1
|
Jia G, Huang Z, Fan Y, Zhao L, Lai W, Dou SX, Wang X, Xiang H, Zhu M. Synergistic effects enabled efficient photocatalytic removal of ofloxacin antibiotic in wastewater by layered double hydroxides loaded lignin-derived carbon fibers. Int J Biol Macromol 2024; 282:136835. [PMID: 39447796 DOI: 10.1016/j.ijbiomac.2024.136835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The environmental problems caused by the abuse of antibiotics are raising serious attention, and the removal of antibiotics in wastewater is meaningful yet challenging. In this work, lignin-derived carbon fibers loaded layered double hydroxides (LDH@LCF) has been prepared for the removal of ofloxacin (OFX) from wastewater via photocatalysis, which exhibit a high degradation efficiency of 96 % under visible light and maintained 90 % after five reuses. The effects of Zn2+/Fe3+ in the samples and other parameters affecting the photocatalytic efficiency of OFX have been systematically investigated. Results demonstrated that the enhanced photocatalytic efficiency is derived from the synergistic effect of the Zn2+ and Fe3+ in the LDH with a reduced band gap of the catalyst, higher number of oxygen and metal unsaturated coordination sites, and rapid removal of photogenerated electrons. The working mechanism and degradation pathways for OFX by LDH@LCF are also elucidated in detail.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China; Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zhiwei Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yameng Fan
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia.
| | - Weihong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Shi Xue Dou
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia; Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Fang F, Ding L, Zhang Y, Huang Z, He N, Zhang L, Hung Wong M, Pi B, Xu N, Tao H, Zhang L. Quinolone antibiotics stimulate bacterial mercury methylation by Geobacter metallireducens GS-15. BIORESOURCE TECHNOLOGY 2024; 413:131465. [PMID: 39260732 DOI: 10.1016/j.biortech.2024.131465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Bacterial mercury (Hg) methylation is critical for bioremediating Hg pollution, but the impact of emerging antibiotics on this process has rarely been reported. This study innovatively investigated the interactions between Hg-methylating bacteria of Geobacter metallireducens GS-15 and two quinolone antibiotics: lomefloxacin (LOM) and ciprofloxacin (CIP) at 5 μg/L. Short-term LOM exposure increased methylmercury (MeHg) yield by 36 % compared to antibiotic-free conditions, caused by hormesis to alter bioactivities of single GS-15 cells. Long-term CIP exposure led to more antibiotic resistance and mercury tolerance in GS-15 cells, doubling MeHg productivity and significantly increasing expression of Hg methylation (hgcA by 95 folds) and antibiotic resistance (gyrA by 54 folds) genes, while mercury resistance gene merA only increased by 2.5 folds than without selective pressure. These results suggest quinolone antibiotics at environmentally contaminated concentrations stimulate bacterial Hg methylation to form highly toxic MeHg, raising considerable concern for the Hg-antibiotic complex in contaminated environments.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yaoyu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhishan Huang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ningning He
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lele Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-on-Don, Russia; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Bin Pi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510700, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Chi H, Ma J, Duan R, Wang A, Qiao Y, Wang W, Li C. Modulating crystal facets of photoanodes for photoelectrocatalytic scalable degradation of fluorinated pharmaceuticals in wastewater. WATER RESEARCH 2024; 262:122101. [PMID: 39032329 DOI: 10.1016/j.watres.2024.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/17/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Fluorinated pharmaceuticals pollution has become an ever-increasing environmental concern due to its negative impacts. Photoelectrocatalytic (PEC) degradation system is a desirable approach to tackle the pollution problems. However, photogenerated charge separation and interfacial mass transfer are the main bottlenecks for improving the PEC degradation performance. Herein, we report a TiO2 photoanode with tuned (101)/(110) facets in situ grown on a Ti mesh substrate for PEC degradation of fluorinated pharmaceuticals. The exposure of (101) facets facilitates efficient photogenerated charge separation and the desorption of generated •OH radical. Besides, the three-dimensional (3D) architecture of photoanode promotes macroscopic mass transfer. This system performed complete defluorination of 5-fluorouracil and more than 75 % total organic carbon (TOC) removal efficiency. The apparent reaction rate constant of high (101) facet-exposed TiO2 grown on Ti mesh is up to 6.96 h-1, 6‒fold faster than that of photoanode with low (101) facet-exposed TiO2 grown on Ti foil. It is demonstrated that a large-sized PEC system of 1200 cm2 can degrade 100 L of synthetic fluorinated pharmaceutical wastewater with more than 80 % elimination efficiency. This work showcases the facet and substrate modulated strategy of fabricating high-performed photoanode for PEC wastewater purification.
Collapse
Affiliation(s)
- Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiangping Ma
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Aoqi Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yafei Qiao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Key Laboratory of advanced catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Ghose A, Nuzelu V, Gupta D, Kimoto H, Takashima S, Harlin EW, Ss S, Ueda H, Koketsu M, Rangan L, Mitra S. Micropollutants (ciprofloxacin and norfloxacin) remediation from wastewater through laccase derived from spent mushroom waste: Fate, toxicity, and degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121857. [PMID: 39029166 DOI: 10.1016/j.jenvman.2024.121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.
Collapse
Affiliation(s)
- Anamika Ghose
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - V Nuzelu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Debaditya Gupta
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroki Kimoto
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shigeo Takashima
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; Division of Cooperative Research Facility, Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Eka Wahyuni Harlin
- United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Sonu Ss
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Hiroshi Ueda
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Mamoru Koketsu
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan; United Graduate School of Drug Discovery and Medicinal Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Latha Rangan
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Assam, 781039, India
| | - Sudip Mitra
- Agro-ecotechnology Laboratory, School of Agro and Rural Technology (SART), Indian Institute of Technology Guwahati (IITG), Assam, 781039, India.
| |
Collapse
|
5
|
Kiki C, Yan X, Elimian EA, Jiang B, Sun Q. Deciphering the Role of Microbial Extracellular and Intracellular Organic Matter in Antibiotic Photodissipation: Molecular and Fluorescent Profiling under Natural Radiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11661-11674. [PMID: 38874829 DOI: 10.1021/acs.est.4c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study addresses existing gaps in understanding the specific involvement of dissolved organic matter (DOM) fractions in antibiotic photolysis, particularly under natural conditions and during DOM photobleaching. Employing fluorescent, chemical, and molecular analysis techniques, it explores the impact of extracellular and intracellular organic matter (EOM and IOM) on the photodissipation of multiclass antibiotics, coupled with DOM photobleaching under natural solar radiation. Key findings underscore the selective photobleaching of DOM fractions, propelled by distinct chemical profiles, influencing DOM-mediated antibiotic photolysis. Notably, lipid-like substances dominate in the IOM, while lignin-like substances prevail in the EOM, each uniquely responding to sunlight and exhibiting selective photobleaching. Sunlight primarily targets fulvic acid-like lignin components in EOM, contrasting the initial changes observed in tryptophan-like lipid substances in IOM. The lower photolability of EOM, attributed to its rich unsaturated compounds, contributes to an enhanced rate of indirect antibiotic photolysis (0.339-1.402 h-1) through reactive intermediates. Conversely, the abundance of aliphatic compounds in IOM, despite it being highly photolabile, exhibits a lower mediation of antibiotic photolysis (0.067-1.111 h-1). The triplet state excited 3DOM* plays a pivotal role in the phototransformation and toxicity decrease of antibiotics, highlighting microbial EOM's essential role as a natural aquatic photosensitizer for water self-purification. These findings enhance our understanding of DOM dynamics in aquatic systems, particularly in mitigating antibiotic risks, and introduce innovative strategies in environmental management and water treatment technologies.
Collapse
Affiliation(s)
- Claude Kiki
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
- National Institute of Water, University of Abomey-Calavi, 01 BP: 526 Cotonou, Benin
| | - Xiaopeng Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100043, China
| | - Ehiaghe A Elimian
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H, Canada
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
6
|
Duan N, Chang Y, Su T, Zhang X, Lu M, Wang Z, Wu S. Generation of a specific aptamer for accurate detection of sarafloxacin based on fluorescent/colorimetric/SERS triple-readout sensor. Biosens Bioelectron 2024; 249:116022. [PMID: 38219468 DOI: 10.1016/j.bios.2024.116022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Sarafloxacin (SAR), one of the most widely used fluoroquinolone antibiotics, is a serious threat to aquatic environments and human health due to its illegal abuse. Herein, we first screened an aptamer (SAR-1) that specifically binds to SAR using capture-SELEX technology. Based on molecular docking technology, SAR-1 was gradually truncated, and a short SAR-1a with better affinity and specificity was obtained. The optimal SAR-1a was further combined with a Pt nanoparticle (Pt NP)- decorated bimetallic Fe/Co-MOF to fabricate a multimode sensing platform for SAR determination. The Fe/Co-MOF@Pt NPs exhibited excellent peroxidase-like activity, which catalyzed the H2O2-mediated oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), thereby enabling visual detection of SAR. Meanwhile, the generated oxTMB can also produce SERS responses and be used for the SERS detection of SAR. Moreover, the inherent fluorescence property of Fe/Co-MOF@Pt NPs enabled fluorescence detection of SAR. The designed triple-readout aptasensor showed good sensitivity for SAR detection with limits of detection of 0.125 ng/mL (fluorescent mode) and 0.05 ng/mL (colorimetric and SERS mode). The aptamer-based triple-mode sensing platform provided mutual verification of detection results in different output modes, effectively improving the assay accuracy and providing a promising tool for highly sensitive, selective, and accurate determination of SAR in daily life.
Collapse
Affiliation(s)
- Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Tingting Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Xinyue Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Minghui Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
7
|
Hain E, He K, Batista-Andrade JA, Feerick A, Tarnowski M, Timm A, Blaney L. Geospatial and co-occurrence analysis of antibiotics, hormones, and UV filters in the Chesapeake Bay (USA) to confirm inputs from wastewater treatment plants, septic systems, and animal feeding operations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132405. [PMID: 37651932 DOI: 10.1016/j.jhazmat.2023.132405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Previous studies have reported select contaminants of emerging concern (CECs) in limited areas of the Chesapeake Bay (USA), but no comprehensive efforts have been conducted. In this work, 43 antibiotics, 9 hormones, 11 UV filters, and sucralose, were measured in matched water, sediment, and oyster samples from 58 sites. The highest sucralose concentration was 3051 ng L-1 in a subwatershed with 4.43 million liters of wastewater effluent per day (MLD) and 4385 septic systems. Although antibiotic occurrence was generally low in subwatersheds located in less populated areas, 102 ng L-1 ciprofloxacin was detected downstream of 0.58 MLD wastewater effluent and 10 animal feeding operations. Hormones were not regularly detected in water (2%) or oysters (37%), but the high detection frequencies in sediment (74%) were associated with septic systems. UV filters were ubiquitously detected in oysters, and octisalate exhibited the highest concentration (423 ng g-1). Oyster-phase oxybenzone and aqueous-phase sucralose concentrations were significantly correlated to wastewater effluent and septic systems, respectively. Toxicity outcomes were predicted for homosalate and octisalate throughout the Bay, and antimicrobial resistance concerns were noted for the Chester River. The geospatial and co-occurrence relationships constitute crucial advances to understanding CEC occurrence in the Chesapeake Bay and elsewhere.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Jahir A Batista-Andrade
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Anna Feerick
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Mitchell Tarnowski
- Maryland Department of Natural Resources, 580 Taylor Ave, B-2, Annapolis, MD 21401, USA
| | - Anne Timm
- USDA Forest Service, Northern Research Station, 5523 Research Park Drive, Suite 350, Baltimore, MD 21228, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
8
|
Zou M, Tian W, Chu M, Lu Z, Liu B, Xu D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163057. [PMID: 36966832 DOI: 10.1016/j.scitotenv.2023.163057] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
The tremendous potential of hybrid technologies for the elimination of quinolone antibiotics has recently attracted considerable attention. This current work prepared a magnetically modified biochar (MBC) immobilized laccase product named LC-MBC through response surface methodology (RSM), and LC-MBC showed an excellent capacity in the removal of norfloxacin (NOR), enrofloxacin (ENR) and moxifloxacin (MFX) from aqueous solution. The superior pH, thermal, storage and operational stability demonstrated by LC-MBC revealed its potential for sustainable application. The removal efficiencies of LC-MBC in the presence of 1 mM 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) for NOR, ENR and MFX were 93.7 %, 65.4 % and 77.0 % at pH 4 and 40 °C after 48 h reaction, respectively, which were 1.2, 1.3 and 1.3 times higher than those of MBC under the same conditions. The synergistic effect of adsorption by MBC and degradation by laccase dominated the removal of quinolone antibiotics by LC-MBC. Pore-filling, electrostatic, hydrophobic, π-π interactions, surface complexation and hydrogen bonding contributed in the adsorption process. The attacks on the quinolone core and piperazine moiety were involved in the degradation process. This study underscored the possibility of immobilization of laccase on biochar for enhanced remediation of quinolone antibiotics-contaminated wastewater. The proposed physical adsorption-biodegradation system (LC-MBC-ABTS) provided a novel perspective for the efficient and sustainable removal of antibiotics in actual wastewater through combined multi-methods.
Collapse
Affiliation(s)
- Mengyuan Zou
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China; Laoshan Laboratory, Qingdao 266234, PR China.
| | - Meile Chu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Bingkun Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| | - Dongpo Xu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
9
|
Yang H, Ping Q, Zhang Y. Highly efficient degradation of ofloxacin and diclofenac by composite photocatalyst aloe-emodin/PMMA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27530-z. [PMID: 37178304 DOI: 10.1007/s11356-023-27530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Photocatalysis is one of the most effective methods to remove pollutants from water. Photocatalyst is the core of photocatalysis. The composite photocatalyst combines the photosensitizer with the support and uses the photosensitivity of the photosensitizer and the stability and adsorption of the support to achieve efficient and rapid degradation of pharmaceuticals in water. In this study, natural aloe-emodin with π-conjugated structure was used as photosensitizer to react with macroporous resin polymethylmethacrylate (PMMA) under mild conditions to prepare composite photocatalysts AE/PMMAs. The photocatalyst underwent photogenerated electron migration under visible light to form •O2- and holes with high oxidation activity, which could realize efficient photocatalytic degradation of ofloxacin and diclofenac sodium and showed excellent stability, recyclability and industrial feasibility. This research has developed an efficient method of composite photocatalyst and realized the application of a natural photosensitizer in pharmaceutical degradations.
Collapse
Affiliation(s)
- Haifan Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qian Ping
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yan Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
10
|
Chen Y, Sun X, Zheng L, Liu Y, Zhao Y, Huang S, Li S. Synergistic catalysis induced by a multi-component system constructed by DBD plasma combined with α-Fe 2O 3/FeVO 4/HCP and peroxymonosulfate for gatifloxacin removal. CHEMOSPHERE 2023; 332:138838. [PMID: 37150453 DOI: 10.1016/j.chemosphere.2023.138838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
The dielectric barrier discharge (DBD) multi-component system containing plasma, α-Fe2O3/FeVO4, and peroxymonosulfate (PMS) with high catalytic activity was successfully constructed. Thereinto, α-Fe2O3/FeVO4 was loaded on the honeycomb ceramic plate (HCP) surface (α-Fe2O3/FeVO4/HCP) and placed under the water surface below the discharge area. The catalytic activity was evaluated by the removal rate of gatifloxacin (GAT), and the DBD+α-Fe2O3/FeVO4+PMS system exhibited the optimal catalytic activity. The enhanced catalytic activity can be attributed to the fact that the occurrence of synergistic catalysis that simultaneously includes plasma oxidation, photocatalysis, PMS oxidation, O3 catalysis, and Fenton reaction. The effect of various initial degradation parameters including input power, PMS dosage, pH, etc. On GAT removal was investigated. DBD+α-Fe2O3/FeVO4+PMS system has a significant increase in the concentration of H2O2 and O3, and the role played in the multi-component system was analyzed. The identification and analysis of organic matters during GAT degradation were visualized with the help of 3D EEMs. HPLC-MS and theoretical calculations identified the major intermediates and further deduced the possible GAT degradation pathways. Additionally, the acute toxicity of the major intermediates was predicted by the QSAR model. Finally, the possible mechanisms of synergistic catalysis to enhance catalytic activity were discussed based on the characteristics of several advanced oxidation processes (AOPs) and the results of experimental and characterization. This work provides a feasible technical route and theoretical basis for wastewater treatment by plasma combined with other AOPs.
Collapse
Affiliation(s)
- Yongyang Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Xiaomin Sun
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Lijiao Zheng
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yuan Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Yimo Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shimeng Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Shanping Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
11
|
Khavar AHC, Khazaee Z, Mahjoub A. Electron flux at the Schottky junction of Bi NPs and WO 3-supported g-C 3N 4: an efficient ternary S-scheme catalyst for removal of fluoroquinolone-type antibiotics from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18461-18479. [PMID: 36215017 DOI: 10.1007/s11356-022-23370-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Recently, global-scale attempts have been conducted to develop clean technologies and affordable materials to remediate pharmaceutical contaminants of water resources that are resistant to the biodegradation. In line with global efforts, this study reports a facile method to fabricate Bi nanocrystals in situ decorated on WO3 nanoplates and its composite with graphitic carbon nitride (WO3/Bi/g-C3N4) for photocatalytic degradation of fluoroquinolone-type antibiotics (ciprofloxacin and ofloxacin). The designed ternary S-scheme WO3/Bi/g-C3N4 composite material was fully characterized by physicochemical and electrochemical analysis. Depositing the cost-effective and earth-abundant Bi nanocrystals onto WO3 via a facile reduction route has been shown to increase the boosting of electron flux at their interface (Schottky junction). The S-scheme separation is confirmed by the calculation of band positions and the analysis of photogenerated hydroxyl radicals and holes. The complete removal of contaminants was obtained over the WO3/Bi/g-C3N4 photocatalyst after 90 min under visible light irradiation. The present work would provide a rational route for developing Bi NP-based photocatalysis to replace metallic Au, Pt, and Ag NPs.
Collapse
Affiliation(s)
| | - Zeynab Khazaee
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Mahjoub
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Use of Fluorescence Spectroscopy and Chemometrics to Visualise Fluoroquinolones Photodegradation Major Trends: A Confirmation Study with Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020777. [PMID: 36677831 PMCID: PMC9864895 DOI: 10.3390/molecules28020777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In this work, we employed EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) as a low-cost tool to study the oxidation pathways of (fluoro)quinolones. Amounts of 12.5 μM of enrofloxacin (ENR), ciprofloxacin (CIP), ofloxacin (OFL), oxolinic acid (OA), and flumequine (FLU), as individual solutions, were irradiated under UVA light. A 5-component PARAFAC model was obtained, four of them related to the parent pollutants, named as ENR-like (including CIP), OFL-like, OA-like, and FLU-like, and an additional one related to photoproducts, called ENRox-like (with an emission red-shift with respect to the ENR-like component). Mass spectrometry was employed to correlate the five PARAFAC components with their plausible molecular structures. Results indicated that photoproducts presenting: (i) hydroxylation or alkyl cleavages exhibited fingerprints analogous to those of the parent pollutants; (ii) defluorination and hydroxylation emitted within the ENRox-like region; (iii) the aforementioned changes plus piperazine ring cleavage emitted within the OA-like region. Afterwards, the five antibiotics were mixed in a single solution (each at a concentration of 0.25 μM) in seawater, PARAFAC being also able to deconvolute the fingerprint of humic-like substances. This approach could be a potential game changer in the analysis of (fluorescent) contaminants of emerging concern removals in complex matrices, giving rapid visual insights into the degradation pathways.
Collapse
|
13
|
Chen X, Cheng Z, Chen G, Yang Y, Sun P. Structural and antimicrobial property changes of veterinary antibiotics in thermal treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120519. [PMID: 36347415 DOI: 10.1016/j.envpol.2022.120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Agricultural application contributes major consumption of antibiotics worldwide. As veterinary antibiotics are poorly metabolized by animals, most of them end up in agricultural waste, which is increasingly subject to thermal treatment, such as torrefaction, pyrolysis, etc. However, there is a lack of research on their thermal decomposition mechanisms and products elucidation. Therefore, this study investigated the thermal decomposition of four major veterinary antibiotics groups (β-lactams, tetracyclines, fluoroquinolones, sulfonamides) with emphasis on their thermal stability, structural transformation and antibacterial activity. Results show that thermal treatment can remove the parent antibiotics with their antibacterial activity except for gatifloxacin (GAT). Although the parent form of GAT was fully removed at 200 °C, its products showed significant antibacterial activity against E. coli. We present novel evidence that the PhO-CH3 chemical bond on GAT preferentially brake to generate methyl radical, which underwent a substitution reaction at the para position of phenol. This reaction also occurred during the thermal decomposition of antibiotic analogues, balofloxacin and moxifloxacin, whose thermolysis products also showed significant antibacterial activity. Furthermore, these thermolysis products may present potentially cardiotoxic and pose higher risks to human health than their parent forms, based on the comparison with a group of drugs withdrawn from the market.
Collapse
Affiliation(s)
- Xi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Sciscenko I, Mora M, Micó P, Escudero-Oñate C, Oller I, Arques A. EEM-PARAFAC as a convenient methodology to study fluorescent emerging pollutants degradation: (fluoro)quinolones oxidation in different water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158338. [PMID: 36041605 DOI: 10.1016/j.scitotenv.2022.158338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/21/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Commercial (fluoro)quinolones ((F)Qs), ciprofloxacin (CIP), enrofloxacin (ENR), ofloxacin (OFL), oxolinic acid (OA) and flumequine (FLU) (3 μM each), were degraded with solar-photo-Fenton in a compound parabolic concentrator photoreactor (total volume 5 L) in ultra-pure water at pH = 5.0, salty water at pH = 5.0, and simulated wastewater at pH = 5.0 and 7.5. Iron speciation (its hydrolysis and the complexation with (F)Qs 15 μM and/or chlorides 0.5 M) was calculated at pH 5.0, observing, negligible formation of Fe(III)-chloride complexes, and that >99 % of the total (F)Qs are forming complexes stoichiometry 1:1 with Fe(III) (which also increases the percentage of Fe(OH)2+), being minoritarian the free antibiotic form. On the other hand, EEM-PARAFAC (fluorescence excitation-emission matrices-parallel factor analysis) was employed to simultaneously study the behaviour of: i) 4 structure-related groups corresponding to parent pollutants and slightly oxidised by-products, ENR-like (including CIP), OFL-like, OA-like, FLU-like; ii) intermediates still showing (F)Q characteristics (exhibiting analogous fluorescent fingerprint to ENR-like one, but shifted to shorter wavelengths); iii) humic-like substances. The scores from the 4 PARAFAC components corresponding to the parent pollutants were plotted vs. accumulated energy, exhibiting slower decay than their individual removals (measured with HPLC-UV/vis) due to the contribution of the aforementioned by-products to the overall fluorescence. Moreover, thiabendazole (TBZ) 3 μM was added as fluorescence interference. The presence of (F)Qs greatly enhanced TBZ degradation due to (F)Q-Fe(III) complex formation, keeping iron active at pH = 5.0 for Fenton process. The EEM-PARAFAC model was able to recognise the former six components plus an additional one attributable to TBZ-like.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain.
| | - Margarita Mora
- Departamento de Matemática Aplicada, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain
| | - Pau Micó
- Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain
| | | | - Isabel Oller
- CIEMAT-Plataforma Solar de Almería, Carretera de Senés km 4, 04200 Tabernas, Spain; CIESOL, Joint Centre of the University of Almería-CIEMAT, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - Antonio Arques
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell S/N, 03801 Alcoy, Spain
| |
Collapse
|
15
|
Zhang H, Quan H, Yin S, Sun L, Lu H. Unraveling the Toxicity Associated with Ciprofloxacin Biodegradation in Biological Wastewater Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15941-15952. [PMID: 36264842 DOI: 10.1021/acs.est.2c04387] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Incomplete mineralization of antibiotics in biological sludge systems poses a risk to the environment. In this study, the toxicity associated with ciprofloxacin (CIP) biodegradation in activated sludge (AS), anaerobic methanogenic sludge (AnMS), and sulfur-mediated sludge (SmS) systems was examined via long-term bioreactor tests and a series of bioassays. The AS and AnMS systems were susceptible to CIP and its biotransformation products (TPs) and exhibited performance deterioration, while the SmS system exhibited high tolerance against the toxicity of CIP and its TPs along with excellent pollutant removal. Up to 14 TPs were formed via piperazinyl substituent cleavage, defluorination, decarboxylation, acetylation, and hydroxylation reactions in AS, AnMS, and SmS systems. Biodegradation of CIP in the AS, AnMS, and SmS systems, however, could not completely eliminate its toxicity as evident from the inhibition of Vibrio fischeri luminescence along with Escherichia coli K12 and Bacillus subtilis growth. The anaerobic systems (AnMS and SmS) were more effective than the aerobic AS system at CIP biodegradation, significantly reducing the antibacterial activity of CIP and its TPs in the aqueous phase. In addition, the quantitative structure-activity relationship analysis indicated that the TPs produced via decarboxylation and hydroxylation (TP2 and TP4) as well as by cleavage of piperazine (TP12, TP13, and TP14) exhibited higher toxicity than CIP. The findings of this study provide insights into the toxicity and possible risks associated with CIP biodegradation in biological wastewater treatment.
Collapse
Affiliation(s)
- Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, PR China
| | - Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Shizhong Yin
- China Energy Engineering Group Guangdong Electric Power Design Institute Co., Ltd, Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, China
| |
Collapse
|
16
|
Zheng S, Wang Y, Chen C, Zhou X, Liu Y, Yang J, Geng Q, Chen G, Ding Y, Yang F. Current Progress in Natural Degradation and Enhanced Removal Techniques of Antibiotics in the Environment: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10919. [PMID: 36078629 PMCID: PMC9518397 DOI: 10.3390/ijerph191710919] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 05/14/2023]
Abstract
Antibiotics are used extensively throughout the world and their presence in the environment has caused serious pollution. This review summarizes natural methods and enhanced technologies that have been developed for antibiotic degradation. In the natural environment, antibiotics can be degraded by photolysis, hydrolysis, and biodegradation, but the rate and extent of degradation are limited. Recently, developed enhanced techniques utilize biological, chemical, or physicochemical principles for antibiotic removal. These techniques include traditional biological methods, adsorption methods, membrane treatment, advanced oxidation processes (AOPs), constructed wetlands (CWs), microalgae treatment, and microbial electrochemical systems (such as microbial fuel cells, MFCs). These techniques have both advantages and disadvantages and, to overcome disadvantages associated with individual techniques, hybrid techniques have been developed and have shown significant potential for antibiotic removal. Hybrids include combinations of the electrochemical method with AOPs, CWs with MFCs, microalgal treatment with activated sludge, and AOPs with MFCs. Considering the complexity of antibiotic pollution and the characteristics of currently used removal technologies, it is apparent that hybrid methods are better choices for dealing with antibiotic contaminants.
Collapse
Affiliation(s)
- Shimei Zheng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yandong Wang
- Department of Pediatrics, Weifang People’s Hospital, Weifang 261041, China
| | - Cuihong Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaojing Zhou
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Ying Liu
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Jinmei Yang
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Qijin Geng
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Gang Chen
- College of Chemistry and Chemical and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Fengxia Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
17
|
Mangalgiri KP, Ibitoye T, Blaney L. Molar absorption coefficients and acid dissociation constants for fluoroquinolone, sulfonamide, and tetracycline antibiotics of environmental concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155508. [PMID: 35483465 DOI: 10.1016/j.scitotenv.2022.155508] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics are priority contaminants of emerging concern due to their pseudo-persistence in the environment and contribution to the development of antimicrobial resistance. In solution, antibiotics undergo (de)protonation reactions that affect their UV absorbance and, therefore, photolytic fate in natural and engineered systems. This study employed enhanced spectrophotometric methods to determine the acid dissociation constants (as pKa values) and molar absorption coefficients for 12 fluoroquinolone, 9 sulfonamide, and 7 tetracycline antibiotics of environmental relevance. Molar absorption coefficient heatmaps were generated for all 28 antibiotics at 200-500 nm and pH 1.8-12.2. The data in the heatmaps were deconvoluted to calculate pKa values and specific molar absorption coefficients at each wavelength. All antibiotics had at least one pKa value in the environmentally relevant range of 5.5-8.5, and pKa values were reported for methacycline, moxifloxacin, nadifloxacin, rolitetracycline, sulfadoxine, and sulfapyridine for the first time. Deprotonation of the carboxylic acid associated with pKa,1 (5.5-6.7) exerted the strongest effects on the UV absorbance of fluoroquinolones. For tetracyclines, deprotonation of the tertiary amine at pKa,3 (7.8-10.2) was responsible for major shifts in UV absorbance. Although sulfonamides have conserved pKa sites, no general trends were observed for the molar absorption coefficients. The structural similarity of fluoroquinolones and tetracyclines supported the potential for a class-based approach to identifying molar absorbance as a function of pH. Overall, the reported pKa values and specific molar absorption coefficients will serve as important resources for future studies on antibiotic fate in natural and engineered systems.
Collapse
Affiliation(s)
- Kiranmayi P Mangalgiri
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, United States of America; Oklahoma State University, Department of Biosystems and Agricultural Engineering, 113 Agricultural Hall, Stillwater, OK 74078, United States of America.
| | - Temitope Ibitoye
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, United States of America
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, United States of America
| |
Collapse
|
18
|
Segalin J, Arsand JB, Jank L, Schwalm CS, Streit L, Pizzolato TM. In silico toxicity evaluation for transformation products of antimicrobials, from aqueous photolysis degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154109. [PMID: 35247405 DOI: 10.1016/j.scitotenv.2022.154109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
This study investigates degradation processes of three antimicrobials in water (norfloxacin, ciprofloxacin, and sulfamethoxazole) by photolysis, focusing on the prediction of toxicity endpoints via in silico quantitative structure-activity relationship (QSAR) of their transformation products (TPs). Photolysis experiments were conducted in distilled water with individual solutions at 10 mg L-1 for each compound. Identification of TPs was performed by means of LC-TOF-MS, employing a method based on retention time, exact mass fragmentation pattern, and peak intensity. Ten main compounds were identified for sulfamethoxazole, fifteen for ciprofloxacin, and fifteen for norfloxacin. Out of 40 identified TPs, 6 have not been reported in the literature. Based on new data found in this work, and TPs already reported in the literature, we have proposed degradation pathways for all three antimicrobials, providing reasoning for the identified TPs. QSAR risk assessment was carried out for 74 structures of possible isomers. QSAR predictions showed that all 19 possible structures of sulfamethoxazole TPs are non-mutagenic, whereas 16 are toxicant, 18 carcinogenic, and 14 non-readily biodegradable. For ciprofloxacin, 28 out of the 30 possible structures for the TPs are mutagenic and non-readily biodegradable, and all structures are toxicant and carcinogenic. All 25 possible norfloxacin TPs were predicted mutagenic, toxicant, carcinogenic, and non-readily biodegradable. Results obtained from in silico QSAR models evince the need of performing risk assessment for TPs as well as for the parent antimicrobial. An expert analysis of QSAR predictions using different models and degradation pathways is imperative, for a large variety of structures was found for the TPs.
Collapse
Affiliation(s)
- Jeferson Segalin
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Juliana Bazzan Arsand
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil
| | - Louise Jank
- Laboratório Federal de Defesa Agropecuária, Estr. Retiro da Ponta Grossa 3036, 91780-580 Porto Alegre, RS, Brazil
| | - Cristiane Storck Schwalm
- Faculdade de Ciências Exatas e Tecnologia, Universidade Federal da Grande Dourados, Rod. Dourados/Itahum, km 12, PC 364, Dourados, MS, Brazil
| | - Livia Streit
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Tânia Mara Pizzolato
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
19
|
Li C, Wu X, Hu J, Shan J, Zhang Z, Huang X, Liu H. Graphene-based photocatalytic nanocomposites used to treat pharmaceutical and personal care product wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35657-35681. [PMID: 35257332 DOI: 10.1007/s11356-022-19469-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Photocatalytic technology has been widely studied by researchers in the field of environmental purification. This technology can not only completely convert organic pollutants into small molecules of CO2 and H2O through redox reactions but also remove metal ions and other inorganic substances from water. This article reviews the research progress of graphene-based photocatalytic nanocomposites in the treatment of wastewater. First, we elucidate the basic principles of photocatalysis, the types of graphene-based nanocomposites, and the role of graphene in photocatalysis (e.g., graphene can accelerate the separation of photon-hole pairs and increase the intensity and range of light absorption). Second, the preparation, characterization, and application of composites in wastewater are introduced. We also discuss the kinetic model of the photocatalytic degradation of pollutants. Finally, the enhancement mechanism of graphene in terms of photocatalysis is not completely clear, and graphene-based photocatalysts with high catalytic efficiency, low cost, and large-scale production have not yet appeared, so there is an urgent need for more extensive and in-depth research.
Collapse
Affiliation(s)
- Caifang Li
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Xianliang Wu
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Jiwei Hu
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Junyue Shan
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China
| | - Zhenming Zhang
- Guizhou Institute of Biology, Guiyang, Guizhou, 550009, China
| | - Xianfei Huang
- Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550001, China.
| | - Huijuan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| |
Collapse
|
20
|
Xiang Y, Lu X, Liu Y, Yu C, Yang H, Gao N, Chu W, Zhang Y. Influence of chemical speciation on enrofloxacin degradation by UV irradiation: Kinetics, mechanism and disinfection by-products formation. CHEMOSPHERE 2022; 286:131559. [PMID: 34280830 DOI: 10.1016/j.chemosphere.2021.131559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Fluoroquinolones (FQs) were frequently detected in aqueous environment. The UV irradiation have been reported as an efficient method for FQs degradation. This study investigated the influence of chemical speciation on enrofloxacin (ENR) photolysis process by UV irradiation. The results showed that chemical speciation of ENR significantly affected the photodegradation kinetics, and the highest degradation rate was observed in the zwitterion form. Presence of natural organic matter (NOM) and inorganic anions had different degrees of influences on ENR photodegradation for three chemical speciation of ENR. The contribution of 1O2 on ENR degradation in neutral and alkalinity condition was significantly higher than that in acidic condition. The cation and zwitterion of ENR was beneficial to the formation of trichloromethane (TCM) and haloacetonitrile (HAN) during the chlorination alone. Compared with the chlorination of ENR, the UV pretreatment respectively caused 4.06-fold and 3.14-fold decrease in TCM formation at acidic and neutral reaction condition during subsequent chlorination. Also the decrease in HAN formation at neutral and alkalinity condition was found after UV treatment followed by chlorination. The UV pretreatment caused higher yield of HAN in the subsequent chlorination at acidic condition than that at neutral and alkalinity condition. Through the UV pretreatment at neutral condition, the generated concentration of halonitromethane (HNM) reached the maximum value during the subsequent chlorination. Potential toxic risk analysis showed the toxicity decreased in zwitterion form of ENR, while toxicity increased in cationic and anionic form after UV irradiation pretreatment.
Collapse
Affiliation(s)
- Yuanquan Xiang
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xian Lu
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yali Liu
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Changye Yu
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Huiting Yang
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Naiyun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yinjiang Zhang
- Engineering Research Center for Water Environment Ecology in Shanghai, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
21
|
Xiao R, Zhang Y, Wang S, Zhu H, Song H, Chen G, Lin H, Zhang J, Xiong J. Prussian blue modified CeO 2 as a heterogeneous photo-Fenton-like catalyst for degradation of norfloxacin in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69301-69313. [PMID: 34296409 DOI: 10.1007/s11356-021-15498-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The heterogeneous photo-Fenton-like process is emerging as a promising treatment of antibiotics-containing wastewater. The preparation of new efficient and stable catalysts is one of the research fields. A composite catalyst, prussian blue (PB) modified CeO2 was prepared, characterized, and applied for photo-Fenton oxidation of norfloxacin (NOR) in this study. It was found that chemical doping of PB leaded to more oxygen vacancies and increased the surface area of CeO2 obviously. PB/CeO2 with more Ce3+ facilitated electron transfer between Fe3+/Fe2+ with Ce3+/Ce4+. PB could also improve the separation rate of photoexcited electron-hole pairs in CeO2 nanostructures. When the doping ratio of PB and CeO2 was 10%, PB/CeO2 show the highest catalytic degradation ability and 88.93% of NOR could be degraded within 30 min. PB/CeO2 composite showed well reactivity at the wide pH value range of 3-8. The reusable experiments and low iron dissolution with less than 1 mg/L indicated that PB/CeO2 could be employed as an efficient heterogeneous photo-Fenton-like catalyst in organic contaminants degradation.
Collapse
Affiliation(s)
- Ruyi Xiao
- Guangxi University, Nanning, 530004, China
| | | | - Shuangfei Wang
- Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China.
| | - Hongxiang Zhu
- Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Hainong Song
- Guangxi BOSSCO Environmental Protection Science and Technology Co., LTD., Nanning, 530004, China
| | - Guoning Chen
- Guangxi BOSSCO Environmental Protection Science and Technology Co., LTD., Nanning, 530004, China
| | - Hongfei Lin
- Guangxi BOSSCO Environmental Protection Science and Technology Co., LTD., Nanning, 530004, China
| | - Jian Zhang
- Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| | - Jianhua Xiong
- Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, China
| |
Collapse
|
22
|
A Hydrophobic Derivative of Ciprofloxacin as a New Photoinitiator of Two-Photon Polymerization: Synthesis and Usage for the Formation of Biocompatible Polylactide-Based 3D Scaffolds. Polymers (Basel) 2021; 13:polym13193385. [PMID: 34641200 PMCID: PMC8512357 DOI: 10.3390/polym13193385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022] Open
Abstract
A hydrophobic derivative of ciprofloxacin, hexanoylated ciprofloxacin (CPF-hex), has been used as a photoinitiator (PI) for two-photon polymerization (2PP) for the first time. We present, here, the synthesis of CPF-hex and its application for 2PP of methacrylate-terminated star-shaped poly (D,L-lactide), as well a systematic study on the optical, physicochemical and mechanical properties of the photocurable resin and prepared three-dimensional scaffolds. CPF-hex exhibited good solubility in the photocurable resin, high absorption at the two-photon wavelength and a low fluorescence quantum yield = 0.079. Structuring tests showed a relatively broad processing window and revealed the efficiency of CPF-hex as a 2PP PI. The prepared three-dimensional scaffolds showed good thermal stability; thermal decomposition was observed only at 314 °C. In addition, they demonstrated an increase in Young's modulus after the UV post-curing (from 336 ± 79 MPa to 564 ± 183 MPa, which is close to those of a cancellous (trabecular) bone). Moreover, using CPF-hex as a 2PP PI did not compromise the scaffolds' low cytotoxicity, thus they are suitable for potential application in bone tissue regeneration.
Collapse
|
23
|
Wang C, Zhang J, Du J, Zhang P, Zhao Z, Shi W, Cui F. Rapid degradation of norfloxacin by VUV/Fe 2+/H 2O 2 over a wide initial pH: Process parameters, synergistic mechanism, and influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125893. [PMID: 34492831 DOI: 10.1016/j.jhazmat.2021.125893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 06/13/2023]
Abstract
Vacuum UV (VUV) technology has attracted much attention because it effectively splits water to generate reactive oxygen species (ROS) in situ and has the advantages of UV. So far, the synergistic mechanisms, formation pathways and contributions of ROS in VUV/Fe2+/H2O2 process have not been extensively studied. Herein, complete removal (at 4 min) and 63.3% mineralization (at 8 min) of 45 μM norfloxacin (NOR) were achieved at neutral pH by VUV/Fe2+/H2O2 (90 μM Fe2+ and 3 mM H2O2). Compared with its subsystems, VUV/Fe2+/H2O2 can not only increase the pseudo-first-order reaction rate constant of NOR removal by 2.3-14.9 times and increase the mineralization by 20.4-59.4%, but also reduce the residual ratio of H2O2 by 19.9-70.1% and reduce total cost by 20.0-68.0%. The synergy factor of VUV/Fe2+/H2O2 was 3.97, which was attributed to the VUV irradiation promoting iron redox cycle and H2O2 decomposition. Moreover, hydroxyl radical and superoxide radical, which were identified as the main ROS, contributed 79.07% and 18.47% to NOR removal, respectively. Degradation pathways of NOR were proposed. Furthermore, effects of coexisting ions and dissolved organic matter were investigated. As an energy-saving and efficient process, the satisfactory results of VUV/Fe2+/H2O2 applied in real waters also highlight its application potential.
Collapse
Affiliation(s)
- Chuang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Jing Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jinying Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Pengfei Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| | - Wenxin Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Fuyi Cui
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
24
|
Hain E, Adejumo H, Anger B, Orenstein J, Blaney L. Advances in antimicrobial activity analysis of fluoroquinolone, macrolide, sulfonamide, and tetracycline antibiotics for environmental applications through improved bacteria selection. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125686. [PMID: 34088184 DOI: 10.1016/j.jhazmat.2021.125686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The widespread use of antibiotics has led to their ubiquitous presence in water and wastewater and raised concerns about antimicrobial resistance. Clinical antibiotic susceptibility assays have been repurposed to measure removal of antimicrobial activity during water and wastewater treatment processes. The corresponding protocols have mainly employed growth inhibition of Escherichia coli. The present work focused on optimizing bacteria selection to improve the sensitivity of residual antimicrobial activity measurements by broth microdilution assays. Thirteen antibiotics from four classes (i.e., fluoroquinolones, macrolides, sulfonamides, tetracyclines) were investigated against three gram-negative organisms, namely E. coli, Mycoplasma microti, and Pseudomonas fluorescens. The minimum inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50) were calculated for each antibiotic-bacteria pair. P. fluorescens produces a fluorescent siderophore, pyoverdine, that was used to assess sublethal effects and further enhance the sensitivity of antimicrobial activity measurements. The optimal antibiotic-bacteria pairs were as follows: fluoroquinolone-E. coli (growth inhibition); macrolide- and sulfonamide-M. microti (growth inhibition); and, tetracycline-P. fluorescens (pyoverdine inhibition). Compared to E. coli growth inhibition, the sensitivity of antimicrobial activity analysis was improved by up to 728, 19, and 2.7 times for macrolides (tylosin), sulfonamides (sulfamethoxazole), and tetracyclines (chlortetracycline), facilitating application of these bioassays at environmentally-relevant conditions.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Hollie Adejumo
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA; University of Michigan, Department of Civil and Environmental Engineering, 2350 Hayward Street, 2105 GG Brown Building, Ann Arbor, MI 48109-2125, USA
| | - Bridget Anger
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Joseph Orenstein
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
25
|
Sciscenko I, Arques A, Varga Z, Bouchonnet S, Monfort O, Brigante M, Mailhot G. Significant role of iron on the fate and photodegradation of enrofloxacin. CHEMOSPHERE 2021; 270:129791. [PMID: 33556815 DOI: 10.1016/j.chemosphere.2021.129791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 05/27/2023]
Abstract
Enrofloxacin (ENR) belongs to the fluoroquinolone (FQ) antibiotics family, which are contaminants of emerging concern frequently found in effluents. Although many works studying photo-Fenton process for FQ degradation have been reported, there are no reports analysing in deep the effect of iron complexation, as well as other metals, towards FQs' photolysis, which, evidently, also contributes in the overall degradation of the pollutant. Therefore, in this work, we report a comparative study between the photochemical fate of ENR and its complex with Fe(III) under simulated sunlight irradiation. In addition, the effect of dissolved oxygen, self-sensitization process, and H2O2 addition on the studied photochemical systems are also investigated. Results indicate that, for free and iron-complexed ENR, singlet oxygen (1O2) is generated from the interaction of its triplet state with ground state oxygen. Half-life time (t1/2) of ENR under sun simulated conditions is estimated to be around 22 min, while complexation with iron enhances its photostability, leading to a t1/2 of 2.1 h. Such finding indicates that at least the presence of iron, might notably increase the residence time of these pollutants in the environment. Eventually, only with the addition of H2O2, the FQ-iron complex is efficiently degraded due to photo-Fenton process even at circumneutral pH values due to the high stability of the formed complex. Finally, after LC/FT-ICR MS analysis, 39 photoproducts are detected, of which the 14 most abundant ones are identified. Results indicate that photoproducts formation is pH and iron dependent.
Collapse
Affiliation(s)
- Iván Sciscenko
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Alcoy, Spain
| | - Antonio Arques
- Departamento de Ingeniería Textil y Papelera, Universitat Politècnica de València, Alcoy, Spain
| | - Zsuzsanna Varga
- Laboratoire de Chimie Moléculaire - CNRS / Ecole Polytechnique, IP Paris, 91128, Palaiseau, France
| | - Stephane Bouchonnet
- Laboratoire de Chimie Moléculaire - CNRS / Ecole Polytechnique, IP Paris, 91128, Palaiseau, France
| | - Olivier Monfort
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, Ilkovicova 6, Mlynska Dolina, 84215, Bratislava, Slovakia
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, 63000, Clermont-Ferrand, France.
| |
Collapse
|
26
|
Xue H, Li M, Liu B, Meng Q. Photochemical degradation kinetics and mechanisms of norfloxacin and oxytetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:8258-8265. [PMID: 33052570 DOI: 10.1007/s11356-020-11181-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The photochemical degradation of norfloxacin (NOR) and oxytetracycline (OTC) was investigated under ultraviolet (UV) irradiation. The results indicated that both NOR and OTC can be degraded, whereas the reaction rates decreased with increasing concentration of NOR and OTC. The degradation rates of NOR and OTC (5 μM) were 0.0256 min-1 and 0.0140 min-1. Acidic conditions inhibited the degradation of NOR; however, alkaline conditions promoted the degradation of NOR. Meanwhile, the degradation of OTC was promoted by alkaline conditions but hardly affected by acidic conditions. In real water, the degradation of NOR was slower than that in ultrapure water, whereas the degradation of OTC was faster in real water. NOR produced five degradation products, with pathways mainly comprising hydroxylation and defluorination. OTC produced three degradation products, with its degradation pathways mainly consisting of deep oxidation, dehydration, and secondary alcohol oxidation. During the UV photolysis process, the mineralization rates of NOR and OTC (5 μM) were 9.83% and 6.87% after 60-min irradiation. This work can provide a theoretical basis for understanding the migration and transformation behavior of antibiotics in the water environment.
Collapse
Affiliation(s)
- Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | | | - Binshuo Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China.
| |
Collapse
|
27
|
Kumari M, Kumar A. Human health risk assessment of antibiotics in binary mixtures for finished drinking water. CHEMOSPHERE 2020; 240:124864. [PMID: 31542580 DOI: 10.1016/j.chemosphere.2019.124864] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/17/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
The present study developed a new step-wise approach to estimate the potential human health risk of antibiotics in binary mixture for drinking water samples for two different sub-populations. Monte Carlo simulation based uncertainty analysis was performed to reduce uncertainty in risk assessment. Human health risk assessment studies were carried out using the acceptable daily intake (ADIs) for exposures of individual antibiotics considering point of departure (POD) and uncertainty factors (UFs). The estimated ADI values were used to estimate the predicted no effect concentrations (PNECs), at or below which no adverse human health effects are anticipated. Hazard quotient (HQ) in risk assessment was calculated as a ratio of environmental concentrations (ECs) and PNECs (EC/PNEC). The study showed that the average HQs values of individual antibiotics in adult and children were found below the acceptable limit, demonstrating no possible human health risk for both the subgroups. HIinteraction values of antibiotics in binary mixture was calculated using HQ values of antibiotics. The study observed that the estimated HIinteraction values of antibiotics in binary mixture was found to be less than 1 for both the sub populations, indicating no potential adverse effects on human health. Concentration of antibiotics was the primary contributor (>65%) to the overall variance in the uncertainty estimates for HQs of individual antibiotics in drinking water for adult and children. The co-occurrence of antibiotics in binary mixture for drinking water samples doesn't possess any possible risk on human health for the studied population.
Collapse
Affiliation(s)
- Minashree Kumari
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| | - Arun Kumar
- Environment Engineering Section, Department of Civil Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110017, India.
| |
Collapse
|
28
|
Kar S, Ibrahim S, Pal T, Ghosh S. Enhance Solar‐Light‐Driven Photocatalytic Degradation of Norfloxacin Aqueous Solution by RGO‐Based Cd
x
Zn
1‐x
S Alloy Composite with Band‐Gap Tuneability. ChemistrySelect 2020. [DOI: 10.1002/slct.201903755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sayani Kar
- Department of PhysicsVidyasagar University Midnapore 721102 India
| | - Sk Ibrahim
- Department of PhysicsVidyasagar University Midnapore 721102 India
| | - Tanusri Pal
- Department of PhysicsMidnapore College Midnapore 721101 India
| | - Surajit Ghosh
- Department of PhysicsVidyasagar University Midnapore 721102 India
| |
Collapse
|
29
|
Li H, Duan L, Wang H, Chen Y, Wang F, Zhang S. Photolysis of sulfadiazine under UV radiation: Effects of the initial sulfadiazine concentration, pH, NO3− and Cd2+. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.136949] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Ding K, Duran M, Xu W. The synergistic interaction between sulfate-reducing bacteria and pyrogenic carbonaceous matter in DDT decay. CHEMOSPHERE 2019; 233:252-260. [PMID: 31176126 DOI: 10.1016/j.chemosphere.2019.05.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/20/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Although 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) was banned in the United States in 1972, it is still often detected in sediments where pyrogenic carbonaceous matter (PCM) and sulfate-reducing bacteria (SRB) co-exist. In this study, we found that 70.2 ± 0.2% of DDT disappeared in the presence of SRB and graphite powder, a model PCM, after 21 days at pH 7. Our results suggest that the observed DDT decay was due to the reaction between graphite powder and the reduced sulfur species that were produced by SRB. No biofilm formation was observed on the surface of graphite powder. Rather, the activity of SRB was inhibited by the presence of graphite powder. To understand the involvement of PCM in DDT decay, electrochemical cells and batch reactor experiments with sulfur-pretreated PCM as well as direct electrochemical reduction by a potentiostat were employed. Our results suggest that polysulfide, sulfide, sulfite, and thiosulfate could all react with PCM, forming surface-bound intermediates that subsequently led to DDT decay. The reactivity of reduced sulfur species was the highest for polysulfide, followed by sulfide, sulfite, and thiosulfate.
Collapse
Affiliation(s)
- Kai Ding
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA, 19085, USA
| | - Metin Duran
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA, 19085, USA
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, PA, 19085, USA.
| |
Collapse
|
31
|
Migration and Transformation of Ofloxacin by Free Chlorine in Water Distribution System. WATER 2019. [DOI: 10.3390/w11040817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the degradation kinetics and product generation of ofloxacin (OFL) in the pipe network under different pipe materials, flow rate, pH, free chlorine concentration and temperature. The experiments done in the beaker and pipe network were compared. The results showed that the reaction rate of OFL chlorination with free chlorine increased with the increase of the free chlorine concentration in the pipe network and deionized water, and the degradation efficiency of OFL in the pipe network was higher than that in the deionized water, satisfying the second-order dynamics model. The degradation rate under different pHs was: neutral > acidic > alkaline. The influence of the flow rate is not significant while the influence of the pipe materials and temperature is obvious. The degradation rate of OFL increased with the increase of the temperature, indicating that the OFL degradation was an endothermic process. A liquid chromatograph-mass spectrometer (LC-MS) was used to detect the chlorination intermediates, and the results showed that the piperazine ring was the main group involved in the chlorination reaction, and the main point involved in the chlorination reaction was the N4 atom on the piperazine ring. We also found that, as the reaction time increases, the concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs) increase and THMs mainly exist in the form of trichloromethane (TCM) while HAAs mainly exist in the form of monochloroacetic acid (MCAA).
Collapse
|
32
|
Azuma T, Otomo K, Kunitou M, Shimizu M, Hosomaru K, Mikata S, Mino Y, Hayashi T. Removal of pharmaceuticals in water by introduction of ozonated microbubbles. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.059] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Chen P, Blaney L, Cagnetta G, Huang J, Wang B, Wang Y, Deng S, Yu G. Degradation of Ofloxacin by Perylene Diimide Supramolecular Nanofiber Sunlight-Driven Photocatalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1564-1575. [PMID: 30604606 DOI: 10.1021/acs.est.8b05827] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study describes a promising sunlight-driven photocatalyst for the treatment of ofloxacin and other fluoroquinolone antibiotics in water and wastewater. Perylene diimide (PDI) supramolecular nanofibers, which absorb a broad spectrum of sunlight, were prepared via a facile acidification polymerization protocol. Under natural sunlight, the PDI photocatalysts achieved rapid treatment of fluoroquinolone antibiotics, including ciprofloxacin, enrofloxacin, norfloxacin, and ofloxacin. The fastest degradation was observed for ofloxacin, which had a half-life of 2.08 min for the investigated conditions. Various light sources emitting in the UV-vis spectrum were tested, and blue light was found to exhibit the fastest ofloxacin transformation kinetics due to the strong absorption by the PDI catalyst. Reactive species, namely, h+, 1O2, and O2•-, comprised the primary photocatalytic mechanisms for ofloxacin degradation. Frontier electron density calculations and mass spectrometry were used to verify the major degradation pathways of ofloxacin by the PDI-sunlight photocatalytic system and identify the transformation products of ofloxacin, respectively. Degradation mainly occurred through demethylation at the piperazine ring, ketone formation at the morpholine moiety, and aldehyde reaction at the piperazinyl group. An overall mechanism was proposed for ofloxacin degradation in the PDI-sunlight photocatalytic system, and the effects of water quality constituents were examined to determine performance in real water/wastewater systems. Ultimately, the aggregate results from this study highlight the suitability of the PDI-sunlight photocatalytic system to treat antibiotics in real water and wastewater systems.
Collapse
Affiliation(s)
- Ping Chen
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Lee Blaney
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
- Department of Chemical, Biochemical, and Environmental Engineering , University of Maryland Baltimore County , 1000 Hilltop Circle, Engineering 314 , Baltimore , Maryland 21250 , United States
| | - Giovanni Cagnetta
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Jun Huang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Bin Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Yujue Wang
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Shubo Deng
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
34
|
Charuaud L, Jarde E, Jaffrezic A, Thomas MF, Le Bot B. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate. JOURNAL OF HAZARDOUS MATERIALS 2019; 361:169-186. [PMID: 30179788 DOI: 10.1016/j.jhazmat.2018.08.075] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/31/2018] [Accepted: 08/22/2018] [Indexed: 05/21/2023]
Abstract
Veterinary pharmaceuticals (VPs) increasingly used in animal husbandry have led to their presence in aquatic environments -surface water (SW) or groundwater (GW) - and even in tap water. This review focuses on studies from 2007 to 2017. Sixty-eight different veterinary pharmaceutical residues (VPRs) have been quantified worldwide in natural waters at concentrations ranging from nanograms per liter (ng L-1) to several micrograms per liter (μg L-1). An extensive up-to-date on sales and tonnages of VPs worldwide has been performed. Tetracyclines (TCs) antibiotics are the most sold veterinary pharmaceuticals worldwide. An overview of VPRs degradation pathways in natural waters is provided. VPRs can be degraded or transformed by biodegradation, hydrolysis or photolysis. Photo-degradation appears to be the major degradation pathway in SW. This review then reports occurrences of VPRs found in tap water, and presents data on VPRs removal in drinking water treatment plants (DWTPs) at each step of the process. VPRs have been quantified in tap water at ng L-1 concentration levels in four studies of the eleven studies dealing with VPRs occurrence in tap water. Overall removals of VPRs in DWTPs generally exceed 90% and advanced treatment processes (oxidation processes, adsorption on activated carbon, membrane filtration) greatly contribute to these removals. However, studies performed on full-scale DWTPs are scarce. A large majority of fate studies in DWTPs have been conducted under laboratory at environmentally irrelevant conditions (high concentration of VPRs (mg L-1), use of deionized water instead of natural water, high concentration of oxidant, high contact time etc.). Also, studies on VPRs occurrence and fate in tap water focus on antibiotics. There is a scientific gap on the occurrence and fate of antiparatic drugs in tap waters.
Collapse
Affiliation(s)
- Lise Charuaud
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Emilie Jarde
- Univ Rennes, CNRS, Géosciences Rennes - UMR6118, 35000 Rennes, France
| | | | - Marie-Florence Thomas
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Barbara Le Bot
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
35
|
Zhang Z, Xie X, Yu Z, Cheng H. Influence of chemical speciation on photochemical transformation of three fluoroquinolones (FQs) in water: Kinetics, mechanism, and toxicity of photolysis products. WATER RESEARCH 2019; 148:19-29. [PMID: 30343195 DOI: 10.1016/j.watres.2018.10.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 05/12/2023]
Abstract
This study investigated the contribution of direct, indirect, and self-sensitized photolysis to the photochemical fate of three model fluoroquinolones (FQs), i.e., lomefloxacin (LOM), norfloxacin (NOR), and ofloxacin (OFL), and demonstrated the influence of chemical speciation on their photodegradation behavior, a topic that has received relatively little attention. Results suggest that these FQs in water transformed mainly via direct photolysis, while hydroxyl radical played a key role in their indirect and self-sensitized photolysis. Chemical speciation of such zwitterionic compounds significantly affected the kinetics of their phototransformation, with the quantum yields of photodegradation decreased in the order of zwitterionic (FQsH) > anionic (FQs-) > cationic (FQsH2+). The photodegradation pathways of FQs depended on both their structures and chemical speciation. Defluorination for LOM in C-8 and NOR in C-6 was more significant when they were present in zwitterionic form than in the other forms. Cationic FQs underwent direct piperazinyl ring cleavage, and zwitterionic ones underwent piperazinyl ring oxidation, while the degradation pathway of piperazinyl ring for FQs in anionic form was structure dependent. Decarboxylation for zwitterionic FQs occurred more slowly compared to both cationic and anionic ones, and the FQs bearing electron-donating groups in C-8 position degraded more easily in cationic form than the anionic ones, while the opposite was true for the FQs without such a group in C-8 position. Results of Vibrio fischeri bioluminescence inhibition tests showed the toxicity of zwitterionic NOR and OFL significantly decreased after photodegradation, while the degradation products of LOM exhibited greater toxicity. These findings indicate that chemical speciation of zwitterionic compounds could affect the kinetics and pathways of their photochemical transformation, and thus have important implications on their fate and risk in aquatic environment.
Collapse
Affiliation(s)
- Zhichao Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiande Xie
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
36
|
Wu Q, Que Z, Li Z, Chen S, Zhang W, Yin K, Hong H. Photodegradation of ciprofloxacin adsorbed in the intracrystalline space of montmorillonite. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:414-420. [PMID: 30055431 DOI: 10.1016/j.jhazmat.2018.07.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Although photolysis of antibiotics in aqueous solution was widely studied for a better understanding of their photolytic behavior in aqueous phase, the knowledge about photodegradation of antibiotics adsorbed on solid surfaces is still very limited. In this study, photodegradation of ciprofloxacin (CIP), a fluoroquinolone antibiotic, adsorbed in the intracrystalline space of montmorillonite (MMT) was examined using a xenon light source (300 W, λ > 320 nm). The gradual decrease of basal spacing of MMT from 1.66 to 1.46 nm with irradiation confirmed CIP decomposition in the intracrystalline space under simulated solar irradiation. Nearly 70 percent of adsorbed CIP was degraded after 5 h irradiation, and the reaction followed the first-order kinetics with a rate constant roughly 3 times than that in aqueous solution, indicating more efficient photodegradation of CIP after being adsorbed in the intracrystalline space of MMT. Spectroscopic analysis revealed that direct photolysis was the main photolytic mechanism. The hydroxyl radical induced by irradiated MMT might play an important role. The major photoproducts were identified with liquid chromatography-tandem mass spectrometry, and the main degradation pathways were proposed. The results demonstrated that the photoproduct distribution and degradation pathways of CIP adsorbed in the intracrystalline space differed from those in aqueous solution.
Collapse
Affiliation(s)
- Qingfeng Wu
- School of Physics and Optoelectronic Engineering, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China.
| | - Zhongbao Que
- School of Physics and Optoelectronic Engineering, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
| | - Zhaohui Li
- Department of Geosciences, University of Wisconsin-Parkside, 900 Wood Road, Kenosha, WI, 53144, USA.
| | - Shanjun Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
| | - Weibin Zhang
- School of Physics and Optoelectronic Engineering, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei, 434023, China
| | - Ke Yin
- Faculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei, 430074, China
| | - Hanlie Hong
- Faculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Wuhan, Hubei, 430074, China
| |
Collapse
|
37
|
Hain E, Wammer KH, Blaney L. Comment on "Photodegradation of sulfathiazole under simulated sunlight: Kinetics, photo-induced structural rearrangement, and antimicrobial activities of photoproducts" by Niu et al. [Water Research 124 2017 576-583]. WATER RESEARCH 2018; 131:205-207. [PMID: 29289921 DOI: 10.1016/j.watres.2017.12.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Recent efforts have employed antimicrobial susceptibility assays to describe the residual antimicrobial activity of antibiotics and their transformation products in a variety of environmental processes. Some authors have evaluated the results of these assays using the minimum inhibitory concentration (MIC); however, this approach has fundamental weaknesses. To highlight best practices, this comment describes the advantages of using dose-response curves to calculate the half maximal inhibitory concentration (IC50) and the potential impacts of growth media on the antimicrobial activity of sulfonamide antibiotics.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical and Environmental Engineering, 1000 Hilltop Circle, ECS 314, Baltimore, MD 21250, USA
| | - Kristine H Wammer
- University of St. Thomas, Department of Chemistry, 2115 Summit Avenue, St. Paul, MN 55105, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical and Environmental Engineering, 1000 Hilltop Circle, ECS 314, Baltimore, MD 21250, USA.
| |
Collapse
|
38
|
Mangalgiri KP, Blaney L. Elucidating the Stimulatory and Inhibitory Effects of Dissolved Organic Matter from Poultry Litter on Photodegradation of Antibiotics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12310-12320. [PMID: 28952731 DOI: 10.1021/acs.est.7b03482] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study examined the photolytic fate of the chlortetracycline (CTC), ciprofloxacin (CIP), roxarsone (ROX), and sulfamethoxazole (SMX) antibiotics in agriculturally relevant matrices. The observed photodegradation kinetics for antibiotics in solutions containing dissolved organic matter (DOM) from three poultry litter extracts was modeled to identify contributions from direct and indirect photolysis. Suwannee River natural organic matter (SRN) was used as a surrogate DOM standard. Poultry litter-derived DOM generated lower concentrations of reactive species compared to SRN. Direct photolysis was the dominant transformation mechanism for CIP, whereas CTC, ROX, and SMX were sensitized by 3DOM* and 1O2. The impacts of agricultural DOM on photodegradation of antibiotics were identified in terms of pseudo-first-order rate constants for formation of reactive species and second-order rate constants for reaction of reactive species with DOM. Solutions containing poultry litter-derived DOM generated similar levels of 3DOM* and 1O2, enhancing degradation of CTC, ROX, and SMX. The reactivity of SMX was markedly different in solutions containing poultry litter DOM compared to solutions with SRN, indicating that the photolytic fate of select antibiotics varies for agricultural and surface water matrices. As the majority of antibiotics are consumed by animals, these findings provide new insight into agriculturally relevant transformation mechanisms and kinetics.
Collapse
Affiliation(s)
- Kiranmayi P Mangalgiri
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County , 1000 Hilltop Circle, ECS 314, Baltimore, Maryland 21250, United States
| | - Lee Blaney
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County , 1000 Hilltop Circle, ECS 314, Baltimore, Maryland 21250, United States
| |
Collapse
|
39
|
Yang H, Mei L, Wang P, Genereux J, Wang Y, Yi B, Au C, Dang L, Feng P. Photocatalytic degradation of norfloxacin on different TiO2−X polymorphs under visible light in water. RSC Adv 2017. [DOI: 10.1039/c7ra09022f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Reduced TiO2 (TiO2−X) materials with different crystallographic structures were prepared and characterized.
Collapse
Affiliation(s)
- Hai Yang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
- Department of Chemistry
| | - Liangyong Mei
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Pengcheng Wang
- Department of Chemistry
- University of California
- Riverside
- USA
| | | | - Yinsheng Wang
- Department of Chemistry
- University of California
- Riverside
- USA
| | - Bing Yi
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
| | - Chaktong Au
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
| | - Limin Dang
- College of Chemistry and Chemical Engineering
- Hunan Institute of Engineering
- Xiangtan 411104
- P. R. China
| | - Pingyun Feng
- Department of Chemistry
- University of California
- Riverside
- USA
| |
Collapse
|