1
|
Yu D, Zhang G, Lv X, Xu X, Yang F. Insight into pH-dependent synergistic mechanism of the enhanced photoelectro-chlorine conversion of ammonia (NH 4+/NH 3) to N 2 coupled with H 2 evolution on Pt-decorated black TiO 2 nanotube arrays. WATER RESEARCH 2025; 283:123870. [PMID: 40412037 DOI: 10.1016/j.watres.2025.123870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Achieving efficient NH4+-N degradation into harmless N2 and simultaneous harvesting hydrogen energy is of great significance for protecting aquatic ecosystems and alleviating energy shortages. Herein, a photoelectrochemical-chlorine (PEC-Cl) system was developed aiming to selective converting ammonia to N2 with simultaneous H2 evolution in a wide pH range of 3-13. The Pt decorated black TiO2 nanotube arrays (Pt/BTNAs) with sufficient oxygen vacancies defects and the enhanced PEC properties were synthesized as the bifunctional electrode. The parameters optimization illustrated high N2 selectivity (88 %) and H2 yield rate (67.5 μmol cm-2 h-1) at pH 9. The ClO• derived from the cross reactions between active chlorine and HO• plays a predominant role in oxidizing ammonia. More importantly, the Gibbs free energy calculation indicated that Pt decorating can also significantly promote the direct electrochemical ammonia oxidation reaction (AOR) on Pt/BTNAs anode. Under alkaline conditions (pH 9-13), the efficient removal and conversion of ammonia into N2 in the PEC-Cl system was achieved primarily through the direct anodic AOR, with N2 selectivity (89 %-93 %) and H2 yield rate (60.9-68.6 μmol cm-2 h-1) comparable to those of the ClO•-mediated indirect AOR. This study presents a flexible method for treating high and medium-concentration NH4+-N and simultaneously producing H2 through the synergistic PEC-Cl and direct electrochemical AOR processes, across a wide pH range.
Collapse
Affiliation(s)
- Delong Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| | - Guoquan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China.
| | - Xiaoli Lv
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| | - Xiaochen Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2#, Dalian 116024, China
| |
Collapse
|
2
|
Gao Y, Liang S, Jiang C, Gu M, Zhang Q, Abdelhafiz A, Zhang Z, Han Y, Yang Y, Zhang X, Liang P, Li J, Huang X. Electric field-confined synthesis of single atomic TiO xC y electrocatalytic membranes. SCIENCE ADVANCES 2025; 11:eads7154. [PMID: 40249798 PMCID: PMC12007568 DOI: 10.1126/sciadv.ads7154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Electrocatalysis exhibits certain benefits for water purification, but the low performance of electrodes severely hampers its utility. Here, we report a general strategy for fabricating high-performance three-dimensional (3D) porous electrodes with ultrahigh electrochemical active surface area and single-atom catalysts from earth-abundant elements. We demonstrate a binder-free dual electrospinning-electrospraying (DESP) strategy to densely distribute single atomic Ti and titanium oxycarbide (TiOxCy) sub-3-nm clusters throughout interconnected carbon nanofibers (CNs). The composite offers ultrahigh conductivity and mechanical robustness (ultrasonication resistant). The resulting TiOxCy filtration membrane exhibits record-high water purification capability with excellent permeability (~8370 liter m-2 hour-1 bar-1), energy efficiency (e.g., >99% removal of toxins within 1.25 s at 0.022 kWh·m-3 per order), and erosion resistance. The hierarchical design of the TiOxCy membrane facilitates rapid and energy-efficient electrocatalysis through both direct electron transfer and indirect reactive oxygen species (1O2, ·OH, and O2·-, etc.) oxidations. The electric field-confined DESP strategy provides a general platform for making high-performance 3D electrodes.
Collapse
Affiliation(s)
- Yifan Gao
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Shuai Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Chengxu Jiang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Mengyao Gu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Quanbiao Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ali Abdelhafiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Zhen Zhang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ying Han
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yang Yang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoyuan Zhang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Liang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Xia Huang
- State Key Laboratory of Regional Environment and Sustainability, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Lam SM, Wong SM, Sin JC, Zeng H, Li H, Huang L, Lin H, Mohamed AR, Lim JW, Qin Z. Bi-functional NiFe 2O 4/SrTiO 3 S-scheme heterojunction for eminent performance photocatalytic treatment of sewage effluent and electrochemical hydrazine determination. ENVIRONMENTAL RESEARCH 2024; 261:119718. [PMID: 39096993 DOI: 10.1016/j.envres.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Devising of materials that afforded dual applicability in decontamination and pollutant detection were still a towering challenge owing to the increasing flux of discharge toxic contaminants over the years. Herein, the NiFe2O4 nanoparticles-loaded on cube-like SrTiO3 (NiFe2O4/SrTiO3) composite was fabricated by a two-step hydrothermal approach providing remarkable photocatalytic treatment and electrochemical sensing of noxious pollutants in wastewater. The material traits of the fabricated composite were scrutinized by myriad characterization approaches. The NiFe2O4/SrTiO3 hybrid material demonstrated high surface area of 19.81 m2/g, adequate band gap energy of 2.75 eV, and prominent photoluminescence characteristics. In the presence of visible light, the NiFe2O4/SrTiO3 exhibited profound photocatalysis capability to eliminate sewage effluent-bearing chlortetracycline hydrochloride (CTCH) with 88.6% COD removal in 120 min, outperforming other pure materials. Meanwhile, the toxicity examination of effluent, the possible degradation pathway of CTCH and the proposed photocatalysis mechanism were also divulged. More importantly, the glassy carbon electrode was modified with synergized NiFe2O4/SrTiO3 (NiFe2O4/SrTiO3-GCE) was adopted for the precise quantification of Hydrazine (Hz). The NiFe2O4/SrTiO3-GCE obeyed first-order response for the Hz detection within the range of 1-10 mM: cyclic voltametric: limit of detection (LOD) of 0.119 μM with sensitivity of 18.9 μA μM-1 cm-2, and linear sweep voltametric: LOD of 0.222 μM with a sensitivity of 12.05 μA μM-1 cm-2. The stability and interference of modified electrode were also inspected. This work furnished valuable insights to yield a composite with the prominent S-scheme heterojunction system for quenching of charge carrier recombination and consequently contributing to the future realization into the domains of environmental clean-up and toxic chemical detection.
Collapse
Affiliation(s)
- Sze-Mun Lam
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Sin-May Wong
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia
| | - Jin-Chung Sin
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900, Kampar, Perak, Malaysia; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China.
| | - Haixiang Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin, 541004, China
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Jun-Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Zuzeng Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, China
| |
Collapse
|
4
|
Hou X, Li Y, Zhang H, Lund PD, Kwan J, Tsang SCE. Black titanium oxide: synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem Soc Rev 2024; 53:10660-10708. [PMID: 39269216 DOI: 10.1039/d4cs00420e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Since its advent in 2011, black titanium oxide (B-TiOx) has garnered significant attention due to its exceptional optical characteristics, notably its enhanced absorption spectrum ranging from 200 to 2000 nm, in stark contrast to its unmodified counterpart. The escalating urgency to address global climate change has spurred intensified research into this material for sustainable hydrogen production through thermal, photocatalytic, electrocatalytic, or hybrid water-splitting techniques. The rapid advancements in this dynamic field necessitate a comprehensive update. In this review, we endeavor to provide a detailed examination and forward-looking insights into the captivating attributes, synthesis methods, modifications, and characterizations of B-TiOx, as well as a nuanced understanding of its physicochemical properties. We place particular emphasis on the potential integration of B-TiOx into solar and electrochemical energy systems, highlighting its applications in green hydrogen generation, CO2 reduction, and supercapacitor technology, among others. Recent breakthroughs in the structure-property relationship of B-TiOx and its applications, grounded in both theoretical and empirical studies, are underscored. Additionally, we will address the challenges of scaling up B-TiOx production, its long-term stability, and economic viability to align with ambitious future objectives.
Collapse
Affiliation(s)
- Xuelan Hou
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Yiyang Li
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| | - Hang Zhang
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - Peter D Lund
- Department of Applied Physics, School of Science, Aalto University, P. O. Box 15100, FI-00076 Aalto, Finland
| | - James Kwan
- Department of Engineering Sciences, University of Oxford, Oxford, OX1 3PJ, UK.
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Center, Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK.
| |
Collapse
|
5
|
Zhu Y, Duan W, Huang Z, Tian L, Wu W, Dang Z, Feng C. An Anti-Scaling Strategy for Electrochemical Wastewater Treatment: Leveraging Tip-Enhanced Electric Fields. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13145-13156. [PMID: 38980824 DOI: 10.1021/acs.est.4c03572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Electrode scaling poses a critical barrier to the adoption of electrochemical processes in wastewater treatment, primarily due to electrode inactivation and increased internal reactor resistance. We introduce an antiscaling strategy using tip-enhanced electric fields to redirect scale-forming compounds (e.g., Mg(OH)2 and CaCO3) from the electrode-electrolyte interface to the bulk solution. Our study utilized Cu nanowires (Cu NW) with high-curvature nanostructures as the cathode, in contrast to Cu nanoparticles (Cu NP), Cu foil (CF), and Cu mesh (CM), to evaluate the electrochemical nitrate reduction reaction (NO3RR) performance in hard water conditions. The Cu NW/CF cathode demonstrated superior NO3RR efficiency, with an apparent rate constant (Kapp) of 1.04 h-1, significantly outperforming control electrodes under identical conditions (Kapp < 0.051 h-1). Through experimental and theoretical analysis, including COMSOL simulations, we show that the high-curvature design of Cu NW induced localized electric field enhancements, propelling OH- ions away from the electrode surface into the bulk solution, thus mitigating scale formation on the cathode. Testing with real nitrate-contaminated wastewater confirms that the Cu NW/CF cathode maintained excellent denitrification efficiency over a 60-day period. This study offers a promising perspective on preventing electrode scaling in electrochemical wastewater treatment, paving the way for more efficient and sustainable practices.
Collapse
Affiliation(s)
- Yihui Zhu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Weijian Duan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Ziyuan Huang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Li Tian
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Wenbo Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
6
|
Chen W, Rigby K, Lim HJ, Kim DJ, Kim JH. Tackling Challenges of Long-Term Electrode Stability in Electrochemical Treatment of 1,4-Dioxane in Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39014918 PMCID: PMC11296307 DOI: 10.1021/acs.est.4c03189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024]
Abstract
Electrochemical advanced oxidation is an appealing point-of-use groundwater treatment option for removing pollutants such as 1,4-dioxane, which is difficult to remove by using conventional separation-based techniques. This study addresses a critical challenge in employing electrochemical cells in practical groundwater treatment─electrode stability over long-term operation. This study aims to simulate realistic environmental scenarios by significantly extending the experimental time scale, testing a flow-through cell in addition to a batch reactor, and employing an electrolyte with a conductivity equivalent to that of groundwater. We first constructed a robust titanium suboxide nanotube mesh electrode that is utilized as both anode and cathode. We then implemented a pulsed electrolysis strategy in which reactive oxygen species are generated during the anodic cycle, and the electrode is regenerated during the cathodic cycle. Under optimized conditions, single-pass treatment through the cell (effective area: 2 cm2) achieved a remarkable 65-70% removal efficiency for 1,4-dioxane in the synthetic groundwater for over 100 h continuous operation at a low current density of 5 mA cm-2 and a water flux of 6 L m-2 h-1. The electrochemical cell and pulse treatment scheme developed in this study presents a critical advancement toward practical groundwater treatment technology.
Collapse
Affiliation(s)
- Wensi Chen
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kali Rigby
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hyun Jeong Lim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
- Department
of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - David J. Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
7
|
Zhang Y, Li B, Zhang W, Guo X, Zhu L, Cao L, Yang J. Electro-oxidation of ammonia nitrogen using W, Ti-doped IrO 2 DSA as a treatment method for mariculture and livestock wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44385-44400. [PMID: 38954330 DOI: 10.1007/s11356-024-34160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Animal farming wastewater is one of the most important sources of ammonia nitrogen (NH4+-N) emissions. Electro-oxidation can be a viable solution for removing NH4+-N in wastewater. Compared with other treatment methods, electro-oxidation has the advantages of i) high removal efficiency, ii) smaller size of treatment facilities, and iii) complete removal of contaminant. In this study, a previously prepared DSA (W, Ti-doped IrO2) was used for electro-oxidation of synthetic mariculture and livestock wastewater. The DSA was tested for chlorine evolution reaction (CER) activity, and the reaction kinetics was investigated. CER current efficiency reaches 60-80% in mariculture wastewater and less than 20% in livestock wastewater. In the absence of NH4+-N, the generation of active chlorine follows zero-order kinetics and its consumption follows first-order kinetics, with cathodic reduction being its main consumption pathway, rather than escape or conversion to ClO3-. Cyclic voltammetry experiments show that NH4+-N in the form of NH3 can be oxidized directly on the anode surface. In addition, the generated active chlorine combines with NH4+-N at a fast rate near the anode, rather than in the bulk solution. In electrolysis experiments, the NH4+-N removal rate in synthetic mariculture wastewater (30-40 mg/L NH4+-N) and livestock wastewater (~ 450 mg/L NH4+-N) is 112.9 g NH4+-N/(m2·d) and 186.5 g NH4+-N/(m2·d), respectively, which is much more efficient than biological treatment. The specific energy consumption (SEC) in synthetic mariculture wastewater is 31.5 kWh/kg NH4+-N, comparable to other modified electro-catalysts reported in the literature. However, in synthetic livestock wastewater, the SEC is as high as 260 kWh/kg NH4+-N, mainly due to the suppression of active chlorine generation by HCO3- and the generation of NO3- as a by-product. Therefore, we conclude that electro-oxidation is suitable for mariculture wastewater treatment, but is not recommended for livestock wastewater. Electrolysis prior to urea hydrolysis may enhance the treatment efficiency in livestock wastewater.
Collapse
Affiliation(s)
- Yiheng Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Binbin Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Wenjing Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xin Guo
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Limei Cao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Ji Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control On Chemical Processes, School of Resources and Environmental Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China.
| |
Collapse
|
8
|
Cheng Z, Yin K, Xu X, Yue Q, Gao B, Gao Y. Insights into the efficient water treatment over N-doped carbon nanosheets with layered minerals as template: The role of interfacial electron tunneling and transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133924. [PMID: 38452671 DOI: 10.1016/j.jhazmat.2024.133924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Peroxymonosulfate (PMS) oxidation reactions have been extensively studied recently. Due to the high material cost and low catalytic capability, PMS oxidation technology cannot be effectively applied in an industrial water treatment process. In this work, we developed a modification strategy based on enhancing the neglected electron tunneling effect to optimize the intrinsic electron transport process of the catalyst. The 2D nitrogen-doped carbon-based nanosheets with small interlayer spacing were prepared by self-polymerization of dopamine hydrochloride inserted into the natural layered bentonite template. Systematic characterizations confirmed that the smaller layer spacing in the 2D nitride-doped carbon-based nanosheets reduces the depletion layer width. The weak electronic shielding effect derived by the small layer spacing on the material subsurface enhanced the bulk electron tunneling effect. More bulk electrons could be migrated to the catalyst surface to activate PMS molecules. The PMS activation system showed ultrafast oxidation capability to degrade organic pollutants and strong ability to resist interference from environmental matrixes due to the optimized electron transfer process. Furthermore, the developed membrane reactor exhibited strong catalytic stability during the continuous degradation of P-Chlorophenol (CP).
Collapse
Affiliation(s)
- Ziwen Cheng
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Kexin Yin
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xing Xu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
9
|
Gao J, Ma Q, Zhang Y, Xue S, Young J, Zhao M, Ren ZJ, Kim JH, Zhang W. Coupling Curvature and Hydrophobicity: A Counterintuitive Strategy for Efficient Electroreduction of Nitrate into Ammonia. ACS NANO 2024; 18:10302-10311. [PMID: 38537206 DOI: 10.1021/acsnano.4c02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The electrochemical upcycling of nitrate (NO3-) to ammonia (NH3) holds promise for synergizing both wastewater treatment and NH3 synthesis. Efficient stripping of gaseous products (NH3, H2, and N2) from electrocatalysts is crucial for continuous and stable electrochemical reactions. This study evaluated a layered electrocatalyst structure using copper (Cu) dendrites to enable a high curvature and hydrophobicity and achieve a stratified liquid contact at the gas-liquid interface of the electrocatalyst layer. As such, gaseous product desorption or displacement from electrocatalysts was enhanced due to the separation of a wetted reaction zone and a nonwetted zone for gas transfer. Consequently, this electrocatalyst structure yielded a 2.9-fold boost in per-active-site activity compared with that with a low curvature and high hydrophilic counterpart. Moreover, a NH3 Faradaic efficiency of 90.9 ± 2.3% was achieved with nearly 100% NO3- conversion. This high-curvature hydrophobic Cu dendrite was further integrated with a gas-extraction membrane, which demonstrated a comparable NH3 yield from the real reverse osmosis retentate brine.
Collapse
Affiliation(s)
- Jianan Gao
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Qingquan Ma
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Yihan Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Shan Xue
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Joshua Young
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Mengqiang Zhao
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
- Department of Chemical & Materials Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Qiu F, Wang L, Li H, Pan Y, Song H, Chen J, Fan Y, Zhang S. Electrochemically enhanced activation of Co 3O 4/TiO 2 nanotube array anode for persulfate toward high catalytic activity, low energy consumption, and long lifespan performance. J Colloid Interface Sci 2024; 655:594-610. [PMID: 37956547 DOI: 10.1016/j.jcis.2023.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Advanced oxidation processes (AOPs) can directly degrade and mineralize organic pollutants (OPs) in water by generating reactive oxygen species with strong oxidizing ability. The development of advanced electrode materials with high catalytic performance, low energy consumption, no secondary pollution, and long lifespan has become a challenge that must be addressed in this field. A heterojunction catalyst loaded with Co3O4 on TDNAs (Co3O4/RTDNAs) was designed and constructed by a simple and efficient pyrolysis (Co3O4/TDNAs) and electrochemical reduction. Co3O4 can be uniformly distributed on the inner wall and surface of the TiO2 nanotubes, enhancing the specific surface area while forming a tight conductive interface with TiO2. This facilitates rapid transmission of electrons, thereby assisting Co3O4 in quickly activating PS to form reactive oxygen species. The Ti3+ and Ov generated in Co3O4/RTDNAs can significantly improve the electrocatalytic degradation of OPs. Also, the interface formed by Co3O4 and RTDNAs will effectively suppress Co2+ leakage, thereby reducing the risk of secondary pollution. When the reaction conditions were 1 mM PMS (PDS) and a current density of 5 mA/cm2 in the EA-PMS (PDS)/Co3O4/RTDNA system, 30 mg/L TC can achieve 83.24 % (81.89 %) removal in 120 min, with very low cobalt ion leaching, while the energy consumption was reduced significantly. Therefore, EA-PS/Co3O4/RTDNA system has strong stability and a high potential for treating the OPs in AOPs.
Collapse
Affiliation(s)
- Fan Qiu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luyao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hongxiang Li
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China
| | - Yanan Pan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China.
| | - Junjie Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yang Fan
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
11
|
Irodia R, Ungureanu C, Sătulu V, Mîndroiu VM. Photocatalyst Based on Nanostructured TiO 2 with Improved Photocatalytic and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7509. [PMID: 38138651 PMCID: PMC10744369 DOI: 10.3390/ma16247509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
This study shows an easy way to use electrochemistry and plasma layering to make Cobalt-Blue-TiO2 nanotubes that are better at catalysing reactions. Once a titanium plate has been anodized, certain steps are taken to make oxygen vacancies appear inside the TiO2 nanostructures. To find out how the Co deposition method changed the final catalyst's properties, it was put through electrochemical tests (to find the charge transfer resistance and flat band potential) and optical tests (to find the band gap and Urbach energy). The catalysts were also described in terms of their shape, ability to stick to surfaces, and ability to inhibit bacteria. When Cobalt was electrochemically deposited to Blue-TiO2 nanotubes, a film with star-shaped structures was made that was hydrophilic and antibacterial. The band gap energy went down from 3.04 eV to 2.88 eV and the Urbach energy went up from 1.171 eV to 3.836 eV using this electrochemical deposition method. Also, photodegradation tests with artificial doxycycline (DOX) water were carried out to see how useful the study results would be in real life. These extra experiments were meant to show how the research results could be used in real life and what benefits they might have. For the bacterial tests, both gram-positive and gram-negative bacteria were used, and BT/Co-E showed the best response. Additionally, photodegradation and photoelectrodegradation experiments using artificial doxycycline (DOX) water were conducted to determine the practical relevance of the research findings. The synergistic combination of light and applied potential leads to 70% DOX degradation after 60 min of BT/Co-E irradiation.
Collapse
Affiliation(s)
- Roberta Irodia
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu, 011061 Bucharest, Romania; (R.I.); (C.U.)
| | - Camelia Ungureanu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu, 011061 Bucharest, Romania; (R.I.); (C.U.)
| | - Veronica Sătulu
- National Institute for Laser, Plasma and Radiation Physics, Atomiștilor 409, 077125 Măgurele, Romania;
| | - Vasilica Mihaela Mîndroiu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu, 011061 Bucharest, Romania; (R.I.); (C.U.)
| |
Collapse
|
12
|
Yang K, Abu-Reesh IM, He Z. Formation of oxidation byproducts during electrochemical treatment of simulated produced water. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132469. [PMID: 37690199 DOI: 10.1016/j.jhazmat.2023.132469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Electrochemical oxidation (EO) can effectively remove recalcitrant organic contaminants from produced water (PW) but the formation of toxic oxidation byproducts (OBPs) is an unintended consequence. This study has rigorously investigated the OBPs formation during the EO treatment of a simulated PW containing phenol - a common organic contaminant existing in PW, as a model contaminant. In the absence of ammonia, free chlorine was generated from Cl- oxidation to serve as the main oxidant for phenol oxidation. During the EO process, 2,4,6-trichlorophenol and 2,6-dichlorobenzoquinone were identified as the critical intermediates that led to the formation of carbonaceous OBPs (C-OBPs). Some C-OBPs like chloroform (TCM), chloral hydrate (CH), and trichloroacetic acid (TCAA) reached their peak concentrations of 15 - 180 μM that were then reduced to 1 - 115 μM via volatilization and/or electrochemical reduction. When ammonia was present, nitrogenous OBPs (N-OBPs) were formed with the peak levels of 1 - 10 μM at the chlorination breakpoint (when ammonia was completely removed) that were subsequently reduced below 1 uM via volatilization and/or hydrolysis. It was observed that ammonia significantly decreased the formation of both C-OBPs and chlorate due to the consumption of free chlorine. A higher current density accelerated OBPs formation rates with different effects on volatile and non-volatile OBPs. The results of this study will enhance our understanding of OBPs formation precursors and mechanisms during electrochemical process and help develop strategies for proper control of OBPs to achieve safer electrochemical wastewater treatment.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
13
|
Quispe Cardenas LE, Deptula PJ, Huerta CS, Zhu C, Ye Y, Wang S, Yang Y. Electro-Fenton and Induced Electro-Fenton as Versatile Wastewater Treatment Processes for Decontamination and Nutrient Removal without Byproduct Formation. ACS ES&T ENGINEERING 2023; 3:1547-1556. [PMID: 37854076 PMCID: PMC10580281 DOI: 10.1021/acsestengg.3c00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 10/20/2023]
Abstract
It is a long-pursued goal to develop electrified water treatment technology that can remove contaminants without byproduct formation. This study unveiled the overlooked multifunctionality of electro-Fenton (EF) and induced EF (I-EF) processes to remove organics, pathogens, and phosphate in one step without halogenated byproduct formation. The EF and I-EF processes used a sacrificial anode or an induced electrode to generate Fe2+ to activate H2O2 produced from a gas diffusion cathode fed by naturally diffused air. We used experimental and kinetic modeling approaches to illustrate that the •OH generation and radical speciation during EF were not impacted by chloride. More importantly, reactive chlorine species were quenched by H2O2, which eliminated the formation of halogenated byproducts. When applied in treating septic wastewater, the EF process removed >80% COD, >50% carbamazepine (as representative trace organics), and >99% phosphate at a low energy consumption of 0.37 Wh/L. The EF process also demonstrated broad-spectrum disinfection activities in removing and inactivating Escherichia coli, Enterococcus durans, and model viruses MS2 and Phi6. In contrast to electrochemical oxidation (EO) that yielded mg/L level byproducts to achieve the same degree of treatment, EF did not generate byproducts (chlorate, perchlorate, trihalomethanes, and haloacetic acids). The I-EF carried over all the advantages of EF and exhibited even faster kinetics in disinfection and carbamazepine removal with 50-80% less sludge production. Last, using septic wastewater treatment as a technical niche, we demonstrated that iron sludge formation is predictable and manageable, clearing roadblocks toward on-site water treatment applications.
Collapse
Affiliation(s)
- Luz Estefanny Quispe Cardenas
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699 United States
- Institute
for a Sustainable Environment, Clarkson University, Potsdam, New York 13699 United States
| | - Parker John Deptula
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699 United States
| | - Cynthia Soraya Huerta
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699 United States
| | - Chonglin Zhu
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260 United States
| | - Yinyin Ye
- Department
of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260 United States
| | - Siwen Wang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699 United States
| | - Yang Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699 United States
| |
Collapse
|
14
|
Choi S, Choi WI, Lee JS, Lee CH, Balamurugan M, Schwarz AD, Choi ZS, Randriamahazaka H, Nam KT. A Reflection on Sustainable Anode Materials for Electrochemical Chloride Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300429. [PMID: 36897816 DOI: 10.1002/adma.202300429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Chloride oxidation is a key industrial electrochemical process in chlorine-based chemical production and water treatment. Over the past few decades, dimensionally stable anodes (DSAs) consisting of RuO2 - and IrO2 -based mixed-metal oxides have been successfully commercialized in the electrochemical chloride oxidation industry. For a sustainable supply of anode materials, considerable efforts both from the scientific and industrial aspects for developing earth-abundant-metal-based electrocatalysts have been made. This review first describes the history of commercial DSA fabrication and strategies to improve their efficiency and stability. Important features related to the electrocatalytic performance for chloride oxidation and reaction mechanism are then summarized. From the perspective of sustainability, recent progress in the design and fabrication of noble-metal-free anode materials, as well as methods for evaluating the industrialization of novel electrocatalysts, are highlighted. Finally, future directions for developing highly efficient and stable electrocatalysts for industrial chloride oxidation are proposed.
Collapse
Affiliation(s)
- Seungwoo Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| | - Won Il Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Seo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Chang Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Andrew D Schwarz
- Milton Hill Business and Technology Centre, Infineum, Abingdon, OX13 6BB, UK
| | - Zung Sun Choi
- Infineum Singapore LLP, Singapore, 098632, Singapore
| | | | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Soft Foundry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
15
|
Wang P, Chu G, Gao G, Li F, Ren Y, Ding Y, Gu Y, Jiang W, Zhang X. Efficient Electrochemical Oxidation of Chloramphenicol by Novel Reduced TiO 2 Nanotube Array Anodes: Kinetics, Reaction Parameters, Degradation Pathway and Biotoxicity Forecast. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113971. [PMID: 37297106 DOI: 10.3390/ma16113971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The key component of electrochemical advanced oxidation technology are high-efficiency anodes, and highly efficient and simple-to-prepare materials have generated a lot of interest. In this study, novel self-supported Ti3+-doped titanium dioxide nanotube arrays (R-TNTs) anodes were successfully prepared by a two-step anodic oxidation and straightforward electrochemical reduction technique. The electrochemical reduction self-doping treatment produced more Ti3+ sites with stronger absorption in the UV-vis region, a band gap reduction from 2.86 to 2.48 ev, and a significant increase in electron transport rate. The electrochemical degradation effect of R-TNTs electrode on chloramphenicol (CAP) simulated wastewater was investigated. At pH = 5, current density of 8 mA cm-2, electrolyte concentration of 0.1 M sodium sulfate (Na2SO4), initial CAP concentration of 10 mg L-1, CAP degradation efficiency exceeded 95% after 40 min. In addition, molecular probe experiments and electron paramagnetic resonance (EPR) tests revealed that the active species were mainly •OH and SO4-, among which •OH played a major role. The CAP degradation intermediates were discovered using high-performance liquid chromatography-mass spectrometry (HPLC-MS), and three possible degradation mechanisms were postulated. In cycling experiments, the R-TNTs anode demonstrated good stability. The R-TNTs prepared in this paper were an anode electrocatalytic material with high catalytic activity and stability, which could provide a new approach for the preparation of electrochemical anode materials for difficult-to-degrade organic compounds.
Collapse
Affiliation(s)
- Pengqi Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangyi Chu
- Jinan Water & Wastewater Monitoring Center, Jinan 250353, China
| | - Guangfei Gao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengchun Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yue Ding
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
16
|
Huang W, Huang Y, Tang B, Fu Y, Guo C, Zhang J. Electrochemical oxidation of carbamazepine in water using enhanced blue TiO 2 nanotube arrays anode on porous titanium substrate. CHEMOSPHERE 2023; 322:138193. [PMID: 36812998 DOI: 10.1016/j.chemosphere.2023.138193] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In this study, a blue TiO2 nanotube arrays anode on porous titanium substrate (Ti-porous/blue TiO2 NTA) was successfully fabricated by facile anodization and in situ reduction, and was used to investigate the electrochemical oxidation of carbamazepine (CBZ) in aqueous solution. The surface morphology and crystalline phase of the fabricated anode were characterized by SEM, XRD, Raman spectroscopy and XPS, and the electrochemical analysis confirmed that blue TiO2 NTA on Ti-porous substrate had larger electroactive surface area, better electrochemical performance and higher ⋅OH generation ability than that on Ti-plate substrate. The removal efficiency of 20 mg L-1 CBZ in 0.05 M Na2SO4 solution reached 99.75% at 8 mA cm-2 after 60 min electrochemical oxidation, and the rate constant was 0.101 min-1 with low energy consumption. EPR analysis and free radical sacrificing experiments showed that ⋅OH played a key role in the electrochemical oxidation. The possible oxidation pathways of CBZ were proposed through the identification of degradation products, and the main reactions may involve deamidization, oxidization, hydroxylation and ring-opening. Compared with Ti-plate/blue TiO2 NTA anode, Ti-porous/blue TiO2 NTA anode displayed excellent stability and reusability, and is promising to be used in the electrochemical oxidation of CBZ in wastewater.
Collapse
Affiliation(s)
- Weibin Huang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Yue Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environment Science and Engineering, Tiangong University, Tianjin, 300387, PR China
| | - Bobin Tang
- Technical Centre, Chongqing Customs, Chongqing Engineering Technology Research Center of Import and Export Food Safety, Chongqing, 400020, PR China
| | - Yuanhang Fu
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Chunhui Guo
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China
| | - Jinzhong Zhang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
17
|
Zhang J, Li Y, Xie T, Cui Y, Mao R, Zhao X. Enhanced photoelectrocatalytic oxidation of hypophosphite and simultaneous recovery of metallic nickel via carbon aerogel cathode. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130601. [PMID: 36746082 DOI: 10.1016/j.jhazmat.2022.130601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 06/18/2023]
Abstract
Carbon aerogel (CA) cathode was adopted to an undivided-chamber photoelectrocatalytic system with TiO2 nanotube arrays (TNA) photoanode to enhance the oxidation of hypophosphite (H2PO2-) and simultaneous recovery of metallic nickel (Ni). Both the efficiencies of H2PO2- oxidation and Ni recovery were significantly enhanced after replacing Ti or carbon fiber paper cathode with CA cathode. With 1.0 mM H2PO2- and 1.0 mM Ni2+, the ratio of PO43- production increased from ∼41% or ∼54% to ∼100%, and the ratio of Ni recovery increased from ∼20% or ∼ 37% to ∼93% within 180 min at 3.0 V. H2PO2- was finally oxidized to PO43- by •OH radicals, which was speculated to be generated from UV/H2O2 and bound on TNA photoanode. Meanwhile, Ni2+ was eventually electro-reduced to metallic Ni by a two-electron reduction reaction. The efficiencies of H2PO2- oxidation and Ni recovery were favored at higher cell voltage, faintly acid conditions and larger H2PO2- concentration. The stability of this system exhibited that the ratio of PO43- production increased significantly in each cycle, which was attributed to the increase of H2O2 in-situ-generation via CA cathode caused by deposition of metallic Ni. Finally, the treatment of actual electroless nickel plating effluents was demonstrated.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yibing Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Tengfei Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Yuexin Cui
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ran Mao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
18
|
Xu Y, Feng R, Zhang M, Yan C, Liu J, Zhang T, Wang X. Preparation and characterization of a novel blue-TiO 2/PbO 2-carbon nanotube electrode and its application for degradation of phenol. J Environ Sci (China) 2023; 126:590-601. [PMID: 36503785 DOI: 10.1016/j.jes.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 06/17/2023]
Abstract
In this study, we fabricated a blue-TiO2/PbO2-carbon nanotube (CNT) electrode in which blue TiO2 nanotube arrays (blue-TNA) served as the substrate for PbO2-CNT eletrodeposition. Scanning electron microscope (SEM) showed compact surface structure of the electrode. The β-PbO2 crystal structure was detected by X-ray diffraction (XRD). The distribution of Pb, O, C, and Na elements on the electrode surface have been confirmed by X-ray photoelectron spectroscopy (XPS). Blue-TiO2/PbO2-CNT electrode had higher response current (213.12 mA), larger active surface area and lower charge transfer resistance (2.22 Ω/cm2) than conventional TiO2/PbO2-CNT electrode. The influences of current density, initial phenol concentration, initial solution pH, and Na2SO4 concentration on the electrochemical oxidation of phenol have been analyzed. The results showed that the 100 mg/L phenol could be destroyed completely after 210 min, and chemical oxygen demand (COD) removal rate was 89.3% within 240 min. Additionally, the electrode showed long actual lifetime (5468.80 hr) and low energy consumption (0.08 kWh/gCOD). A phenol degradation mechanism was proposed by analyzing the intermediate products with high-performance liquid chromatography-mass spectrometry (HPLC-MS). Importantly, the blue-TiO2/PbO2-CNT electrode exhibited superior stability and high degradation efficiency after 15 times reuse, demonstrating its promising application potential on phenol-containing wastewater treatment.
Collapse
Affiliation(s)
- Yangchun Xu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruizhi Feng
- Beijing Bishuiyuan Membrane Technology CO., Ltd., Beijing 101400, China
| | - Minglu Zhang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Caigan Yan
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junyu Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Li X, Bai Y, Shi X, Chang S, Tian S, He M, Su N, Luo P, Pu W, Pan Z. A review of advanced oxidation process towards organic pollutants and its potential application in fracturing flowback fluid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45643-45676. [PMID: 36823463 DOI: 10.1007/s11356-023-25191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/03/2023] [Indexed: 04/15/2023]
Abstract
Fracturing flowback fluid (FFF) including various kinds of organic pollutants that do harms to people and new treatments are urgently needed. Advanced oxidation processes (AOPs) are suitable methods in consideration with molecular weight, removal cost and efficiency. Here, we summarize the recent studies about AOP treatments towards organic pollutants and discuss the application prospects in treatment of FFF. Immobilization and loading methods of catalysts, evaluation method of degradation of FFF, and continuous treatment process flow are discussed in this review. In conclusion, further studies are urgently needed in aspects of catalyst loading methods, macromolecule organic evaluation methods, industrial process, and pathways of macromolecule organics' decomposition.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Yang Bai
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Xian Shi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Chang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Shuting Tian
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Meiming He
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Na Su
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Pingya Luo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Wanfen Pu
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu, 610500, China.
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| | - Zhicheng Pan
- National Postdoctoral Research Station, Haitian Water Group Co., Ltd, Chengdu, 610041, China
| |
Collapse
|
20
|
Man S, Yin Z, Zhou S, Pameté E, Xu L, Bao H, Yang W, Mo Z, Presser V, Li X. Novel Sb-SnO 2 Electrode with Ti 3+ Self-Doped Urchin-Like Rutile TiO 2 Nanoclusters as the Interlayer for the Effective Degradation of Dye Pollutants. CHEMSUSCHEM 2023; 16:e202201901. [PMID: 36524753 DOI: 10.1002/cssc.202201901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Stable and efficient SnO2 electrodes are very promising for effectively degrading refractory organic pollutants in wastewater treatment. In this regard, we firstly prepared Ti3+ self-doped urchin-like rutile TiO2 nanoclusters (TiO2-x NCs) on a Ti mesh substrate by hydrothermal and electroreduction to serve as an interlayer for the deposition of Sb-SnO2 . The TiO2-x NCs/Sb-SnO2 anode exhibited a high oxygen evolution potential (2.63 V vs. SCE) and strong ⋅OH generation ability for the enhanced amount of absorbed oxygen species. Thus, the degradation results demonstrated its good rhodamine B (RhB), methylene blue (MB), alizarin yellow R (AYR), and methyl orange (MO) removal performance, with the rate constant increased 5.0, 1.9, 1.9, and 4.7 times, respectively, compared to the control Sb-SnO2 electrode. RhB and AYR degradation mechanisms are also proposed based on the results of high-performance liquid chromatography coupled with mass spectrometry and quenching experiments. More importantly, this unique rutile interlayer prolonged the anode lifetime sixfold, given its good lattice match with SnO2 and the three-dimensional concave-convex structure. Consequently, this work paves a new way for designing the crystal form and structure of the interlayers to obtain efficient and stable SnO2 electrodes for addressing dye wastewater problems.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Shanbin Zhou
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Emmanuel Pameté
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Lei Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Volker Presser
- INM - Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
- Department of Materials Science and Engineering, Saarland University, 66123, Saarbrücken, Germany
- Saarene - Saarland Center for Energy Materials and Sustainability, Saarland University, Campus D4 2, 66123, Saarbrücken, Germany
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
21
|
Long X, Shi H, Huang R, Gu L, Liu Y, He CS, Du Y, Xiong Z, Liu W, Lai B. Identifying the evolution of primary oxidation mechanisms and pollutant degradation routes in the electro-cocatalytic Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130577. [PMID: 37055982 DOI: 10.1016/j.jhazmat.2022.130577] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
Herein, electro-catalysis (EC) as the electron donor to accelerate the continuable Fe(III)/Fe(II) cycles in different inorganic peroxides (i.e., peroxymonosulfate (PMS), peroxydisulfate (PDS) and hydrogen peroxide (HP)) activation systems were established. These electro-cocatalytic Fenton-like systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). A series of analytical and characterization methods including quenching experiments, probe experiments, and electron paramagnetic resonance spectrometry (EPR) were implemented to systematically sort out the source and yield of reactive oxygen species (ROS). A wide kind of ROS including hydroxyl radical (•OH), singlet oxygen (1O2), and sulfate radical (SO4•-), which contributed 38%, 37%, and 24% were produced in EC/Fe(III)/PMS system, respectively. •OH was the dominant ROS in both EC/Fe(III)/PDS and EC/Fe(III)/HP processes. According to the analysis of SMX degradation routes and biotoxicity, abundant degradation pathways were identified in EC/Fe(III)/PMS process and lower environmental impact was achieved in EC/Fe(III)/HP process. The diversiform ROS of EC/Fe(III)/PMS system makes it exhibit greater environmental adaptability in complex water matrixes and excellent low-energy consumption performance in many organic pollutants degradation. Continuous flow treatment experiments proved that the three systems have great sustainability and practical application prospect. This work provides a strong basis for constructing suitable systems to achieve different treatment requirements.
Collapse
Affiliation(s)
- Xianhu Long
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongle Shi
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Rongfu Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Lingyun Gu
- Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
22
|
Zhou J, Liu J, Liu T, Liu G, Li J, Chen D, Feng Y. Electrochemical activation of persulfate by Al-doped blue TiO 2 nanotubes for the multipath degradation of atrazine. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130578. [PMID: 37055983 DOI: 10.1016/j.jhazmat.2022.130578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/17/2022] [Accepted: 12/07/2022] [Indexed: 06/19/2023]
Abstract
The combination of electrolysis and persulfate activation (E/PDS) is a cost-effective method for the treatment of refractory organics. However, persulfate is difficult to be activated into radicals at the anode, resulting in insufficient electro-activation efficiency. Herein, Al doped blue TiO2 nanotube electrodes (Al-bTNT) were first employed as cost-effective anode materials to fully activate PDS to radicals. In E/PDS, the kinetic constant of atrazine removal by Al-bTNT (0.048 min-1) substantially outperformed the other anodes, including the blue TiO2 nanotube electrodes (bTNT) (0.024 min-1), Ti4O7 (0.02 min-1), and B doped diamond (BDD) anodes (0.023 min-1). The Al-bTNT-E/PDS exhibited a low energy consumption (EEO = 0.72 kWh m-3) and a high mineralization rate. Based on the results of electron paramagnetic resonance, quenching experiments, and probe experiments, we propose that atrazine degrades in the Al-bTNT-E/PDS system mainly via a novel radical pathway that involves both·OH and SO4·- and the generated SO4·- is responsible for the enhanced removal rate. The oxygen vacancies (VO) generated from interstitial Al may serve as the active sites to adsorb and dissociate the persulfate molecules based on extensive characterizations. The attempt at soil-washing wastewater disposal indicated the synergistic system possessed good potential for future practical application.
Collapse
Affiliation(s)
- Jiajie Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tongtong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guohong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jiannan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dahong Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
23
|
Kotarba S, Sulka GD, Syrek K. Synthesis and Spectroelectrochemical Investigation of Anodic Black TiO x Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:931. [PMID: 36903809 PMCID: PMC10005176 DOI: 10.3390/nano13050931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Anodic TiO2 nanotubes were transformed into anatase at 400 °C for 2 h in air and subjected to electrochemical reduction at different conditions. It revealed that the reduced black TiOx nanotubes were not stable in contact with air; however, their lifetime was considerably extended to even a few hours when isolated from the influence of atmospheric oxygen. The order of polarization-induced reduction and spontaneous reverse oxidation reactions were determined. Upon irradiation with simulated sunlight, the reduced black TiOx nanotubes generated lower photocurrents than non-reduced TiO2, but a lower rate of electron-hole recombination and better charge separation were observed. In addition, the conduction band edge and energy level (Fermi level), responsible for trapping electrons from the valence band during the reduction of TiO2 nanotubes, were determined. The methods presented in this paper can be used for determination of the spectroelectrochemical and photoelectrochemical properties of electrochromic materials.
Collapse
|
24
|
Yang K, Abu-Reesh IM, He Z. Degradation of 4-chlorophenol through cooperative reductive and oxidative processes in an electrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130126. [PMID: 36303354 DOI: 10.1016/j.jhazmat.2022.130126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical treatment can be an effective approach for degrading recalcitrant organic contaminants because its anode/cathode produces powerful oxidizing/reducing conditions. Herein, through the cooperation of the cathodic reductive and anodic oxidative processes, 4-chlorophenol (4-CP) was successfully degraded in an electrochemical system. TiO2 nanotube arrays (TNTAs)/Sb-SnO2 and TNTAs/Pd were successfully prepared and served as the anode and cathode electrodes, respectively, to generate oxidative (hydroxyl radical, ·OH) and reductive (chemically adsorbed hydrogen, Hads) agents. The sequential reduction-oxidation (SRO) process provided a reasonable degradation pathway that accomplished reductive detoxification in the cathode and oxidative mineralization in the anode. The SRO mode achieved dechlorination efficiency (DE) of 86.9 ± 3.9% and TOC removal efficiency of 64.8 ± 4.2% within 3 h and under a current density of 8 mA cm-2, both of which were significantly higher than those obtained in the sequential oxidation-reduction or the simultaneous redox modes. The increment of current density and reaction time could improve 4-CP degradation performance, but a high current density would decrease the cathode stability and a longer reaction time led to the generation of ClO4-. This study has demonstrated that sequential reduction-oxidation can be an effective and tunable process for degrading recalcitrant organic contaminants.
Collapse
Affiliation(s)
- Kaichao Yang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Zhen He
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
25
|
Huo Z, Kim YJ, Chen Y, Song T, Yang Y, Yuan Q, Kim SW. Hybrid energy harvesting systems for self-powered sustainable water purification by harnessing ambient energy. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2023; 17:118. [PMID: 37096021 PMCID: PMC10115484 DOI: 10.1007/s11783-023-1718-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 05/03/2023]
Abstract
The development of self-powered water purification technologies for decentralized applications is crucial for ensuring the provision of drinking water in resource-limited regions. The elimination of the dependence on external energy inputs and the attainment of self-powered status significantly expands the applicability of the treatment system in real-world scenarios. Hybrid energy harvesters, which convert multiple ambient energies simultaneously, show the potential to drive self-powered water purification facilities under fluctuating actual conditions. Here, we propose recent advancements in hybrid energy systems that simultaneously harvest various ambient energies (e.g., photo irradiation, flow kinetic, thermal, and vibration) to drive water purification processes. The mechanisms of various energy harvesters and point-of-use water purification treatments are first outlined. Then we summarize the hybrid energy harvesters that can drive water purification treatment. These hybrid energy harvesters are based on the mechanisms of mechanical and photovoltaic, mechanical and thermal, and thermal and photovoltaic effects. This review provides a comprehensive understanding of the potential for advancing beyond the current state-of-the-art of hybrid energy harvester-driven water treatment processes. Future endeavors should focus on improving catalyst efficiency and developing sustainable hybrid energy harvesters to drive self-powered treatments under unstable conditions (e.g., fluctuating temperatures and humidity).
Collapse
Affiliation(s)
- Zhengyang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Young Jun Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Yuying Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 China
| | - Tianyang Song
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 China
| | - Yang Yang
- Institute of Scientific and Technical Information of China, Beijing, 100038 China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023 China
| | - Sang Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| |
Collapse
|
26
|
Zhu J, Ba X, Guo X, Zhang Q, Qi Y, Li Y, Wang J, Sun H, Jiang B. Oxychlorides induced over-evaluation of electrochemical COD removal performance over dimensionally stable anode (DSA): The roles of cathode materials. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Wang L, Wang L, Shi Y, Zhao B, Zhang Z, Ding G, Zhang H. Blue TiO 2 nanotube electrocatalytic membrane electrode for efficient electrochemical degradation of organic pollutants. CHEMOSPHERE 2022; 306:135628. [PMID: 35810871 DOI: 10.1016/j.chemosphere.2022.135628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/29/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
In this study, a Ti3+-doped TiO2 porous membrane (Blue TiO2/Ti) was fabricated and employed for electrochemical degradation of organic pollutants in the single-pass flow-through mode. Characterizations including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microcopy (SEM) and energy dispersive spectroscopy (EDS) verified that Ti3+-doped anatase TiO2 with nanotube structures was successfully prepared. Electrochemical analysis including linear sweep voltammetry (LSV), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and electrochemical active surface area (ESA) revealed higher oxygen evolution potential (OEP, 2.23 V vs. Ag/AgCl), larger redox peak current, lower impedance and larger ESA (69 cm2/cm2) of Blue TiO2/Ti compared to the Ti and TiO2/Ti membranes. The effects of current density, flow rate and solution environment on the removal of methylene blue (MB) were investigated. The removal rates of various organic pollutants including sulfamethoxazole (SMX), methyl orange (MO), bisphenol A (BPA) and MB could reach 92.2%-99.5%. The quenching experiment proved that hydroxyl radicals (•OH) played the major role in the Blue TiO2/Ti based electrochemical system. Furthermore, the degradation pathways of two typical pollutants (SMX and MB) were proposed by analyzing the oxidation products with liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS), with the assistance of orbital-weighted Fukui index (fw0 and fw-) obtained through Density Functional Theory (DFT) calculations. Moreover, toxicity indexes of the oxidation products were obtained and compared to the parent SMX and MB using Toxicity Estimation Software Tool (TEST) software. Finally, the long-term operation performance of the Blue TiO2/Ti membrane was evaluated.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhaohui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
28
|
Pd-Cu Modified Cerium Oxide Catalysts for Selectively Electrocatalytic Denitrification: Significant Roles of Oxygen Vacancies and Activated Hydrogen. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Meng C, Zhuo Q, Wang A, Liu J, Yang Z, Niu J. Efficient electrochemical oxidation of COVID-19 treatment drugs favipiravir by a novel flow-through Ti/TiO2-NTA/Ti4O7 anode. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Ma Q, Gao J, Potts C, Tong X, Tao Y, Zhang W. Electrochemical Aging and Halogen Oxides Formation on Multiwalled Carbon Nanotubes and Fe 3O 4@g-C 3N 4 Coated Conductive Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qingquan Ma
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Jianan Gao
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Yi Tao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, P.R. China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| |
Collapse
|
31
|
Karuppusamy I, Seenuvasaperumal P, Surendiran M, Shanmugam S, Chinnathambi A, Alahmadi TA, Brindhadevi K, Lan Chi NT, Pugazhendhi A. Fabrication of near superhydrophobic Pt-TiO 2 hybrid nanoflake composite as food sensor in food processing industry. Food Chem Toxicol 2022; 169:113411. [PMID: 36087621 DOI: 10.1016/j.fct.2022.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
The current finding reports on the development of highly ordered closely packed TiO2 nanotube arrays on Ti substrate via two-step anodization process. The nanotubes developed by second anodization step (TNT2) were encapsulated with Pt nanoflakes using electro-deposition followed by hydrothermal treatment process. The FE-SEM, FTIR, XRD and contact angle measurement, respectively were done to find out the morphological, functional group, phase structural and wettability of the samples. The tube diameter and length were found to be 110-120 and 50-100 nm and 437 and 682, respectively for first (TNT1) and second anodization. The structural order of the TNT has enhanced in the second anodization process. Chronoamperometric results showed that the Pt-TNT2 exhibited enhanced and steady state electro-catalytic activity than Pt-TNT1. Pt-TNT2 nanoflake composite showed near SHP behaviour than the TNT without Pt. The food processing machinery developed using near SHP Pt-TNT2 could be cleaned easily due to its high non-wettability. Hence, Pt-TNT2 can be used for making food processing equipment.
Collapse
Affiliation(s)
- Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - P Seenuvasaperumal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - M Surendiran
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission's Research Foundation - Aarupadai Veedu (VMRF-AV) Campus, Paiyanoor, Chennai, 603104, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
32
|
Xiao H, Yan W, Zhao Z, Tang Y, Li Y, Yang Q, Luo S, Jiang B. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism. WATER RESEARCH 2022; 221:118732. [PMID: 35716411 DOI: 10.1016/j.watres.2022.118732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Deliberate addition of mildly oxidative chlorate (ClO3-), so-called "chemical oxygen demand (COD) remover", into wastewater in China or electrochemical production of ClO3- from Cl- induces the false COD reduction, which would bring about false appearance of effluents meeting the COD discharge standards. In this study, an easy sulfite-based reduction method was developed for the first time to remove ClO3- from the water samples before COD determination to eliminate this interference of ClO3-. In this reaction system, keeping the reaction temperature of sulfite reducing ClO3- at 60 °C was crucial for fast ClO3- removal rate, fixed molar [sulfite]ini/[chlorate]ini ratio value and the synchronous exhaustion of sulfite and ClO3-, which were of great significance for the real application of this improved COD determination method. The ClO3- interference on COD determination could be successfully eliminated after 20 min reduction of ClO3- by sulfite at pHini 4.0∼6.0 with the molar [sulfite]ini/[chlorate]ini ratio value in the range of 5∼6 when concentration of ClO3- was below 5 mM. Despite of the involvement of SO4·- in the sulfite reducing ClO3- system, the degradation of organic matters by SO4·- could be greatly impeded due to the lessened dissolved oxygen for SO4·- production at high reaction temperature and the scavenging of SO4·- by sulfite. In this reaction system, ClO2, ClO2- and ClO- were also generated and could be further reduced by sulfite stoichiometrically via oxygen transfer process with Cl- as the final product. In general, this study pioneered an effective, fast and convenient method for COD determination of the ClO3--laden wastewaters and evaluating the real electrochemical wastewater treatment performance in terms of COD removal.
Collapse
Affiliation(s)
- Huiji Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Wei Yan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Zekun Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yifan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Qipeng Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Bo Jiang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
33
|
Yoo HY, Kim MS, Shin H, Lim J. Peroxymonosulfate activation by black TiO 2 nanotube arrays under solar light: Switching the activation mechanism and enhancing catalytic activity and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128796. [PMID: 35366445 DOI: 10.1016/j.jhazmat.2022.128796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Black TiO2 nanotube arrays (black TNAs) suffer from the low activity and deactivation for peroxymonosulfate (PMS) activation, which limit their application in the oxidative destruction of organic pollutants in water. Here, we report an efficient, environmentally benign, and cost-effective method to enhance the catalytic activity and prevent the deactivation of black TNAs in PMS activation by utilizing solar energy. Optical absorption and electrochemical analysis and density functional theory calculations demonstrated that abundant oxygen vacancies (estimated to be 26%) on the black TNAs surface markedly improved solar light absorption and electrical conductivity and played a critical role as a catalytic active site for PMS activation. As a result, the solar light-irradiated black TNAs/PMS system exhibited the higher phenol degradation rate (k = 0.0488 min-1) and total organic carbon (TOC) removal efficiency (~70%) compared to other TNAs systems. These results were ascribed to the switching of the reaction mechanism from non-radical mechanism to radical-involved. Black TNAs oxidized organic pollutants by mediating electron transfer from organics to PMS in the dark (i.e., a non-radical pathway). On the other hand, PMS activation under solar light irradiation involved the production of highly reactive sulfate and hydroxyl radicals (i.e., radical pathway), markedly improving the degradation and mineralization of organics. Additionally, the solar light-irradiated black TNAs showed relative pH-independence for PMS activation and durable catalytic performance without the loss of activity during the repetitive reaction cycles.
Collapse
Affiliation(s)
- Han Yi Yoo
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Min Sun Kim
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34148, Republic of Korea.
| | - Jonghun Lim
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea.
| |
Collapse
|
34
|
Zeng W, Liang H, Zhang H, Luo X, Lin D, Li G. Efficient electrochemical oxidation of sulfamethoxazole by a novel reduced TiO2 nanotube arrays-based flow-through electrocatalytic membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Hao Y, Ma H, Proietto F, Prestigiacomo C, Peng Fei M, Galia A, Scialdone O. Removal of phenol in water in the presence of NaCl in undivided cells equipped with carbon felt or Ni cathodes: Effect of air pressure. ChemElectroChem 2022. [DOI: 10.1002/celc.202200091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongyong Hao
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria CHINA
| | - Hongrui Ma
- Shaanxi University of Science and Technology Xi\'an Campus: Shaanxi University of Science and Technology School of Environmental Science and Engineering CHINA
| | - Federica Proietto
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria ITALY
| | - Claudia Prestigiacomo
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria ITALY
| | - Ma Peng Fei
- Università degli Studi di Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria CHINA
| | - Alessandro Galia
- University of Palermo: Universita degli Studi di Palermo Dipartimento di Ingegneria ITALY
| | - Onofrio Scialdone
- Università Ingegneria Chimica Gestionale Informatica Meccanica viale delle Scienze 90128 Palermo ITALY
| |
Collapse
|
36
|
Wang L, Liu Y, Pang D, Song H, Zhang S. Simultaneous electrochemical degradation of tetracycline and metronidazole through a high-efficiency and low-energy-consumption advanced oxidation process. CHEMOSPHERE 2022; 292:133469. [PMID: 34973244 DOI: 10.1016/j.chemosphere.2021.133469] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
With the increasing complexity of water environment pollution, it is becoming ever more practical to study the simultaneous removal of multiple pollutants in water. Electrochemical advanced oxidation technology is considered to be one of the most promising green approaches for the degradation of organic pollutants. Herein, Ti3+ and oxygen vacancies (VO) self-doped TiO2-x nanotube array electrodes are employed to investigate the simultaneous degradation and an energy consumption assessment for the effective removal of the antibiotics tetracycline (TC) and metronidazole (MNZ). The electrocatalytic performance of the nanotube arrays prepared at different reduction times is significantly different. The electrochemical reduction of TiO2 nanotube arrays for 10 min presents the best degradation performance for TC and MNZ. When a mixed solution of TC and MNZ is simultaneously degraded, the removal rate of TC (50 mg L-1) and MNZ (50 mg L-1) within 3 h reaches 100%, while the chemical oxygen demand (COD) removal rate is 79.1%. The energy consumption is significantly reduced compared to the degradation of a single substance. Simultaneously, the current utilization rate of the electrochemical degradation system is also significantly improved, with a specific energy consumption of only 85.78 kWh kg-1 and an average current efficiency that can reach 20.2%.
Collapse
Affiliation(s)
- Luyao Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yue Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Di Pang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Haiou Song
- School of Environment, Nanjing Normal University, Nanjing, 210097, PR China
| | - Shupeng Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
37
|
Almassi S, Ren C, Liu J, Chaplin BP. Electrocatalytic Perchlorate Reduction Using an Oxorhenium Complex Supported on a Ti 4O 7 Reactive Electrochemical Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3267-3276. [PMID: 35175742 DOI: 10.1021/acs.est.1c08220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An organometallic rhenium catalyst was deposited on a Ti4O7 reactive electrochemical membrane (Re/REM) for the electrocatalytic reduction of aqueous ClO4- to Cl-. Results showed increasing ClO4- reduction upon increasing cathodic potential (i.e., -0.4 to-1.7 V/SHE). A 5 mM ClO4- solution was reduced by ∼21% in a single pass (residence time ∼0.2 s) through the Re/REM at a pH of 7, with >99% Cl- selectivity and a current efficiency of ∼100%. Kinetic analysis indicated that the reaction rate constant increased from 3953 to 7128 L h-1 gRe-1 at pH values of 9 to 3, respectively, and was mass transport-limited at pH < 5. The rate constants were 2 orders of magnitude greater than reported values for an analogous catalytic system using hydrogen as an electron donor. A continuous flow Re/REM system reduced 1 ppm ClO4- in a groundwater sample by >99.9% for the first 93.5 h, and concentrations were lower than the EPA ClO4- guideline (56 ppb) for 374 h of treatment. The fast ClO4- reduction kinetics and high chloride selectivity without the need for acidic conditions and a continual hydrogen electron donor supply for catalyst regeneration indicate the promising ability of the Re/REM for aqueous electrocatalytic ClO4- treatment.
Collapse
Affiliation(s)
- Soroush Almassi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
- Institute of Environmental Science and Policy, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, Illinois 60612, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
38
|
Chen P, Mu Y, Chen Y, Tian L, Jiang XH, Zou JP, Luo SL. Shifts of surface-bound •OH to homogeneous •OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds. CHEMOSPHERE 2022; 291:132817. [PMID: 34752837 DOI: 10.1016/j.chemosphere.2021.132817] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Indirect electrochemical oxidation by hydroxyl radicals is the predominant degradation mechanism in electrolysis with a boron-doped diamond (BDD) anode. However, this electrochemical method exhibits low reactivity in removal of hydrophilic aromatic pollutants owing to mass transfer limitation. In this study, the combination of ultraviolet light and BDD electrolysis could increase the degradation rate of hydrophilic aromatic pollutants by approximately 8-10 times relative to electrolysis alone. According to the results of the scavenging experiments and identification of benzoic acid oxidation products, surface-bound hydroxyl radical (•OH(surface)) was the primary reactive species degrading aromatic pollutants in the BDD electrolysis process, whereas freely-diffusing homogeneous hydroxyl radical (•OH(free)) was the major reactive species in the UV-assisted BDD electrolysis process. Cyclic voltammetry revealed that UV light decomposed H2O2 formed on the BDD anode surface, thus retarding O2 evolution and facilitating •OH(free) generation. This work also explored the potential application of UV-assisted BDD electrolysis in removing COD from bio-pretreated landfill leachate containing high concentrations of hydrophilic aromatic pollutants. This study shed light on the importance of the existing state of •OH on removal of pollutants during BDD electrolysis, and provided a facile and efficient UV-assisted strategy for promoting degradation of hydrophilic aromatic pollutants.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yi Mu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Ying Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lei Tian
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xun-Heng Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Sheng-Lian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
39
|
Wang K, Zhao K, Qin X, Chen S, Yu H, Quan X. Treatment of organic wastewater by a synergic electrocatalysis process with Ti 3+ self-doped TiO 2 nanotube arrays electrode as both cathode and anode. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127747. [PMID: 34823953 DOI: 10.1016/j.jhazmat.2021.127747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical anodic oxidation (AO) is a promising technology for wastewater treatment due to its strong oxidation property and environmental compatibility. However, it suffers from high energy consumption for pollutants removal due to the side-reactions of hydrogen evolution reaction on cathode and oxygen evolution reaction on anode. Combining electro-Fenton (EF) with AO not only generated •OH for pollutants degradation but also increased current efficiency. This work investigated a synergic electrocatalysis process between EF and AO with Ti3+ self-doped TiO2 nanotube arrays (Ti3+/TNTAs) electrode as both cathode and anode for wastewater treatment. The pseudo-first-order kinetic rate constant of phenol degradation by EF+AO (0.107 min-1) was 9.7 or 6.3 times as much as that of only EF (0.011 min-1) or AO (0.017 min-1) process, respectively. Enhanced pollutants removal of EF+AO could be attributed to the coexistence of •OH oxidation and direct oxidation on Ti3+/TNTAs surface. The COD of secondary effluent of coking wastewater decreased from 159.3 mg L-1 to 47.0 mg L-1 by EF+AO within 120 min with low specific energy consumption (9.5 kWh kg-1 COD-1). This work provided a new insight into design of the energy-efficient synergic electrocatalysis process for refractory pollutants degradation.
Collapse
Affiliation(s)
- Kaixuan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xin Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
40
|
Li H, Quispe-Cardenas E, Yang S, Yin L, Yang Y. Electrosynthesis of >20 g/L H 2O 2 from Air. ACS ES&T ENGINEERING 2022; 2:242-250. [PMID: 35178529 PMCID: PMC8845047 DOI: 10.1021/acsestengg.1c00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 05/30/2023]
Abstract
Hydrogen peroxide (HP) production via electrochemical oxygen reduction reaction (ORR-HP) is a critical reaction for energy storage and environmental remediation. The onsite production of high-concentration H2O2 using gas diffusion electrodes (GDEs) fed by air is especially attractive. However, many studies indicate that the air-GDE combination could not produce concentrated H2O2, as the [H2O2] leveled off or even decreased with the increasing reaction time. This study proves that the limiting factors are not the oxygen concentration in the air but the anodic and cathodic depletion of the as-formed H2O2. We proved that the anodic depletion could be excluded by adopting a divided electrolytic cell. Furthermore, we demonstrated that applying poly(tetrafluoroethylene) (PTFE) as an overcoating rather than a catalyst binder could effectively mitigate the cathodic decomposition pathways. Beyond that, we further developed a composite electrospun PTFE (E-PTFE)/carbon black (CB)/GDE electrode featuring the electrospun PTFE (E-PTFE) nanofibrous overcoating. The E-PTFE coating provides abundant triphase active sites and excludes the cathodic depletion reaction, enabling the production of >20 g/L H2O2 at a current efficiency of 86.6%. Finally, we demonstrated the efficacy of the ORR-HP device in lake water remediation. Cyanobacteria and microcystin-LR were readily removed along with the onsite production of H2O2.
Collapse
Affiliation(s)
- Huihui Li
- State
Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Estefanny Quispe-Cardenas
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Lifeng Yin
- State
Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yang Yang
- Department
of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
41
|
Bezerra CAG, Santos JPTDS, Bessegato GG, de Paiva e Silva Zanta CL, Colle VD, Tremiliosi-Filho G. Photo- and electro-oxidation of tetracycline hydrochloride on self-doped titanium dioxide nanotubes modified by Pt sub-monolayers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Hao Y, Ma H, Proietto F, Galia A, Scialdone O. Electrochemical treatment of wastewater contaminated by organics and containing chlorides: Effect of operative parameters on the abatement of organics and the generation of chlorinated by-products. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Wang C, Zhang T, Yin L, Ni C, Ni J, Hou LA. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti 3+ self-doping TiO 2 nanotube arrays anode. CHEMOSPHERE 2022; 286:131804. [PMID: 34365167 DOI: 10.1016/j.chemosphere.2021.131804] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Perfluorooctanoic acid (PFOA) is of increasing concern due to its worldwide application and extremely environmental persistence. Herein, we demonstrated the electrochemical degradation of PFOA with high efficiency using the Ti3+ self-doping TiO2 nanotube arrays (Ti3+/TiO2-NTA) anode. The fabricated Ti3+/TiO2-NTA anode exhibited vertically aligned uniform nanotubes structure, and was demonstrated good performance on the electrochemical degradation of PFOA in water. The degradation rate, total organic carbon (TOC) removal rate and defluorination rate of PFOA reached 98.1 %, 93.3 % and 74.8 %, respectively, after electrolysis for 90 min at low current density of 2 mA cm-2. The energy consumption (7.6 Wh L-1) of this electrochemical oxidation system using Ti3+/TiO2-NTA anode for PFOA degradation was about 1 order of magnitude lower than using traditional PbO2 anodes. Cathodic polarization could effectively prolong the electrocatalytic activity of the anode by regenerating Ti3+ sites. PFOA molecular was underwent a rapidly mineralization to CO2 and F-, with only low concentration of short-chain perflfluorocarboxylic acids (PFCAs) intermediates identified. A possible electrochemical degradation mechanism of PFOA was proposed, in which the initial direct electron transfer (DET) on the anode to yield PFOA free radicals (C7F15COO•) and hydroxyl radicals (•OH) oxidation were greatly enhanced. This presented study provides a novel approach for the purification of the recalcitrant PFOA from wastewaters.
Collapse
Affiliation(s)
- Chong Wang
- College of Resources Adironment, Southwest University, Chongqing, 400716, China.
| | - Tianai Zhang
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chengsheng Ni
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - JiuPai Ni
- College of Resources Adironment, Southwest University, Chongqing, 400716, China
| | - Li-An Hou
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Xi'an High-Tech Institute, Xi'an, 710025, China
| |
Collapse
|
44
|
Duan Y, Sedlak DL. An electrochemical advanced oxidation process for the treatment of urban stormwater. WATER RESEARCH X 2021; 13:100127. [PMID: 34927040 PMCID: PMC8649961 DOI: 10.1016/j.wroa.2021.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Recharge of urban stormwater has often been limited by the high cost of land and concerns about contamination of groundwater. To provide a possible solution, we developed an electrochemical advanced oxidation system (UV/H2O2) that is compatible with high-capacity stormwater recharge systems (e.g., drywells). The system employed an air-diffusion cathode to generate a H2O2 stock solution (i.e., typically around 600 mM) prior to the storm event. The H2O2 stock solution was then metered into stormwater and converted into hydroxyl radical (•OH) by an ultraviolet lamp. The energy consumption for H2O2 generation was optimized by adjusting the applied current density and adding an inert salt (e.g., Na2SO4) to stormwater. H2O2 in the stock solution was unstable. By mixing the basic H2O2 containing catholyte and the acidic anolyte, the stability increased, enabling generation of the H2O2 stock solution up to three days prior the storm event with loss of less than 20% of the H2O2. Lab-scale experiments and a kinetic model were used to assess the feasibility of the full-scale advanced oxidation system. System performance decreased at elevated concentrations of dissolved organic carbon in stormwater, due to enhanced light reflection and backscattering at the water-air interface in the UV reactor, competition for UV light absorption with H2O2 and the tendency of organic matter to act as a •OH scavenger. The proposed system can be incorporated into drywells to remove greater than 90% of trace organic contaminants under typical operating conditions. The electrical energy per order of the system is estimated to range from 0.5 to 2 kWh/m3, depending on the dissolved organic carbon concentration.
Collapse
|
45
|
Liu X, Song CN, Zhang Y, Sha L, Li Y, Zhang S. Electrochemical pretreatment of coking wastewater by Ti/BTN/RuO2-IrO2-TiO2: Selectivity of chloridion oxidation and multi-response optimization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Zhang W, Gao M, Miao F, Wu X, Wang S, Wang X. A permeable electrochemical reactive barrier for underground water remediation using TiO 2/graphite composites as heterogeneous electrocatalysts without releasing of chemical substances. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126318. [PMID: 34118548 DOI: 10.1016/j.jhazmat.2021.126318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Permeable reactive barriers (PRBs) are well-studied and widely-applied technologies in underground water remediation. However, the releasing of chemical substances cannot be avoided during the PRBs operation. In this study, a novel permeable electrochemical reactive barrier (PERB) was fabricated for underground water remediation using a TiO2/graphite composite (TiO2/C) as the heterogeneous electrocatalyst. TiO2/C performed an electro-Fenton-like reaction on cathode and an anodic oxidation on anode respectively, along with the variety of the TiO2 lattice. The performance of this PERB system was evaluated using tetracycline hydrochloride (TTC) degradation. TTC could be degraded at a low applied potential and a wide range of pH. The degradation rate of about 60% was obtained at the optimized reaction condition: the interelectrode potential difference of 1.2 V, pH 3.0, the anode 10 cm above cathode. The relative position and spacing of the electrodes effected the mass transfer equilibrium of TTC. During the 25-day persistent degradation of TTC, the PERB system shown a perfect stability with rarely leaching of Ti. This work explored the potential for underground water remediation by the electrocatalysis with the goal of establishing a clean and eco-friendly PERB system.
Collapse
Affiliation(s)
- Wen Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Mingming Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Fei Miao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xiaoyan Wu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Shuguang Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Xinhua Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
47
|
Zhang F, Wang W, Xu L, Zhou C, Sun Y, Niu J. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti 3+ self-doped TiO 2 nanotube arrays anode. CHEMOSPHERE 2021; 278:130465. [PMID: 34126689 DOI: 10.1016/j.chemosphere.2021.130465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Ethylene diamine tetraacetic acid (EDTA) could form stable complexes with nickel due to its strong chelation. Ni-EDTA has significant impacts on human health because of its acute toxicity and low biodegradability, thus some appropriate approaches are required for its removal. In this research, a Ti3+ self-doped TiO2 nanotube arrays electrode (ECR-TiO2 NTA) was prepared and employed in electrochemical degradation of Ni-EDTA. The oxygen evolution potential of ECR-TiO2 NTA was 2.6 V vs. SCE. More than 96% Ni-EDTA and 88% TOC was removed after reaction for 120 min at current density 2 mA cm-2 at pH 4.34. The degradation of Ni-EDTA was mainly through the cleavage of amine group within Ni-EDTA and furthermore decomposed it into small molecular acids and inorganic ions including NH4+and NO3-. The electro-deposition of nickel ions at cathode was confirmed by XPS and was greatly affected by the pH of solution. The effects of current density, initial Ni-EDTA concentration, initial pH of solution and HCO3- concentration on Ni-EDTA degradation were investigated. The results exhibited that the ECR-TiO2 NTA had excellent efficiencies in electrochemical degradation of Ni-EDTA. The LSV analysis suggested that Ni-EDTA oxidation on ECR-TiO2 NTA anode and the production of hydroxyl radical (·OH) on the anode played an important role in the removal of Ni-EDTA.
Collapse
Affiliation(s)
- Fan Zhang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Weilai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Lei Xu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Chengzhi Zhou
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yanglong Sun
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| |
Collapse
|
48
|
Liu X, You S, Ren N, Zhou H, Zhang J. Complete solar-driven dual-photoelectrode fuel cell for water purification and power generation in the presence of peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125682. [PMID: 33813293 DOI: 10.1016/j.jhazmat.2021.125682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
This study reports the development of complete solar-driven dual-photoelectrode fuel cell (PFC) based on WO3 photoanode and Cu2O photocathode with peroxymonosulfate (PMS) serving as cathodic electron acceptor. As indicated by photoelectrochemical measurements, the PMS was able to improve thermodynamic properties of photocathode, achieving an increased open circuit potential from 0.42 V to 0.65 V vs standard hydrogen electrode (SHE). Under simulated sunlight irradiation (~100 mW cm-2), the maximum power density of 0.12 mW cm-2 could be obtained at current density of 0.34 mA cm-2, which was 8.57 times of that produced by PFC without PMS (0.014 mW cm-2). Correspondingly, adding PMS (1.0 mM) increased overall removal efficiency of 4-chlorophenol (4-CP) from 39.8% to 96.8%, accounting for the first-order kinetic constant (k=0.056 min-1) being 6.67 times of that in the absence of PMS (k=0.0084 min-1). Radical quenching and electron spin-resonance (ESR) results suggested the contribution of free radicals (•OH and SO4•-) and non-radical pathway associated with direct activation of PMS by Cu2O photocathode. Fourier transformed infrared (FTIR) analysis confirmed the strong non-radical interaction between Cu2O photocathode and PMS, resulting in 4-CP removal via activation of PMS by surface complex on Cu2O. The proof-in-concept complete solar-driven dual-photoelectrode fuel cell may offer an effective manner to realize water purification and power generation, making wastewater treatment more economical and more sustainable.
Collapse
Affiliation(s)
- Xuefeng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hao Zhou
- Conservation Center, Shanghai Museum, Shanghai 200231, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
49
|
Lee W, Lee T, Kim S, Bae S, Yoon J, Cho K. Descriptive Role of Pt/PtO x Ratio on the Selective Chlorine Evolution Reaction under Polarity Reversal as Studied by Scanning Electrochemical Microscopy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34093-34101. [PMID: 34270208 DOI: 10.1021/acsami.1c06187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study investigated competing chlorine evolution reaction (ClER) and oxygen evolution reaction (OER) on Pt electrodes under variable polarity reversal intervals (±16.7 mA cm-2, 30-600 s) in the context of distinctive roles of Pt(0) and PtOx on the surface in dilute (0.1 M) NaCl solutions. The substrate generation/tip collection mode of scanning electrochemical microscopy (SECM) quantified the current efficiency (CE) of ClER with a large tip-to-substrate distance (>500 μm) to avoid intervention of bubbles and spatial variations. Surface interrogation SECM using [Ru(NH3)6]2+/3+ coupled with X-ray photoelectron spectroscopy (XPS) identified the Pt4+-enriched surface of PtOx with a bilayer structure to give more efficient regeneration of Pt(0) under the shorter reversal interval. The in situ SECM complemented bulk electrolysis and XPS to demonstrate that ClER on Pt(0) and OER on PtOx primarily determine the CE of ClER, in agreement with a kinetic model. The descriptive role of surface Pt/PtOx ratio rationalized the enhanced selectivity for ClER upon the polarity switching, being independent on a scaling relationship. The current reversal (not allowed to IrO2 electrodes) also alleviated calcareous scale deposit in the electrolyte with hardness.
Collapse
Affiliation(s)
- Woonghee Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Teayoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seok Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sungho Bae
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeyong Yoon
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, Republic of Korea
| | - Kangwoo Cho
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University International Campus, Incheon 21983, Republic of Korea
| |
Collapse
|
50
|
Ji Y, Niu J, Xu D, Wang K, Brejcha J, Jeon S, Warsinger DM. Efficient electrocatalysis for denitrification by using TiO 2 nanotube arrays cathode and adding chloride ions. CHEMOSPHERE 2021; 274:129706. [PMID: 33540319 DOI: 10.1016/j.chemosphere.2021.129706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Electrocatalysis is emerging as a promising alternative to bacterial denitrification for removing nitrate and ammonia from sewage. The technology is highly efficient and robust in actual wastewater treatment scenarios; however, there may be the generation of harmful intermediates (such as nitrite) on the traditional cathode material. In this study, we demonstrated that TiO2 nanotube arrays can be used as an effective cathode to reduce nitrate to ammonia without generation of nitrite. Alongside this, the addition of chloride ions in the solution can further oxidize ammonia to N2. We looked into the key factors influencing the electrocatalytic denitrification, including the current density (2-10 mA/cm2), initial pH values (3-11), and types of anions (HCO3-, Cl-, SO42-). The results showed that 90.8% of nitrate and 59.4% of total nitrogen could be removed in 1.5 h under optimal conditions, with degradation kinetic constants of 1.61 h-1 and 0.79 h-1, respectively. Furthermore, we investigated the formation of intermediate products and explored the electrocatalytic denitrification mechanism: (a) the surface oxygen vacancies and high specific surface area of TiO2 nanotube arrays electrode promote the reduction of nitrate to ammonia and N2; (b) the active chlorine generated at the anode surface can effectively oxidize ammonium to N2.
Collapse
Affiliation(s)
- Yangyuan Ji
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Junfeng Niu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Dong Xu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Jacob Brejcha
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Seunghyo Jeon
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - David M Warsinger
- School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|