the main factors that influence this toxicity in fresh water is natural organic matter (NOM) but all NOMs are not the same in this regard. In sea water, possible protection by marine NOMs is not well understood. Thus, our study isolated marine NOMs by solid-phase extraction from five different sites and characterized them by excitation-emission fluorescence analysis—one inshore (terrigenous origin), two offshore (autochthonous origin), and two intermediate in composition (indicative of a mixed origin). The physiological effects of these five NOMS alone (at 8 mg/L), of three metals alone (copper, lead and zinc at 6 µg Cu/L, 20 µg Pb/L, and 25 µg Zn/L respectively), and of each metal in combination with each NOM, were evaluated in 48-h exposures of mussel larvae. Endpoints were whole body Ca2++Mg2+-ATPase activity, carbonic anhydrase activity and lipid peroxidation. By themselves, NOMs increased lipid peroxidation, Ca2++Mg2+-ATPase, and/or carbonic anhydrase activities (significant in seven of 15 NOM-endpoint combinations), whereas metals by themselves did not affect the first two endpoints, but Cu and Pb increased carbonic anhydrase activities. In combination, the effects of NOMs predominated, with the metal exerting no additional effect in 33 out of 45 combinations. While NOM effects varied amongst different isolates, there was no clear pattern with respect to optical or chemical properties. When NOMs were treated as a single source by data averaging, NOM had no effect on Ca2++Mg2+-ATPase activity but markedly stimulated carbonic anhydrase activity and lipid peroxidation, and there were no additional effects of any metal. Our results indicate that marine NOMs may have direct effects on this model marine organism, as well as protective effects against metal toxicity, and the quality of marine NOMs may be an important factor in these actions.
Collapse
Affiliation(s)
- Lygia Sega Nogueira
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Adalto Bianchini
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Marianna Basso Jorge
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada.,Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Rio Grande do Sul, Brazil
| | - Rachael L Diamond
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada
| |
Collapse
|
24
|
Blewett TA, Leonard EM. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 223:311-322. [PMID: 28122673 DOI: 10.1016/j.envpol.2017.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 05/07/2023]
Abstract
In freshwater settings the toxicity of the trace metal nickel (Ni) is relatively well understood. However, until recently, there was little knowledge regarding Ni toxicity in waters of higher salinity, where factors such as water chemistry and the physiology of estuarine and marine biota would be expected to alter toxicological impact. This review summarizes recent literature investigating Ni toxicity in marine and estuarine invertebrates and fish. As in freshwater, three main mechanisms of Ni toxicity exist: ionoregulatory impairment, inhibition of respiration, and promotion of oxidative stress. However, unlike in freshwater biota, where mechanisms of toxicity are largely Class-specific, the delineation of toxic mechanisms between different species is less defined. In general, despite changes in Ni speciation in marine waters, organism physiology appears to be the main driver of toxic impact, a fact that will need to be accounted for when adapting regulatory tools (such as bioavailability normalization) from freshwater to estuarine and marine environments.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, AB, Canada.
| | - Erin M Leonard
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
25
|
Gissi F, Stauber JL, Binet MT, Golding LA, Adams MS, Schlekat CE, Garman ER, Jolley DF. A review of nickel toxicity to marine and estuarine tropical biota with particular reference to the South East Asian and Melanesian region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 218:1308-1323. [PMID: 27622840 DOI: 10.1016/j.envpol.2016.08.089] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The South East Asian Melanesian (SEAM) region contains the world's largest deposits of nickel lateritic ores. Environmental impacts may occur if mining operations are not adequately managed. Effects data for tropical ecosystems are required to assess risks of contaminant exposure and to derive water quality guidelines (WQG) to manage these risks. Currently, risk assessment tools and WQGs for the tropics are limited due to the sparse research on how contaminants impact tropical biota. As part of a larger project to develop appropriate risk assessment tools to ensure sustainable nickel production in SEAM, nickel effects data were required. The aim of this review was to compile data on the effects of nickel on tropical marine, estuarine, pelagic and benthic species, with a particular focus on SEAM. There were limited high quality chronic nickel toxicity data for tropical marine species, and even fewer for those relevant to SEAM. Of the data available, the most sensitive SEAM species to nickel were a sea urchin, copepod and anemone. There is a significant lack of high quality chronic data for several ecologically important taxonomic groups including cnidarians, molluscs, crustaceans, echinoderms, macroalgae and fish. No high quality chronic nickel toxicity data were available for estuarine waters or marine and estuarine sediments. The very sparse toxicity data for tropical species limits our ability to conduct robust ecological risk assessment and may require additional data generation or read-across from similar species in other databases (e.g. temperate) to fill data gaps. Recommendations on testing priorities to fill these data gaps are presented.
Collapse
Affiliation(s)
- Francesca Gissi
- CSIRO Oceans and Atmosphere, Lucas Heights, 2234, NSW, Australia; University of Wollongong, School of Chemistry, Wollongong, 2522, NSW, Australia.
| | | | | | - Lisa A Golding
- CSIRO Land and Water, Lucas Heights, 2234, NSW, Australia
| | - Merrin S Adams
- CSIRO Land and Water, Lucas Heights, 2234, NSW, Australia
| | | | - Emily R Garman
- Nickel Producers Environmental Research Association, Durham, NC, USA
| | - Dianne F Jolley
- University of Wollongong, School of Chemistry, Wollongong, 2522, NSW, Australia
| |
Collapse
|
26
|
Blewett TA, Wood CM, Glover CN. Salinity-dependent nickel accumulation and effects on respiration, ion regulation and oxidative stress in the galaxiid fish, Galaxias maculatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:132-141. [PMID: 27077552 DOI: 10.1016/j.envpol.2016.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
Inanga (Galaxias maculatus) are a euryhaline and amphidromous Southern hemisphere fish species inhabiting waters highly contaminated in trace elements such as nickel (Ni). Ni is known to exert its toxic effects on aquatic biota via three key mechanisms: inhibition of respiration, impaired ion regulation, and stimulation of oxidative stress. Inanga acclimated to freshwater (FW), 50% seawater (SW) or 100% SW were exposed to 0, 150 or 2000 μg Ni L(-1), and tissue Ni accumulation, metabolic rate, ion regulation (tissue ions, calcium (Ca) ion influx), and oxidative stress (catalase activity, protein carbonylation) were measured after 96 h. Ni accumulation increased with Ni exposure concentration in gill, gut and remaining body, but not in liver. Only in the gill was Ni accumulation affected by exposure salinity, with lower branchial Ni burdens in 100% and 50% SW inanga, relative to FW fish. There were no Ni-dependent effects on respiration, or Ca influx, and the only Ni-dependent effect on tissue ion content was on gill potassium. Catalase activity and protein carbonylation were affected by Ni, primarily in FW, but only at 150 μg Ni L(-1). Salinity therefore offsets the effects of Ni, despite minimal changes in Ni bioavailability. These data suggest only minor effects of Ni in inanga, even at highly elevated environmental Ni concentrations.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biology, McMaster University, Ontario, Canada; Department of Biological Sciences, University of Alberta, Canada.
| | - Chris M Wood
- Department of Biology, McMaster University, Ontario, Canada; Department of Zoology, University of British Columbia, Canada
| | - Chris N Glover
- School of Biological Sciences, University of Canterbury, New Zealand; Faculty of Science and Technology, Athabasca University, Alberta, Canada
| |
Collapse
|