1
|
Maity R, Zhang X, Liberati FR, Scribani Rossi C, Cutruzzolá F, Rinaldo S, Gaetani M, Aínsa JA, Sancho J. Merging multi-omics with proteome integral solubility alteration unveils antibiotic mode of action. eLife 2024; 13:RP96343. [PMID: 39329363 PMCID: PMC11434622 DOI: 10.7554/elife.96343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Antimicrobial resistance is responsible for an alarming number of deaths, estimated at 5 million per year. To combat priority pathogens, like Helicobacter pylori, the development of novel therapies is of utmost importance. Understanding the molecular alterations induced by medications is critical for the design of multi-targeting treatments capable of eradicating the infection and mitigating its pathogenicity. However, the application of bulk omics approaches for unraveling drug molecular mechanisms of action is limited by their inability to discriminate between target-specific modifications and off-target effects. This study introduces a multi-omics method to overcome the existing limitation. For the first time, the Proteome Integral Solubility Alteration (PISA) assay is utilized in bacteria in the PISA-Express format to link proteome solubility with different and potentially immediate responses to drug treatment, enabling us the resolution to understand target-specific modifications and off-target effects. This study introduces a comprehensive method for understanding drug mechanisms and optimizing the development of multi-targeting antimicrobial therapies.
Collapse
Affiliation(s)
- Ritwik Maity
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
| | - Xuepei Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
- Chemical Proteomics Unit, Science for Life Laboratory (SciLifeLab)StockholmSweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry (BioMS)StockholmSweden
| | | | - Chiara Scribani Rossi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRomeItaly
| | - Francesca Cutruzzolá
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRomeItaly
| | - Serena Rinaldo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of RomeRomeItaly
| | - Massimiliano Gaetani
- Department of Medical Biochemistry and Biophysics, Karolinska InstitutetStockholmSweden
- Chemical Proteomics Unit, Science for Life Laboratory (SciLifeLab)StockholmSweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry (BioMS)StockholmSweden
| | - José Antonio Aínsa
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Faculty of Medicine, University of ZaragozaZaragozaSpain
- CIBER de Enfermedades Respiratorias—CIBERES, Instituto de Salud Carlos IIIMadridSpain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
| |
Collapse
|
2
|
Smith CF, Modahl CM, Ceja Galindo D, Larson KY, Maroney SP, Bahrabadi L, Brandehoff NP, Perry BW, McCabe MC, Petras D, Lomonte B, Calvete JJ, Castoe TA, Mackessy SP, Hansen KC, Saviola AJ. Assessing Target Specificity of the Small Molecule Inhibitor MARIMASTAT to Snake Venom Toxins: A Novel Application of Thermal Proteome Profiling. Mol Cell Proteomics 2024; 23:100779. [PMID: 38679388 PMCID: PMC11154231 DOI: 10.1016/j.mcpro.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024] Open
Abstract
New treatments that circumvent the pitfalls of traditional antivenom therapies are critical to address the problem of snakebite globally. Numerous snake venom toxin inhibitors have shown promising cross-species neutralization of medically significant venom toxins in vivo and in vitro. The development of high-throughput approaches for the screening of such inhibitors could accelerate their identification, testing, and implementation and thus holds exciting potential for improving the treatments and outcomes of snakebite envenomation worldwide. Energetics-based proteomic approaches, including thermal proteome profiling and proteome integral solubility alteration (PISA) assays, represent "deep proteomics" methods for high throughput, proteome-wide identification of drug targets and ligands. In the following study, we apply thermal proteome profiling and PISA methods to characterize the interactions between venom toxin proteoforms in Crotalus atrox (Western Diamondback Rattlesnake) and the snake venom metalloprotease (SVMP) inhibitor marimastat. We investigate its venom proteome-wide effects and characterize its interactions with specific SVMP proteoforms, as well as its potential targeting of non-SVMP venom toxin families. We also compare the performance of PISA thermal window and soluble supernatant with insoluble precipitate using two inhibitor concentrations, providing the first demonstration of the utility of a sensitive high-throughput PISA-based approach to assess the direct targets of small molecule inhibitors for snake venom.
Collapse
Affiliation(s)
- Cara F Smith
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Cassandra M Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Ceja Galindo
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Keira Y Larson
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Sean P Maroney
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Lilyrose Bahrabadi
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Nicklaus P Brandehoff
- Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, Colorado, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Maxwell C McCabe
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Tuebingen, Germany; Department of Biochemistry, University of California Riverside, Riverside, California, USA
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Juan J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| | - Stephen P Mackessy
- Department of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado, USA.
| |
Collapse
|
3
|
Li Y, Lyu J, Wang Y, Ye M, Wang H. Ligand Modification-Free Methods for the Profiling of Protein-Environmental Chemical Interactions. Chem Res Toxicol 2024; 37:1-15. [PMID: 38146056 DOI: 10.1021/acs.chemrestox.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Adverse health outcomes caused by environmental chemicals are often initiated via their interactions with proteins. Essentially, one environmental chemical may interact with a number of proteins and/or a protein may interact with a multitude of environmental chemicals, forming an intricate interaction network. Omics-wide protein-environmental chemical interaction profiling (PECI) is of prominent importance for comprehensive understanding of these interaction networks, including the toxicity mechanisms of action (MoA), and for providing systematic chemical safety assessment. However, such information remains unknown for most environmental chemicals, partly due to their vast chemical diversity. In recent years, with the continuous efforts afforded, especially in mass spectrometry (MS) based omics technologies, several ligand modification-free methods have been developed, and new attention for systematic PECI profiling was gained. In this Review, we provide a comprehensive overview on these methodologies for the identification of ligand-protein interactions, including affinity interaction-based methods of affinity-driven purification, covalent modification profiling, and activity-based protein profiling (ABPP) in a competitive mode, physicochemical property changes assessment methods of ligand-directed nuclear magnetic resonance (ligand-directed NMR), MS integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS), thermal proteome profiling (TPP), limited proteolysis-coupled mass spectrometry (LiP-MS), stability of proteins from rates of oxidation (SPROX), and several intracellular downstream response characterization methods. We expect that the applications of these ligand modification-free technologies will drive a considerable increase in the number of PECI identified, facilitate unveiling the toxicological mechanisms, and ultimately contribute to systematic health risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, China
- State Key Laboratory of Medical Proteomics, Beijing, 102206, China
| | - Hailin Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
4
|
Chen S, Gong Y, Luo Y, Cao R, Yang J, Cheng L, Gao Y, Zhang H, Chen J, Geng N. Toxic effects and toxicological mechanisms of chlorinated paraffins: A review for insight into species sensitivity and toxicity difference. ENVIRONMENT INTERNATIONAL 2023; 178:108020. [PMID: 37354881 DOI: 10.1016/j.envint.2023.108020] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
Chlorinated paraffins (CPs), a group of chlorinated alkane mixtures, are frequently detected in various environmental matrices and human bodies. Recently, CPs have garnered considerable attention owing to their potential to induce health hazards in wildlife and human. Several reviews have discussed short-chain CPs (SCCPs) induced ecological risk; however, a comprehensive understanding of the underlying toxic mechanisms and a comparison among SCCPs, medium-, and long-chain CPs (MCCPs and LCCPs, respectively) are yet to be established. This review summarizes the latest research progress on the toxic effects and the underlying molecular mechanisms of CPs. The main toxicity mechanisms of CPs include activation of several receptors, oxidative stress, disturbance of energy metabolism, and inhibition of gap junction-mediated communication. The sensitivity of different species to CP-mediated toxicities varies markedly, with aquatic organisms exhibiting the highest sensitivity to CP-induced toxicity. The toxicity comparison analysis indicated that MCCPs may be unsafe as potential substitutes for SCCPs.
Collapse
Affiliation(s)
- Shuangshuang Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiajia Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Gong Y, Yang D, Barrett H, Sun J, Peng H. Building the Environmental Chemical-Protein Interaction Network (eCPIN): An Exposome-Wide Strategy for Bioactive Chemical Contaminant Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3486-3495. [PMID: 36827403 DOI: 10.1021/acs.est.2c02751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although advancements in nontargeted analysis have made it possible to detect hundreds of chemical contaminants in a single run, the current environmental toxicology approaches lag behind, precluding the transition from analytical chemistry efforts to health risk assessment. We herein highlighted a recently developed "top-down" bioanalytical method, protein Affinity Purification with Nontargeted Analysis (APNA), to screen for bioactive chemical contaminants at the "exposome-wide" level. To achieve this, a tagged functional protein is employed as a "bait" to directly isolate bioactive chemical contaminants from environmental mixtures, which are further identified by nontargeted analysis. Advantages of this protein-guided approach, including the discovery of new bioactive ligands as well as new protein targets for known chemical contaminants, were highlighted by several case studies. Encouraged by these successful applications, we further proposed a framework, i.e., the environmental Chemical-Protein Interaction Network (eCPIN), to construct a complete map of the 7 billion binary interactions between all chemical contaminants (>350,000) and human proteins (∼20,000) via APNA. The eCPIN could be established in three stages through strategically prioritizing the ∼20,000 human proteins, such as focusing on the 48 nuclear receptors (e.g., thyroid hormone receptors) in the first stage. The eCPIN will provide an unprecedented throughput for screening bioactive chemical contaminants at the exposome-wide level and facilitate the identification of molecular initiating events at the proteome-wide level.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Abstract
Environmental agents of exposure can damage proteins, affecting protein function and cellular protein homeostasis. Specific residues are inherently chemically susceptible to damage from individual types of exposure. Amino acid content is not completely predictive of protein susceptibility, as secondary, tertiary, and quaternary structures of proteins strongly influence the reactivity of the proteome to individual exposures. Because we cannot readily predict which proteins will be affected by which chemical exposures, mass spectrometry-based proteomic strategies are necessary to determine the protein targets of environmental toxins and toxicants. This review describes the mechanisms by which environmental exposure to toxins and toxicants can damage proteins and affect their function, and emerging omic methodologies that can be used to identify the protein targets of a given agent. These methods include target identification strategies that have recently revolutionized the drug discovery field, such as activity-based protein profiling, protein footprinting, and protein stability profiling technologies. In particular, we highlight the necessity of multiple, complementary approaches to fully interrogate how protein integrity is challenged by individual exposures.
Collapse
Affiliation(s)
- Joseph C Genereux
- Department of Chemistry, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Feng F, Zhang W, Chai Y, Guo D, Chen X. Label-free target protein characterization for small molecule drugs: recent advances in methods and applications. J Pharm Biomed Anal 2023; 223:115107. [DOI: 10.1016/j.jpba.2022.115107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
8
|
Liu Q, Liu N, Lu H, Yuan W, Zhu L. Polybrominated diphenyl ethers interact with the key protein involved in carbohydrate metabolism in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120466. [PMID: 36265726 DOI: 10.1016/j.envpol.2022.120466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Rice exposed to organic pollutants such as polybrominated diphenyl ethers (PBDEs) usually experiences reduced biomass and increased soluble sugar content. This study showed that 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) led to increased glucose, fructose, and sucrose in rice leaves, accompanied by decreased photosynthetic rate and biomass. In order to identify the key enzyme that BDE-47 interacted with, a diazirine-alkynyl photoaffinity probe was designed, and photoaffinity labeling based chemoproteomics was conducted. Among all differentially expressed proteins, fructose-1, 6-bisphosphate aldolase (FBA) involved in carbohydrate metabolism was most likely the target protein of BDE-47. Spectral techniques and molecular docking analysis further revealed that the pollutant-protein interaction was driven by hydrophobic force. BDE-47 inhibited FBA catalytic efficiency by competing with its substrate, fructose-1, 6-diphosphate (F-1, 6-P), leading to soluble sugar accumulation, photosynthetic rate decline and biomass reduction. This study unraveled the influencing mechanism of PBDEs on rice by combining the novel photoaffinity labeling-based chemoproteomics with conventional proteomics. The improved knowledge on direct interaction between organic pollutants and proteins will help alleviate the harmful effects of soil pollution on plants.
Collapse
Affiliation(s)
- Qian Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Na Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Huijie Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenkui Yuan
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
9
|
Barrett H, Sun J, Gong Y, Yang P, Hao C, Verreault J, Zhang Y, Peng H. Triclosan is the Predominant Antibacterial Compound in Ontario Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14923-14936. [PMID: 35594374 DOI: 10.1021/acs.est.2c00406] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sewage treatment plants (STPs) accumulate both antibiotic and nonantibiotic antimicrobial compounds that can select for antibiotic resistant bacteria. Herein, we aimed to identify the predominant antibacterial compounds impacting E. coli from Ontario sewage sludge consisting of thousands of unknown compounds. Among the 10 extracted sludge samples, 6 extracts exerted significant growth inhibition effects in E. coli. A total of 103 compounds were tentatively detected across the 10 sludge samples by suspect screening, among which the bacterial enoyl-ACP reductase (FabI) inhibitor triclocarban was detected at the highest abundance. A hypomorphic FabI knockdown E. coli strain was highly susceptible to the sludge extracts, confirming FabI inhibitors as the primary antibacterial compounds in the sludge. Protein affinity pulldown identified triclosan as the major ligand binding to a His-tagged FabI protein from the sludge, despite the higher abundance of triclocarban in the same samples. Effect-directed analysis was used to determine the contributions of triclosan to the observed antibacterial potencies. Antibacterial effects were only detected in F17 and F18 across 20 fractions, which was consistent with the elution of triclosan and triclocarban in the same two fractions. Further, potency mass balance analysis confirmed that triclosan explained the majority (58-113%) of inhibition effects from sludge extracts. This study highlighted triclosan as the predominant antibacterial compound in sewage sludge impacting E. coli despite the co-occurrence of numerous other antibiotics and nonantibiotics.
Collapse
Affiliation(s)
- Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Paul Yang
- Ontario Ministry of the Environment, Conservation and Parks (MECP), Toronto, ON M7A 1N3, Canada
| | - Chunyan Hao
- Ontario Ministry of the Environment, Conservation and Parks (MECP), Toronto, ON M7A 1N3, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, P.O. Box 8888, Succursale Centre-ville, Montreal, QC H3C 3P8, Canada
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Science, P.O. Box 2871, Beijing 100085, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
10
|
Chen W, Gong Y, McKie M, Almuhtaram H, Sun J, Barrett H, Yang D, Wu M, Andrews RC, Peng H. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14627-14639. [PMID: 36173153 DOI: 10.1021/acs.est.2c03608] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increases in the global use of plastics have caused concerns regarding potential adverse effects on human health. Plastic products contain hundreds of potentially toxic chemical additives, yet the exact chemicals which drive toxicity currently remain unknown. In this study, we employed nontargeted analysis and in vitro bioassays to identify the toxicity drivers in plastics. A total of 56 chemical additives were tentatively identified in five commonly used plastic polymer pellets (i.e., PP, LDPE, HDPE, PET, and PVC) by employing suspect screening and nontargeted analysis. Phthalates and organophosphates were found to be dominant in PVC pellets. Triphenyl phosphate and 2-ethylhexyl diphenyl phosphate accounted for a high amount (53.6%) of the inhibition effect of PVC pellet extract on human carboxylesterase 1 (hCES1) activity. Inspired by the high abundances of chemical additives in PVC pellets, six different end-user PVC-based products including three widely used PVC water pipes were further examined. Among them, extracts of PVC pipe exerted the strongest PPARγ activity and cell viability suppression. Organotins were identified as the primary drivers to these in vitro toxicities induced by the PVC pipe extracts. This study clearly delineates specific chemical additives responsible for hCES1 inhibition, PPARγ activity, and cell viability suppression associated with plastic.
Collapse
Affiliation(s)
- Wanzhen Chen
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Yufeng Gong
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Michael McKie
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Husein Almuhtaram
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| | - Menghong Wu
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Robert C Andrews
- Department of Civil and Mineral Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, 80 St George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Ruan C, Ning W, Liu Z, Zhang X, Fang Z, Li Y, Dang Y, Xue Y, Ye M. Precipitate-Supported Thermal Proteome Profiling Coupled with Deep Learning for Comprehensive Screening of Drug Target Proteins. ACS Chem Biol 2022; 17:252-262. [PMID: 34989232 DOI: 10.1021/acschembio.1c00936] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although thermal proteome profiling (TPP) acts as a popular modification-free approach for drug target deconvolution, some key problems are still limiting screening sensitivity. In the prevailing TPP workflow, only the soluble fractions are analyzed after thermal treatment, while the precipitate fractions that also contain abundant information of drug-induced stability shifts are discarded; the sigmoid melting curve fitting strategy used for data processing suffers from discriminations for a part of human proteome with multiple transitions. In this study, a precipitate-supported TPP (PSTPP) assay was presented for unbiased and comprehensive analysis of protein-drug interactions at the proteome level. In PSTPP, only these temperatures where significant precipitation is observed were applied to induce protein denaturation and the complementary information contained in both supernatant fractions and precipitate fractions was used to improve the screening specificity and sensitivity. In addition, a novel image recognition algorithm based on deep learning was developed to recognize the target proteins, which circumvented the problems that exist in the sigmoid curve fitting strategy. PSTPP assay was validated by identifying the known targets of methotrexate, raltitrexed, and SNS-032 with good performance. Using a promiscuous kinase inhibitor, staurosporine, we delineated 99 kinase targets with a specificity up to 83% in K562 cell lysates, which represented a significant improvement over the existing thermal shift methods. Furthermore, the PSTPP strategy was successfully applied to analyze the binding targets of rapamycin, identifying the well-known targets, FKBP1A, as well as revealing a few other potential targets.
Collapse
Affiliation(s)
- Chengfei Ruan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanshan Ning
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Zhen Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yongjun Dang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, Hubei 430074, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
12
|
Sun J, Barrett H, Hall DR, Kutarna S, Wu X, Wang Y, Peng H. Ecological Role of 6OH-BDE47: Is It a Chemical Offense Molecule Mediated by Enoyl-ACP Reductases? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:451-459. [PMID: 34914355 DOI: 10.1021/acs.est.1c05718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although hydroxylated polybrominated diphenyl ethers (OH-BDEs) are among the most abundant natural organobromine compounds, the fundamental biological rationale for marine organisms to produce OH-BDEs remains elusive. Herein, we demonstrated that natural OH-BDEs exerted strong antibacterial activities against Escherichia coli by inhibiting enoyl-[acyl-carrier-protein] reductase (FabI), while anthropogenic OH-BDEs were inactive. Distinct from E. coli, OH-BDE-producing marine γ-proteobacteria including Marinomonas mediterranea MMB-1 (MMB-1) and Pseudoalteromonas luteoviolacea 2ta16 (Pl2ta16) exhibited resistance to 6OH-BDE47. An alternative enoyl-[acyl-carrier-protein] (ACP) reductase, FabV, was detected in all three OH-BDE-producing marine γ-proteobacteria. Thermal stability and protein affinity purification studies revealed that 6OH-BDE47 did not bind to recombinant or endogenous FabV of MMB-1 or Pl2ta16, demonstrating that FabV was the primary mechanism for OH-BDE-producing marine γ-proteobacteria to be resistant to 6OH-BDE47. To further confirm if the laboratory results were evidenced in the field, the 16S rRNA sequencing and metagenomics data from seven field-collected marine sponges were analyzed. Notably, the two Clade 4 sponges containing high concentrations of 6OH-BDE47 exhibited a distinct microbiome community structure compared to the other analyzed clades. Correspondingly, FabV was found to be selectively enriched in the same Clade 4 sponges. The merged evidence from the laboratory experiments and field studies demonstrated that 6OH-BDE47 may act as a chemical offense molecule in marine sponges.
Collapse
Affiliation(s)
- Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Xiaoqin Wu
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 70A3317, United States
| | - Yan Wang
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
13
|
Guo H, Wang L, Deng Y, Ye J. Novel perspectives of environmental proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147588. [PMID: 34023612 DOI: 10.1016/j.scitotenv.2021.147588] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
The connection among genome expression, proteome alteration, metabolism regulation and phenotype change under environmental stresses is very vague. It is a tough task for the traditional research approaches to reveal the related scientific mechanisms of the above connection at molecular and systematic levels. Proteomics approach is an insightful tool for revealing the biological functions, metabolic networks and functional protein interaction networks of cells and organisms under stresses at the systematic level. The purpose of this review is to provide an insightful guideline on how to set up a proteomic investigation for revealing biomolecule mechanisms, protein biomarkers and metabolism networks related to stress response, pollutant recognition, transport and biodegradation, and providing an insightful high-throughput approach for screening functional enzymes and effective microbes based on bioinformatics and functional verification method. Furthermore, the toxicity evaluation of pollutants and byproducts by proteomics approaches provides a scientific insight for early diagnosis of ecological risk and determination of the effectiveness of pollutant treatment techniques.
Collapse
Affiliation(s)
- Huiying Guo
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Institute of Orthopedic Diseases, Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Lili Wang
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ying Deng
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Mateus A, Kurzawa N, Perrin J, Bergamini G, Savitski MM. Drug Target Identification in Tissues by Thermal Proteome Profiling. Annu Rev Pharmacol Toxicol 2021; 62:465-482. [PMID: 34499524 DOI: 10.1146/annurev-pharmtox-052120-013205] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug target deconvolution can accelerate the drug discovery process by identifying a drug's targets (facilitating medicinal chemistry efforts) and off-targets (anticipating toxicity effects or adverse drug reactions). Multiple mass spectrometry-based approaches have been developed for this purpose, but thermal proteome profiling (TPP) remains to date the only one that does not require compound modification and can be used to identify intracellular targets in living cells. TPP is based on the principle that the thermal stability of a protein can be affected by its interactions. Recent developments of this approach have expanded its applications beyond drugs and cell cultures to studying protein-drug interactions and biological phenomena in tissues. These developments open up the possibility of studying drug treatment or mechanisms of disease in a holistic fashion, which can result in the design of better drugs and lead to a better understanding of fundamental biology. Expected final online publication date for the Annual Review of Pharmacology and Toxicology, Volume 62 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| | - Nils Kurzawa
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; .,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Jessica Perrin
- Cellzome GmbH, GlaxoSmithKline, 69117 Heidelberg, Germany
| | | | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany;
| |
Collapse
|
15
|
Han J, Fu J, Sun J, Hall DR, Yang D, Blatz D, Houck K, Ng C, Doering J, LaLone C, Peng H. Quantitative Chemical Proteomics Reveals Interspecies Variations on Binding Schemes of L-FABP with Perfluorooctanesulfonate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9012-9023. [PMID: 34133149 PMCID: PMC9189739 DOI: 10.1021/acs.est.1c00509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Evaluating interspecies toxicity variation is a long-standing challenge for chemical hazard assessment. This study developed a quantitative interspecies thermal shift assay (QITSA) for in situ, quantitative, and modest-throughput investigation of chemical-protein interactions in cell and tissue samples across species. By using liver fatty acid binding protein (L-FABP) as a case study, the QITSA method was benchmarked with six per- and polyfluoroalkyl substances, and thermal shifts (ΔTm) were inversely related to their dissociation constants (R2 = 0.98). The QITSA can also distinguish binding modes of chemicals exemplified by palmitic acid. The QITSA was applied to determine the interactions between perfluorooctanesulfonate (PFOS) and L-FABP in liver cells or tissues from humans, mice, rats, and zebrafish. The largest thermal stability enhancement by PFOS was observed for human L-FABP followed by the mouse, rat, and zebrafish. While endogenous ligands were revealed to partially contribute to the large interspecies variation, recombinant proteins were employed to confirm the high binding affinity of PFOS to human L-FABP, compared to the rat and mouse. This study implemented an experimental strategy to characterize chemical-protein interactions across species, and future application of QITSA to other chemical contaminants is of great interest.
Collapse
Affiliation(s)
- Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jesse Fu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Donovan Blatz
- U.S. Environmental Protection Agency, Oak Ridge Institute for Science and Education, Duluth, Minnesota 55804, United States
| | - Keith Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States
| | - Carla Ng
- Department of Civil & Environmental Engineering and Department of Environmental and Occupational Health, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, Pennsylvania 15261, United States
| | - Jon Doering
- National Research Council, Duluth, Minnesota 55804, United States
| | - Carlie LaLone
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Duluth, Minnesota 55804, United States
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
16
|
Xu T, Lim YT, Chen L, Zhao H, Low JH, Xia Y, Sobota RM, Fang M. A Novel Mechanism of Monoethylhexyl Phthalate in Lipid Accumulation via Inhibiting Fatty Acid Beta-Oxidation on Hepatic Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15925-15934. [PMID: 33225693 DOI: 10.1021/acs.est.0c01073] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Monoethylhexyl phthalate (MEHP) is one of the main active metabolites of the plasticizer di(2-ethylhexyl) phthalate. It has been known that MEHP has an impact on lipolysis; however, its mechanism on the cellular lipid metabolism remains largely unclear. Here, we first utilized global lipid profiling to fully characterize the lipid synthesis and degradation pathways upon MEHP treatment on hepatic cells. Meanwhile, we further identified the possible MEHP-targeted proteins in living cells using the cellular thermal shift assay (CETSA) method. The lipidomics results showed that there was a significant accumulation of fatty acids and other lipids in the cell. The CETSA identified 18 proteins and fatty acid β-oxidation inhibition pathways that were significantly perturbed. MEHP's binding with selected proteins HADH and HSD17B10 was further evaluated using molecule docking, and results showed that MEHP has higher affinities as compared to endogenous substrates, which was further experimentally confirmed in the surface plasma resonance interaction assay. In summary, we found a novel mechanism for MEHP-induced lipid accumulation, which was probably due to its inhibitive effects on the enzymes in fatty acid β-oxidation. This mechanism substantiates the public concerns on the high exposure level to plasticizers and their possible role as an obesogen.
Collapse
Affiliation(s)
- Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| | - Yan Ting Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Liyan Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Haoduo Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jian Hui Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Radoslaw Mikolaj Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
17
|
Hall DR, Yeung K, Peng H. Monohaloacetic Acids and Monohaloacetamides Attack Distinct Cellular Proteome Thiols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15191-15201. [PMID: 33170008 DOI: 10.1021/acs.est.0c03144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Disinfection byproduct (DBP) exposure has been linked to multiple adverse health outcomes. However, the molecular initiating events by which DBPs induce their toxicities remain unclear. Herein, we combined reporter cell lines and activity-based protein profiling (ABPP) chemical proteomics to identify the protein targets of three monohaloacetic acids (mHAAs) and three monohaloacetamides (mHAMs), at the proteome-wide level. While mHAAs and mHAMs have similar potencies in reducing MTT activity, mHAMs induced greater Nrf2-mediated oxidative stress responses, demonstrating their distinct toxicity pathways. ABPP on crude cell lysates suggested that general proteome thiol reactivity correlates with cytotoxicity. Interestingly, live cell ABPP results revealed class-specific proteins attacked by mHAMs or mHAAs. Subsequent proteomic analysis identified >100 unique targets per DBP. mHAMs preferentially react with redox proteins including disulfide oxidoreductase enzymes, accounting for their stronger Nrf2 responses. To further probe alkylation mechanisms, we directly monitored protein adducts and identified 120 and 37 unique peptides with iodoacetamide and iodoacetic acid adducts, respectively. Of the latter, we confirmed glyceraldehyde-3-phosphate dehydrogenase as a key target of IAA, specifically attacking the catalytic Cys 152. This is the first study reporting the distinct cellular protein targets of mHAAs and mHAMs at the proteome-wide level, which highlights their different toxicity pathways despite their similar structures.
Collapse
Affiliation(s)
- David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S3H6, Canada
| |
Collapse
|
18
|
Proteome-wide effects of naphthalene-derived secondary organic aerosol in BEAS-2B cells are caused by short-lived unsaturated carbonyls. Proc Natl Acad Sci U S A 2020; 117:25386-25395. [PMID: 32989125 DOI: 10.1073/pnas.2001378117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to air pollution causes adverse health outcomes, but the toxicity mechanisms remain unclear. Here, we investigated the dynamic toxicities of naphthalene-derived secondary organic aerosol (NSOA) in a human bronchial epithelial cell line (BEAS-2B) and identified the chemical components responsible for toxicities. The chemical composition of NSOA was found to vary with six simulated atmospheric aging conditions (C1-C6), as characterized by high-resolution mass spectrometry and ion mobility mass spectrometry. Global proteome profiling reveals dynamic evolution in toxicity: Stronger proteome-wide impacts were detected in fresh NSOA, but the effects declined along with atmospheric aging. While Nrf2-regulated proteins (e.g., NQO1) were significantly up-regulated, the majority (78 to 97%) of proteins from inflammation and other pathways were down-regulated by NSOA exposure (e.g., Rho GTPases). This pattern is distinct from the reactive oxygen species (ROS)-mediated toxicity pathway, and an alternative cysteine reaction pathway was revealed by the decreased abundance of proteins (e.g., MT1X) prone to posttranslational thiol modification. This pathway was further validated by observing decreased Nrf2 response in reporter cells, after preincubating NSOA with cysteine. Ethynyl-naphthalene probe was employed to confirm the alkylation of cellular proteome thiols on the proteome-wide level by fresh NSOA via in-gel fluorescence imaging. Nontarget analysis identified several unsaturated carbonyls, including naphthoquinones and hydroxylated naphthoquinones, as the toxic components responsible for cysteine reactivity. Our study provides insights into the dynamic toxicities of NSOA during atmospheric aging and identifies short-lived unsaturated carbonyls as the predominant toxic components at the posttranslational level.
Collapse
|
19
|
Lyu J, Ruan C, Zhang X, Wang Y, Li K, Ye M. Microparticle-Assisted Precipitation Screening Method for Robust Drug Target Identification. Anal Chem 2020; 92:13912-13921. [PMID: 32933243 DOI: 10.1021/acs.analchem.0c02756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While thermal proteome profiling (TPP) shines in the field of drug target screening by analyzing the soluble fraction of the proteome samples treated at high temperature, the counterpart, the insoluble precipitate, has been overlooked for a long time. The analysis of the precipitate is hampered by the inefficient sample processing procedure. Herein, we propose a novel method, termed microparticle-assisted precipitation screening (MAPS), for drug target identification. The MAPS method exploits the principle that drug-bound proteins will be more resistant to thermal unfolding similar to the classic TPP method, but the process of protein precipitation is assisted by microparticles. Upon heating, proteins unfold and aggregate on the surface of the microparticles. The introduction of a microparticle simplifies the whole sample preparation workflow. The proteins that precipitate on the microparticles are subjected to washing, alkylation, and digestion. The whole sample preparation is processed conveniently on the surface of the microparticles without any transfer. With the assistance of microparticles, sample loss is minimized. The MAPS method is compatible with minute amounts of initial proteins. MAPS was applied to screen the targets of several well-studied drugs and the known target proteins were successfully identified with high confidence and specificity. To investigate the specificity of the method, MAPS was applied to screen the targets of the pan-kinase inhibitor, staurosporine, and 32 protein kinases (specificity of 80%) were identified using only 20 μg of initial proteins of each sample. MAPS is an unbiased robust method for drug target screening, filling the vacancy of stability-based target screening using a precipitate.
Collapse
Affiliation(s)
- Jiawen Lyu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengfei Ruan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kejia Li
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Dai L, Li Z, Chen D, Jia L, Guo J, Zhao T, Nordlund P. Target identification and validation of natural products with label-free methodology: A critical review from 2005 to 2020. Pharmacol Ther 2020; 216:107690. [PMID: 32980441 DOI: 10.1016/j.pharmthera.2020.107690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Natural products (NPs) have been an important source of therapeutic drugs in clinic use and contributed many chemical probes for research. The usefulness of NPs is however often marred by the incomplete understanding of their direct cellular targets. A number of experimental methods for drug target identification have been developed over the years. One class of methods, termed "label-free" methodology, exploits the energetic and biophysical features accompanying the association of macromolecules with drugs and other compounds in their native forms. Herein we review the working principles, assay implementations, and key applications of the most important approaches, and also give examples where they have been applied to NPs. We also assess the key advantages and limitations of each method. Furthermore, we address when and how the label-free methodology can be particularly useful considering some of the unique features of NP chemistry and bioactivation.
Collapse
Affiliation(s)
- Lingyun Dai
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China; Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.
| | - Zhijie Li
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China; Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Dan Chen
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Lin Jia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Urology Minimally Invasive Engineering Center, Shenzhen 518020, Guangdong, China
| | - Tianyun Zhao
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
21
|
Hall DR, Peng H. Characterizing physical protein targets of chemical contaminants with chemical proteomics: Is it time to fill a crucial environmental toxicology knowledge gap? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100655. [DOI: 10.1016/j.cbd.2020.100655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/29/2022]
|
22
|
Lyu J, Wang K, Ye M. Modification-free approaches to screen drug targets at proteome level. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Mateus A, Kurzawa N, Becher I, Sridharan S, Helm D, Stein F, Typas A, Savitski MM. Thermal proteome profiling for interrogating protein interactions. Mol Syst Biol 2020; 16:e9232. [PMID: 32133759 PMCID: PMC7057112 DOI: 10.15252/msb.20199232] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Thermal proteome profiling (TPP) is based on the principle that, when subjected to heat, proteins denature and become insoluble. Proteins can change their thermal stability upon interactions with small molecules (such as drugs or metabolites), nucleic acids or other proteins, or upon post-translational modifications. TPP uses multiplexed quantitative mass spectrometry-based proteomics to monitor the melting profile of thousands of expressed proteins. Importantly, this approach can be performed in vitro, in situ, or in vivo. It has been successfully applied to identify targets and off-targets of drugs, or to study protein-metabolite and protein-protein interactions. Therefore, TPP provides a unique insight into protein state and interactions in their native context and at a proteome-wide level, allowing to study basic biological processes and their underlying mechanisms.
Collapse
Affiliation(s)
- André Mateus
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Nils Kurzawa
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
- Faculty of BiosciencesEMBL and Heidelberg UniversityHeidelbergGermany
| | - Isabelle Becher
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Sindhuja Sridharan
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Dominic Helm
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Frank Stein
- Proteomics Core FacilityEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Athanasios Typas
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Mikhail M Savitski
- Genome Biology UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
24
|
Park H, Ha J, Park SB. Label-free target identification in drug discovery via phenotypic screening. Curr Opin Chem Biol 2019; 50:66-72. [DOI: 10.1016/j.cbpa.2019.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 11/25/2022]
|
25
|
Türkowsky D, Lohmann P, Mühlenbrink M, Schubert T, Adrian L, Goris T, Jehmlich N, von Bergen M. Thermal proteome profiling allows quantitative assessment of interactions between tetrachloroethene reductive dehalogenase and trichloroethene. J Proteomics 2019; 192:10-17. [DOI: 10.1016/j.jprot.2018.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/29/2018] [Indexed: 01/22/2023]
|
26
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
27
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
28
|
Kaur U, Meng H, Lui F, Ma R, Ogburn RN, Johnson JHR, Fitzgerald MC, Jones LM. Proteome-Wide Structural Biology: An Emerging Field for the Structural Analysis of Proteins on the Proteomic Scale. J Proteome Res 2018; 17:3614-3627. [PMID: 30222357 DOI: 10.1021/acs.jproteome.8b00341] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, a suite of new mass-spectrometry-based proteomics methods has been developed that now enables the conformational properties of proteins and protein-ligand complexes to be studied in complex biological mixtures, from cell lysates to intact cells. Highlighted here are seven of the techniques in this new toolbox. These techniques include chemical cross-linking (XL-MS), hydroxyl radical footprinting (HRF), Drug Affinity Responsive Target Stability (DARTS), Limited Proteolysis (LiP), Pulse Proteolysis (PP), Stability of Proteins from Rates of Oxidation (SPROX), and Thermal Proteome Profiling (TPP). The above techniques all rely on conventional bottom-up proteomics strategies for peptide sequencing and protein identification. However, they have required the development of unconventional proteomic data analysis strategies. Discussed here are the current technical challenges associated with these different data analysis strategies as well as the relative analytical capabilities of the different techniques. The new biophysical capabilities that the above techniques bring to bear on proteomic research are also highlighted in the context of several different application areas in which these techniques have been used, including the study of protein ligand binding interactions (e.g., protein target discovery studies and protein interaction network analyses) and the characterization of biological states.
Collapse
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| | - He Meng
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | | | - Renze Ma
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Ryenne N Ogburn
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Julia H R Johnson
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Michael C Fitzgerald
- Department of Chemistry , Duke University , Durham , North Carolina 27708-0346 , United States
| | - Lisa M Jones
- Department of Pharmaceutical Sciences , University of Maryland , Baltimore , Maryland 21201 , United States
| |
Collapse
|
29
|
Shao X, Ji F, Wang Y, Zhu L, Zhang Z, Du X, Chung ACK, Hong Y, Zhao Q, Cai Z. Integrative Chemical Proteomics-Metabolomics Approach Reveals Acaca/Acacb as Direct Molecular Targets of PFOA. Anal Chem 2018; 90:11092-11098. [DOI: 10.1021/acs.analchem.8b02995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojian Shao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhen Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiubo Du
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Arthur Chi Kong Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Qian Zhao
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
30
|
Guo H, Peng H, Emili A. Mass spectrometry methods to study protein-metabolite interactions. Expert Opin Drug Discov 2017; 12:1271-1280. [DOI: 10.1080/17460441.2017.1378178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hongbo Guo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Andrew Emili
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Mateus A, Määttä TA, Savitski MM. Thermal proteome profiling: unbiased assessment of protein state through heat-induced stability changes. Proteome Sci 2017; 15:13. [PMID: 28652855 PMCID: PMC5482948 DOI: 10.1186/s12953-017-0122-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/31/2022] Open
Abstract
In recent years, phenotypic-based screens have become increasingly popular in drug discovery. A major challenge of this approach is that it does not provide information about the mechanism of action of the hits. This has led to the development of multiple strategies for target deconvolution. Thermal proteome profiling (TPP) allows for an unbiased search of drug targets and can be applied in living cells without requiring compound labeling. TPP is based on the principle that proteins become more resistant to heat-induced unfolding when complexed with a ligand, e.g., the hit compound from a phenotypic screen. The melting proteome is also sensitive to other intracellular events, such as levels of metabolites, post-translational modifications and protein-protein interactions. In this review, we describe the principles of this approach, review the method and its developments, and discuss its current and future applications. While proteomics has generally focused on measuring relative protein concentrations, TPP provides a novel approach to gather complementary information on protein stability not present in expression datasets. Therefore, this strategy has great potential not only for drug discovery, but also for answering fundamental biological questions.
Collapse
Affiliation(s)
- André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Tomi A Määttä
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| |
Collapse
|