1
|
Liu J, Guan A, Huo Z, Li X, Zhu Y, Liang H, Liu W, Zhou H, Lin Z, Yan B. Distinct neurotoxic mechanisms of thallium and lead: Calcium-mediated apoptosis and iron-induced ferroptosis in zebrafish at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138288. [PMID: 40239529 DOI: 10.1016/j.jhazmat.2025.138288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/29/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Environmental neurotoxicants, such as thallium (Tl) and lead (Pb), pose significant risks to human health, yet their toxicological mechanisms remain poorly understood. This study investigates the distinct mechanisms of Tl+- and Pb2+-induced neurotoxicity at environmentally relevant concentrations using zebrafish embryos as a model. Transcriptomic analyses revealed minimal overlap in gene expression changes between the two metals, underscoring their unique toxicological pathways. Further study demonstrated that Tl+ disrupted calcium homeostasis, activating the calcium signaling pathway and triggering apoptosis via MAPK signaling. In contrast, Pb2+ exposure triggered ferroptosis, characterized by iron overload and lipid peroxidation, with significant involvement of oxidative stress and disruption of iron metabolism. Cellular assays validated these findings, confirming the critical roles of calcium and iron dysregulation in neuronal damage. These results emphasize the complexity of metal-induced neurotoxicity and the importance of studying pollutants at realistic exposure levels. Understanding the divergent pathways of Tl+- and Pb2+-induced neurotoxicity provides critical insights for mitigating their environmental and public health impacts, highlighting the need for targeted regulatory strategies to address heavy metal pollution effectively.
Collapse
Affiliation(s)
- Jian Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China; Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Ai Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Zihui Huo
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Xin Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yiwen Zhu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hongwei Liang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Hongyu Zhou
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Liu Y, Chen Y, Chen J, Zhang J, Teng HH. Combined toxicity of Cd and aniline to soil bacteria varying with exposure sequence. ENVIRONMENT INTERNATIONAL 2024; 190:108916. [PMID: 39094404 DOI: 10.1016/j.envint.2024.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Joint toxicity of organic-metal co-contamination can vary depending on organisms, toxicants, and even the sequence of exposure. This study examines how the combined toxicity of aniline (An) and cadmium (Cd) to soil bacteria in microcosms changes when the order of contaminant introduction is altered. Through analyzing biodiversity, molecular ecological network, functional redundancy, functional genes and pathways, we find the treatment of Cd followed by An brings about the strongest adverse impact to the bacterial consortium, followed by the reverse-ordered exposure and the simple mixture of the two chemicals. On the level of individual organisms, exposure sequence also affects the bacteria that are otherwise resistant to the standalone toxicity of both An and Cd. The dynamic behavior of aniline-cadmium composite is interpreted by considering the tolerance of organisms to individual chemicals, the interactions of the two toxicants, the recovery time, as well as the priority effect. The overall effect of the composite contamination is conceptualized by treating the chemicals as environmental filters screening the growth of the community.
Collapse
Affiliation(s)
- Yanjiao Liu
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Yuxuan Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jiubin Chen
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Jianchao Zhang
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| | - H Henry Teng
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Kong L, Yan G, Huang X, Wu Y, Che X, Liu J, Jia J, Zhou H, Yan B. Sequential exposures of single walled carbon nanotubes and heavy metal ions to macrophages induce different cytotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161059. [PMID: 36565863 DOI: 10.1016/j.scitotenv.2022.161059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The probability of occupational exposure rises with the increasing production and biomedical application of carbon nanotubes (CNTs). Thus, the risk of co-exposure of nanomaterials with environmental pollutants is also increasing. Although many studies have focused on the combined toxicity of nanomaterials and pollutants, more attention has been paid to the toxicity of nanomaterials after adsorbing pollutants or the toxicity of nanomaterials and pollutants exposed simultaneously. Few studies have been conducted on the toxicity and toxicity mechanisms of nanomaterials and environmental pollutants following sequential exposure. In this study, we employed THP-1 cells to investigate how pristine single walled CNTs (p-SWCNTs) and oxidized single walled CNTs (SWCNT-COOHs) pretreatments at a non-lethal dose of 10 μg/mL affect cell responses to metal ions (i. e., Pb2+, Cu2+, and Cr(VI)). We found that p-SWCNTs caused more significant damage to cell membrane integrity than SWCNT-COOHs, which led to higher metallothionein (MT) levels and increased transport of metal ions into cells. Pretreatment of p-SWCNTs in cells significantly increased the cytotoxicity of Pb2+, Cu2+, and Cr(VI) by 2-4-fold, whereas SWCNT-COOHs pretreated cells showed no noteworthy changes in response to heavy metals, which were further confirmed by the cellular reactive oxygen species (ROS) assays. These findings indicate that understanding the effects of the exposure sequence of engineered nanomaterials and environmental pollutants on their toxicity provides an excellent complement to combined toxicity evaluation.
Collapse
Affiliation(s)
- Long Kong
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Guizhen Yan
- Department of Neurology, People's Hospital of Lixia District of Jinan, Shandong 250014, China
| | - Xinxin Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Yanxin Wu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Xin Che
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Jian Liu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Jianbo Jia
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Hongyu Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China.
| | - Bing Yan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Wu K, Li Y, Zhou Q, Hu X, Ouyang S. Integrating FTIR 2D correlation analyses, regular and omics analyses studies on the interaction and algal toxicity mechanisms between graphene oxide and cadmium. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130298. [PMID: 36356516 DOI: 10.1016/j.jhazmat.2022.130298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Graphene oxide (GO, a popular 2D graphene-based nanomaterial) has developed quickly and has received considerable attention for its applications in environmental protection and pollutant removal. However, significant knowledge gaps still exist about the interaction characteristic and joint toxicity mechanism of GO and cadmium (Cd) on aquatic organisms. In this study, GO showed a high adsorption capacity (120. 6 mg/g) and strong adsorption affinity (KL = 0.85 L/mg) for Cd2+. Integrating multiple analytical methods (e.g., electron microscopy, Raman spectra, and 2D correlation spectroscopy) revealed that Cd2+ is uniformly adsorbed on the GO surface and edge mainly through cation-π interactions. The combined ecological effects of GO and Cd2+ on Chlorella vulgaris were observed. Cd2+ induced more severe growth inhibition, photosynthesis toxicity, ultrastructure damage and plasmolysis than GO. Interestingly, we found that GO nanosheets could augment the algal toxicity of Cd2+ (e.g., chlorophyll b, mitochondrial membrane damage, and uptake). Transcriptomics and metabolomics further explained the underlying mechanism. The results indicated that the regulation of PSI-, PSII-, and metal transport-related genes (e.g., ABCG37 and ZIP4) and the inhibition of metabolic pathways (e.g., amino acid, fatty acid, and carbohydrate metabolism) were responsible for the persistent phytotoxicity. The present work provides mechanistic insights into the roles of coexisting inorganic pollutants on the environmental fate and risk of GO in aquatic ecosystems.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Ficerman W, Wiśniewski M, Roszek K. Interactions of nanomaterials with cell signalling systems – Focus on purines-mediated pathways. Colloids Surf B Biointerfaces 2022; 220:112919. [DOI: 10.1016/j.colsurfb.2022.112919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/01/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
6
|
Li X, He F, Wang Z, Xing B. Roadmap of environmental health research on emerging contaminants: Inspiration from the studies on engineered nanomaterials. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:181-197. [PMID: 38075596 PMCID: PMC10702922 DOI: 10.1016/j.eehl.2022.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2024]
Abstract
Research on the environmental health of emerging contaminants is critical to understand their risks before causing severe harm. However, the low environmental concentrations, complex behaviors, and toxicology of emerging contaminants present enormous challenges for researchers. Here, we reviewed the research on the environmental health of engineered nanomaterials (ENMs), one of the typical emerging contaminants, to enlighten pathways for future research on emerging contaminants at their initial exploratory stage. To date, some developed pretreatment methods and detection technologies have been established for the determination of ENMs in natural environments. The mechanisms underlying the transfer and transformation of ENMs have been systematically explored in laboratory studies. The mechanisms of ENMs-induced toxicity have also been preliminarily clarified at genetic, cellular, individual, and short food chain levels, providing not only a theoretical basis for revealing the risk change and environmental health effects of ENMs in natural environments but also a methodological guidance for studying environmental health of other emerging contaminants. Nonetheless, due to the interaction of multiple environmental factors and the high diversity of organisms in natural environments, health effects observed in laboratory studies likely differ from those in natural environments. We propose a holistic approach and mesocosmic model ecosystems to systematically carry out environmental health research on emerging contaminants, obtaining data that determine the objectivity and accuracy of risk assessment.
Collapse
Affiliation(s)
- Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
7
|
Hao F, Yan ZY, Yan XP. Size- and shape-dependent cytotoxicity of nano-sized Zr-based porphyrinic metal-organic frameworks to macrophages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155309. [PMID: 35439516 DOI: 10.1016/j.scitotenv.2022.155309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The wide utilization of nano-sized metal-organic frameworks (NMOFs) leads to inevitable health risks to humans. Previous studies on health risks of NMOFs mainly focus on the cytotoxic tests of typical NMOFs,but lack sufficient studies on the effects of physiochemical characteristics of NMOFs on the cytotoxicity and the related mechanisms. Here, four kinds of Zr-based porphyrinic NMOFs (PCNs), including spherical 30, 90, and 180 nm PCN-224 and rod-like 90 nm PCN-222, were taken as a proof of the concept to investigate the effects of the size and shape of NMOFs on the cytotoxicity and related mechanisms to macrophages. The 30 nm spherical PCN-224 induced significant rupture of cell membrane and dissolved in lysosome, leading to the most significant cell necrosis among the studied other nano-sized PCNs. However, other studied PCNs showed insignificant membrane rupture and their dissolution in lysosome. Furthermore, the 90 nm-sized PCN-224 led to much more significant cell necrosis by inducing lysosome damage and inhibiting of autophagy flux than the rod-like 90 nm PCN-222. These findings reveal the size- and shape-dependent cytotoxicity of PCNs and the related mechanisms and are helpful to the assessment of the potential health risks of NMOFs and the safe application of NMOFs.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhu-Ying Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Glinski A, Lima de Souza T, Zablocki da Luz J, Bezerra Junior AG, Camargo de Oliveira C, de Oliveira Ribeiro CA, Filipak Neto F. Toxicological effects of silver nanoparticles and cadmium chloride in macrophage cell line (RAW 264.7): An in vitro approach. J Trace Elem Med Biol 2021; 68:126854. [PMID: 34488184 DOI: 10.1016/j.jtemb.2021.126854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Silver nanoparticles (AgNP) are largely used in nanotechnological products, but the real risks for human and environment are still poorly understood if we consider the effects of mixtures of AgNP and environmental contaminants, such as non-essential metals. METHODS The aim of the present study was to investigate the cytotoxicity and toxicological interaction of AgNP (1-4 nm, 0.36 and 3.6 μg mL-1) and cadmium (Cd, 1 and 10 μM) mixtures. The murine macrophage cell line RAW 264.7 was used as a model. RESULTS Effects were observed after a few hours (4 h) on reactive oxygen species (ROS) and became more pronounced after 24 h-exposure. Cell death occurred by apoptosis, and loss of cell viability (24 h-exposure) was preceded by increases of ROS levels and DNA repair foci, but not of NO levels. Co-exposure potentiated some effects (decrease of cell viability and increase of ROS and NO levels), indicating toxicological interaction. CONCLUSION These effects are important findings that must be better investigated, since the interaction of Cd with AgNP from nanoproducts may impair the function of macrophages and represent a health risk for humans.
Collapse
Affiliation(s)
- Andressa Glinski
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Arandi Ginane Bezerra Junior
- Laboratório Fotonanobio, Departamento Acadêmico de Física, Universidade Tecnológica Federal do Paraná, CEP 80.230-901, Curitiba, PR, Brazil
| | - Carolina Camargo de Oliveira
- Laboratório de Células Inflamatórias e Neoplásicas, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Huang B, Cui YQ, Guo WB, Yang L, Miao AJ. Regulation of cadmium bioaccumulation in zebrafish by the aggregation state of TiO 2 nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126510. [PMID: 34216965 DOI: 10.1016/j.jhazmat.2021.126510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The potential effects of engineered nanoparticles (NPs) on metal bioaccumulation in aquatic organisms have been the focus of increasing research attention. However, while NPs typically aggregate, the role of aggregation in NP-mediated metal bioaccumulation is largely unknown. The present study investigated the effects of polyacrylate-coated TiO2 (anatase) NPs (AnaNPs) on Cd bioaccumulation in zebrafish. The Ca concentration in the experimental medium was manipulated to regulate AnaNP aggregation. At the low Ca concentration, the AnaNPs were well-dispersed and there was little bioaccumulation. Under this condition, Cd bioaccumulation was mainly via the uptake of free ions (Route 1), with only a minor contribution from NP-Cd complexes (Route 2). Therefore, AnaNPs decreased Cd bioaccumulation, as their inductive carrier effect could not offset the inhibition induced by the decrease in the free Cd ion concentration as a result of NP adsorption. At the high Ca concentration, the AnaNPs aggregated and their bioaccumulation increased. Accordingly, Cd bioaccumulation was equally accounted for by Routes 1 and 2 but the overall amount of Cd remained unchanged because the inductive effect of the AnaNPs offset their inhibitory effect. Thus, during risk evaluations of NPs, the contribution of aggregation to metal bioaccumulation should be considered.
Collapse
Affiliation(s)
- Bin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China; School of Environment, Nanjing Normal University, Nanjing, Jiangsu Province 210023, China
| | - Yu-Qing Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Wen-Bo Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
10
|
Pan X, Wu J, Jiang C, Yu Q, Yan B. Synergistic effects of carbon nanoparticle-Cr-Pb in PM 2.5 cause cell cycle arrest via upregulating a novel lncRNA NONHSAT074301.2 in human bronchial epithelial cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125070. [PMID: 33858084 DOI: 10.1016/j.jhazmat.2021.125070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/25/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Inhalation of carcinogenic PM2.5 particles is a severe threat to all the people in both developing and developed nations. However, which components of PM2.5 and how they perturb human cells to cause various diseases are still not understood. Here, employing a reductionism approach, we revealed that one of the crucial toxic and pathogenic mechanisms of PM2.5 was the blocking of human bronchial cell cycle through upregulation of a novel long non-coding RNA NONHSAT074301.2 by carbon particles with payloads of Cr(VI) and Pb2+. We also discovered that NONHSAT074301.2 is a key regulatory molecule controlling cell cycle arrest at G2/M phase. This work highlights cellular function and molecular signaling events investigations using a 16-membered combinational model PM2.5 library which contain carbon particles carrying four toxic pollutants in all possible combinations at environmental relevant concentrations. This work demonstrates a very powerful methodology to elucidate mechanisms at molecular level and help unlock the "black box" of PM2.5-induced toxicities.
Collapse
Affiliation(s)
- Xiujiao Pan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jialong Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qianhui Yu
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
11
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
12
|
Xu K, Liu YX, Wang XF, Li SW, Cheng JM. Combined toxicity of functionalized nano-carbon black and cadmium on Eisenia fetida coelomocytes: The role of adsorption. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122815. [PMID: 32768857 DOI: 10.1016/j.jhazmat.2020.122815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the potential threats of functionalized nano-carbon black (FNCB) combined with cadmium (Cd) to soil invertebrates. In this study, immunocompetent coelomocytes from Eisenia fetida are harnessed, and the joint cytotoxicity types of FNCB and Cd co-exposure are analyzed. The extracellular interaction mechanisms of FNCB and Cd were completely explored using adsorption kinetics and thermodynamics accompanied by isotherm batch experiments and Fourier infrared spectroscopy. The results indicated that functional amorphous carbon nanoparticles up to certain dose may injure cells due to their surface oxygen-containing groups. The MIXTOX model and the combination index suggested that the combined action of FNCB and Cd exhibited antagonism at the low dose/effect-level and synergism at the high dose/effect-level. FNCB decreased the intracellular free Cd2+ content at a low mixture dose, while it increased it at a high mixture dose. The adsorption of Cd on FNCB followed pseudo-second-kinetics and the Langmuir isotherm, hence better indicating a chemisorption, which was also supported by the activation energy (Ea = 36.6 kJ/mol), enthalpy change (ΔH = -98.4 kJ/mol), and functional group changes. Coordination binding should be responsible for the subsequent interaction of toxicity.
Collapse
Affiliation(s)
- Kun Xu
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Ya-Xin Liu
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Xiao-Feng Wang
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Shou-Wang Li
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China
| | - Jie-Min Cheng
- College of Geography and Environment, Shandong Normal University, Jinan 250014 Shandong, China.
| |
Collapse
|
13
|
Jia H, Li S, Wu L, Li S, Sharma VK, Yan B. Cytotoxic Free Radicals on Air-Borne Soot Particles Generated by Burning Wood or Low-Maturity Coals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:5608-5618. [PMID: 32083475 DOI: 10.1021/acs.est.9b06395] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The traditional cook stove is a major contributor to combustion-derived soot particles, which contain various chemical species that may cause a significant impact to human health and ecosystems. However, properties and toxicity associated with environmentally persistent free radicals (EPFRs) in such emissions are not well known. This paper investigated the characteristics and cytotoxicity of soot-associated EPFRs discharged from Chinese household stoves. Our results showed that the concentrations of EPFRs were related to fuel types, and they were higher in wood-burning soot (8.9-10.5 × 1016 spins/g) than in coal-burning soot (3.9-9.7 × 1016 spins/g). Meanwhile, EPFR concentrations in soot decreased with an increase of coal maturity. The soot EPFRs, especially reactive fractions, readily induced the generation of reactive oxygen species (ROS). Potential health effects of soot EPFRs were also examined using normal human bronchial epithelial cell line 16HBE as a model. Soot particles were internalized by 16HBE cells inducing cytotoxicity. The main toxicity inducers were identified to be reactive EPFR species, which generated ROS inside human cells. Our findings provided valuable insights into potential contributions of soot EPFRs associated with different types of fuel to health problems. This information will support regulations to end or limit current stove usage in numerous households.
Collapse
Affiliation(s)
- Hanzhong Jia
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Shuaishuai Li
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Lan Wu
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shiqing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States
| | - Bing Yan
- Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
- School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Rosário F, Bessa MJ, Brandão F, Costa C, Lopes CB, Estrada AC, Tavares DS, Teixeira JP, Reis AT. Unravelling the Potential Cytotoxic Effects of Metal Oxide Nanoparticles and Metal(Loid) Mixtures on A549 Human Cell Line. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E447. [PMID: 32131449 PMCID: PMC7153484 DOI: 10.3390/nano10030447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Humans are typically exposed to environmental contaminants' mixtures that result in different toxicity than exposure to the individual counterparts. Yet, the toxicology of chemical mixtures has been overlooked. This work aims at assessing and comparing viability and cell cycle of A549 cells after exposure to single and binary mixtures of: titanium dioxide nanoparticles (TiO2NP) 0.75-75 mg/L; cerium oxide nanoparticles (CeO2NP) 0.0.75-10 μg/L; arsenic (As) 0.75-2.5 mg/L; and mercury (Hg) 5-100 mg/L. Viability was assessed through water-soluble tetrazolium (WST-1) and thiazolyl blue tetrazolium bromide (MTT) (24 h exposure) and clonogenic (seven-day exposure) assays. Cell cycle alterations were explored by flow cytometry. Viability was affected in a dose- and time-dependent manner. Prolonged exposure caused inhibition of cell proliferation even at low concentrations. Cell-cycle progression was affected by TiO2NP 75 mg/L, and As 0.75 and 2.5 μg/L, increasing the cell proportion at G0/G1 phase. Combined exposure of TiO2NP or CeO2NP mitigated As adverse effects, increasing the cell surviving factor, but cell cycle alterations were still observed. Only CeO2NP co-exposure reduced Hg toxicity, translated in a decrease of cells in Sub-G1. Toxicity was diminished for both NPs co-exposure compared to its toxicity alone, but a marked toxicity for the highest concentrations was observed for longer exposures. These findings prove that joint toxicity of contaminants must not be disregarded.
Collapse
Grants
- PTDC/SAU-PUB/29651/2017 COMPETE 2020, Portugal 2020 and European Union, through FEDER
- SFRH/BPD/122112/2016 (A.T.Reis) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19 (C.B. Lopes and A.C. Estrada) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- SFRH/BD/101060/2014 (F. Brandão) FCT - Fundação para a Ciência e a Tecnologia, I.P.
- SFRH/BD/12046/2016 (M.J. Bessa) FCT - Fundação para a Ciência e a Tecnologia, I.P.
Collapse
Affiliation(s)
- Fernanda Rosário
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Maria João Bessa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Fátima Brandão
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Cláudia B. Lopes
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Ana C. Estrada
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
| | - Daniela S. Tavares
- Department of Chemistry and Aveiro Institute of Materials (CICECO), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; (C.B.L.); (A.C.E.); (D.S.T.)
- Department of Chemistry and Center of Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; (F.R.); (M.J.B.); (F.B.); (C.C.); (J.P.T.)
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
15
|
Yuan P, Zhou Q, Hu X. WS 2 Nanosheets at Noncytotoxic Concentrations Enhance the Cytotoxicity of Organic Pollutants by Disturbing the Plasma Membrane and Efflux Pumps. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1698-1709. [PMID: 31916439 DOI: 10.1021/acs.est.9b05537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Emerging transition-metal dichalcogenide (TMDC) nanosheets, such as WS2 nanosheets, have shown tremendous potential for use in many fields such as intelligent manufacturing and environmental protection. However, considerable knowledge gaps still exist regarding the impact of TMDCs on environmental risks, especially risks involving organic pollutants. Here, a synergistic toxicity between WS2 nanosheets and organic pollutants (triclosan or tris(1,3-dichloro-2-propyl) phosphate) was found using the median-effect and combination index equations. In particular, the effect of synergy had a higher magnitude at low cytotoxicity levels and a noncytotoxic concentration of WS2 nanosheets clearly enhanced the cytotoxicity and intracellular accumulation of organic pollutants. On the one hand, WS2 nanosheets damaged the plasma membrane and cytoskeleton, resulting in increased membrane permeability and organic pollutant uptake. On the other hand, as shown by fluorescence substrate accumulation experiments and molecular dynamics simulations, WS2 nanosheets affected the secondary structure of the efflux pumps and competitively bound with efflux pumps, blocking xenobiotic removal. This work emphasized that TMDCs, especially at the noncytotoxic level, in combination with organic pollutants caused damage that cannot be ignored, providing insight into comprehensive safety assessment and the specific toxicological mechanisms of TMDCs that accompany organic pollutant exposure.
Collapse
Affiliation(s)
- Peng Yuan
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering , Nankai University , Tianjin 300350 , China
| |
Collapse
|
16
|
Liu Y, Nie Y, Wang J, Wang J, Wang X, Chen S, Zhao G, Wu L, Xu A. Mechanisms involved in the impact of engineered nanomaterials on the joint toxicity with environmental pollutants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:92-102. [PMID: 29990744 DOI: 10.1016/j.ecoenv.2018.06.079] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Emerging nanoscience and nanotechnology inevitably facilitate discharge of engineered nanomaterials (ENMs) into the environment. Owing to their versatile physicochemical properties, ENMs invariably come across and interact with various pollutants already existing in the environment, leading to considerable uncertainty regarding the risk assessment of pollutants. Nevertheless, the underlying mechanisms of the complicated joint toxicity are still largely unexplored. This review aims to aid in understanding the interaction of ENMs and pollutants from the perspective of ecological and environmental health risk assessment. Based on related research published from 2005 to 2018, this review focuses on summarizing the effect of ENMs on the toxicity of pollutants both in vivo and in vitro. Physicochemical interaction appears as a main factor affecting ENMs-pollutants joint toxicity, with the mechanisms and the resultants for ENM-pollutant adsorption been illustrated. Cellular and molecular mechanisms involved in the joint toxicity of ENMs and pollutants are discussed, including the effect of ENMs on the bioaccumulation, biodistribution, and metabolism of pollutants, as well as the defense responses of organisms against such pollutants. Future in-depth investigation are suggested to focus on further exploring biological mechanisms (especially for the antagonized effect of ENMs against pollutants), using more advanced mammalian models, and paying more attention to the realistic exposure scenarios.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Yaguang Nie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Jingjing Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Juan Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Xue Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China
| | - Lijun Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, PR China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, PR China.
| |
Collapse
|
17
|
Zhang X, Lei L, Zhang H, Zhang S, Xing W, Wang J, Li H, Zhao Q, Xing B. Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:701-709. [PMID: 29902753 DOI: 10.1016/j.envpol.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Attention has been paid to the environmental distribution and fate of nanomedicines. However, their effects on the toxicity of environmental pollutants are lack of knowledge. In this study, the negatively charged poly (ethylene glycol)-b-poly (L-lactide-co-glycolide) (mPEG-PLA) and positively charged polyethyleneimine-palmitate (PEI-PA) nanomicelles were synthesized and served as model drug carriers to study the interaction and combined toxicity with dichlorodiphenyltrichloroethane (DDT). DDT exerted limited effect on the biointerfacial behavior of mPEG-PLA nanomicelles, whereas it significantly mitigated the attachment of PEI-PA nanomicelles on the model cell membrane as monitored by quartz crystal microbalance with dissipation (QCM-D). The cytotoxicity of DDT towards NIH 3T3 cells was greatly decreased by either co-treatment or pre-treatment with the nanomicelles according to the results of real-time cell analysis (RTCA). The cell viability of NIH 3T3 exposed to DDT was increased up to 90% by the co-treatment with mPEG-PLA nanomicelles. Three possible reasons were proposed: (1) decreased amount of free DDT in the cell culture medium due to the partitioning of DDT into nanomicelles; (2) mitigated cellular uptake of nanomicelle-DDT complexes due to the complex agglomeration or electrostatic repulsion between complexes and cell membrane; (3) detoxification effect in the lysosome upon endocytosis of nanomicelle-DDT complexes.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Lei Lei
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Zhang
- School of Resources & Civil Engineering, Northeastern University, Shenyang, 110004, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Weiwei Xing
- Liaoning Beifang Environmental Technology Co., LTD., Shenyang, 110161, China
| | - Jin Wang
- Liaoning Beifang Environmental Technology Co., LTD., Shenyang, 110161, China
| | - Haibo Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang, 110004, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
18
|
Malhotra K, Shankar S, Rai R, Singh Y. Broad-Spectrum Antibacterial Activity of Proteolytically Stable Self-Assembled αγ-Hybrid Peptide Gels. Biomacromolecules 2018; 19:782-792. [PMID: 29384665 DOI: 10.1021/acs.biomac.7b01582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections pose a serious threat to mankind, and there is immense interest in the design and development of self-assembled peptide gels using ultrashort peptides for antibacterial applications. The peptide gels containing natural amino acids suffer from poor stability against proteolytic enzymes. Therefore, there is a need to design and develop peptide gels with improved stability against proteolytic enzymes. In the present work, we report the synthesis and characterization of α/γ hybrid peptides Boc-D-Phe-γ4-L-Phe-PEA (NH007) and Boc-L-Phe-γ4-L-Phe-PEA (NH009) to improve the proteolytic stability. Both of the dipeptides were found to self-assemble into gels in aqueous DMSO (3-5% w/v), and the self-assembly process was studied using FTIR and CD, which indicated antiparallel β-sheet formation with random coils in NH007 gels and random or unordered conformation in NH009. The rheological studies indicated viscoelastic characteristics for both gels; the storage modulus ( G') for NH007 and NH009 gels (3% w/v) was estimated as 0.2 and 0.5 MPa, higher than the loss modulus ( G''). Also, both gels demonstrated self-healing characteristics for six consecutive cycles when subjected to varying strains of 0.1 and 30% (200 s each). The peptide gels were incubated with a mocktail of proteolytic enzymes, proteinase K, pepsin, and chymotrypsin, and stability was monitored using RP HPLC. Up to 23 and 40% degradation was observed for NH007 (3%, w/v) in 24 and 36 h, and 77 and 94% degradation was observed for NH009 (3%, w/v), within the same period. Thus α/γ hybrid peptide gels containing D-Phe exhibited higher stability than gels fabricated using L-Phe. The use of D-residue in α/γ hybrid peptide significantly enhanced the stability of peptides against proteolytic enzymes, as the stability data reported in this work are possibly the best in class. Both peptide gels exhibited broad-spectrum antibacterial activity against Gram-negative and Gram-positive bacteria, such as Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The Pseudomonas aeruginosa and Staphylococcus aureus, in particular, are known to develop resistance. The NH007 (3%, w/v) demonstrated 65% inhibition, whereas NH009 (3%, w/v) showed 78% inhibition, with potent activity against Pseudomonas aeruginosa. Mechanistic studies, using SEM, HR-TEM, and bacterial live-dead assay, indicated entrapment of bacteria in gel networks, followed by interaction with cell membrane components and lysis. Cell viability (MTT assay) and toxicity (LDH assay) studies showed that both gels are not toxic to NIH 3T3 mouse embryonic fibroblast cells (mammalian). MTT assay showed >85% cell viability, and LDH assay exhibited not more than 15% cytotoxicity, even at higher concentrations (5%, w/v) and prolonged exposures (48 h). Overall, studies indicate the potential application of gels developed from the α/γ hybrid peptides in preventing biomaterial-related infections.
Collapse
Affiliation(s)
- Kamal Malhotra
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 , Punjab , India
| | - Sudha Shankar
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu Tawi 180001 , Jammu and Kashmir , India.,Academy of Scientific and Innovative Research , New Delhi 110001 , Delhi , India
| | - Rajkishor Rai
- Medicinal Chemistry Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu Tawi 180001 , Jammu and Kashmir , India.,Academy of Scientific and Innovative Research , New Delhi 110001 , Delhi , India
| | - Yashveer Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 , Punjab , India
| |
Collapse
|
19
|
Liang J, Li P, Zhao X, Liu Z, Fan Q, Li Z, Li J, Wang D. Distinct interface behaviors of Ni(ii) on graphene oxide and oxidized carbon nanotubes triggered by different topological aggregations. NANOSCALE 2018; 10:1383-1393. [PMID: 29300414 DOI: 10.1039/c7nr07966d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although carbon nanotubes can be described as a seamlessly curled graphene nanosheet, two-dimensional graphene oxide (GO) and one-dimensional oxidized carbon nanotubes (OCNTs) have different fates and environmental risks, such as deposition, degradation and cytotoxicity. In particular, coexisting heavy metal ions (HMs) trigger distinct morphological transformations of both of these carbon derivatives. In addition, these morphological transformations can change the interface behaviors of HMs on both of these materials. In this study, the differences in the morphological changes of GO and OCNTs and the interface behaviors of Ni(ii) were explored via the intrinsically microscopic structural changes of both of these typical carbon materials. Batch experiments revealed that Ni(ii) sorption on GO drastically decreased with increasing ionic strength, while it was almost independent of ionic strength on the OCNTs. This phenomenon is attributed to the aggregation and wrinkling of GO sheets at higher Na+ concentrations, resulting in a decrease in the GO surface area and number of sorption sites. Meanwhile, the intertwining aggregations of OCNTs still ensured that the sorption sites were naked. For the first time, Ni2+ ions were observed to persist as inner-sphere complexes on GO even under alkaline conditions, where the Ni(OH)2(s) phase was determined on the OCNTs. This could be attributed to the fact that the fast aggregation of GO, which fixed Ni2+ ions into the interlayers, inhibited the nucleation of Ni(OH)2. Stable layered structures of GO aggregations were difficult to exfoliate, leading to a decreased release of Ni(ii) from GO with increasing Ni(ii) loading. For the OCNTs, naked Ni2+ ions could be easily and effectively released. These findings are critical to assess the mobility, transformation and cytotoxicity of nanomaterials and HMs in aquatic environments.
Collapse
Affiliation(s)
- Jianjun Liang
- Key Laboratory of Petroleum Resources, Gansu Province/Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 2017. [DOI: 10.1080/17435390.2017.1343404] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rui Deng
- Department of Environmental Science, Zhejiang University, Hangzhou, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | | | - Jason C. White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Jorge L. Gardea-Torresdey
- Department of Chemistry, The University of Texas at El Paso, El Paso, TX, USA
- University of California Center for Environmental Implications of Nanotechnology (UC CEIN), The University of Texas at El Paso, El Paso, TX, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|