1
|
Hua Y, Meng X, Zhao G, Li M, Wu X, Zhang X, Liu Q, Cai T, Yang J, Zhang WX, Hu N. Uranium immobilization via sulfur-modified Fe 0 nanoparticles: U(VI) trapping kinetics and long-term stability evaluation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138093. [PMID: 40184976 DOI: 10.1016/j.jhazmat.2025.138093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The modification of nanoscale zero-valent iron (nZVI) by loading or incorporating sulfur into the iron crystal lattice can augment their efficacy in the removal of hydrophobic contaminants from wastewater. Nevertheless, the reactivity of sulfur-embedded nZVI (SnZVI) in immobilizing hydrophilic uranyl ions and the long-term stability of the sequestered uranium has received little attention. This study employed Na2S2O4 to modify the nZVI with different S/Fe molar ratios (0.1 and 0.3), following one-step and two-step approaches to create SnZVI-1 and SnZVI-2, respectively. Both experimental and theoretical calculation results revealed that the U(VI) ions exhibited low affinity for the surface of SnZVI. Additionally, the hindered electron transfer between the electron donors of SnZVI and U(VI) led to a diminished U(VI) reduction efficiency for SnZVI-1 (50.71 %∼67.74 %) and SnZVI-2 (68.03 %∼86.89 %), inferior to that of nZVI (78.63 %∼90.78 %). Consequently, the uranium detachment ratios of SnZVI (0.04 %∼0.85 %) during the 210-day stability assessment were higher compared to those of nZVI (0.04 %∼0.34 %). Hence, this study offered novel insights into how sulfur affected the adsorptive and redox properties of nZVI for U(VI) immobilization through solid and aqueous samples analyses, complemented by theoretical calculations. The findings are instrumental in designing SnZVI for effective and environmentally sound treatment of uranium-contaminated radioactive wastewater.
Collapse
Affiliation(s)
- Yilong Hua
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; Key Discipline Laboratory in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Xue Meng
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Zhao
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; Key Discipline Laboratory in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Wu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xiaowen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qing Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; Key Discipline Laboratory in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Tao Cai
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Hu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Nunez Garcia A, Lee M, Ding L, Liang X, Wang C, He F, O'Carroll DM. Sulfidation of Magnetite for Superior Dechlorination of Trichloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3172-3182. [PMID: 39902826 DOI: 10.1021/acs.est.4c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The reported contributions of magnetite to the abiotic natural attenuation of chlorinated ethenes have generated interest in its potential for soil and groundwater remediation. In this study, we investigated the impact of the two-step sulfidation method on the physicochemical properties and reactivity of magnetite with trichloroethene (TCE). We systematically evaluated the effect of different sulfur precursors (dithionite, thiosulfate, and sulfide) and sulfur-to-iron ([S/Fe]dosed) molar ratios on the reactivity. Results were compared to those of sulfidated nZVI (S-nZVI) as a benchmark for assessing the efficacy of sulfidated magnetite (S-Fe3O4). The findings indicated limited reactivity of magnetite when sulfidated with dithionite and thiosulfate. However, sulfidation with sulfide yielded reaction rates comparable to those of S-nZVI, particularly at lower [S/Fe]dosed ratios. At higher [S/Fe]dosed ratios (>0.1), sulfide-sulfidated magnetite (S-Fe3O4_S) exhibited reaction rates surpassing those of S-nZVI, with the major dechlorination product being acetylene. Nonetheless, reusability experiments demonstrated that the performance of S-Fe3O4 diminished with aging. These results show that S-Fe3O4_S achieved complete transformation of TCE to acetylene, with reaction rates comparable to S-nZVI. Given its lower cost of production, engineered S-Fe3O4_S remediation systems could serve as a more affordable alternative for in situ chemical reduction of TCE with further research and development.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, ON N6A 5B8, Canada
| | - Matt Lee
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Ding
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiguang Liang
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chengqi Wang
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feng He
- Institute of Environmental Chemistry and Pollution Control College of Environment, Zhejiang University of Technology, 18 Chaowang Rd., Hangzhou 310014, China
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Chen W, Garcia AN, Phillips E, De Vera J, Passeport E, O'Carroll DM, Sleep B, Lollar BS. Quantifying remediation of chlorinated volatile compounds by sulfidated nano zerovalent iron treatment using numerical modeling and CSIA. WATER RESEARCH 2024; 263:122149. [PMID: 39098153 DOI: 10.1016/j.watres.2024.122149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has demonstrated promising reactivity and longevity for remediating chlorinated volatile compounds (cVOC) contaminants in laboratory tests. However, its effectiveness in field applications remains inadequately evaluated. This study provides the first quantitative evaluation of the long-term effectiveness of carboxymethyl cellulose-stabilized S-nZVI (CMC-S-nZVI) at a cVOC-contaminated field site. A reactive transport model-based numerical approach delineates the change in cVOC concentrations and carbon isotope values (i.e., δ13C from compound-specific stable isotope analysis (CSIA)) caused by dissolution of dense non-aqueous phase liquid, sorption, and pathway-specific degradation and production, respectively. This delineation reveals quantitative insights into remediation effectiveness typically difficult to obtain, including extent of degradation, contributions of different degradation pathways, and degradation rate coefficients. Significantly, even a year after CMC-S-nZVI application, degradation remains an important process effectively removing various cVOC contaminants (i.e., chlorinated ethenes, 1,2-dichloroethanes, and chlorinated methanes) at an extent varying from 5 %-62 %. Although the impacts of CMC-S-nZVI abundance on degradation vary for different cVOC and for different sampling locations at the site, for the primary site contaminants of tetrachloroethene and trichloroethene, their predominance of dichloroelimination pathway (≥ 88 %), high degradation rate coefficient (0.4-1.7 d-1), and occurrence at locations with relatively high CMC-S-nZVI abundance strongly indicate the effectiveness of abiotic remediation. These quantitative assessments support that CMC-S-nZVI supports sustainable ZVI-based remediation. Further, the novel numerical approach presented in this study provides a powerful tool for quantitative cVOC remediation assessments at complex field sites where multiple processes co-occur to control both concentration and CSIA data.
Collapse
Affiliation(s)
- Weibin Chen
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada
| | - Ariel Nunez Garcia
- Department of Civil Engineering, Queen's University, 58 University Ave, Kingston, Ontario, K7L 3N9, Canada
| | - Elizabeth Phillips
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada
| | - Joan De Vera
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada
| | - Elodie Passeport
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Brent Sleep
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Barbara Sherwood Lollar
- Department of Earth Sciences, University of Toronto, 22 Ursula Franklin Street, Toronto, Ontario, M5S 3B1, Canada; Institut de Physique du Globe de Paris (IPGP), Université Paris Cité, 1 Rue Jussieu, Paris 75005, France.
| |
Collapse
|
4
|
Sun Y, Zheng K, Du X, Qin H, Guan X. Insights into the contrasting effects of sulfidation on dechlorination of chlorinated aliphatic hydrocarbons by zero-valent iron. WATER RESEARCH 2024; 255:121494. [PMID: 38552485 DOI: 10.1016/j.watres.2024.121494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Contrasting effects of sulfidation on contaminants reduction by zero-valent iron (ZVI) has been reported in literature but the underlying mechanisms remain unclear. Here, under well-controlled conditions, we compared the performance of ZVI and sulfidated ZVI (S-ZVI) toward a series of chlorinated compounds. Results revealed that, although S-ZVI was more reactive than ZVI toward hexachloroethane, pentachloroethane, tetrachloroethylene, and trichloroethene, sulfidation hindered the dechlorination of the other ten tested chlorinated aliphatics by a factor of 1.5-125. Moreover, S-ZVI may lead to an accumulation of toxic partially-dechlorinated products. Analogous to its effects on ZVI reactivity, sulfidation also exerted positive, negligible, or negative effects on the electron efficiency of ZVI. Solvent kinetic isotope effect analysis suggested that direct electron transfer rather than reaction with atomic hydrogen was the dominant reduction mechanism in S-ZVI system. Hence, the sulfidation enhancing effects could be expected only when direct electron transfer is the preferred reduction route for target contaminants. Furthermore, linear free energy relationships analysis indicated one-electron reduction potential could be used to predict the transformation of chlorinated ethanes by S-ZVI, whereas for chlorinated ethenes, their adsorption properties on S-ZVI determined the dechlorination process. All these findings may offer guidance for the decision-making regarding the application of S-ZVI.
Collapse
Affiliation(s)
- Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Kaiwei Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xueying Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hejie Qin
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Wang Z, He X, Li X, Chen L, Tang T, Cui G, Zhang Q, Liu Y. Long-term stability and toxicity effects of three-dimensional electrokinetic remediation on chromium-contaminated soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122461. [PMID: 37689131 DOI: 10.1016/j.envpol.2023.122461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
The three-dimensional electrokinetic remediation (3D EKR) achieved efficient removal of chromium (Cr) from the soil through mechanisms including electromigration, electroosmosis, and redox reactions. In this study, the long-term stability, leaching toxicity, bioavailability, and phytotoxicity of Cr in remediated soils were systematically analyzed to comprehensively evaluate the effectiveness of the 3D EKR method. The results showed that the concentration of hexavalent chromium (Cr (VI)) in the leachate of the 3D EKR system with sulfidated nano-scale zerovalent iron (S-nZVI) was more than 40% lower than those of the other 3D electrode groups, and the time required to reach the level III standard of groundwater quality criterion in China (0.05 mg/L, GB/T 14848-2017) was significantly shortened. The stabilization of Cr(VI) in contaminated soil after 3D EKR was maintained for 300 pore volumes (PVs), indicating that the treated Cr(VI) had good long-term stability. The leaching toxicity and bioaccessibility of Cr were assessed by the synthetic precipitation leaching procedure (SPLP), the toxicity characteristic leaching procedure (TCLP), and the physiologically based extraction test (PBET). The concentration of Cr(VI) in the SPLP, TCLP, and PBET leachates of the S-nZVI group decreased by more than 25% compared to the other 3D electrode groups, corresponding to the decrease in leaching toxicity and bioavailability of the treated Cr during the 15-day remediation period. In addition, the germination rate of wheat seeds and the average biomass of wheat seedlings in the S-nZVI group under alkaline conditions (EE) were higher than those in the non-polluting group (Blank-OH), indicating that the remediated soil had no obvious toxicity to wheat. In summary, 3D EKR achieved a satisfactory and stable remediation effect on Cr-contaminated soil, especially when using S-nZVI as the 3D electrode.
Collapse
Affiliation(s)
- Zheng Wang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| | - Xiao He
- China MCC5 Group Corp. Ltd., Chengdu, 610063, China
| | - Xin Li
- Ecological Environment Consulting Department, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, China
| | - Liuzhou Chen
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Tian Tang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Guodong Cui
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Qiming Zhang
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University; Beijing Key Laboratory for Solid Waste Utilization and Management, Beijing 100871, China.
| |
Collapse
|
6
|
Ma B, Yao J, Knudsen TŠ, Pang W, Liu B, Zhu X, Cao Y, Zhao C. Dithionite accelerated copper slag heterogeneous-homogeneous coupled Fenton degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131797. [PMID: 37302188 DOI: 10.1016/j.jhazmat.2023.131797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
The heterogeneous-homogeneous coupled Fenton (HHCF) processes combine the advantages of rapid reaction and the catalyst reuse, which makes them attractive for wastewater treatment. Nevertheless, the lack of both, cost-effective catalysts and the desirable Fe3+/Fe2+ conversion mediators limit the development of HHCF processes. This study investigates a prospective HHCF process, in which solid waste copper slag (CS) and dithionite (DNT) act as catalyst and mediator of Fe3+/Fe2+ transformation, respectively. DNT enables controlled leaching of iron and a highly efficient homogeneous Fe3+/Fe2+ cycle by dissociating to SO2- • under acidic conditions, leading to the enhanced H2O2 decomposition and •OH generation (from 48 μmol/L to 399 μmol/L) for p-chloroaniline (p-CA) degradation. The removal rate of p-CA in the CS/DNT/H2O2 system increased by 30 times in comparison with the CS/H2O2 system (increased from 1.21 × 10-3 min-1 to 3.61 × 10-2 min-1). Moreover, batch dosing of H2O2 can greatly promote the yield of •OH (from 399 μmol/L to 627 μmol/L), by mitigating the side reactions between H2O2 and SO2- •. This study highlights the importance of the iron cycle regulation for improvement of the Fenton efficiency and develops a cost-effective Fenton system for organic contaminants elimination in wastewater.
Collapse
Affiliation(s)
- Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Tatjana Šolević Knudsen
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia
| | - Wancheng Pang
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bang Liu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China; Equipe Environnement et Microbiologie, MELODY group, Universit´e de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| | - Xiaozhe Zhu
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ying Cao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| | - Chenchen Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
7
|
Wu S, Cai S, Qin F, He F, Liu T, Yan X, Wang Z. Reductive dechlorination of chlorinated ethenes by ball milled and mechanochemically sulfidated microscale zero valent iron: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130730. [PMID: 36630876 DOI: 10.1016/j.jhazmat.2023.130730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm). We show that simple ball milling exposed the active Fe0 sites, while mechanochemical sulfidation diminished Fe0 sites and meanwhile increased S2- sites. Mechanochemical sulfidation with [S/Fe]dosed increased from 0 to 0.20 promoted the particle reactivity most for TCE dechlorination (∼14-fold), followed by PCE and 1,1-DCE while it diminished the reactivity for trans-DCE (∼0.4-fold), cis-DCE (∼0.02-fold) and VC (∼0.002-fold) compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC and trans-DCE dechlorination positively correlated with surface Fe0 content, suggesting their dechlorination was mainly mediated by Fe0 site or reactive atomic hydrogen. The kSA of TCE dechlorination positively correlated with surface S2- content and the dechlorination mainly occurred on S2- sites via direct electron transfer. Increased sulfidation favored direct electron transfer mechanism. The kSA of PCE and 1,1-DCE was not dependent on either parameter and their dechlorination was equally achieved through either mechanism.
Collapse
Affiliation(s)
- Shuyan Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengyang Qin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Xiuping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Chen B, Lv N, Xu W, Gong L, Sun T, Liang L, Gao B, He F. Transport of nanoscale zero-valent iron in saturated porous media: Effects of grain size, surface metal oxides, and sulfidation. CHEMOSPHERE 2023; 313:137512. [PMID: 36495971 DOI: 10.1016/j.chemosphere.2022.137512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Knowledge of the fate and transport of nanoscale zero-valent iron (nZVI) in saturated porous media is crucial to the development of in situ remediation technologies. This work systematically compared the retention and transport of carboxymethyl cellulose (CMC) modified nZVI (CMC-nZVI) and sulfidated nZVI (CMC-S-nZVI) particles in saturated columns packed with quartz sand of various grain sizes and different surface metal oxide coatings. Grain size reduction had an inhibitory effect on the transport of CMC-S-nZVI and CMC-nZVI due to increasing immobile zone deposition and straining in the columns. Metal oxide coatings had minor effect on the transport of CMC-S-nZVI and CMC-nZVI because the sand surface was coated by the free CMC in the suspensions, reducing the electrostatic attraction between the nZVI and surface metal oxides. CMC-S-nZVI displayed greater breakthrough (C/C0 = 0.82-0.90) and higher mass recovery (84.9%-89.3%) than CMC-nZVI (C/C0 = 0.70-0.80 and mass recovery = 70.9%-79.6%, respectively) under the same experimental conditions. A mathematical model based on the advection-dispersion equation simulated the experimental data of nZVI breakthrough curves very well. Findings of this study suggest sulfidation could enhance the transport of CMC-nZVI in saturated porous media with grain and surface heterogeneities, promoting its application in situ remediation.
Collapse
Affiliation(s)
- Bo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Neng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenfeng Xu
- Hangzhou Environmental Protection Science Research&Design Coltd, Hangzhou, 310014, China
| | - Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Taoyu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, 37996, United States
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Chen Z, Cao W, Bai H, Zhang R, Liu Y, Li Y, Song J, Liu J, Ren G. Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:761-782. [PMID: 36789716 DOI: 10.2166/wst.2023.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chlorinated hydrocarbons (CHCs) are often used in industrial processes, and they have been found in groundwater with increasing frequency in recent years. Several typical CHCs, including trichloroethylene (TCE), 1,1,1-trichloroethane (TCA), carbon tetrachloride (CT), etc., have strong cytotoxicity and carcinogenicity, posing a serious threat to human health and ecological environment. Advanced persulfate (PS) oxidation technology based on nano zero-valent iron (nZVI) has become a research hotspot for CHCs degradation in recent years. However, nZVI is easily oxidized to form the surface passivation layer and prone to aggregation in practical application, which significantly reduces the activation efficiency of PS. In order to solve this problem, various nZVI modification solutions have been proposed. This review systematically summarizes four commonly used modification methods of nZVI, and the theoretical mechanisms of PS activated by primitive and modified nZVI. Besides, the influencing factors in the engineering application process are discussed. In addition, the controversial views on which of the two (SO4·- and ·OH) is dominant in the nZVI/PS system are summarized. Generally, SO4·- predominates in acidic conditions while ·OH prefers neutral and alkaline environments. Finally, challenges and prospects for practical application of CHCs removal by nZVI-based materials activating PS are also analyzed.
Collapse
Affiliation(s)
- Zhiguo Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Wenqing Cao
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - He Bai
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Rong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yiyun Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Yan Li
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Jingpeng Song
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Juncheng Liu
- Tianjin Huakan Environmental Protection Technology Co., Ltd, Tianjin 300170, China
| | - Gengbo Ren
- School of Energy and Environment Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Fan Q, Wang L, Fu Y, Li Q, Liu Y, Wang Z, Zhu H. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:159003. [PMID: 36155041 DOI: 10.1016/j.scitotenv.2022.159003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A majority of clay minerals contain Fe, and the redox cycling of Fe(III)/Fe(II) in clay minerals has been extensively studied as it may fuel the biogeochemical cycles of nutrients and govern the mobility, toxicity and bioavailability of a number of environmental contaminants. There are three types of Fe in clay minerals, including structural Fe sandwiched in the lattice of clays, Fe species in interlayer space and adsorbed on the external surface of clays. They exhibit distinct reactivity towards contaminants due to their differences in redox properties and accessibility to contaminant species. In natural environments, microbially driven Fe(III)/Fe(II) redox cycling in clay minerals is thought to be important, whereas reductants (e.g., dithionite and Fe(II)) or oxidants (e.g., peroxygens) are capable of enhancing the rates and extents of redox dynamics in engineered systems. Fe(III)-containing clay minerals can directly react with oxidizable pollutants (e.g., phenols and polycyclic aromatic hydrocarbons (PAHs)), whereas structural Fe(II) is able to react with reducible pollutants, such as nitrate, nitroaromatic compounds, chlorinated aliphatic compounds. Also structural Fe(II) can transfer electrons to oxygen (O2), peroxymonosulfate (PMS), or hydrogen peroxide (H2O2), yielding reactive radicals that can promote the oxidative transformation of contaminants. This review summarizes the recent discoveries on redox reactivity of Fe in clay minerals and its links to fates of environmental contaminants. The biological and chemical reduction mechanisms of Fe(III)-clay minerals, as well as the interaction mechanism between Fe(III) or Fe(II)-containing clay minerals and contaminants are elaborated. Some knowledge gaps are identified for better understanding and modelling of clay-associated contaminant behavior and effective design of remediation solutions.
Collapse
Affiliation(s)
- Qingya Fan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Lingli Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Fu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Qingchao Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yunjiao Liu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zhaohui Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; State Key Laboratory of Mineral Processing, Beijing 102628, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, China.
| | - Huaiyong Zhu
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
11
|
Jeong WG, Kim JG, Lee SM, Baek K. CaO 2-based electro-Fenton-oxidation of 1,2-dichloroethane in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157065. [PMID: 35780882 DOI: 10.1016/j.scitotenv.2022.157065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
It has been well recognized that the Fenton reaction requires a rigorous pH control and suffers from the fast self-degradation of H2O2. In an effort to resolve the technical demerits of the conventional Fenton reaction, particular concern on the use of CaO2-based Fenton reaction was paid in this study. To realize the practical use of CaO2 in the Fenton reaction for groundwater remediation, it could be of great importance to control its reaction rate in the subsurface. As such, this study laid great emphasis on the combined process of electrochemical oxidation and CaO2-based Fenton oxidation, using 1,2-dichloroethane (1,2-DCA) as a model compound. It was hypothesized that the reaction rate is also highly contingent on the formation of Fe(II) (stemmed from iron anode oxidation). Eighty percent of 1,2-DCA were degraded by the CaO2-based Fenton reaction. The final pH was neutral, inferring that the reaction could be a viable option for the subsurface environment. Moreover, the supply of electric current in an iron anode expedited 1,2-DCA degradation efficiency from 35 % to 62 % via electrically generated Fe(II), which donated electrons to H2O2, producing more hydroxyl radicals. An anode-cathode configuration from the single-well system enhanced the degradation of 1,2-DCA, with less amount of energy consumption than the double-well system. Based on results, CaO2-based electro-Fenton oxidation can remove well 1,2-DCA in groundwater and can be a strategic measure for groundwater remediation.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Su-Min Lee
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
12
|
Le ST, Israpanich A, Phenrat T. Using sequential H 2O 2 addition to sustain 1,2-dichloroethane detoxification by a nanoscale zerovalent iron-induced Fenton's system at a natural pH. CHEMOSPHERE 2022; 305:135376. [PMID: 35716714 DOI: 10.1016/j.chemosphere.2022.135376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
1,2-dichloroethane (1,2-DCA) is a chlorinated hydrocarbon used for polyvinyl chloride plastic production. As such, 1,2-DCA is a common persistent contaminant in saturated zones. While nanoscale zerovalent iron (NZVI) is considered an effective reductant for removing a wide range of chlorinated hydrocarbons, 1,2-DCA is resistant to reduction by NZVI as well as by modified forms of NZVI (e.g., sulfidated-NZVI). Hydroxyl radicals produced in Fenton's reaction can effectively degrade 1,2-DCA, but Fenton's reaction requires the acidification of saturated zones to achieve a groundwater pH of 3 to facilitate the catalytic reaction. To overcome this problem, this study has developed a sequential treatment process using an NZVI-induced Fenton-like reaction that can effectively degrade 1,2-DCA at an initially neutral pH range. The experiments were conducted using a high 1,2-DCA concentration (2000 mg/L) to evaluate the feasibility of using the treatment process at source zones. The process degraded 99% of 1,2-DCA with a pseudo-first-order rate constant of 0.49 h-1. Unlike the single-stage treatment process, the sequential treatment can control the used H2O2 concentration in the system, thus sustaining the reaction and resulting in more efficient 1,2-DCA degradation. To mimic subsurface conditions, batch experiments were conducted to remove 1,2-DCA sorbed in contaminated soil. The results show that 99% removal of 1,2-DCA was obtained within 16 h. Additionally, this study suggests that the NZVI can be used for at least three consecutive 1,2-DCA degradation cycles while maintaining high removal efficiency.
Collapse
Affiliation(s)
- Song-Thao Le
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand
| | - Atsada Israpanich
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand
| | - Tanapon Phenrat
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Sustainability of Health, Environment and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand.
| |
Collapse
|
13
|
Ai D, Wei T, Meng Y, Chen X, Wang B. Ball milling sulfur-doped nano zero-valent iron @biochar composite for the efficient removal of phosphorus from water: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2022; 357:127316. [PMID: 35597516 DOI: 10.1016/j.biortech.2022.127316] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
This study successfully prepared a novel sulfur-doped nano zero-valent iron @biochar (BM-SnZVI@BC) by modifying corn stover biochar with Fe0 and S0 using a mechanical ball milling method for effective phosphorus (P) adsorption in the waterbody. Batch experiments revealed that BM-SnZVI@BC (BC/S0/Fe0 = 3:1:1) reached a Qmax of 25.00 mg P/g and followed PFO and Langmuir models. This work had shown that electrostatic attraction, surface chemical precipitation, hydrogen bonding, and ligand effects all contributed to P removal. Since the FeS layer mitigated the oxidation-induced surface passivation of nZVI, sulfidation significantly extended the lifetime of BM-SnZVI@BC, removing 84.4% of P even after 60 d aging in air. The regeneration experiments of composites showed that re-ball milling destroyed the surface iron oxide layer to improve the properties of the recovered material. This is an essential step in the design of P-removal agents to implement anti-aging and commercialization of adsorbents for engineering applications.
Collapse
Affiliation(s)
- Dan Ai
- School of Environmental & Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Taiqing Wei
- School of Environmental & Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yang Meng
- School of Environmental & Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Xu Chen
- School of Environmental & Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Bo Wang
- School of Environmental & Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
14
|
Mangayayam MC, Perez JPH, Alonso-de-Linaje V, Dideriksen K, Benning LG, Tobler DJ. Sulfidation extent of nanoscale zerovalent iron controls selectivity and reactivity with mixed chlorinated hydrocarbons in natural groundwater. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128534. [PMID: 35259697 DOI: 10.1016/j.jhazmat.2022.128534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) exhibits low anoxic oxidation and high reactivity towards many chlorinated hydrocarbons (CHCs). However, nothing is known about S-nZVI reactivity once exposed to complex CHC mixtures, a common feature of CHC plumes in the environment. Here, three S-nZVI materials with varying iron sulfide (mackinawite, FeSm) shell thickness and crystallinity were exposed to groundwater containing a complex mixture of chlorinated ethenes, ethanes, and methanes. CHC removal trends yielded pseudo-first order rate constants (kobs) that decreased in the order: trichloroethene > trans-dicloroethene > 1,1-dichlorethene > trichloromethane > tetrachloroethene > cis-dichloroethene > 1,1,2-trichloroethane, for all S-nZVI materials. These kobs trends showed no correlation with CHC reduction potentials based on their lowest unoccupied molecular orbital energies (ELUMO) but absolute values were affected by the FeSm shell thickness and crystallinity. In comparison, nZVI reacted with the same CHCs groundwater, yielded kobs that linearly correlated with CHC ELUMO values (R2 = 0.94) and that were lower than S-nZVI kobs. The CHC selectivity induced by sulfidation treatment is explained by FeSm surface sites having specific binding affinities towards some CHCs, while others require access to the metallic iron core. These new insights help advance S-nZVI synthesis strategies to fit specific CHC treatment scenarios.
Collapse
Affiliation(s)
- Marco C Mangayayam
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jeffrey Paulo H Perez
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Virginia Alonso-de-Linaje
- AECOM Environment Madrid, Spain; GIR-QUESCAT, Departamento de Quimica Inorgánica, Universidad de Salamanca, Salamanca, Spain
| | - Knud Dideriksen
- Geological Survey of Denmark & Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark
| | - Liane G Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark; Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
15
|
Jeong WG, Kim JG, Baek K. Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128253. [PMID: 35033913 DOI: 10.1016/j.jhazmat.2022.128253] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Among the chlorinated aliphatic hydrocarbons, 1,2-dichloroethane (1,2-DCA) is widely used for the synthesis of vinyl chloride monomers. Despite the high demand for 1,2-DCA, it poses a risk to the environment because it is persistent and carcinogenic. Therefore, in this study, several reagents (dithionite, hydrosulfide, sulfite, persulfate, sulfate radicals, and hydroxyl radicals) were evaluated for the degradation of 1,2-DCA. Among these, the hydroxyl radicals generated by the Fenton reaction were the most suitable oxidant, decomposing 92% of 1,2-DCA. Chloride, one of the final oxidized products, was observed, which supported the oxidation reaction. Moreover, with an increasing concentration of hydroxyl radicals, the degradation of 1,2-DCA increased. Furthermore, sufficient amounts of hydrogen peroxide were more important than Fe(II) in the decomposition of 1,2-DCA. The radical reaction can generate larger molecules via the degradation of 1,2-DCA, which are degraded over time. The applicability of Fenton oxidation was evaluated using real 1,2-DCA-contaminated groundwater. Although the degradation of target contaminant was lowered due to the alkaline pH and the presence of chloride and bicarbonate ions in groundwater, the Fenton reaction was still efficient to oxidize 1,2-DCA. These results indicate that Fenton oxidation is an effective technique for the treatment of 1,2-DCA in contaminated groundwater.
Collapse
Affiliation(s)
- Won-Gune Jeong
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jong-Gook Kim
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Kitae Baek
- Department of Environment & Energy, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea; School of Civil, Environmental, and Resources-Energy Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju, Jeollabukdo 54896, Republic of Korea.
| |
Collapse
|
16
|
Xiao S, Jin Z, Dong H, Xiao J, Li Y, Li L, Li R, Chen J, Tian R, Xie Q. A comparative study on the physicochemical properties, reactivity and long-term performance of sulfidized nanoscale zerovalent iron synthesized with different kinds of sulfur precursors and procedures in simulated groundwater. WATER RESEARCH 2022; 212:118097. [PMID: 35081495 DOI: 10.1016/j.watres.2022.118097] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
There are plentiful ways to synthesize sulfidized nanoscale zerovalent iron (S-nZVI), and this study investigated the influence of sulfur reagents (Na2S, Na2S2O3, Na2S2O4) and sulfidation sequence (co-sulfidation and post-sulfidation method) on the physicochemical properties, reactivity, and long-term performance of S-nZVI in simulated groundwater. The results suggested that the co-sulfidized nZVI (S-nZVIco) has higher reactivity (∼2-fold) than S-nZVIpost due to the stronger electron transfer capacity, deriving from the higher content of Fe0 and reductive sulfur species. However, during aging, the reactivity of S-nZVIco would be lost more rapidly than S-nZVIpost, due to the faster corrosion of Fe0 and more oxidation of reductive sulfur species. S-nZVIpost has the superior long-term performance with the degradation rate of trichloroethylene (TCE) remained at 30%∼60% even after 90 d of aging. Sulfur precursors can control the selectivity of S-nZVI by affecting the sulfur speciation on the particle surface. The proportion of reductive sulfur species on S-nZVIpost synthesized by Na2S was higher than S-nZVIpost synthesized by Na2S2O3 or Na2S2O4, resulting in a higher selectivity of the former S-nZVIpost than the latter S-nZVIpost. In addition, sulfidation procedures and sulfur precursors did not affect the degradation pathway of TCE. Nevertheless, the degradation product distribution can be affected by the different physicochemical transformation of various types of S-nZVI with the aging time. These results indicated that sulfur reagents and sulfidation procedures have crucial effects on the reactivity and long-term performance of S-nZVI, which can be designed for the specific application scenarios.
Collapse
Affiliation(s)
- Shuangjie Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zilan Jin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Junyang Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yangju Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Rui Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Ran Tian
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
17
|
Xiang W, Chen H, Zhong Z, Zhang C, Lu X, Huang M, Zhou T, Yu P, Zhang B. Efficient degradation of carbamazepine in a neutral sonochemical FeS/persulfate system based on the enhanced heterogeneous-homogeneous sulfur-iron cycle. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Phouthavong V, Yan R, Nijpanich S, Hagio T, Ichino R, Kong L, Li L. Magnetic Adsorbents for Wastewater Treatment: Advancements in Their Synthesis Methods. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1053. [PMID: 35160996 PMCID: PMC8838955 DOI: 10.3390/ma15031053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023]
Abstract
The remediation of water streams, polluted by various substances, is important for realizing a sustainable future. Magnetic adsorbents are promising materials for wastewater treatment. Although numerous techniques have been developed for the preparation of magnetic adsorbents, with effective adsorption performance, reviews that focus on the synthesis methods of magnetic adsorbents for wastewater treatment and their material structures have not been reported. In this review, advancements in the synthesis methods of magnetic adsorbents for the removal of substances from water streams has been comprehensively summarized and discussed. Generally, the synthesis methods are categorized into five groups, as follows: direct use of magnetic particles as adsorbents, attachment of pre-prepared adsorbents and pre-prepared magnetic particles, synthesis of magnetic particles on pre-prepared adsorbents, synthesis of adsorbents on preprepared magnetic particles, and co-synthesis of adsorbents and magnetic particles. The main improvements in the advanced methods involved making the conventional synthesis a less energy intensive, more efficient, and simpler process, while maintaining or increasing the adsorption performance. The key challenges, such as the enhancement of the adsorption performance of materials and the design of sophisticated material structures, are discussed as well.
Collapse
Affiliation(s)
- Vanpaseuth Phouthavong
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Ruixin Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Supinya Nijpanich
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
| | - Takeshi Hagio
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ryoichi Ichino
- Department of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (V.P.); (S.N.); (T.H.)
- Institute of Materials Innovation, Institutes for Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (R.Y.); (L.L.)
| |
Collapse
|
19
|
Yang S, Liu A, Liu J, Liu Z, Zhang W. Advance of Sulfidated Nanoscale Zero-Valent Iron: Synthesis, Properties and Environmental Application. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22080345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Wu G, Kong W, Gao Y, Kong Y, Dai Z, Dan H, Shang Y, Wang S, Yin F, Yue Q, Gao B. Removal of chloramphenicol by sulfide-modified nanoscale zero-valent iron activated persulfate: Performance, salt resistance, and reaction mechanisms. CHEMOSPHERE 2022; 286:131876. [PMID: 34418657 DOI: 10.1016/j.chemosphere.2021.131876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Herein, sulfide-modified nanoscale zero-valent iron (S-nZVI) was prepared by a liquid-phase reduction route and then applied to activate persulfate (PS) for the degradation of chloramphenicol (CAP). The effects of Fe/S molar ratio, catalyst dosage, PS concentration, initial pH, and co-existing ions (Cl-, SO42-, CO32-) on the catalytic performance of S-nZVI/PS system were investigated. Simultaneously, the fluctuations of solution pH, oxidation-reduction potential, dissolved oxygen, and Fe2+ concentration were also monitored during the reaction. Results shown that 98.8 % of CAP could be removed under the optimum reaction conditions (S-nZVI dosage = 0.1 g/L, PS concentration = 3 mM, initial pH = 6.86). Compared to the pristine nZVI, the sulfidation behavior could critically improve the removal efficiency of CAP, ascribe to the enhancements of hydrophobicity of nZVI, production of hydroxyl radicals, and salt resistance. Furthermore, possible degradation pathways of CAP in S-nZVI/PS system were inferred based on liquid chromatography-mass spectrometry (LC-MS) and density functional theory (DFT) calculations. This study proves that the S-nZVI is a more promising catalyst for activating PS than nZVI, especially in the field of saline pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Guocui Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| | - Wenjia Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China.
| | - Yan Kong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| | - Zhenguo Dai
- Shandong Shanda WIT Science and Technology Co., Ltd., Jinan, 250061, Shandong, PR China
| | - Hongbing Dan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| | - Yanan Shang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| | | | | | - Qinyan Yue
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266 000, PR China
| |
Collapse
|
21
|
Xiu Q, Zhao S, Yang X, Sun S, Dai Y, Duan L, He L, He M, Song C, Wang S. Warrior's armor: Study on the aging of sulfidated micro-sized zero valent iron in air and its subsequent reactivity for chloramphenicol degradation in different acid systems. CHEMOSPHERE 2021; 285:131422. [PMID: 34242984 DOI: 10.1016/j.chemosphere.2021.131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/07/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In the practical application process, the reactivity and performance of ZVI-based materials when being placed in the air for a few days, weeks or months was worth studying. Most studies on the aging of ZVI were carried out in solution, only considering the reactivity of ZVI in aqueous solution. In this work, we investigated the degradation of chloramphenicol (CAP) in sulfuric acid (SA) and citric acid (CA) systems by sulfidated micro-sized zero-valent iron (S-mZVI) in air with different aging days. The results showed that with the increase of aging days in the air, the degradation effect of S-mZVI on CAP in different acid systems showed a similar trend (first increasing and then decreasing), the removal effect of S-mZVI on CAP reached the best within the aging time of 5-9 days. The degradation path of CAP could be divided into oxidation path and reduction path. The XPS and XRD characterization results of the materials on different aging days indicated that the characteristic peak of Fe3O4 was detected on the surface of the materials with the increase of aging days, which may be the reason for changing degradation efficiencies of CAP by S-mZVI for different aging days. In addition, in different systems of SA and CA, the degradation curves of CAP differed. This might be caused by two reasons: (1) CA could adsorb on S-mZVI while SA could not; (2) The initial pH of the CA system played a more significant effect on CAP degradation compared to that of the SA system.
Collapse
Affiliation(s)
- Qi Xiu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Xiaowei Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Huadian Qingdao Power Generation Corporation Limited, Qingdao, 226031, China
| | - Shiwen Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Liangfeng Duan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Lin He
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Permoserstrasse 15, 04318, Leipzig, Germany
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
22
|
Kong X, Xuan L, Fu Y, Yuan F, Qin C. Effect of the modification sequence on the reactivity, electron selectivity, and mobility of sulfidated and CMC-stabilized nanoscale zerovalent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148487. [PMID: 34166902 DOI: 10.1016/j.scitotenv.2021.148487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/16/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Dual modification in which carboxymethyl cellulose (CMC) stabilization and sulfidation are coupled is an effective strategy to solve the insufficient electron selectivity, reactivity, and mobility of nanoscale zerovalent iron (nZVI). We compared the sulfur content, suspension composition, viscosity, zeta potential, and sedimentation of dual-modified nZVI suspensions synthesized in different modification sequences to analyze the interaction among CMC, the sulfidation reagent, and nZVI. The results show that the dissolved CMC does not take up S2-, and the CMC coating on the surface does not block S2- during sulfidation. However, CMC can peel off the FeS shell, resulting in a low sulfur content in nZVI. The Na+ of the sulfidation reagent and the Fe2+ dissolved from the FeS precipitates reduce the CMC viscosity, causing accelerated sedimentation and reduced mobility of nZVI. The peeled off FeS shell increases the free Fe2+ concentration, thereby enhancing nitrobenzene reduction. Additionally, CMC promotes nitrobenzene reduction and hydrogen evolution reactions due to the increased nZVI dispersibility. These findings explain why postsulfidated and one-pot nZVI has higher reactivity and electron selectivity, while presulfidated nZVI has higher mobility. This study highlights the importance of the modification sequence for the dual-modified nZVI properties and provides support for the synthesis method.
Collapse
Affiliation(s)
- Xianglong Kong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Lishuang Xuan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Yufeng Fu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Fang Yuan
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
23
|
Zhang Y, Ozcer P, Ghoshal S. A comprehensive assessment of the degradation of C1 and C2 chlorinated hydrocarbons by sulfidated nanoscale zerovalent iron. WATER RESEARCH 2021; 201:117328. [PMID: 34171646 DOI: 10.1016/j.watres.2021.117328] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) is a promising reductant for trichloroethylene in groundwater, yet a comprehensive understanding of its degradation efficiency for other chlorinated hydrocarbons (CHCs) is lacking. In this study, we assessed the benefits of using S-nZVI for the degradation of two chlorinated methanes, three chlorinated ethanes, and four chlorinated ethenes compared to unamended nZVI, by analyzing the degradation rate constants, the maximum degradation quantity, and the degradation pathways and products under both stoichiometrically electron excess and limited conditions. The improvement in rate constants induced by sulfidation was compound specific and was more significant for chlorinated ethenes (57-707 folds) than for the other CHCs (1.0-17 folds). This is likely because of the different reduction mechanisms of each CHC and sulfidation may favor specific mechanisms associated with the reduction of chlorinated ethenes more than the others. Sulfidation of nZVI enabled either higher (3.1-24.4 folds) or comparable (0.78-0.91) maximum degradation quantity, assessed under electron limited conditions, for all the CHCs investigated, indicating the promise of S-nZVI for remediation of groundwater contaminated by CHC mixtures. Furthermore, we proposed the degradation pathways of various CHCs based on the observed degradation intermediates and products and found that sulfidation suppressed the generation of partially dechlorinated products, particularly for chlorinated methanes and ethanes, and favor degradation pathways leading to the non-chlorinated benign products. This is the first comprehensive study on the efficacy of sulfidation in improving the degradation of a suite of CHCs and the results provide valuable insight to the assessment of applicability and benefits of S-nZVI for CHC remediation.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pinar Ozcer
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada.
| |
Collapse
|
24
|
Garcia AN, Zhang Y, Ghoshal S, He F, O'Carroll DM. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8464-8483. [PMID: 34170112 DOI: 10.1021/acs.est.1c01251] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario N6A 5B8, Canada
| | - Yanyan Zhang
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province China
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Feng He
- Institute of Environmental Chemistry and Pollution Control College of Environment, Zhejiang University of Technology 18 Chaowang Rd, Hangzhou, China 310014
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney New South Wales 2052, Australia
| |
Collapse
|
25
|
Li Y, Zhao HP, Zhu L. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143413. [PMID: 33246720 DOI: 10.1016/j.scitotenv.2020.143413] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
In recent years, nanoscale zero-valent iron (nZVI) has been gradually applied in soil remediation due to its strong reducing ability and large specific surface area. Compared to conventional remediation solutions, in situ remediation using nZVI offers some unique advantages. In this review, respective merits and demerits of each approach to nZVI synthesis are summarized in detail, particularly the most commonly used aqueous-phase reduction method featuring surface modification. In order to overcome undesired oxidation and agglomeration of fresh nZVI due to its high reactivity, modifications of nZVI have been developed such as doping with transition metals, stabilization using macromolecules or surfactants, and sulfidation. Mechanisms underlying efficient removal of organic pollutants enabled by the modified nZVI lie in alleviative oxidation and agglomeration of nZVI and enhanced electron utilization efficiency. In addition to chemical modification, other assisting methods for further improving nZVI mobility and reactivity, such as electrokinetics and microbial technologies, are evaluated. The effects of different remediation technologies and soil physicochemical properties on remediation performance of nZVI are also summarized. Overall, this review offers an up-to-date comprehensive understanding of nZVI-driven soil remediation from scientific and practical perspectives.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
26
|
Xie J, Lei C, Chen W, Xie Q, Guo Q, Huang B. Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr(VI): Efficacy, descriptor and reductive mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123827. [PMID: 33264918 DOI: 10.1016/j.jhazmat.2020.123827] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 06/12/2023]
Abstract
Since chlorophenols (CPs) and Cr(VI) are two types of common pollutants in the environment, developing an effective approach to remove these contaminants has important benefits for public health. However, few efforts have been made so far. In this study, we prepared nanoscale zero-valent iron (nZVI) and a series of bimetallic nanoparticles (transition-metal modified nZVI) to investigate their catalytic properties for the simultaneous removal of 4-chlorophenol (4-CP) and Cr(VI). While nZVI enabled a fast removal of Cr(VI), it had a poor dechlorination ability. However, effective simultaneous removal of 4-CP and Cr(VI) was achieved with the transition metal modified nZVI, especially in the Pd/Fe bimetallic system. The enhanced catalytic activity of transition metal modified nZVI was primarily attributed to the formations of numerous nano-galvanic cells and atomic hydrogen species that facilitated electron transfer in the reaction system and played a key role in triggering the C-Cl bond cleavage, respectively. According to the dechlorination ability, the transition-metal catalysts examined in this study can be divided into three groups in descending order: the first being Pd and Ni, the second including Cu and Pt, while the last consisting of Au and Ag. The catalytic hydrodechlorination activity of bimetals can be well described by the volcano curve and rationally explained by the hydrogen adsorption energies on the metals, and was severely impaired by increasing Cr(VI) concentrations. Characterization results validated the formations of Fe(III)-Cr(III) hydroxide/oxyhydroxide on the bimetals surface after reacting with 4-CP and Cr(VI). This work provides the first insight into the catalytic properties of transition-metal modified nZVI for the effective removal of combined pollutants.
Collapse
Affiliation(s)
- Jituo Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Wenqian Chen
- Department of Chemical Engineering and Technology, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Qian Guo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
27
|
Jiang G, Shi X, Cui M, Wang W, Wang P, Johnson G, Nie Y, Lv X, Zhang X, Dong F, Zhang S. Surface Ligand Environment Boosts the Electrocatalytic Hydrodechlorination Reaction on Palladium Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4072-4083. [PMID: 33438993 DOI: 10.1021/acsami.0c20994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present an enhanced catalytic efficiency of palladium (Pd) nanoparticles (NPs) for the electrocatalytic hydrodechlorination (EHDC) reaction by incorporating the tetraethylammonium chloride (TEAC) ligand into the surface of NPs. Both experimental and theoretical analyses reveal that the surface-adsorbed TEAC is converted to molecular amine (primarily triethylamine) under reductive potentials, forming a strong ligand-Pd interaction that is beneficial to the EHDC kinetics. Using the EHDC of 2,4-dichlorophenol (2,4-DCP), a dominant persistent pollutant identified by the U.S. Environmental Protection Agency, as an example, the Pd/amine composite delivers a mass activity of 2.32 min-1 gPd-1 and a specific activity of 0.16 min-1 cm-2 at -0.75 V versus Ag/AgCl, outperforming Pd and most of the previously reported catalysts. The mechanistic study reveals that the amine ligand offers three functions: the H+-pumping effect, the electronic effect, and the steric effect, providing a favorable environment for the generation of reactive hydrogen radicals (H*) for hydrogenolysis of the C-Cl bond. It also weakens the adsorption strength of EHDC products, alleviating their poisoning on Pd. Investigation into the intermediate products of EHDC on Pd/amine and the biological safety of the 2,4-DCP-contaminated water after EHDC treatment demonstrates that EHDC on Pd/amine is environmentally benign for halogenated organic pollutant abatement. This work suggests that the tuning of NP catalysis using facile ligand post-treatment may lead to new strategies to improve EHDC for environmental remediation applications.
Collapse
Affiliation(s)
- Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Xuelin Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Meiyang Cui
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Weilu Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Peng Wang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Grayson Johnson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Yudong Nie
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Xianming Zhang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Fan Dong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067,China
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
28
|
Hua Y, Li D, Gu T, Wang W, Li R, Yang J, Zhang WX. Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Mohammed O, Mumford KG, Sleep BE. Effects of hydrogen gas production, trapping and bubble-facilitated transport during nanoscale zero-valent iron (nZVI) injection in porous media. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 234:103677. [PMID: 32663719 DOI: 10.1016/j.jconhyd.2020.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The injection of nanoscale zero-valent iron (nZVI) can be an effective technique for the treatment of groundwater contaminants, including chlorinated solvents. However, its effectiveness can be limited by natural reductant demand (NRD) reactions, including the reduction of water resulting in the production of hydrogen gas. This study presents results from a series of laboratory experiments to investigate gas production and mobilization following the injection of nZVI solutions, along with sodium borohydride (NaBH4) that is used for nZVI synthesis. Experiments were performed in a thin, two-dimensional flow cell (22 × 34 × 1 cm3) to measure hydrogen gas volumes and local gas saturations, and to investigate the distribution of gas within and above the injection zone. An additional experiment was conducted in a larger flow cell (150 × 150 × 2 cm3) containing dissolved trichloroethene (TCE) to assess changes in aqueous flow pathways and enhanced vertical transport of TCE by mobilized gas. The results showed substantial gas production (60% to 740% of the injected solution volume) resulting in gas mobilization as a network of gas channels above the injection zone, with more gas produced from greater excess NaBH4 used during nZVI synthesis. Trapped gas saturations were sufficient to cause the diversion of aqueous flow around the nZVI injection zone. In addition, gas production and mobilization resulted in the bubble-facilitated transport of TCE, and detectable concentrations of TCE and reaction products (ethane and ethene) above the target treatment zone.
Collapse
Affiliation(s)
- Obai Mohammed
- Queen's University, Department of Civil Engineering, Kingston, Ontario K7L 3N6, Canada
| | - Kevin G Mumford
- Queen's University, Department of Civil Engineering, Kingston, Ontario K7L 3N6, Canada.
| | - Brent E Sleep
- University of Toronto, Department of Civil & Mineral Engineering, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
30
|
Gong L, Lv N, Qi J, Qiu X, Gu Y, He F. Effects of non-reducible dissolved solutes on reductive dechlorination of trichloroethylene by ball milled zero valent irons. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122620. [PMID: 32315940 DOI: 10.1016/j.jhazmat.2020.122620] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Non-reducible solution anions have been well recognized to affect reactivity of ZVI in dechlorinating chlorinated hydrocarbons. However, their effects and corresponding functional mechanisms on electron efficiency (εe) of ZVI remain unclear. In this study, mechanochemically modified microscale sulfidated and unsulfidated ZVI particles (i.e., S-mZVIbm and mZVIbm) and trichloroethylene (TCE) were used as model particles and contaminant to explore such effects. PO43- as a corrosion promoter enhanced initial dechlorination rate by both particles. However, its passivating role as a surface complex agent became significant at the later stage of dechlorination by mZVIbm, while sulfidation alleviated this effect without inhibition of dechlorination. Compared with enhancing dechlorination, PO43- promoted hydrogen evolution reaction (HER) to a higher extent, decreasing εe for both particles by 17-73 %. HCO3- negligibly affected dechlorination by both particles, while elevated HER. Thus, HCO3- [5 mM] decreased εe for S-mZVIbm and mZVIbm by 1.9 % and 22 %. Different from PO43- and HCO3-, Cl- and SO42- showed no significant effects on dechlorination, HER, and therefore εe for both particles. These results imply that even though some co-existing anions (i.e., PO43- and HCO3-) acting as corrosion promoters could improve the dechlorination by ZVIs, they would lead to decreased εe and shortened particle reactive lifetime.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Neng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jianlong Qi
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xiaojiang Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, 250353, PR China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
31
|
Chen M, Shu S, Li J, Lv X, Dong F, Jiang G. Activating palladium nanoparticles via a Mott-Schottky heterojunction in electrocatalytic hydrodechlorination reaction. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121876. [PMID: 31874754 DOI: 10.1016/j.jhazmat.2019.121876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
This work exploited one novel power of the Mott-Schottky heterojunction interface in activating the palladium (Pd) in electrocatalytic hydrodechlorination reaction (EHDC, one reaction targeted for the abatement of chlorinated organic pollutants from water). By forming a Mott-Schottky contact with polymer carbon nitride (Pd-PCN), the Pd nanoparticles enable a relatively complete and pseudo-first-order conversion of 2,4-dichlorophenol (2,4-DCP) to phenol and Cl- with the reaction rate constant (kobs) triple that of the conventional Pd-C (0.68 vs. 0.26 min-1 molPd-1). Further comparison in kobs of Pd-PCN and the Pd catalysts reported in literatures revealed that our Pd-PCN was among the top active catalysts for EHDC. The robust performance of Pd-PCN was attributed to the strong metal-support interactions at the Mott-Schottky heterojunction interface, which enriched the electron on Pd and improved its anti-poisoning ability against phenol. The strong support-metal interactions also endowed Pd-PCN with high activity/structure stability in EHDC. The presence of some anions in water body including NO3-, NO2- and Cl- exerted little effect on EHDC, while the reduced sulfur compounds (S2- and SO32-), even in a very low concentration (1 mM), could significantly deactivate the catalyst. This work provides a facile and efficient strategy to activate noble metals in catalytic reactions.
Collapse
Affiliation(s)
- Min Chen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Song Shu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Junxi Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Fan Dong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, 400067, China.
| |
Collapse
|
32
|
Nunez Garcia A, Boparai HK, Chowdhury AIA, de Boer CV, Kocur CMD, Passeport E, Sherwood Lollar B, Austrins LM, Herrera J, O'Carroll DM. Sulfidated nano zerovalent iron (S-nZVI) for in situ treatment of chlorinated solvents: A field study. WATER RESEARCH 2020; 174:115594. [PMID: 32092544 DOI: 10.1016/j.watres.2020.115594] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Sulfidated nano zerovalent iron (S-nZVI), stabilized with carboxymethyl cellulose (CMC), was successfully synthesized on site and injected into the subsurface at a site contaminated with a broad range of chlorinated volatile organic compounds (cVOCs). Transport of CMC-S-nZVI to the monitoring wells, both downgradient and upgradient, resulted in a significant decrease in concentrations of aqueous-phase cVOCs. Short-term (0-17 days) total boron and chloride measurements indicated dilution and displacement in these wells. Importantly however, compound specific isotope analysis (CSIA), changes in concentrations of intermediates, and increase in ethene concentrations confirmed dechlorination of cVOCs. Dissolution from the DNAPL pool into the aqueous phase at the deepest levels (4.0-4.5 m bgs) was identifiable from the increased cVOCs concentrations during long-term monitoring. However, at the uppermost levels (∼1.5 m above the source zone) a contrasting trend was observed indicating successful dechlorination. Changes in cVOCs concentrations and CSIA data suggest both sequential hydrogenolysis as well as reductive β-elimination as the possible transformation mechanisms during the short-term abiotic and long-term biotic dechlorination. One of the most positive outcomes of this CMC-S-nZVI field treatment is the non-accumulation of lower chlorinated VOCs, particularly vinyl chloride. Post-treatment soil cores also revealed significant decreases in cVOCs concentrations throughout the targeted treatment zones. Results from this field study show that sulfidation is a suitable amendment for developing more efficient nZVI-based in situ remediation technologies.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Hardiljeet K Boparai
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada; Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Ahmed I A Chowdhury
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada; Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Cjestmir V de Boer
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada; Netherlands Organization for Applied Research, TNO, Princetonlaan 6, 3584, CB, Utrecht, the Netherlands
| | - Chris M D Kocur
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada; OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Elodie Passeport
- Department of Civil and Mineral Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario, M5S 1A4, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, M5S 3E5, Canada
| | - Barbara Sherwood Lollar
- Department of Earth Sciences, University of Toronto, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada
| | | | - Jose Herrera
- Department of Chemical and Biochemical Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario, N6A 5B8, Canada; School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
33
|
Zhang D, Li Y, Sun A, Tong S, Jiang X, Mu Y, Li J, Han W, Sun X, Wang L, Shen J. Optimization ofS/Fe ratio for enhanced nitrobenzene biological removal in anaerobicSystem amended withSulfide-modified nanoscale zerovalent iron. CHEMOSPHERE 2020; 247:125832. [PMID: 31931312 DOI: 10.1016/j.chemosphere.2020.125832] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic reduction of nitrobenzene (NB) can be efficiently enhanced bySupplementing withSulfide-modified nanoscale zerovalent iron (S-nZVI). In thisStudy,S/Fe ratio ofS-nZVI was further optimized for enhancing biological NB removal in anaerobicSystem amended withS-nZVI and inoculated by anaerobicSludge. The results indicated that the performance andStability of the coupled anaerobicSystem for NB reduction and aniline formation were remarkably improved byS-nZVI atS/Fe molar ratio of 0.3 (0.3S-nZVI). TheSecretion of extracellular polymericSubstances (EPS), transformation of volatile fatty acids (VFAs), yield of methane and activity ofSeveral key enzymes could be efficiently improved by 0.3S-nZVI. Furthermore,Species related to NB reduction, fermentation, electroactivity and methanogenesis could be enriched in 0.3S-nZVI coupled anaerobicSystem, with remarkable improvement in the biodiversity observed. ThisStudy demonstrated thatSulfidation would be a promising method to improve the performance of nZVI in coupled anaerobicSystems for the removal of recalcitrant nitroaromatic compounds from wastewater.
Collapse
Affiliation(s)
- Dejin Zhang
- Department of Environmental Engineering, College of Resources and EnvironmentalSciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Yang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Aiwu Sun
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaiyin, 223001, Jiangsu Province, China
| | - Siqi Tong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China.
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University ofScience and Technology of China, Hefei, 230026, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University ofScience and Technology, Nanjing, 210094, China.
| |
Collapse
|
34
|
Nunez Garcia A, Boparai HK, de Boer CV, Chowdhury AIA, Kocur CMD, Austrins LM, Herrera J, O'Carroll DM. Fate and transport of sulfidated nano zerovalent iron (S-nZVI): A field study. WATER RESEARCH 2020; 170:115319. [PMID: 31790885 DOI: 10.1016/j.watres.2019.115319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Treatment of nano zerovalent iron (nZVI) with lower valent forms of sulfur compounds (sulfidation) has the potential to increase the selectivity and reactivity of nZVI with target contaminants and to decrease inter-particle aggregation for improving its mobility. These developments help in addressing some of the long-standing challenges associated with nZVI-based remediation treatments and are of great interest for in situ applications. Herein we report results from a field-scale project conducted at a contaminated site. Sulfidated nZVI (S-nZVI) was prepared on site by first synthesizing carboxymethyl cellulose (CMC) stabilized nZVI with sodium borohydride as a reductant and then sulfidating the nZVI suspension by adding sodium dithionite. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) of CMC-S-nZVI, from synthesis barrels, confirms the presence of both discrete spherical nZVI-like particles (∼90 nm) as well as larger irregular structures (∼500 nm) comprising of iron sulfides. This CMC-S-nZVI suspension was gravity fed into a sandy material and monitored through multiple multi-level monitoring wells. Samples collected from upstream and downstream wells suggest very good radial and vertical iron distribution. TEM-EDS analysis from the recovered well samples also indicates the presence of both nZVI-like particles as well as the larger flake-like structures, similar to those found in the injected CMC-S-nZVI suspension. This study shows that S-nZVI stabilized with CMC can be safely synthesized on site and is highly mobile and stable in the subsurface, demonstrating for the first time the field applicability of S-nZVI.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Hardiljeet K Boparai
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; Department of Civil and Mineral Engineering, University of Toronto, 27 King's College Circle, Toronto, ON M5S 1A1, Canada
| | - Cjestmir V de Boer
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; Netherlands Organization for Applied Research, TNO, Princetonlaan 6, 3584, CB, Utrecht, the Netherlands
| | - Ahmed I A Chowdhury
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Chris M D Kocur
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | | | - Jose Herrera
- Department of Chemical and Biochemical Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada
| | - Denis M O'Carroll
- Department of Civil and Environmental Engineering, Western University, 1151, Richmond Rd., London, Ontario, N6A 5B8, Canada; School of Civil and Environmental Engineering, Connected Water Initiative, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
35
|
Islam S, Han Y, Yan W. Reactions of chlorinated ethenes with surface-sulfidated iron materials: reactivity enhancement and inhibition effects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:759-770. [PMID: 32073089 DOI: 10.1039/c9em00593e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on the use of controlled sulfur amendment to improve the reactivity and selectivity of zerovalent iron (ZVI) in reductive dechlorination reactions have generated renewed interest in ZVI-based remediation materials. However, existing studies have focused on the reactions between trichloroethene (TCE) and lab-synthesized ZVI, and the applicability of sulfidation to ZVIs with different material characteristics for reductive dechlorination of chloroethenes such as tetrachloroethene (PCE) and cis-dichloroethene (cis-DCE) has not been systematically examined. In this study, four ZVI materials from commercial sources having different sizes and morphological and compositional characteristics were subjected to various sulfidation treatments and were assessed in batch reactions with PCE, TCE, or cis-DCE. Sulfur amendment induces modest increases in PCE degradation rates and steers reactions towards a cleaner pathway that has minimum accumulation of partially dechlorinated intermediates. In the case of cis-DCE, bifurcating outcomes were observed that include enhancement effects for two high-purity ZVIs and inhibitory effects for two ZVIs possessing low levels of metal impurities. Further investigations based on controlled metal dosing reveal that the trace metals commonly present in cast iron or recycled metal scraps, such as Cu and Ni, can act as adventitious catalysts for cis-DCE reduction. Sulfidation results in poisoning of these catalytic ingredients and accounts for the adverse effect observed with a subset of ZVIs. Collectively, this study confirms enhanced degradation of highly chlorinated ethenes (PCE and TCE) by sulfidation of ZVIs from diverse origins; nonetheless, the effects of sulfidation can be highly variable for the less chlorinated ethenes due to differences in the material characteristics of ZVI and the predominant dechlorination pathways.
Collapse
Affiliation(s)
- Syful Islam
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Texas, USA
| | | | | |
Collapse
|
36
|
Torralba-Sanchez TL, Bylaska EJ, Salter-Blanc AJ, Meisenheimer DE, Lyon MA, Tratnyek PG. Reduction of 1,2,3-trichloropropane (TCP): pathways and mechanisms from computational chemistry calculations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:606-616. [PMID: 31990012 DOI: 10.1039/c9em00557a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The characteristic pathway for degradation of halogenated aliphatic compounds in groundwater or other environments with relatively anoxic and/or reducing conditions is reductive dechlorination. For 1,2-dihalocarbons, reductive dechlorination can include hydrogenolysis and dehydrohalogenation, the relative significance of which depends on various structural and energetic factors. To better understand how these factors influence the degradation rates and products of the lesser halogenated hydrocarbons (in contrast to the widely studied per-halogenated hydrocarbons, like trichloroethylene and carbon tetrachloride), density functional theory calculations were performed to compare all of the possible pathways for reduction and elimination of 1,2,3-trichloropropane (TCP). The results showed that free energies of each species and reaction step are similar for all levels of theory, although B3LYP differed from the others. In all cases, the reaction coordinate diagrams suggest that β-elimination of TCP to allyl chloride followed by hydrogenolysis to propene is the thermodynamically favored pathway. This result is consistent with experimental results obtained using TCP, 1,2-dichloropropane, and 1,3-dichloropropane in batch experiments with zerovalent zinc (Zn0, ZVI) as a reductant.
Collapse
Affiliation(s)
- Tifany L Torralba-Sanchez
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Liu Y, Zhang Y, Zhou A. A potential novel approach for in situ chemical oxidation based on the combination of persulfate and dithionite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133635. [PMID: 31377376 DOI: 10.1016/j.scitotenv.2019.133635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Although persulfate (PS) activation has been commonly applied to remove organic contaminants on the subsurface, it is valuable to further explore PS activation methods. In this study, a novel combined process based on PS coupled with dithionite was investigated using trichloroethene (TCE) as a typical organic contaminant. PS/dithionite was demonstrated to be an effective system for TCE degradation depending on the operating parameters such as the initial PS and dithionite dosages. The optimal molar ratio of PS/dithionite/TCE was 5/5/1. Sulfate radicals (SO4•-) were the dominant reactive species responsible for TCE degradation in the PS/dithionite system. Two pathways for SO4•- generation were proposed in the PS/dithionite system. The generation of SO4•- increased in the presence of oxygen but was still effective in an anaerobic environment. This study is the first to report a novel combined process based on PS coupled with dithionite, which is expected to be an efficient and environmentally friendly approach for in situ chemical oxidation (ISCO) remediation of contaminated soil and groundwater, whether in aerobic or anaerobic environments.
Collapse
Affiliation(s)
- Yunde Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yuanzheng Zhang
- Geological Survey Institute, China University of Geosciences, Wuhan 430074, China
| | - Aiguo Zhou
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Geological Survey Institute, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
38
|
Xu J, Cao Z, Zhou H, Lou Z, Wang Y, Xu X, Lowry GV. Sulfur Dose and Sulfidation Time Affect Reactivity and Selectivity of Post-Sulfidized Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13344-13352. [PMID: 31622083 DOI: 10.1021/acs.est.9b04210] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exposing nanoscale zerovalent iron (NZVI) to dissolved sulfide species improves its performance as a remediation agent. However, the impacts of sulfur dose and sulfidation time on morphology, sulfur content, reactivity, and selectivity of the resulting sulfidized NZVI (SNZVI) have not been systematically evaluated. We synthesized SNZVI using different sulfur doses and sulfidation times and measured their properties. The measured S/Fe molar ratio in the particles ([S/Fe]particle) was 10-500 times lower than [S/Fe]dosed but was predictable based on [S/Fe]dosed × tsulfidation. The low sulfur content (0.02-0.65 mol % S/Fe) inhibited the reaction of SNZVI with water (up to 13-fold) and increased its reactivity with trichloroethene (TCE) (up to 14-fold) and its electron efficiency (up to 20-fold). A higher [S/Fe]particle (0.86-1.13 mol % S/Fe) led to complex particle structures and lowered the resistance to electron transfer but did not improve the benefits realized at the lower S/Fe ratios. Adding small amounts of sulfur into NZVI led to more accumulation of acetylene, especially for low Fe/TCE conditions, suggesting that sulfur lowers the rate of hydrogenation of acetylene to ethene. These results show that [S/Fe]dosed × tsulfidation can be used to predict the measured S content in the particles and that affects reactivity, longevity, and electron selectivity, for post-SNZVI.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
- Center for Environmental Implications of Nanotechnology , Pittsburgh , Pennsylvania 15213 , United States
| | - Zhen Cao
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - He Zhou
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Zimo Lou
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Yan Wang
- Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Xinhua Xu
- Department of Environmental Engineering , Zhejiang University , Hangzhou 310058 , China
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
- Center for Environmental Implications of Nanotechnology , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
39
|
Gan G, Li X, Wang L, Fan S, Li J, Liang F, Chen A. Identification of Catalytic Active Sites in Nitrogen-Doped Carbon for Electrocatalytic Dechlorination of 1,2-Dichloroethane. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02853] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Guoqiang Gan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xinyong Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Liang Wang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shiying Fan
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ji Li
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Liang
- State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Aicheng Chen
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
40
|
Gu Y, Gong L, Qi J, Cai S, Tu W, He F. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: Experimental evidences and mechanism. WATER RESEARCH 2019; 159:233-241. [PMID: 31100577 DOI: 10.1016/j.watres.2019.04.061] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Groundwater pH is one of the most important geochemical parameters in controlling the interfacial reactions of zero-valent iron (ZVI) with water and contaminants. Ball milled, microscale ZVI (mZVIbm) efficiently dechlorinated TCE at initial stage (<24 h) at pH 6-7 but got passivated at later stage due to pH rise caused by iron corrosion. At pH > 9, mZVIbm almost completely lost its reactivity. In contrast, ball milled, sulfidated microscale ZVI (S-mZVIbm) didn't experience any reactivity loss during the whole reaction stage across pH 6-10 and could efficiently dechlorinate TCE at pH 10 with a reaction rate of 0.03 h-1. Increasing pH from 6 to 9 also enhanced electron utilization efficiency from 0.95% to 5.3%, and from 3.2% to 22%, for mZVIbm and S-mZVIbm, respectively. SEM images of the reacted particles showed that the corrosion product layer on S-mZVIbm had a puffy/porous structure while that on mZVIbm was dense, which may account for the mitigated passivation of S-mZVIbm under alkaline pHs. Density functional theory calculations show that covered S atoms on the Fe(100) surface weaken the interactions of H2O molecules with Fe surfaces, which renders the sulfidated Fe surface inefficient for H2O dissociation and resistant to surface passivation. The observation from this study provides important implication that natural sulfidation of ZVI may largely contribute to the long-term (>10 years) efficiency of TCE decontamination by permeable reactive barriers with pore water pH above 9.
Collapse
Affiliation(s)
- Yawei Gu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jianlong Qi
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenxin Tu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
41
|
Lv D, Zhou J, Cao Z, Xu J, Liu Y, Li Y, Yang K, Lou Z, Lou L, Xu X. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron. CHEMOSPHERE 2019; 224:306-315. [PMID: 30844587 DOI: 10.1016/j.chemosphere.2019.02.109] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
Sulfidation of nanoscale zerovalent iron (nZVI) has attracted increasing interest for improving the reactivity and selectivity of nZVI towards various contaminants, such as aqueous Cr(VI) removal. However, the benefits derived from sulfide modification that govern the removal of Cr(VI) remains unclear, which was studied in this work. S-nZVI with higher S/Fe molar ratio showed higher surface area, the discrepancy between the surface-area-normalized removal capacity of Cr(VI) by S-nZVI with different S/Fe indicated that the removal of Cr(VI) was also affected by other factors, such as electron transfer ability, surface-bounded Fe(II) species, and surface charges. High specific surface area would provide more active site for Cr(VI) removal, and as an efficient electron conductor, acicular-like FeSx phase would also favor electron transfer from Fe0 core to Cr(VI). Low initial pH also enhanced the Cr(VI) removal, and the Cr(VI) removal capacity by S-nZVI and nZVI was not affected by aging process, these results confirmed that the Fe(II) species also played an important role in the Cr(VI) removal. Other influence factors were also investigated for potential application, including temperature, initial Cr(VI) concentration, ionic strength, and co-existed ions. The removal mechanism of Cr(VI) by S-nZVI involved the sulfide modification to increase the specific surface area and provide more active sites, the corrosion of Fe0 to produce surface-bounded Fe(II) species to adsorb Cr(VI) species, followed by the favored reduction of Cr(VI) to Cr(III) due to the electron transfer ability of FeSx, then the formation of Cr(III)/Fe(III) hydroxides precipitates.
Collapse
Affiliation(s)
- Dan Lv
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiasheng Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zhen Cao
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| | - Yuanli Liu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yizhou Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Kunlun Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Zimo Lou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China; Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Liping Lou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xinhua Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
42
|
Xu J, Wang Y, Weng C, Bai W, Jiao Y, Kaegi R, Lowry GV. Reactivity, Selectivity, and Long-Term Performance of Sulfidized Nanoscale Zerovalent Iron with Different Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5936-5945. [PMID: 31022346 DOI: 10.1021/acs.est.9b00511] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sulfidized nanoscale zerovalent iron (SNZVI) has desirable properties for in situ groundwater remediation. However, there is limited understanding of how the sulfidation type and particle properties affect the reactivity and selectivity of SNZVI toward groundwater contaminants, or how reactivity changes as the particles age. Here, SNZVI synthesized by either a one-step (SNZVI-1) or two-step (SNZVI-2) process were characterized, and the reactivity of both fresh and aged (1d to 60 d) nanoparticles was assessed. The measured S/Fe ratio was 5.4 ± 0.5 mol % for SNZVI-1 and 0.8 ± 0.1 mol % for SNZVI-2. XPS analysis indicates S2-, S22-, and S n2- species on the surface of both SNZVI-1 and SNZVI-2, while S22- is the dominant species inside of the SNZVI nanoparticles. SNZVI-1 particles were hydrophobic (contact angle = 103 ± 3°), while the other materials were hydrophilic (contact angles were 18 ± 2° and 36 ± 3° for NZVI and SNZVI-2, respectively). SNZVI-1, with greater S content and hydrophobicity, was less reactive with water than either NZVI or SNZVI-2 over a 60 d period, resulting in less H2 evolution. It also had the highest reactivity with TCE and the lowest reactivity with nitrate, consistent with its higher hydrophobicity. In contrast, both NZVI and SNZVI-2 were reactive with both TCE and nitrate. Both types of SNZVI remained more reactive after aging in water over 60 d than NZVI. These data suggest that the properties of the SNZVI made from a one-step synthesis procedure may provide better reactivity, selectivity, and longevity than that made from a two-step process.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
- Center for Environmental Implications of NanoTechnology , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Yan Wang
- Department of Civil and Environmental Engineering , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Cindy Weng
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Weiliang Bai
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Yang Jiao
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Rälf Kaegi
- Eawag , Swiss Federal Institute of Aquatic Science and Technology , Überlandstrasse 133 , 8600 Dübendorf , Switzerland
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
- Center for Environmental Implications of NanoTechnology , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
43
|
Yolk-shell Fe/FeS@SiO2 particles with enhanced dispersibility, transportability and degradation of TBBPA. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Mangayayam M, Dideriksen K, Ceccato M, Tobler DJ. The Structure of Sulfidized Zero-Valent Iron by One-Pot Synthesis: Impact on Contaminant Selectivity and Long-Term Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4389-4396. [PMID: 30859830 DOI: 10.1021/acs.est.8b06480] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sulfidized zerovalent iron (sZVI) is widely studied because of its remarkable reactivity with a number of groundwater contaminants. Nonetheless, its nanoscale structure is not well understood. As such, there is an uncertainty on how sZVI structure controls its reactivity and fate in the subsurface environment. Using pair distribution function analyses, we show that sZVI made from one-pot synthesis using dithionite as sulfur precursor consists of an Fe0 core with a shell composed dominantly of short-range ordered Fe(OH)2 and FeS having coherent scattering domains of less than 8 Å. Reactivity experiments show that increasing shell material significantly decreases rate for cis-dichloroethene (cis-DCE) reduction, whereas the opposite is observed for trichloroethene (TCE). The results are consistent with a conceptual model wherein cis-DCE reduction requires active Fe0 sites, which become largely inaccessible when shell material is abundant. Conversely, an increase in FeS shell volume led to faster TCE reduction via direct electron transfer. Aging experiments showed that sZVI retained >50% of its TCE removal efficiency after 30-day exposure to artificial groundwaters. The decline in sZVI reactivity due to long-term exposure to groundwater, is attributed to Fe0 oxidation from water reduction coupled by reorganization and recrystallization of the poorly ordered shell material, which in turn reduced access to reactive FeS sites.
Collapse
Affiliation(s)
- Marco Mangayayam
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| | - Knud Dideriksen
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
- Geological Survey of Denmark & Greenland (GEUS) , Øster Voldgade 10 , 1350 Copenhagen , Denmark
| | - Marcel Ceccato
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
- iNANO-Kemi , Aarhus University , Langelandsgade 140 , Aarhus , Denmark
| | - Dominique J Tobler
- Nano-Science Center, Department of Chemistry , University of Copenhagen , Universitetsparken 5 , 2100 Copenhagen , Denmark
| |
Collapse
|
45
|
Bhattacharjee S, Ghoshal S. Optimal Design of Sulfidated Nanoscale Zerovalent Iron for Enhanced Trichloroethene Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11078-11086. [PMID: 30188121 DOI: 10.1021/acs.est.8b02399] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfidated nanoscale zerovalent iron (S-nZVI) has the potential to be a cost-effective remediation agent for a wide range of environmental pollutants, including chlorinated solvents. Various synthesis approaches have yielded S-nZVI consisting of a Fe0 (or Fe0/S0) core and FeS shell, which are significantly more reactive to trichloroethene (TCE) than nZVI. However, their reactivity is not as high as palladium-doped nZVI (Pd-nZVI). We synthesized S-nZVI by the co-precipitation of FeS and Fe0 by using Na2S during the borohydride reduction of FeSO4 (S-nZVIco). This resulted in FeS structures bridging the nZVI core and the surface, as confirmed by electron microscopy and X-ray analyses. The TCE degradation capacity of up to 0.46 mol TCE/mol Fe0 was obtained for S-nZVIco at a high S loading and was comparable to Pd-nZVI but 60% higher than the currently most reactive S-nZVI, in which FeS only coats the nZVI (S-nZVIpost). The high TCE degradation was due to complete utilization of Fe0 (2 e-/mol Fe0) toward the formation of acetylene. Although Pd-nZVI yielded 3 e-/mol Fe0, TCE degradation was comparable because it reduced acetylene further to ethene and ethane. Under Fe0-limited conditions, the S-nZVIco TCE degradation rate was 16 times higher than that of Pd-nZVI (0.5 wt % Pd) and 90 times higher than that of S-nZVIpost.
Collapse
Affiliation(s)
- Sourjya Bhattacharjee
- Department of Civil Engineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering , McGill University , Montreal , Quebec H3A 0C3 , Canada
| |
Collapse
|
46
|
He F, Li Z, Shi S, Xu W, Sheng H, Gu Y, Jiang Y, Xi B. Dechlorination of Excess Trichloroethene by Bimetallic and Sulfidated Nanoscale Zero-Valent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8627-8637. [PMID: 29952547 DOI: 10.1021/acs.est.8b01735] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoscale zerovalent iron (nZVI) likely finds its application in source zone remediation. Two approaches to modify nZVI have been reported: bimetal (Fe-Me) and sulfidated nZVI (S-nZVI). However, previous research has primarily focused on enhancing particle reactivity with these two modifications under more plume-like conditions. In this study, we systematically compared the trichloroethene (TCE) dechlorination pathway, rate, and electron selectivity of Fe-Me (Me: Pd, Ni, Cu, and Ag), S-nZVI, and nZVI with excess TCE simulating source zone conditions. TCE dechlorination on Fe-Me was primarily via hydrogenolysis while that on S-nZVI and nZVI was mainly via β-elimination. The surface-area normalized TCE reduction rate ( k'SA) of Fe-Pd, S-nZVI, Fe-Ni, Fe-Cu, and Fe-Ag were ∼6800-, 190-, 130-, 20-, and 8-fold greater than nZVI. All bimetallic modification enhanced the competing hydrogen evolution reaction (HER) while sulfidation inhibited HER. Fe-Cu and Fe-Ag negligibly enhanced electron utilization efficiency (εe) while Fe-Pd, Fe-Ni, and S-nZVI dramatically increased εe from 2% to ∼100%, 69%, and 72%, respectively. Adsorbed atomic hydrogen was identified to be responsible for the TCE dechlorination on Fe-Me but not on S-nZVI. The enhanced dechlorination rate along with the reduced HER of S-nZVI can be explained by that FeS conducting major electrons mediated TCE dechlorination while Fe oxides conducting minor electrons mediated HER.
Collapse
Affiliation(s)
- Feng He
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Zhenjie Li
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Shasha Shi
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Wenqiang Xu
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Hanzhen Sheng
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yawei Gu
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yonghai Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| |
Collapse
|
47
|
Jin X, Li Q, Yang Q. The reactivity of Fe/Ni colloid stabilized by carboxymethylcellulose (CMC-Fe/Ni) toward chloroform. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21049-21057. [PMID: 29767309 DOI: 10.1007/s11356-018-2030-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na2S, Na2S2O4) was significant than common ions and sulfite.
Collapse
Affiliation(s)
- Xin Jin
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Qun Li
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Qi Yang
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
48
|
Su Y, Jassby D, Song S, Zhou X, Zhao H, Filip J, Petala E, Zhang Y. Enhanced Oxidative and Adsorptive Removal of Diclofenac in Heterogeneous Fenton-like Reaction with Sulfide Modified Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6466-6475. [PMID: 29767520 DOI: 10.1021/acs.est.8b00231] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sulfidation of nanoscale zerovalent iron (nZVI) has shown some fundamental improvements on reactivity and selectivity toward pollutants in dissolved-oxygen (DO)-stimulated Fenton-like reaction systems (DO/S-nZVI system). However, the pristine microstructure of sulfide-modified nanoscale zerovalent iron (S-nZVI) remains uncovered. In addition, the relationship between pollutant removal and the oxidation of the S-nZVI is largely unknown. The present study confirms that sulfidation not only imparts sulfide and sulfate groups onto the surface of the nanoparticle (both on the oxide shell and on flake-like structures) but also introduces sulfur into the Fe(0) core region. Sulfidation greatly inhibits the four-electron transfer pathway between Fe(0) and oxygen but facilitates the electron transfer from Fe(0) to surface-bound Fe(III) and consecutive single-electron transfer for the generation of H2O2 and hydroxyl radical. In the DO/S-nZVI system, slight sulfidation (S/Fe molar ratio = 0.1) is able to nearly double the oxidative removal efficacy of diclofenac (DCF) (from 17.8 to 34.2%), whereas moderate degree of sulfidation (S/Fe molar ratio = 0.3) significantly enhances both oxidation and adsorption of DCF. Furthermore, on the basis of the oxidation model of S-nZVI, the DCF removal process can be divided into two steps, which are well modeled by parabolic and logarithmic law separately. This study bridges the knowledge gap between pollutant removal and the oxidation process of chemically modified iron-based nanomaterials.
Collapse
Affiliation(s)
- Yiming Su
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - David Jassby
- Department of Civil and Environmental Engineering , University of California , Los Angeles , California 90095 , United States
| | - Shikun Song
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education , Tongji University , Shanghai 200092 , China
| | - Hongying Zhao
- School of Chemical Science and Engineering , Tongji University , Shanghai 200092 , China
| | - Jan Filip
- Regional Centre of Advanced Technologies and Materials , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc Czech Republic
| | - Eleni Petala
- Regional Centre of Advanced Technologies and Materials , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc Czech Republic
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse , Tongji University , Shanghai 200092 , China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education , Tongji University , Shanghai 200092 , China
| |
Collapse
|
49
|
Dong H, Zhang C, Deng J, Jiang Z, Zhang L, Cheng Y, Hou K, Tang L, Zeng G. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. WATER RESEARCH 2018; 135:1-10. [PMID: 29438739 DOI: 10.1016/j.watres.2018.02.017] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/01/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Sulfide-modified nanoscale zero-valent iron (S/NZVI) has been considered as an efficient material to degrade trichloroethylene (TCE) in groundwater. However, some critical factors influencing the dechlorination of TCE by S/NZVI have not been investigated clearly. In this study, the effects of Fe/S molar ratio, initial pH, dissolved oxygen and particle aging on TCE dechlorination by S/NZVI (using dithionite as sulfidation reagent) were studied. Besides, the feasibility of reactivation of the aged-NZVI by sulfidation treatment was looked into. The results show that the Fe/S molar ratio and initial pH significantly influenced the TCE dechlorination, and a higher TCE dechlorination was observed at Fe/S molar ratio of ∼60 under alkaline condition. Spectroscopic analyses demonstrate that the enhanced TCE dechlorination was associated with the presence of FeS on the surface of S/NZVI. Dissolved oxygen had little effect on TCE dechlorination by S/NZVI, revealing that the FeS layer could be able to alleviate the surface passivation of NZVI caused by oxidation. Aging of S/NZVI up to 10-20 d only slightly decreased the dechlorination efficiency of TCE. Although an obvious drop in dechorination efficiency was observed for the S/NZVI aged for 30 d, it still exhibited a higher reactivity than the bare NZVI. This indicates that sulfidation of NZVI did prolong its lifetime. Additionally, sulfidation treatment was used to reactivate the aged NZVI, and the results show that the reactivated NZVI even had higher reactivity than the fresh NZVI, suggesting that sulfidation treatment would be a promising method to reactivate the aged NZVI.
Collapse
Affiliation(s)
- Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Cong Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zhao Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yujun Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Kunjie Hou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
50
|
Yang C, Yu X, Wang L, Shi M, He G, Li Q. Experimental measurement and thermodynamic modelling of liquid-liquid equilibria for the separation of 1,2-dichloroethane from cyclohexane using various extractants. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.12.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|