1
|
Mangahas RS, Bertram AK, Weis D, Cullen JT, Maldonado MT. Spatiotemporal trends of aerosol provenance and trace metal concentrations in the northeast subarctic Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 971:178885. [PMID: 40073775 DOI: 10.1016/j.scitotenv.2025.178885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
The long-range transport of naturally occurring and anthropogenic aerosols originating from Asian deserts and megacities, respectively, can have a significant impact on the biogeochemical cycling of metals in the Fe-limited, high nutrient-low chlorophyll (HNLC) region of the northeast (NE) subarctic Pacific Ocean. These aerosols can deposit essential (e.g., Fe) and possibly toxic (e.g., Cu) metals to surface waters; thereby affecting micronutrients' bioavailability, and ultimately primary productivity in this region. In this study, we aimed to determine the provenance and spatiotemporal trends of metal inputs from Asian aerosol outflows into the NE Pacific Ocean. To do so, we collected aerosols on six research cruises along the Line P transect (GEOTRACES GPpr07), across three seasons in four years. Lead isotopic composition signatures were less radiogenic (high 208Pb/206Pb; low 206Pb/207Pb) in winter and spring compared to summer, signifying a greater anthropogenic Asian source in the cooler seasons. Furthermore, aerosol metal content also revealed seasonality. For example, aerosols collected in March 2022 (winter) contained higher concentrations of the lithogenic metals Al, Ti, Fe, Mn and Co, the anthropogenic metals Cu, Cd and Pb, as well as the mixed-source metals Ni and V, in comparison to May 2021 (spring) and August 2021 (summer). The estimated annual atmospheric flux of Fe and Zn accounted for 13-27 % and 6-10 %, respectively, of the total flux to the surface mixed layer (i.e., vertical mixing plus atmospheric flux) at Ocean Station Papa (50°N, 145°W), while that of Cu accounted for 95-99 %. This study provides the first insight into the seasonal patterns and geochemical characterizations of long-range transported Asian aerosols along the Line P transect. Anthropogenic activities will likely increase the input of aerosol-derived metals from distant Asian sources into the NE Pacific Ocean in the coming years, influencing biogeochemical cycles in this Fe-limited oceanic region.
Collapse
Affiliation(s)
- Racquelle S Mangahas
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, V6T 1Z4, Canada.
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, V6T 1Z1, Canada
| | - Dominique Weis
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, V6T 1Z4, Canada; Pacific Centre for Isotopic and Geochemical Research, University of British Columbia, V6T 1Z4, Canada
| | - Jay T Cullen
- School of Earth and Ocean Sciences, University of Victoria, V8P 3E6, Canada
| | - Maria T Maldonado
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, V6T 1Z4, Canada
| |
Collapse
|
2
|
Yu B, Sun Y, Wang Y, Wang B, Zhang K, Lu Y, Wang N. Lead exposure and physical frailty in patients with type 2 diabetes mellitus: cross-sectional results from the METAL study. Endocrine 2025; 87:987-996. [PMID: 39527340 DOI: 10.1007/s12020-024-04096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Chronic lead exposure continues to be a global environmental concern. Previous studies reported high levels of lead exposure in people with diabetes. Frailty is one of the vital comorbidities of type 2 diabetes mellitus (T2DM); however, researchers have not determined whether lead exposure is a risk factor for frailty in people with T2DM. METHODS This cross-sectional study explored the association between blood lead levels and frailty in a Shanghai diabetic population cohort. Individuals who met ≥3 of 5 predefined criteria (weight loss, exhaustion, low physical activity, slow walking speed and low grip strength) were defined as frailty. RESULTS A total of 884 participants with T2DM (50.6% men, mean age 70.6 ± 7.4 years) were included. Among them, 147 (16.6%) patients were frail, and the median (interquartile range) concentration of blood lead was 16.0 µg/L (12.0-23.0). Compared with the participants within the lowest quartile of serum lead, positive associations of the 2nd and 4th lead quartiles with frailty were observed (OR, 95% CI; 1.70 1.01-2.84 and 1.72 1.03-2.88, respectively) after adjusting for age, sex and body mass index (BMI). After further adjustment for drinking status, smoking status, diet, education, blood pressure, triglycerides and glycosylated hemoglobin, the associations of serum lead with frailty were still significant for the 4th and 2nd-4th quartiles of lead (1.71, 1.01-2.91 and 1.57, 1.02-2.41, respectively). In the subgroup analyses, we found positive associations of serum lead with frailty in elderly individuals (1.77, 1.13-2.79), those with obesity (2.14, 1.02-4.51), those with unhealthy diets (2.52, 1.26-5.04), and those without hyperlipidemia (2.09, 1.12-3.88), although the interactions were not statistically significant (P for interaction all >0.05). CONCLUSION This work provides evidence of an association between chronic lead exposure and physical frailty in a diabetic population in a Chinese cohort. Future prospective and mechanistic studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Bowei Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ying Sun
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Bin Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Tao Z, Peng G, Chen F, Guo Q, Wei R, Pan K, Deng Y, Jiao L, Zhang Z, Chen S, Xia T. Elevated lead mobility in sediments of a eutrophic drinking water reservoir during spring and summer seasons: Insights from isotopic signatures. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134833. [PMID: 38880043 DOI: 10.1016/j.jhazmat.2024.134833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Lead (Pb) pollution in sediments remains a major concern for ecosystem quality due to the robust interaction at the sediment/water interface, particularly in shallow lakes. However, understanding the mechanism behind seasonal fluctuations in Pb mobility in these sediments is lacking. Here, the seasonal variability of Pb concentration and isotopic ratio were investigated in the uppermost sediments of a shallow eutrophic drinking lake located in southeast China. Results reveal a sharp increase in labile Pb concentration during autumn-winter period, reaching ∼ 3-fold higher levels than during the spring-summer seasons. Despite these fluctuations, there was a notable overlap in the Pb isotopic signatures within the labile fraction across four seasons, suggesting that anthropogenic sources are not responsible for the elevated labile Pb concentration in autumn-winter seasons. Instead, the abnormally elevated labile Pb concentration during autumn-winter was probably related to reduction dissolution of Fe/Mn oxides, while declined labile Pb concentration during spring-summer may be attributed to adsorption/precipitation of Fe/Mn oxides. These large seasonal changes imply the importance of considering seasonal effects when conducting sediment sampling. We further propose a solution that using Pb isotopic signatures within the labile fraction instead of the bulk sediment can better reflect the information of anthropogenic Pb sources.
Collapse
Affiliation(s)
- Zhenghua Tao
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guogan Peng
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yinan Deng
- MNR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Guangzhou 510075, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
| |
Collapse
|
4
|
Tao Z, Hu J, Guo Q, Wei R, Jiao L, Li Y, Chen F, Fan B, Lan W, Pan K. Coupling isotopic signatures and partial extraction method to examine lead pollution in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132252. [PMID: 37604039 DOI: 10.1016/j.jhazmat.2023.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Elevated lead (Pb) has been widely observed in mangrove sediments due to human activities, yet understanding the sources of Pb in these sediments and the factors influencing Pb accumulation is challenging. Here, we combined Pb isotopes with partial extraction methods to study Pb contamination levels in mangrove sediments from the eastern and western parts of the Maowei Sea, China. Our results showed that the Pb in the leachate and residual fraction was mainly from anthropogenic and natural sources, respectively. The use of 204Pb isotope analysis can reveal some overlooked differences between anthropogenic and natural sources. Calculation by Bayesian mixing model showed no significant difference in the total anthropogenic contribution between the two sites, but the relative contribution of each end member differed. The contribution of Pb/Zn ores was much higher in the eastern sites (30.9 ± 5.1%) than in the west (18.4 ± 5.5%), while that of agricultural activities was much lower in the east (5.2 ± 3.1%) than in the west (13.5 ± 4.6%). The elevated anthropogenic Pb accumulation in mangrove sediments was ascribed to organic matter. This study provides more data on Pb isotopic composition and new insights into Pb biogeochemistry in the mangrove environment.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bailing Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
5
|
Lanning NT, Jiang S, Amaral VJ, Mateos K, Steffen JM, Lam PJ, Boyle EA, Fitzsimmons JN. Isotopes illustrate vertical transport of anthropogenic Pb by reversible scavenging within Pacific Ocean particle veils. Proc Natl Acad Sci U S A 2023; 120:e2219688120. [PMID: 37252961 PMCID: PMC10265975 DOI: 10.1073/pnas.2219688120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Reversible scavenging, the oceanographic process by which dissolved metals exchange onto and off sinking particles and are thereby transported to deeper depths, has been well established for the metal thorium for decades. Reversible scavenging both deepens the elemental distribution of adsorptive elements and shortens their oceanic residence times in the ocean compared to nonadsorptive metals, and scavenging ultimately removes elements from the ocean via sedimentation. Thus, it is important to understand which metals undergo reversible scavenging and under what conditions. Recently, reversible scavenging has been invoked in global biogeochemical models of a range of metals including lead, iron, copper, and zinc to fit modeled data to observations of oceanic dissolved metal distributions. Nonetheless, the effects of reversible scavenging remain difficult to visualize in ocean sections of dissolved metals and to distinguish from other processes such as biological regeneration. Here, we show that particle-rich "veils" descending from high-productivity zones in the equatorial and North Pacific provide idealized illustrations of reversible scavenging of dissolved lead (Pb). A meridional section of dissolved Pb isotope ratios across the central Pacific shows that where particle concentrations are sufficiently high, such as within particle veils, vertical transport of anthropogenic surface-dissolved Pb isotope ratios toward the deep ocean is manifested as columnar isotope anomalies. Modeling of this effect shows that reversible scavenging within particle-rich waters allows anthropogenic Pb isotope ratios from the surface to penetrate ancient deep waters on timescales sufficiently rapid to overcome horizontal mixing of deep water Pb isotope ratios along abyssal isopycnals.
Collapse
Affiliation(s)
- Nathan T. Lanning
- Department of Oceanography, Texas A&M University, College Station, TX77840
| | - Shuo Jiang
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai200241, China
| | - Vinicius J. Amaral
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA95064
| | - Katherine Mateos
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA95064
| | - Janelle M. Steffen
- Department of Oceanography, Texas A&M University, College Station, TX77840
| | - Phoebe J. Lam
- Department of Ocean Sciences, University of California Santa Cruz, Santa Cruz, CA95064
| | - Edward A. Boyle
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | | |
Collapse
|
6
|
Wang Y, Li Y, Yang S, Liu J, Zheng W, Xu J, Cai H, Liu X. Source apportionment of soil heavy metals: A new quantitative framework coupling receptor model and stable isotopic ratios. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120291. [PMID: 36174813 DOI: 10.1016/j.envpol.2022.120291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Tracing the source of heavy metals in soils is crucial for reversing the worrisome situation of heavy metal contamination. In this study, the origins of heavy metal pollution in soil were examined in a primary electronic waste treatment and disposal hub in China, using a synergistic source apportionment framework consisting of the positive matrix factorization (PMF) model and the Bayesian stable-isotope analysis mixing model (MixSIAR). Industrial activity is significant to heavy metal contamination in both industrial park and farmland soils, however, the contribution varied through PMF model (industrial park, 64.2%; farmland, 35.6%). In the industrial park, Pb was identified as the major pollutant in the soils, and the local children suffered from noncarcinogenic risks. Moreover, the contribution of Pb contamination sources were allocated more accurately (electronic waste dismantling, 25.1%; industrial production, 23.7%; vehicle exhaust from leaded gasoline, 9.1%; vehicle exhaust from unleaded gasoline, 20.2%; natural process, 21.9%) using MixSIAR for the first time. The main soil contaminants in surrounding farmland were Cd, Cu, and Zn. The variations in heavy metal pollution sources in soils were found to be associated with local policies and regulations, such as the phasing out of leaded gasoline and the conversion of industrial park from electronic waste demolition switched to production and storage. The identification of the source of heavy metals in soil will support targeted reduction of the associated emissions, which can immediately help alleviating soil contamination and control human health risks.
Collapse
Affiliation(s)
- Yanni Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Shiyan Yang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Wang Zheng
- School of Earth System Science, Tianjin University, Tianjin, 300350, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Hongming Cai
- School of Earth System Science, Tianjin University, Tianjin, 300350, China
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Koffman BG, Saylor P, Zhong R, Sethares L, Yoder MF, Hanschka L, Methven T, Cai Y, Bolge L, Longman J, Goldstein SL, Osterberg EC. Provenance of Anthropogenic Pb and Atmospheric Dust to Northwestern North America. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13107-13118. [PMID: 36083611 PMCID: PMC9494742 DOI: 10.1021/acs.est.2c03767] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Industrial activities release aerosols containing toxic metals into the atmosphere, where they are transported far from their sources, impacting ecosystems and human health. Concomitantly, long-range-transported mineral dust aerosols play a role in Earth's radiative balance and supply micronutrients to iron-limited ecosystems. To evaluate the sources of dust and pollutant aerosols to Alaska following the 2001 phase-out of leaded gasoline in China, we measured Pb-Sr-Nd isotopic compositions of particles collected in 2016 from snow pits across an elevational transect (2180-5240 m-a.s.l) in Denali National Park, USA. We also determined Pb flux and enrichment from 1991-2011 in the Denali ice core (3870 m-a.s.l). Chinese coal-burning and non-ferrous metal smelting account for up to 64% of Pb deposition at our sites, a value consistent across the western Arctic. Pb isotope ratios in the aerosols did not change between 2001 and 2016, despite the ban on lead additives. Emissions estimates demonstrate that industrial activities have more than compensated for the phase-out of leaded gasoline, with China emitting ∼37,000 metric tons year-1 of Pb during 2013-2015, approximately 78% of the Pb from East Asia. The Pb flux to Alaska now equals that measured in southern Greenland during peak pollution from North America.
Collapse
Affiliation(s)
- Bess G. Koffman
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Patrick Saylor
- National
Center for Atmospheric Research, Boulder, Colorado 80307, United States
- Earth
Science Department, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Roujia Zhong
- Department
of Computer Science, Colby College, Waterville, Maine 04901, United States
| | - Lily Sethares
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Meg F. Yoder
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
- Department
of Earth and Environmental Sciences, Boston
College, Boston, Massachusetts 02467, United States
| | - Lena Hanschka
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Taylor Methven
- Department
of Geology, Colby College, Waterville, Maine 04901, United States
| | - Yue Cai
- State
Key
Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Chinese Academy of
Sciences, Nanjing, Jiangsu Province 210008, P.R. China
- Lamont-Doherty
Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Louise Bolge
- Lamont-Doherty
Earth Observatory of Columbia University, Palisades, New York 10964, United States
| | - Jack Longman
- Institute
for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Steven L. Goldstein
- Lamont-Doherty
Earth Observatory of Columbia University, Palisades, New York 10964, United States
- Department
of Earth and Environmental Sciences, Columbia
University, New York, New York 10027, United
States
| | - Erich C. Osterberg
- Earth
Science Department, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
8
|
Spindola Vilela CL, Damasceno TL, Thomas T, Peixoto RS. Global qualitative and quantitative distribution of micropollutants in the deep sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119414. [PMID: 35598814 DOI: 10.1016/j.envpol.2022.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Micropollutants (MPs) include a wide range of biological disruptors that can be toxic to wildlife and humans at very low concentrations (<1 μg/L). These mainly anthropogenic pollutants have been widely detected in different areas of the planet, including the deep sea, and have impacts on marine life. Because of this potential toxicity, the global distribution, quantity, incidence, and potential impacts of deep-sea MPs were investigated in a systematic review of the literature. The results showed that MPs have reached different zones of the ocean and are more frequently reported in the Northern Hemisphere, where higher concentrations are found. MPs are also concentrated in depths up to 3000 m, where they are also more frequently studied, but also extend deeper than 10,000 m. Potentially toxic metals (PTMs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), organotins, and polycyclic aromatic hydrocarbons (PAHs) were identified as the most prevalent and widely distributed MPs at ≥200 m depth. PTMs are widely distributed in the deep sea in high concentrations; aluminum is the most prevalent up to 3000 m depth, followed by zinc and copper. PCBs, organotins, hexachlorocyclohexanes (HCHs), PAHs, and phenols were detected accumulated in both organisms and environmental samples above legislated thresholds or known toxicity levels. Our assessment indicated that the deep sea can be considered a sink for MPs.
Collapse
Affiliation(s)
- Caren Leite Spindola Vilela
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Taissa Lopes Damasceno
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Torsten Thomas
- Centre for Marine Science and Innovation & School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Raquel Silva Peixoto
- Department of General Microbiology, Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
Abstract
Anthropogenic Pb is widespread in the environment including remote places. However, its presence in Canadian Arctic seawater is thought to be negligible based on low dissolved Pb (dPb) concentrations and proxy data. Here, we measured dPb isotopes in Arctic seawater with very low dPb concentrations (average ∼5 pmol ⋅ kg-1) and show that anthropogenic Pb is pervasive and often dominant in the western Arctic Ocean. Pb isotopes further reveal that historic aerosol Pb from Europe and Russia (Eurasia) deposited to the Arctic during the 20th century, and subsequently remobilized, is a significant source of dPb, particularly in water layers with relatively higher dPb concentrations (up to 16 pmol ⋅ kg-1). The 20th century Eurasian Pb is present predominantly in the upper 1,000 m near the shelf but is also detected in older deep water (2,000 to 2,500 m). These findings highlight the importance of the remobilization of anthropogenic Pb associated with previously deposited aerosols, especially those that were emitted during the peak of Pb emissions in the 20th century. This remobilization might be further enhanced because of accelerated melting of permafrost and ice along with increased coastal erosion in the Arctic. Additionally, the detection of 20th century Eurasian Pb in deep water helps constrain ventilation ages. Overall, this study shows that Pb isotopes in Arctic seawater are useful as a gauge of changing particulate and contaminant sources, such as those resulting from increased remobilization (e.g., coastal erosion) and potentially also those associated with increased human activities (e.g., mining and shipping).
Collapse
|
10
|
Wu B, Wu X, Shi X, Zhang X, Qiao S, Hu L, Liu J, Liu S, Zhang J, Zhang H, Zhu A. Lead isotopes in the Central Yellow Sea Mud: Evidence of atmospheric deposition and its implication for regional energy consumption shift. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115702. [PMID: 33007653 DOI: 10.1016/j.envpol.2020.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/01/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic activities have increased lead (Pb) emissions and impacted their spatiotemporal distributions in coastal seas. To quantify the increasing variability of Pb and identify the specific origins and their corresponding magnitudes, Pb and Pb isotopes are investigated in a well-placed sediment core covering the period of 1928-2008 in the Central Yellow Sea Mud (CYSM). The concentration of Pb varied from 27.17 μg/g to 37.30 μg/g upwardly along the core, with pronounced anthropogenic disturbance since the late 1960s. The Pb input history of the CYSM experienced five stages according to industrialization levels and Pb contamination, with relative pristine stages from 1928 to 1969 and human activity-impacted stages from 1969 to 2008. The 206Pb/207Pb ratio demonstrated an overall decreasing profile while the 208Pb/206Pb ratio displayed the reverse trend upwardly along the core, possibly due to the atmospheric delivery of anthropogenic Pb emissions from northern China. Furthermore, 208Pb/206Pb vs. 206Pb/207Pb shows certain linearity between natural sediment sources and anthropogenic emissions of Pb (atmospheric deposition); thus, atmospheric inputs account for 34-43% of the Pb in the sediment since Pb enrichment using the two-endmember mixing model. Moreover, the steep decrease in 206Pb/207Pb and rapid increase in 208Pb/206Pb since the 1970s suggest the introduction of leaded gasoline and the increasing proportionate consumption of gasoline relative to total energy consumption. The continuously decreasing 206Pb/207Pb ratio and increasing 208Pb/206Pb ratio since 2000 are the combined results of coal consumption, nonferrous smelting, and residual Pb contamination from leaded gasoline, which is quite distinctive from cases in North America and Europe. The relatively high 206Pb/207Pb and low 208Pb/206Pb ratios before 1969 represent the natural Pb isotopic signatures. Hence, Pb input is significantly affected by regional energy consumption and restructuring, and the Pb isotopic ratios may be a potential proxy for the shift in energy consumption.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China.
| | - Xiaodan Wu
- CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, PR China
| | - Xuefa Shi
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Xuelei Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China
| | - Shuqing Qiao
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Limin Hu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Jihua Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Shengfa Liu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Jun Zhang
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Hui Zhang
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| | - Aimei Zhu
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, PR China; Laboratory for Marine Geology, Qingdao National Oceanography Laboratory for Marine Science and Technology, Qingdao, 266061, PR China
| |
Collapse
|
11
|
Wang J, Wang L, Wang Y, Tsang DCW, Yang X, Beiyuan J, Yin M, Xiao T, Jiang Y, Lin W, Zhou Y, Liu J, Wang L, Zhao M. Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. ENVIRONMENT INTERNATIONAL 2021; 146:106207. [PMID: 33197789 DOI: 10.1016/j.envint.2020.106207] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 05/15/2023]
Abstract
Industrial activities tend to deteriorate adjacent agricultural lands due to accumulation of potentially toxic elements in soils and crops. However, better understanding of their distinctive source partitions and transfer process remains insufficient in steel-making area. The paper focuses on the pollution levels, health risks, and provenance identification of Tl, As, Pb, Cu, Ni, Co, Sb, Cd, Zn, Be, Cr, Fe, Mn, Mo, Sn, and V in common vegetables from different farmlands near a steel-making plant. The results showed that the Tl, As, Pb, Cd, Cr, Cu and Mn were of high-level contamination in soils and generally above the maximum permissible level (MPL). Calculation using hazard quotients (HQ) exhibited that consumption of the studied vegetables may entail significant health risks to residents, especially for children, resulting from the elevated contents of Tl, As and associated toxic elements. Calculation by binary mixing model using Pb isotopic compositions suggested that steel-making activities contributed to 35-80% of the contamination of Pb and As in vegetables. It is necessary to adopt appropriate remediation measures to mitigate the farmland contamination and ensure the food safety of the agricultural products.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Lulu Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Yuxuan Wang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Meiling Yin
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Yanjun Jiang
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Wenli Lin
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Yuchen Zhou
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Liang Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| | - Min Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, China
| |
Collapse
|
12
|
Abstract
Fossil-fuel emissions may impact phytoplankton primary productivity and carbon cycling by supplying bioavailable Fe to remote areas of the ocean via atmospheric aerosols. However, this pathway has not been confirmed by field observations of anthropogenic Fe in seawater. Here we present high-resolution trace-metal concentrations across the North Pacific Ocean (158°W from 25°to 42°N). A dissolved Fe maximum was observed around 35°N, coincident with high dissolved Pb and Pb isotope ratios matching Asian industrial sources and confirming recent aerosol deposition. Iron-stable isotopes reveal in situ evidence of anthropogenic Fe in seawater, with low δ56Fe (-0.23‰ > δ56Fe > -0.65‰) observed in the region that is most influenced by aerosol deposition. An isotope mass balance suggests that anthropogenic Fe contributes 21-59% of dissolved Fe measured between 35° and 40°N. Thus, anthropogenic aerosol Fe is likely to be an important Fe source to the North Pacific Ocean.
Collapse
|
13
|
Belivermiş M, Besson M, Swarzenski P, Oberhaensli F, Taylor A, Metian M. Influence of pH on Pb accumulation in the blue mussel, Mytilus edulis. MARINE POLLUTION BULLETIN 2020; 156:111203. [PMID: 32510362 DOI: 10.1016/j.marpolbul.2020.111203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Changes in seawater pH can alter the chemical speciation of waterborne chemical elements, affecting their bioavailability and, consequently, their bioaccumulation in marine organisms. Here, controlled environmental conditions and a 210Pb radiotracer were used to assess the effect of five distinct pH conditions (pHT ranging from 7.16 to 7.94) on the short-term (9 days) accumulation of Pb in the blue mussel, Mytilus edulis. After 9 days of exposure, higher levels of Pb were observed in the soft tissues of mussels maintained in the lower pH conditions, while Pb levels accumulated by mussel shells showed no difference across pH conditions. These results suggest that pH decreases such as those predicted by ocean acidification scenarios could enhance Pb contamination in marine organisms, with potential subsequent contamination and effect risks for human consumers.
Collapse
Affiliation(s)
- Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, 34134 Vezneciler, Istanbul, Turkey.
| | - Marc Besson
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - Peter Swarzenski
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - François Oberhaensli
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - Angus Taylor
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| | - Marc Metian
- International Atomic Energy Agency, Environment Laboratories, 4a, Quai Antoine 1er, MC-98000, Principality of Monaco, Monaco
| |
Collapse
|
14
|
Lee S, Shin D, Han C, Choi KS, Hur SD, Lee J, Byun DS, Kim YT, Hong S. Characteristic concentrations and isotopic composition of airborne lead at urban, rural and remote sites in western Korea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113050. [PMID: 31465906 DOI: 10.1016/j.envpol.2019.113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic Pb emitted from East Asia, particularly China, is often long-range transported to the east by the prevailing westerlies. To characterize the geographical properties of varying atmospheric Pb concentrations by transboundary and domestic source(s)-related Pb in Korea, closely adjacent to China, the Al and Pb concentrations and the stable Pb isotopic composition were determined in the total suspended particles (TSP) collected at urban (IC), rural (TA), and remote background (JJ) sites in western Korea from August 2015 to October 2016. The annual average Pb concentrations were significantly higher in urban and rural areas (IC, 16.2 ng m-3 and TA, 11.1 ng m-3) than in remote area (JJ, 6.41 ng m-3), showing pronounced seasonal variations with relatively higher concentrations in winter and spring and lower concentrations in summer and autumn. Significantly high enrichment factors (EF) for Pb indicate that anthropogenic contributions are important for this toxic element in TSP. Coupling the Pb isotopic signatures with the air mass back trajectories identified the major potential source regions for individual samples. The results show that during winter, China was the dominant contributor, accounting for 92%, 82%, and 100% of the sampling periods at IC, TA, and JJ, respectively. The Chinese contribution decreased in summer and autumn, whereas the Korean contribution increased, according to the East Asian monsoon system. The Pb concentrations increased by 2.2 (IC), 1.2 (TA) and 1.4 (JJ) times when the Chinese contribution was dominant, compared to the Korea-dominant periods. The Pb isotopic systematics for the samples characterized by the dominant Korean contribution differed substantially between the three sites, implying that the relative importance of various domestic sources varied with geographical areas in western Korea.
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea; National Institute of Environmental Research, Hwangyong-ro 42, Seogu, Incheon 22689, South Korea
| | - Daechol Shin
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea
| | - Changhee Han
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Kwang-Sik Choi
- School of Marine Biomedical Science (BK21 PLUS), Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63243, South Korea
| | - Soon Do Hur
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea
| | - Jooyoung Lee
- Korea Hydrographic and Oceanographic Agency, 351, Haeyang-ro, Yeongdo-gu, Busan 49111, South Korea
| | - Do-Seong Byun
- Korea Hydrographic and Oceanographic Agency, 351, Haeyang-ro, Yeongdo-gu, Busan 49111, South Korea
| | - Young-Taeg Kim
- Korea Hydrographic and Oceanographic Agency, 351, Haeyang-ro, Yeongdo-gu, Busan 49111, South Korea
| | - Sungmin Hong
- Department of Ocean Sciences, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, South Korea.
| |
Collapse
|
15
|
Chien CT, Benaltabet T, Torfstein A, Paytan A. Contributions of Atmospheric Deposition to Pb Concentration and Isotopic Composition in Seawater and Particulate Matters in the Gulf of Aqaba, Red Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6162-6170. [PMID: 31090406 DOI: 10.1021/acs.est.9b00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lead concentrations [Pb] and isotope ratios (206Pb/207Pb, 208Pb/207Pb) have been measured in samples of total suspended particulate (TSP) aerosols, seawater, and suspended and sinking particles in the Gulf of Aqaba (GOA), Red Sea. Isotope ratios of Pb in seawater and in the soluble fraction of Pb in atmospheric TSP were similar suggesting that TSP is an important source of Pb in this area. Pb concentrations in seawater measured in this study (max 76.8 pmol kg-1) were much lower than those recorded at the same location in 2003-2004 (up to 1000 pmol kg-1). Changes in Pb isotope ratios in TSP depositions in these years indicate that leaded gasoline was responsible for the high dissolved Pb in GOA more than a decade ago and that recent regulation reduced Pb contamination. The similarity in Pb isotope ratios in suspended and sinking particles implies close interactions between these two size fractions. This study demonstrates the effect of the phasing out of leaded gasoline on TSP and seawater Pb chemistry in the Northern GOA; the rate of change in dissolved Pb concentrations in the GOA is faster than that reported for the open ocean possibly due to higher particle scavenging and the relatively short residence time of deep water in the Basin.
Collapse
Affiliation(s)
- Chia-Te Chien
- Earth & Planetary Sciences Department , University of Santa Cruz , Santa Cruz , California 95064 , United States
- GEOMAR Helmholtz Centre for Ocean Research Kiel , Kiel 24105 , Germany
| | - Tal Benaltabet
- Institute of Earth Sciences , Hebrew University of Jerusalem , Jerusalem 91904 , Israel
- Interuniversity Institute of Marine Sciences , Eilat 88103 , Israel
| | - Adi Torfstein
- Institute of Earth Sciences , Hebrew University of Jerusalem , Jerusalem 91904 , Israel
- Interuniversity Institute of Marine Sciences , Eilat 88103 , Israel
| | - Adina Paytan
- Institute of Marine Sciences , University of California , Santa Cruz , California 95064 , United States
| |
Collapse
|
16
|
Kong J, Guo Q, Wei R, Strauss H, Zhu G, Li S, Song Z, Chen T, Song B, Zhou T, Zheng G. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:1035-1045. [PMID: 29801199 DOI: 10.1016/j.scitotenv.2018.05.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 05/16/2023]
Abstract
Farmland top soils and soil profiles situated in the karst area of Guilin, Guangxi Zhuang Autonomous Region, southern China, reveal different degrees of heavy metal pollution, both in respect to the lateral as well as the vertical dimension. Pb isotope ratios clearly identify that heavy metal contributions to the soil represent the legacy of former Pb-Zn mining and smelting in the area. Depending upon soil properties, differences in the intensity of the vertical penetration of heavy metal pollution are discernible. Top soil coverage by local farmers provides little remediation. Consequently, hazardous conditions for the regional ecology, for agricultural usage and ultimately for human health remain in place. Based on chemical and isotopic results obtained, more effective remediation strategies need to be developed.
Collapse
Affiliation(s)
- Jing Kong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Harald Strauss
- Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, 48149 Münster, Germany
| | - Guangxu Zhu
- College of Biology and Environment Engineering, Guiyang University, Guiyang 550005, China
| | - Siliang Li
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Song
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Song
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Ting Zhou
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|