1
|
Zhang Y, Zhao G, Yang P, Song C, Wang Y, Zhang Y, Zou Y, Zheng Z, Tang KW, Li S. Aquaculture source of atmospheric N 2O in China: Comparison of system types, management practices and measurement methods. ENVIRONMENTAL RESEARCH 2025; 267:120685. [PMID: 39710234 DOI: 10.1016/j.envres.2024.120685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Aquaculture systems contribute to atmospheric N2O, but the magnitude of this N2O source is largely uncertain. Here, we synthesized data from 139 aquaculture sites based on 59 peer-reviewed publications, and estimated that China's aquaculture systems emitted 9.68 Gg N yr-1 (4.12 Tg CO2-eq yr-1). N2O emission varied significantly according to system types, farmed species, physical dimensions of the system, hydrographical conditions, and management practices. Of these, inland pond systems had a higher N2O flux (268.38 ± 75.96 mg N m-2 yr-1) and indirect N2O emission factor (4.4 ± 0.9‰) than the other system types. Mixed species farming tended to emit less N2O than monospecific farming, whereas small (<1 ha) and shallow ponds (<1 m) were hotspots for N2O emission. Flux values based on different wind-driven diffusion models varied widely, and the model CC98 agreed most closely with direct measurements using floating chamber. Overall, aquaculture waters had a lower emission intensity than streams, rivers and reservoirs, but comparable to estuaries and lakes. Rapid expansion of the aquaculture sector and the limited N2O data for this sector, especially for rice-aquaculture co-culture systems, highlight the need for better monitoring and on-site measurements to refine the inventory of greenhouse gas emissions from the aquaculture systems.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Guanghui Zhao
- Department of Earth Science and Engineering, Shanxi Institute of Technology, Yangquan, 045000, China
| | - Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou, 350117, China.
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yiwen Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuxing Zou
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang, 277160, China
| | - Zhuangpeng Zheng
- School of Tourismand Historical Culture, Zhaoqing University, Zhaoqing, 526061, China
| | - Kam W Tang
- Department of Life Sciences, Texas A&M University-Corpus Christi, TX 78412, USA.
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Wang S, Zhi W, Li S, Lyu T, Ji G. Sustainable management of riverine N 2O emission baselines. Natl Sci Rev 2025; 12:nwae458. [PMID: 39834561 PMCID: PMC11745158 DOI: 10.1093/nsr/nwae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
The riverine N2O fluxes are assumed to linearly increase with nitrate loading. However, this linear relationship with a uniform EF5r is poorly constrained, which impedes the N2O estimation and mitigation. Our meta-analysis discovered a universal N2O emission baseline (EF5r = k/[NO3 -], k = 0.02) for natural rivers. Anthropogenic impacts caused an overall increase in baselines and the emergence of hotspots, which constitute two typical patterns of anthropogenic sources. The k values of agricultural and urban rivers increased to 0.09 and 0.05, respectively, with 11% and 14% of points becoming N2O hotspots. Priority control of organic and NH4 + pollution could eliminate hotspots and reduce emissions by 51.6% and 63.7%, respectively. Further restoration of baseline emissions on nitrate removal is a long-term challenge considering population growth and declining unit benefits (ΔN-N2O/N-NO3 -). The discovery of EF lines emphasized the importance of targeting hotspots and managing baseline emissions sustainably to balance social and environmental benefits.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Bremen 28359, Germany
| | - Tao Lyu
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Kan C, Wang F, Xiang T, Fan Y, Xu W, Liu L, Yang S, Cao W. Wastewater treatment plant effluents increase the global warming potential in a subtropical urbanized river. WATER RESEARCH 2024; 266:122349. [PMID: 39241378 DOI: 10.1016/j.watres.2024.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Rivers play a pivotal role in global carbon (C) and nitrogen (N) biogeochemical cycles. Urbanized rivers are significant hotspots of greenhouse gases (GHGs, N2O, CO2 and CH4) emissions. This study examined the GHGs distributions in the Guanxun River, an effluents-receiving subtropical urbanized river, as well as the key environmental factors and processes affecting the pattern and emission characteristics of GHGs. Dissolved N2O, CO2, and CH4 concentrations reached 228.0 nmol L-1, 0.44 mmol L-1, and 5.2 μmol L-1 during the wet period, and 929.8 nmol L-1, 0.7 mmol L-1, and 4.6 μmol L-1 during the dry period, respectively. Effluents inputs increased C and N loadings, reduced C/N ratios, and promoted further methanogenesis and N2O production dominated by incomplete denitrification after the outfall. Increased urbanization in the far downstream, high hydraulic residence time, low DO and high organic C environment promoted methanogenesis. The strong CH4 oxidation and methanogenic reactions inhibited by the effluents combined to suppress CH4 emissions in downstream near the outfall, and the process also contributed to CO2 production. The carbon fixation downstream from the outfall were inhibited by effluents. Ultimately, it promoted CO2 emissions downstream from the outfall. The continuous C, N, and chlorine inputs maintained the high saturation and production potential of GHGs, and altered microbial community structure and functional genes abundance. Ultimately, the global warming potential downstream increased by 186 % and 84 % during wet and dry periods on the 20-year scale, and increased by 91 % and 49 % during wet and dry periods on the 100-year scale, respectively, compared with upstream from the outfall. In urbanized rivers with sufficient C and N source supply from WWTP effluents, the large effluent equivalently transformed the natural water within the channel into a subsequent "reactor". Furthermore, the IPCC recommended EF5r values appear to underestimate the N2O emission potential of urbanized rivers with high pollution loading that receiving WWTP effluents. The findings of this study might aid the development of effective strategies for mitigating global climate change.
Collapse
Affiliation(s)
- Chen Kan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Feifei Wang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Tao Xiang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Yifei Fan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenfeng Xu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361022, China.
| | - Lihua Liu
- Fujian Xiamen Environmental Monitoring Central Station, Xiamen 361022, China
| | - Shengchang Yang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenzhi Cao
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Wang S, Li S, Ji M, Li J, Huang J, Dang Z, Jiang Z, Zhang S, Zhu X, Ji G. Long-neglected contribution of nitrification to N 2O emissions in the Yellow River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124099. [PMID: 38703980 DOI: 10.1016/j.envpol.2024.124099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Rivers play a significant role in the global nitrous oxide (N2O) budget. However, the microbial sources and sinks of N2O in river systems are not well understood or quantified, resulting in the prolonged neglect of nitrification. This study investigated the isotopic signatures of N2O, thereby quantifying the microbial source of N2O production and the degree of N2O reduction in the Yellow River. Although denitrification has long been considered to be the dominant pathway of N2O production in rivers, our findings indicated that denitrification only accounted for 18.3% (8.2%-43.0%) of the total contribution to N2O production in the Yellow River, with 50.2%-80.2% being concurrently reduced. The denitrification contribution to N2O production (R2 = 0.44, p < 0.01) and N2O reduction degree (R2 = 0.70, p < 0.01) were positively related to the dissolved organic carbon (DOC) content. Similar to urban rivers and eutrophic lakes, denitrification was the primary process responsible for N2O production (43.0%) in certain reaches with high organic content (DOC = 5.29 mg/L). Nevertheless, the denitrification activity was generally constrained by the availability of electron donors (average DOC = 2.51 mg/L) throughout the Yellow River basin. Consequently, nitrification emerged as the primary contributor in the well-oxygenated Yellow River. Additionally, our findings further distinguished the respective contribution of ammonia-oxidizing bacteria (AOB) and archaea (AOA) to N2O emissions. Although AOB dominated the N2O production in the Yellow River, the AOA specie abundance (AOA/(AOA + AOB)) contributed up to 32.6%, which resulted in 25.6% of the total nitrifier-produced N2O, suggesting a significant occurrence of AOA in the oligotrophic Yellow River. Overall, this study provided a non-invasive approach for quantifying the microbial sources and sinks to N2O emissions, and demonstrated the substantial role of nitrification in the large oligotrophic rivers.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shengjie Li
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany
| | - Mingfei Ji
- Collaborative Innovation Centre of Water Security for the Water Source Region of the Mid-line of the South-to-North Diversion Project of Henan Province, College of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiarui Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Jilin Huang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhengzhu Dang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Zhuo Jiang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Shuqi Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Xianfang Zhu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China
| | - Guodong Ji
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, Department of Environmental Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Zhang Y, Yang P, Wang Y, Zhao G, Zheng Z, Zou Y, Zhang Y, Li S. Rainstorm and strong wind weathers largely increase greenhouse gases flux in shallow ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171478. [PMID: 38453071 DOI: 10.1016/j.scitotenv.2024.171478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Shallow-water ponds represent the hotspots of greenhouse gas (GHG) emissions. Most current studies focus on the temporal dynamics for GHGs in water, with little consideration given to the effects of weather changes. In this study, we measured and compared the concentrations and fluxes of CO2, CH4, and N2O from a pond in Northeast China under different meteorological conditions. Results showed that the rates of CO2, CH4, and N2O emissions from pond into the atmosphere during strong winds were 85.85 ± 7.55 mmol m-2 d-1, 22.05 ± 6.80 mmol m-2 d-1, and 10.87 ± 0.72 μmol m-2 d-1, respectively, significantly higher than those measured during non-rain weather. Among which, over 88 % of CH4 emissions were contributed by ebullition. Meanwhile, the CO2 and N2O flux were also significantly higher during heavy rainfall, reaching 100.05 ± 19.76 mmol m-2 d-1 and 5.90 ± 1.03 μmol m-2 d-1, respectively. Strong winds and precipitation induced sediment disturbances, high gas transport coefficients, reduced photosynthesis and oxygen greatly promoted the GHGs escape evasion. Wind speed, air pressure, solar radiation, and dissolved oxygen in water were important influencing factors. Our results emphasize the importance of capturing short-term weather disturbance events, especially rainstorm and strong winds, to accurately assess the annual GHG budget from these shallow water ecosystems.
Collapse
Affiliation(s)
- Yifei Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yang Wang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Guanghui Zhao
- School of Geographical Sciences, Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Zhuangpeng Zheng
- College of Tourism and Resources Environment, Zaozhuang University, Zaozhuang 277160, China
| | - Yuxing Zou
- School of Tourism and Historical Culture, Zhaoqing University, Zhaoqing 526061, China
| | - Yiwen Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Xie R, Lin L, Shi C, Zhang P, Rao P, Li J, Izabel-Shen D. Elucidating the links between N 2O dynamics and changes in microbial communities following saltwater intrusions. ENVIRONMENTAL RESEARCH 2024; 245:118021. [PMID: 38147917 DOI: 10.1016/j.envres.2023.118021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Saltwater intrusion in estuarine ecosystems alters microbial communities as well as biogeochemical cycling processes and has become a worldwide problem. However, the impact of salinity intrusion on the dynamics of nitrous oxide (N2O) and associated microbial community are understudied. Here, we conducted field microcosms in a tidal estuary during different months (December, April and August) using dialysis bags, and microbes inside the bags encountered a change in salinity in natural setting. We then compared N2O dynamics in the microcosms with that in natural water. Regardless of incubation environment, saltwater intrusion altered the dissolved N2O depending on the initial saturation rates of N2O. While the impact of saltwater intrusion on N2O dynamics was consistent across months, the dissolved N2O was higher in summer than in winter. The N-related microbial communities following saltwater intrusion were dominated by denitrifers, with fewer nitrifiers and bacterial taxa involved in dissimilatory nitrate reduction to ammonium. While denitrification was a significant driver of N2O dynamics in the studied estuary, nitrifier-involved denitrification contributed to the additional production of N2O, evidenced by the strong associations with amoA genes and the abundance of Nitrospira. Higher N2O concentrations in the field microcosms than in natural water limited N2O consumption in the former, given the lack of an association with nosZ gene abundance. The differences in the N2O dynamics observed between the microcosms and natural water could be that the latter comprised not only indigenous microbes but also those accompanied with saltwater intrusion, and that immigrants might be functionally rich individuals and able to perform N transformation in multiple pathways. Our work provides the first quantitative assessment of in situ N2O concentrations in an estuary subjected to a saltwater intrusion. The results highlight the importance of ecosystem size and microbial connectivity in the source-sink dynamics of N2O in changing environments.
Collapse
Affiliation(s)
- Rongrong Xie
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China; Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou, 350117, China; Leibniz Institute for Baltic Sea Research, Warnemünde, Rostock, 18119, Germany.
| | - Laichang Lin
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China
| | - Chengchun Shi
- Fujian Research Academy of Environmental Sciences, Fuzhou, 350013, China
| | - Peng Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China
| | - Peiyuan Rao
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China
| | - Jiabing Li
- College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350117, China; Key Laboratory of Pollution Control and Resource Recycling of Fujian Province, Fujian Normal University, Fuzhou, 350117, China
| | - Dandan Izabel-Shen
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, 26129, Germany; Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| |
Collapse
|
7
|
Abulaiti A, She D, Pan Y, Shi Z, Hu L, Huang X, Shan J, Xia Y. Drainage ditches are significant sources of indirect N 2O emissions regulated by available carbon to nitrogen substrates in salt-affected farmlands. WATER RESEARCH 2024; 251:121164. [PMID: 38246078 DOI: 10.1016/j.watres.2024.121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Agriculture is a main source of nitrous oxide (N2O) emissions. In agricultural systems, direct N2O emissions from nitrogen (N) addition to soils have been widely investigated, whereas indirect emissions from aquatic ecosystems such as ditches are poorly known, with insufficient data available to refine the IPCC emission factor. In this contribution, in situ N2O emissions from two ditch water‒air interfaces based on a diffusion model were investigated (almost once per month) from June 2021 to December 2022 in an intensive arable catchment with high N inputs and salt-affected conditions in the Qingtongxia Irrigation District, northwestern China. Our results implied that agricultural ditches (mean 148 μg N m-2 h-1) were significant sources for N2O emissions, and were approximately 2.1 times greater than those of the Yellow River directly connected to ditches. Agronomic management strategies increased N2O fluxes in summer, while precipitation events decreased N2O fluxes. Agronomic management strategies, including fertilization (294--540 kg N hm-2) and irrigation on farmland, resulted in enhanced diffuse N loads in drain water, whereas precipitation diluted the dissolved N2O concentration in ditches and accelerated the ditch flow rate, leading to changes in the residence time of N-containing substances in water. The spatial analysis showed that N2O fluxes (202-233 μg N m-2 h-1) in the headstream and upstream regions of ditches due to livestock and aquaculture pollution sources were relatively high compared to those in the midstream and downstream regions (100-114 μg N m-2 h-1). Furthermore, high available carbon (C) relative to N reduced N2O fluxes at low DOC:DIN ratio levels by inhibiting nitrification. Spatiotemporal variations in the N2O emission factor (EF5) across ditches with higher N resulted in lower EF5 and a large coefficient of variation (CV) range. EF5 was 0.0011 for the ditches in this region, while the EF5 (0.0025) currently adopted by the IPCC is relatively high. The EF5 variation was strongly controlled by the DOC:DIN ratio, TN, and NO3--N, while salinity was also a nonnegligible factor regulating the EF5 variation. The regression model incorporating NO3--N and the DOC:DIN ratio could greatly enhance the predictions of EF5 for agricultural ditches. Our study filled a key knowledge gap regarding EF5 from agricultural ditches in salt-affected farmland and offered a field investigation for refining the EF5 currently used by the IPCC.
Collapse
Affiliation(s)
- Alimu Abulaiti
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Dongli She
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; College of Soil and Water Conservation, Hohai University, Changzhou 213200, China.
| | - Yongchun Pan
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Zhenqi Shi
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Lei Hu
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd., Yangzhou 225002, China
| | - Xuan Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China; Jiangsu Province Engineering Research Center for Agricultural Soil‒Water Efficient Utilization, Carbon Sequestration and Emission Reduction, Nanjing 211100, China
| | - Jun Shan
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongqiu Xia
- Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
8
|
Wang C, Xv Y, Wu Z, Li X, Li S. Denitrification regulates spatiotemporal pattern of N 2O emission in an interconnected urban river-lake network. WATER RESEARCH 2024; 251:121144. [PMID: 38277822 DOI: 10.1016/j.watres.2024.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Urban rivers are hotspots of N2O production and emission. Interconnected river-lake networks are constructed to improve the water quality and hydrodynamic conditions of urban rivers in many cities of China. However, the impact of the river-lake connectivity project on N2O production and emission remains unclear. This study investigated dissolved N2O and emission of the river-lake network in Wuhan City, China from March 2021 to December 2021. The results showed that river-lake connection greatly decreased riverine Nitrogen (N) concentration and increased dissolved oxygen (DO) concentration compare to traditional urban rivers. N2O emissions from the urban river interconnected with lakes (LUR: 67.3 ± 92.6 μmol/m2/d) were much lower than those from the traditional urban rivers (UR: 467.3 ± 1075.7 μmol/m2/d) and agricultural rivers (AR: 20.4 ± 15.3μmol/m2/d). Regression tree analysis suggested that the N2O concentrations were extremely high when hypoxia exists (DO < 1.6 mg/L), and TDN was the primary factor regulating N2O concentrations when hypoxia does not occur. Thus, we ascribe the low N2O emission in the LUR and AR to the lower N contents and higher DO concentrations. The microbial process of N2O production and consumption were quantitatively estimated by isotopic models. The mean proportion of denitrification derived N2O (fbD) was 63.5 %, 55.6 %, 42.3 % and 42.7 % in the UR, LUR, lakes and AR, suggested denitrification dominated N2O production in the urban rivers, but nitrification dominated N2O production in the lakes and AR. The positive correlation between logN2O and fbD suggested that denitrification is the key process to regulate the N2O production and emission. The abundance of denitrification genes (nirS and nirK) was much higher than that of nitrification genes (amoA and amoB), also evidenced that denitrification was the main N2O source. Therefore, river-lake interconnected projects changed the nutrients level and hypoxic condition, leading to the inhibition of denitrification and nitrification, and ultimately resulting in a decrease of N2O production and emission. These results advance the knowledge on the microbial processes that regulate N2O emissions in inland waters and illustrate the integrated management of water quality and N2O emission.
Collapse
Affiliation(s)
- Chunlin Wang
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yuhan Xv
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Zefeng Wu
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xing Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China.
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, China.
| |
Collapse
|
9
|
Panique-Casso DG, Goethals P, Ho L. Modeling greenhouse gas emissions from riverine systems: A review. WATER RESEARCH 2024; 250:121012. [PMID: 38128303 DOI: 10.1016/j.watres.2023.121012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Despite the recognized importance of flowing waters in global greenhouse gas (GHG) budgets, riverine GHG models remain oversimplified, consequently restraining the development of effective prediction for riverine GHG emissions feedbacks. Here we elucidate the state of the art of riverine GHG models by investigating 148 models from 122 papers published from 2010 to 2021. Our findings indicate that riverine GHG models have been mostly data-driven models (83%), while mechanistic and hybrid models were uncommonly applied (12% and 5%, respectively). Overall, riverine GHG models were mainly used to explain relationships between GHG emissions and biochemical factors, while the role of hydrological, geomorphic, land use and cover factors remains missing. The development of complex and advanced models has been limited by data scarcity issues; hence, efforts should focus on developing affordable automatic monitoring methods to improve data quality and quantity. For future research, we request for basin-scale studies explaining river and land-surface interactions for which hybrid models are recommended given their flexibility. Such a holistic understanding of GHG dynamics would facilitate scaling-up efforts, thereby reducing uncertainties in global GHG estimates. Lastly, we propose an application framework for model selection based on three main criteria, including model purpose, model scale and the spatiotemporal characteristics of GHG data, by which optimal models can be applied in various study conditions.
Collapse
Affiliation(s)
- Diego G Panique-Casso
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium.
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Li P, Wallace CD, McGarr JT, Moeini F, Dai Z, Soltanian MR. Investigating key drivers of N 2O emissions in heterogeneous riparian sediments: Reactive transport modeling and statistical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166930. [PMID: 37704143 DOI: 10.1016/j.scitotenv.2023.166930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas that also contributes to ozone depletion. Recent studies have identified river corridors as significant sources of N2O emissions. Surface water-groundwater (hyporheic) interactions along river corridors induce flow and reactive nitrogen transport through riparian sediments, thereby generating N2O. Despite the prevalence of these processes, the controlling influence of physical and geochemical parameters on N2O emissions from coupled aerobic and anaerobic reactive transport processes in heterogeneous riparian sediments is not yet fully understood. This study presents an integrated framework that combines a flow and multi-component reactive transport model (RTM) with an uncertainty quantification and sensitivity analysis tool to determine which physical and geochemical parameters have the greatest impact on N2O emissions from riparian sediments. The framework involves the development of thousands of RTMs, followed by global sensitivity and responsive surface analyses. Results indicate that characterizing the denitrification reaction rate constant and permeability of intermediate-permeability sediments (e.g., sandy gravel) are crucial in describing coupled nitrification-denitrification reactions and the magnitude of N2O emissions. This study provides valuable insights into the factors that influence N2O emissions from riparian sediments and can help in developing strategies to control N2O emissions from river corridors.
Collapse
Affiliation(s)
- Pei Li
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States.
| | | | - Jeffrey T McGarr
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Farzad Moeini
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Zhenxue Dai
- College of Construction Engineering, Jilin University, Changchun, Jilin 130026, China
| | - Mohamad Reza Soltanian
- Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221, United States; Department of Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, United States.
| |
Collapse
|
11
|
Sun H, Tian Y, Zhan W, Zhang H, Meng Y, Li L, Zhou X, Zuo W, Ngo HH. Estimating Yangtze River basin's riverine N 2O emissions through hybrid modeling of land-river-atmosphere nitrogen flows. WATER RESEARCH 2023; 247:120779. [PMID: 37897993 DOI: 10.1016/j.watres.2023.120779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/15/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Riverine ecosystems are a significant source of nitrous oxide (N2O) worldwide, but how they respond to human and natural changes remains unknown. In this study, we developed a compound model chain that integrates mechanism-based modeling and machine learning to understand N2O transfer patterns within land, rivers, and the atmosphere. The findings reveal a decrease in N2O emissions in the Yangtze River basin from 4.7 Gg yr-1 in 2000 to 2.8 Gg yr-1 in 2019, with riverine emissions accounting for 0.28% of anthropogenic nitrogen discharges from land. This unexpected reduction is primarily attributed to improved water quality from human-driven nitrogen control, while natural factors contributed to a 0.23 Gg yr-1 increase. Notably, urban rivers exhibited a more rapid N2O efflux ( [Formula: see text] ), with upstream levels nearly 3.1 times higher than rural areas. We also observed nonlinear increases in [Formula: see text] with nitrogen discharge intensity, with urban areas showing a gradual and broader range of increase compared to rural areas, which exhibited a sharper but narrower increase. These nonlinearities imply that nitrogen control measures in urban areas lead to stable reductions in N2O emissions, while rural areas require innovative nitrogen source management solutions for greater benefits. Our assessment offers fresh insights into interpreting riverine N2O emissions and the potential for driving regionally differentiated emission reductions.
Collapse
Affiliation(s)
- Huihang Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Wei Zhan
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Haoran Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yiming Meng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xue Zhou
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wei Zuo
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
12
|
Cheng X, Dong Y, Fan F, Xiao S, Liu J, Wang S, Lin W, Zhou C. Shifts in the high-resolution spatial distribution of dissolved N 2O and the underlying microbial communities and processes in the Pearl River Estuary. WATER RESEARCH 2023; 243:120351. [PMID: 37517146 DOI: 10.1016/j.watres.2023.120351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Estuaries are significant sources of the ozone-depleting greenhouse gas N2O. However, owing to large spatial heterogeneity and discrete measurements, N2O emissions from estuaries are considerably uncertain. Microbial processes are disputed in terms of the dominant N2O production under severe human disturbance. Herein, combining real-time and high-resolution measurements with bioinformatics analysis, we accurately mapped the consecutive two-dimensional N2O distribution in the Pearl River Estuary (PRE), China, and revealed its underlying microbial mechanisms. Both the horizontal and vertical distributions of N2O concentrations varied greatly at fine scales. Supersaturated N2O concentrations (9.1 to 132.2 nmol/L) in the surface water decreased along the estuarine salinity gradient, with several emission hotspots scattering upstream. The vertical N2O distribution showed marked differences from complete mixing upstream to incomplete mixing downstream, with constant or changeable concentrations with increasing depth. Furthermore, spatially varied denitrifying and nitrifying microorganisms controlled the N2O production and distribution in the PRE, with denitrification playing the dominant role. The nirK-type and nirS-type denitrifying bacteria were the primary producers of N2O in the water and sediment columns, respectively. In addition, substrate concentration (NO3- and DOC) regulated N2O production by affecting key microbial processes, while physical influences (water-mass mixing and salt wedges) reshaped N2O distribution. With these information, a conceptual model of estuarine N2O production and distribution was constructed to generalize the possible biochemical processes under environmental constraints, which could provide insights into the N2O biogeochemical cycle and emission mitigation from a mechanistic perspective.
Collapse
Affiliation(s)
- Xiang Cheng
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yue Dong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shangbin Xiao
- College of Hydraulic and Environment Engineering, China Three Gorges University, Yichang 443002, China; Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
| | - Jia Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
| | - Shengrui Wang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wei Lin
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Chunyang Zhou
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
13
|
Huo P, Liu Y, Xu C, Zhang X, Jia H, Gao P. Characteristics of dissolved N 2O and indirect N 2O emission factor in the groundwater of high nitrate leaching areas in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161641. [PMID: 36649766 DOI: 10.1016/j.scitotenv.2023.161641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Numerous studies have demonstrated high concentrations of dissolved N2O and indirect N2O emission factors in groundwater affected by agriculture. However, the characteristics of seasonal and vertical dimensional difference in groundwater in high nitrate leaching areas are relatively lacking. We monitored the concentrations of dissolved and wellhead N2O of 23 groundwater wells over a one year period to understand the seasonal characteristics of dissolved and wellhead N2O concentrations and indirect N2O emission factors (EF5) of the shallow and deep groundwater in a high nitrogen leaching area and analyze the reasons for their differences. The mean dissolved N2O concentration in groundwater was 9.71 (9.03) μg/L, which was 1.5-fold higher during the wet season relative to the dry season. Furthermore, the leaching of soil N2O caused by rainfall and irrigation could be a pivotal factor affecting seasonal variation in the dissolved N2O. Shallow wells were found to have higher dissolved and wellhead N2O concentrations compared with deep wells in all seasons. The low wellhead N2O concentrations during the dry season were attributed to the seasonal decrease of the groundwater table and dissolved N2O concentrations. We concluded that indirect N2O emission factors did not vary in the vertical dimension but were higher during the wet season than that during the dry season. In addition, the mean indirect N2O emission factor in the groundwater was 0.025 %, which was one order of magnitude below the current IPCC value (0.25 %). Thus, we proposed that such a low indirect N2O emissions factor could imply a low indirect N2O emission potential in groundwater with high dissolved oxygen and nitrogen loads. Our study further indicated that seasonal differences in dissolved N2O concentrations and indirect N2O emission factors should be considered when estimating the potential emissions of dissolved N2O in groundwater.
Collapse
Affiliation(s)
- Pan Huo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunyan Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyu Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haoxin Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pengcheng Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Wang J, Wang G, Zhang S, Xin Y, Jiang C, Liu S, He X, McDowell WH, Xia X. Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales. GLOBAL CHANGE BIOLOGY 2022; 28:7270-7285. [PMID: 36176238 DOI: 10.1111/gcb.16458] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Streams and rivers are important sources of nitrous oxide (N2 O), a powerful greenhouse gas. Estimating global riverine N2 O emissions is critical for the assessment of anthropogenic N2 O emission inventories. The indirect N2 O emission factor (EF5r ) model, one of the bottom-up approaches, adopts a fixed EF5r value to estimate riverine N2 O emissions based on IPCC methodology. However, the estimates have considerable uncertainty due to the large spatiotemporal variations in EF5r values. Factors regulating EF5r are poorly understood at the global scale. Here, we combine 4-year in situ observations across rivers of different land use types in China, with a global meta-analysis over six continents, to explore the spatiotemporal variations and controls on EF5r values. Our results show that the EF5r values in China and other regions with high N loads are lower than those for regions with lower N loads. Although the global mean EF5r value is comparable to the IPCC default value, the global EF5r values are highly skewed with large variations, indicating that adopting region-specific EF5r values rather than revising the fixed default value is more appropriate for the estimation of regional and global riverine N2 O emissions. The ratio of dissolved organic carbon to nitrate (DOC/NO3 - ) and NO3 - concentration are identified as the dominant predictors of region-specific EF5r values at both regional and global scales because stoichiometry and nutrients strictly regulate denitrification and N2 O production efficiency in rivers. A multiple linear regression model using DOC/NO3 - and NO3 - is proposed to predict region-specific EF5r values. The good fit of the model associated with easily obtained water quality variables allows its widespread application. This study fills a key knowledge gap in predicting region-specific EF5r values at the global scale and provides a pathway to estimate global riverine N2 O emissions more accurately based on IPCC methodology.
Collapse
Affiliation(s)
- Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Gongqin Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, Hebei, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, China
| | - Yuan Xin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Chenrun Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
15
|
Yang P, Tang KW, Tong C, Lai DYF, Zhang L, Lin X, Yang H, Tan L, Zhang Y, Hong Y, Tang C, Lin Y. Conversion of coastal wetland to aquaculture ponds decreased N 2O emission: Evidence from a multi-year field study. WATER RESEARCH 2022; 227:119326. [PMID: 36368085 DOI: 10.1016/j.watres.2022.119326] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Land reclamation is a major threat to the world's coastal wetlands, and it may influence the biogeochemical cycling of nitrogen in coastal regions. Conversion of coastal marshes into aquaculture ponds is common in the Asian Pacific region, but its impacts on the production and emission of nitrogen greenhouse gases remain poorly understood. In this study, we compared N2O emission from a brackish marsh and converted shrimp aquaculture ponds in the Shanyutan wetland, the Min River Estuary in Southeast China over a three-year period. We also measured sediment and porewater properties, relevant functional gene abundance, sediment N2O production potential and denitrification potential in the two habitats. Results indicated that the pond sediment had lower N-substrate availability, lower ammonia oxidation (AOA and comammox Nitrospira amoA), nitrite reduction (nirK and nirS) and nitrous oxide reduction (nosZ Ⅰ and nosZ Ⅱ) gene abundance and lower N2O production and denitrification potentials than in marsh sediments. Consequently, N2O emission fluxes from the aquaculture ponds (range 5.4-251.8 μg m-2 h-1) were significantly lower than those from the marsh (12.6-570.7 μg m-2 h-1). Overall, our results show that conversion from marsh to shrimp aquaculture ponds in the Shanyutan wetland may have diminished nutrient input from the catchment, impacted the N-cycling microbial community and lowered N2O production capacity of the sediment, leading to lower N2O emissions. Better post-harvesting management of pond water and sediment may further mitigate N2O emissions caused by the aquaculture operation.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xiao Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, United Kingdom
| | - Lishan Tan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Yifei Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yan Hong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Chen Tang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Yongxin Lin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
16
|
Zhou Y, Toyoda R, Suenaga T, Aoyagi T, Hori T, Terada A. Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. WATER RESEARCH 2022; 216:118276. [PMID: 35339050 DOI: 10.1016/j.watres.2022.118276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). This study investigated N2O concentrations and microbial processes responsible for nitrogen conversion upstream and downstream of WWTPs along the Tama River flowing through Tokyo, Japan. We evaluated the effect of treated sewage on dissolved N2O concentrations and inherent N2O consumption activities in the river sediments. In summer and winter, the mean dissolved N2O concentrations were 0.67 µg-N L-1 and 0.82 µg-N L-1, respectively. Although the dissolved N2O was supersaturated (mean 288.7% in summer, mean 240.7% in winter) in the river, the N2O emission factors (EF5r, 0.013%-0.025%) were significantly lower than those in other urban rivers and the Intergovernmental Panel on Climate Change default value (0.25%). The nitrate (NO3-) concentration in the Tama River increased downstream of the WWTPs discharge sites, and it was the main nitrogen constituent. An increasing trend of NO3- concentration was observed from upstream to downstream, along with an increase in the N2O consumption potential of the river sediment. A multiple regression model showed that NO3- is the crucial factor influencing N2O saturation. The diversity in the upstream microbial communities was greater than that in the downstream ones, indicating the involvement of treated sewage discharge in shaping the microbial communities. Functional gene quantification for N2O production and consumption suggested that nirK-type denitrifiers likely contributed to N2O production. Structural equation models (SEMs) revealed that treated sewage discharged from WWTPs increased the NO3- loading from upstream to downstream in the river, inducing changes in the microbial communities and enhancing the N2O consumption activities. Collectively, aerobic conditions limited denitrification and in turn facilitated nitrification, leading to low N2O emissions even despite high NO3- loadings in the Tama River. Our findings unravel an overestimation of the N2O emission potential in an urban oxygen-rich river affected by treated sewage discharge.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Risako Toyoda
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
17
|
Li X, Qi M, Gao D, Liu M, Sardans J, Peñuelas J, Hou L. Nitrous oxide emissions from subtropical estuaries: Insights for environmental controls and implications. WATER RESEARCH 2022; 212:118110. [PMID: 35085843 DOI: 10.1016/j.watres.2022.118110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Estuaries are expected to contribute large nitrous oxide (N2O) emissions, however the environmental controls and implications of N2O emissions have not been well understood. Here we investigated water N2O concentrations, fluxes and sources in wet and dry seasons for 2019-2020 in five subtropical estuaries spanning hydrologic characteristics and nitrogen concentrations gradient. Water dissolved N2O concentrations and fluxes were in a range of 15.8-84.9 nmol L-1 and 0.66-22.2 µg m-2 h-1, respectively. These studied estuaries were oversaturated in N2O, with the saturations of 118-615%. Water dissolved N2O concentrations, saturations and fluxes increased significantly as nitrogen concentrations increase, whereas they did not differ significantly between the wet and dry seasons. Water N2O emissions, however, were also lower in the estuaries characterized by large discharge and water flow. N2O saturations and fluxes were determined directly by water nitrogen and oxygen concentrations and more indirectly by water temperature and velocity. The δ15N-N2O and site preference-N2O varied respectively from 2.86 to 11.31‰ and from 1.58 to 11.72‰, which overlapped the values between nitrification and denitrification. Nitrification and denitrification were responsible for 18.7-38.1% and 61.9-81.3% of N2O emissions, respectively. Indirect N2O emission factors were 0.08-0.14% and decreased with increasing total nitrogen concentrations. It is estimated that water N2O emissions in CO2 equiv could offset approximately 4.9% of average CO2 sink of China estuaries. Therefore, these results suggest that nitrogen concentrations and hydrologic characteristics together modify N2O emissions and that estuaries may be the important contributors to N2O emissions.
Collapse
Affiliation(s)
- Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Mengting Qi
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Jordi Sardans
- CSIC, Global Ecology CREAF-CEAB-CSIC-UAB, Cerdanyola del Valles, Barcelona, Catalonia 08193, Spain; CREAF, Cerdanyola del Valles, Barcelona, Catalonia 08193, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology CREAF-CEAB-CSIC-UAB, Cerdanyola del Valles, Barcelona, Catalonia 08193, Spain; CREAF, Cerdanyola del Valles, Barcelona, Catalonia 08193, Spain
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
18
|
Unexpectedly minor nitrous oxide emissions from fluvial networks draining permafrost catchments of the East Qinghai-Tibet Plateau. Nat Commun 2022; 13:950. [PMID: 35177650 PMCID: PMC8854393 DOI: 10.1038/s41467-022-28651-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022] Open
Abstract
Streams and rivers emit substantial amounts of nitrous oxide (N2O) and are therefore an essential component of global nitrogen (N) cycle. Permafrost soils store a large reservoir of dormant N that, upon thawing, can enter fluvial networks and partly degrade to N2O, yet the role of waterborne release of N2O in permafrost regions is unclear. Here we report N2O concentrations and fluxes during different seasons between 2016 and 2018 in four watersheds on the East Qinghai-Tibet Plateau. Thawing permafrost soils are known to emit N2O at a high rate, but permafrost rivers draining the East Qinghai-Tibet Plateau behave as unexpectedly minor sources of atmospheric N2O. Such low N2O fluxes are associated with low riverine dissolved inorganic N (DIN) after terrestrial plant uptake, unfavorable conditions for N2O generation via denitrification, and low N2O yield due to a small ratio of nitrite reductase: nitrous oxide reductase in these rivers. We estimate fluvial N2O emissions of 0.432 - 0.463 Gg N2O-N yr-1 from permafrost landscapes on the entire Qinghai-Tibet Plateau, which is marginal (~0.15%) given their areal contribution to global streams and rivers (0.7%). However, we suggest that these permafrost-affected rivers can shift from minor sources to strong emitters in the warmer future, likely giving rise to the permafrost non-carbon feedback that intensifies warming.
Collapse
|
19
|
Yang P, Luo L, Tang KW, Lai DYF, Tong C, Hong Y, Zhang L. Environmental drivers of nitrous oxide emission factor for a coastal reservoir and its catchment areas in southeastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118568. [PMID: 34838712 DOI: 10.1016/j.envpol.2021.118568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
While Asia is projected to be one of the major nitrous oxide (N2O) sources in the coming decades, a more accurate assessment of N2O budget has been hampered by low data resolution and poorly constrained emission factor (EF). Since urbanized coastal reservoirs receive high nitrogen loads from diverse sources across a heterogeneous landscape, the use of a single fixed EF may lead to large errors in N2O assessment. In this study, we conducted high spatial resolution sampling of dissolved N2O, nitrate-nitrogen (NO3--N) and other physico-chemical properties of surface water in Wenwusha Reservoir and other types of water bodies (river, drainage channels, and aquaculture ponds) in its catchment areas in southeastern China between November 2018 and June 2019. The empirically derived EF (calculated as N2O-N:NO3--N) for the reservoir showed considerable spatial variations, with a 10-fold difference ranging from 0.8 × 10-3 to 8.8 × 10-3. The average EF varied significantly among the four types of water bodies in the following descending order: aquaculture ponds > river > drainage channels > reservoir. Across all the water bodies, the mean EF in summer was 1.8-3.5 and 1.7-2.8 fold higher than that in autumn and spring, respectively, owing to the elevated water temperature. Overall, our derived EF deviated considerably from the IPCC default value, which implied that the use of default EF could result in over- or under-estimation of N2O emissions by up to 42%. We developed a multiple regression model that could explain 82% of the variance in EF based on water temperature and the ratio between dissolved organic carbon and nitrate-nitrogen (p < 0.001), which could be used to improve the estimate of EF for assessing N2O emission from coastal reservoirs and other similar environments.
Collapse
Affiliation(s)
- Ping Yang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China.
| | - Liangjuan Luo
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Kam W Tang
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, China
| | - Chuan Tong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| | - Yan Hong
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China
| | - Linhai Zhang
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, PR China; Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou, 350007, PR China
| |
Collapse
|
20
|
Hu M, Li B, Wu K, Zhang Y, Wu H, Zhou J, Chen D. Modeling Riverine N 2O Sources, Fates, and Emission Factors in a Typical River Network of Eastern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13356-13365. [PMID: 34521193 DOI: 10.1021/acs.est.1c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Estimates of riverine N2O emission contain great uncertainty because of the lack of quantitative knowledge concerning riverine N2O sources and fates. Using a 3.5-year record of monthly N2O measurements from the Yongan River network of eastern China, we developed a mass-balance model to address the riverine N2O source and sink processes. We achieved reasonable model efficacies (R2 = 0.44-0.84, Nash-Sutcliffe coefficients = 0.40-0.80) across three tributaries and the entire river system. Estimated riverine N2O loads originated from groundwater (38-88%), surface runoff (3-26%), and in-stream production (4-48%). Estimated in-stream losses via atmospheric release + complete denitrification accounted for 76, 95, 25, and 89% of riverine N2O fate for the agricultural, residential, forest, and entire river system, respectively. Considering limited complete denitrification, the model estimated an upper-bound riverine N2O emission rate of 2.65 ton N2O-N km-2 year-1 for the entire river system. Riverine N2O emission estimates were of comparable magnitude to those estimated with a power-law scaling model. Riverine N2O emissions using the IPCC default emission factor (0.26%) overestimated emissions by 3-15 times, whereas the dissolved N2O concentration-based emission factor overestimated or underestimated emissions. This study highlights the importance of combining comprehensive information on N2O sources and fates to achieve accurate riverine N2O emission estimates.
Collapse
Affiliation(s)
- Minpeng Hu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Bingqing Li
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Kaibin Wu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yufu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Hao Wu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Jia Zhou
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
| | - Dingjiang Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Yang P, Huang J, Tan L, Tong C, Jin B, Hu B, Gao C, Yuan J, Lai DYF, Yang H. Large variations in indirect N 2O emission factors (EF 5) from coastal aquaculture systems in China from plot to regional scales. WATER RESEARCH 2021; 200:117208. [PMID: 34048983 DOI: 10.1016/j.watres.2021.117208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture ponds are important anthropogenic sources of nitrous oxide (N2O). Direct N2O emissions arising from feed application to ponds have been widely investigated, but indirect emissions from N2O production from residual feeds in pond water are much less understood and characterized to refine the IPCC emission factor. In this study, we determined the concentrations and spatiotemporal variations of dissolved N2O and NO3--N in situ in three aquaculture ponds at the Min River Estuary in southeastern China during the culture period over two years, and calculated the indirect N2O emission factor (EF5) for aquaculture ponds using the N2O-N/NO3--N mass ratio methodology. Our results indicated that the EF5 values in the ponds over the culture period ranged between 0.0007 and 0.0543, with a clear seasonal pattern which closely followed that of the DOC:NO3-N ratio. We also observed significant spatial variations in EF5 among the three ponds, which could be attributed to the difference in feed conversion rate. In addition, we assessed the EF5 values from aquaculture ponds in five regions of the Chinese coastline across the latitudinal gradient from the tropical to the temperate zones. The average EF5 value from aquaculture ponds across the five coastal regions was 0.0093±0.0024, which was approximately 3.7 times of the IPCC default value for rivers and estuaries (0.0025). Moreover, the EF5 values demonstrated considerable spatial variations across these coastal regions with a coefficient of variation of 59%, which were largely related to the difference in water salinity. Our findings filled a key knowledge gap about the indirect N2O emission factor from aquaculture ponds, and provided field evidence for the refinement of EF5 value currently adopted by IPCC in the national greenhouse gas inventory.
Collapse
Affiliation(s)
- Ping Yang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Jiafang Huang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China
| | - Lishan Tan
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, East China Normal University, Shanghai 200241, P.R. China
| | - Chuan Tong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350007, P.R. China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China.
| | - Baoshi Jin
- School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, P.R. China; College of Resources and Environment Science, Anqing Normal University, Anqing, 246011, P.R. China
| | - Beibei Hu
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, P.R. China
| | - Changjun Gao
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, P.R. China
| | - Junji Yuan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, P.R. China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P.R. China.
| | - Hong Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, P.R. China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK.
| |
Collapse
|
22
|
Wang G, Xia X, Liu S, Zhang S, Yan W, McDowell WH. Distinctive Patterns and Controls of Nitrous Oxide Concentrations and Fluxes from Urban Inland Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8422-8431. [PMID: 34018725 DOI: 10.1021/acs.est.1c00647] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inland waters are significant sources of nitrous oxide (N2O), a powerful greenhouse gas. However, considerable uncertainty exists in the estimates of N2O efflux from global inland waters due to a lack of direct measurements in urban inland waters, which are generally characterized by high carbon and nitrogen concentrations and low carbon-to-nitrogen ratios. Herein, we present direct measurements of N2O concentrations and fluxes in lakes and rivers of Beijing, China, during 2018-2020. N2O concentrations and fluxes in the waters of Beijing exceeded previous estimates of global rivers due to the high carbon and nutrient concentrations and high aquatic productivity. In contrast, the N2O emission factor (N2O-N/DIN, median 0.0005) was lower than global medians and the N2O yield (ΔN2O/(ΔN2O + ΔN2), average 1.6%) was higher than those typically observed in rivers and streams. The positive relationship between N2O emissions and denitrifying bacteria as well as the Michaelis-Menten relationship between N2O emissions and NO3--N concentrations suggested that bacteria control the net production of N2O in waters of Beijing with N saturation, leading to a low N2O emission factor. However, low carbon-to-nitrogen ratios are beneficial for N2O accumulation during denitrification, resulting in high N2O yields. This study demonstrates the significant N2O emissions and their distinctive patterns and controls in urban inland waters and suggests that N2O emission estimates based on nitrogen loads and simple emission factor values are not appropriate for urban inland water systems.
Collapse
Affiliation(s)
- Gongqin Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shaoda Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Sibo Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Weijin Yan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
23
|
Grossel A, Bourennane H, Ayzac A, Pasquier C, Hénault C. Indirect emissions of nitrous oxide in a cropland watershed with contrasting hydrology in central France. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142664. [PMID: 33601668 DOI: 10.1016/j.scitotenv.2020.142664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) is an important greenhouse gas. Its atmospheric concentration have increased with the industrialisation and the use of N fertilizer. The contribution of freshwater systems to N2O emissions is still very uncertain, while regional transfer of nitrogen depends on soil and hydrology. Riverine and spring N2O dissolved in water was therefore measured over two years in the 3453 km2 Haut-Loir watershed (France). This temperate cropland watershed is characterized by two different hydrological systems east and west of the Loir River. The eastern rivers, fed by the emergence of the deep Beauce aquifer, exhibited significantly higher dissolved N2O concentrations (Beauce region, mean: 2.93 μg-N L-1) than the western rivers (Perche region, mean: 0.87 μg-N L-1), which were largely influenced by runoff during winter flooding. The eastern rivers had large nitrate concentrations all over the year; in the Perche, nitrate underwent a seasonal cycle with large loads during winter floods, but there were no consistent seasonal patterns in N2O. The ratios of N2O in excess of equilibrium on nitrate, often used as a proxy of emission factor (EF), were much smaller than the default IPCC values, both for rivers (0.014% versus 0.25% for IPCC EF5r) and the Loir spring (0.085% versus 0.6% for the IPCC EF5g for groundwater and springs). EF5r were significantly different between the two parts of the watershed only in winter, because of the seasonal variability of NO3-. Moreover dissolved N2O is controlled not only by NO3-, as it is considered in the calculation of the EF5, but also by water pH and dissolved organic carbon. A good prediction of dissolved N2O was obtained using these physicochemical variables and hydrological regions. Thus, these results suggest that the spatial variability of riverine N2O depends on local hydrology, while further research is needed to understand the seasonal variability.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Hénault
- INRAE, URSOLS, F-45074 Orléans, France; INRAE, UMR Agroécologie, Dijon, France
| |
Collapse
|
24
|
Xia X, Zhang L, Wang G, Wang J, Zhang L, Zhang S, Li Z. Nitrogen loss from a turbid river network based on N 2 and N 2O fluxes: Importance of suspended sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143918. [PMID: 33316525 DOI: 10.1016/j.scitotenv.2020.143918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Riverine nitrogen loss makes a large contribution to the global nitrogen budget. However, little research has focused on nitrogen loss from large turbid rivers with high suspended sediment (SPS) concentrations. In this work, nitrogen loss amounts and related drivers were studied across fluvial networks of the Yellow River, the largest turbid river in the world, based on in situ measurement of nitrogen gas (N2) and nitrous oxide (N2O) fluxes at the water-air interface via the diffusion model and floating chamber methods, respectively. The results showed that N2 and N2O fluxes from the Yellow River ranged from -2.93 to 48.54 mmol m-2 d-1 and from 2.42 to 712.23 μmol m-2 d-1, respectively, with the nitrogen loss amount estimated to be 5.56 × 107 kg N yr-1 for the Yellow River, including the mainstem and main tributaries. Other than nitrogen compounds and water temperature, nitrogen loss from the Yellow River was also affected by SPS. Both N2 flux: DIN and N2O flux: DIN ratios increased remarkably in the middle reaches, probably due to a sharp increase of SPS concentration in this section. Furthermore, greater SPS concentrations were a main cause for the higher N2O flux in the middle reaches than those in the other reaches of the Yellow River, and the possible effect of SPS was stronger on N2O flux than on N2 flux. This study demonstrates the importance of SPS in nitrogen loss from large turbid rivers, and more research is demanded to further clarify the role of SPS in riverine nitrogen cycle.
Collapse
Affiliation(s)
- Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China.
| | - Ling Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China; Key Laboratory of Yellow River Sediment Research, Yellow River Institute of Hydraulic Research, Zhengzhou, China
| | - Gongqin Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junfeng Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Liwei Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Sibo Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Zhihuang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
25
|
Zhang W, Li H, Xiao Q, Jiang S, Li X. Surface nitrous oxide (N 2O) concentrations and fluxes from different rivers draining contrasting landscapes: Spatio-temporal variability, controls, and implications based on IPCC emission factor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114457. [PMID: 32247923 DOI: 10.1016/j.envpol.2020.114457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Increasing indirect nitrous oxide (N2O) emission from river networks as a result of enhanced human activities on landscapes has become a global issue, as N2O has been widely recognized as an important ozone-depleting greenhouse gas. However, indirect N2O emissions from different rivers, particularly for those that drain completely different landscapes, are poorly understood. Here, we investigated the spatial-temporal variability of N2O emissions among the different rivers in the Chaohu Lake Basin of Eastern China. Our results showed that river reaches in urban watersheds are the hotspots of N2O production, with a mean N2O concentration of ∼410 nmol L-1, which is 9-18 times greater than those mainly draining forested (23 nmol L-1), agricultural (42 nmol L-1) and mixed (45 nmol L-1) landscapes. Riverine dissolved N2O was generally supersaturated with respect to the atmosphere. Such N2O saturation can best be explained by nitrogen availability, except for those in the forested watersheds, where dissolved oxygen is thought to be the primary predictor. The estimated N2O fluxes in urban rivers reached ∼471 μmol m-2 d-1, a value of ∼22, 13, and 11 times that in forested, agricultural and mixed watersheds, respectively. Averaged riverine N2O emission factors (EF5r) of the forested, agricultural, urban and mixed watersheds were 0.066%, 0.12%, 0.95% and 0.16%, respectively, showing different deviations from the default EF5r that released by IPCC in 2019. This points to a need for more field measurements with wider spatial coverage and finer frequency to further refine the EF5r and to better reveal the mechanisms behind indirect N2O emissions as influenced by watershed landscapes.
Collapse
Affiliation(s)
- Wangshou Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hengpeng Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Qitao Xiao
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sanyuan Jiang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyan Li
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
26
|
Gao X, Ouyang W, Lin C, Wang K, Hao F, Hao X, Lian Z. Considering atmospheric N 2O dynamic in SWAT model avoids the overestimation of N 2O emissions in river networks. WATER RESEARCH 2020; 174:115624. [PMID: 32092545 DOI: 10.1016/j.watres.2020.115624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/08/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Modeling studies have focused on N2O emissions in temperate rivers under static atmospheric N2O (N2Oairc), with cold temperate river networks under dynamic N2Oairc receiving less attention. To address this knowledge and methodological gap, the dissolved N2O concentration (N2Odisc) and N2Oairc algorithms were integrated with an air-water gas exchange model (FN2O) into the SWAT (Soil and Water Assessment Tool). This new model (SWAT-FN2O) allows users to simulate daily riverine N2O emissions under dynamic atmospheric N2O. The spatiotemporal fluctuations in the riverine N2O emissions was simulated and its response to the static and dynamic atmospheric N2O were analyzed in a middle-high latitude agricultural watershed in northeastern China. The results show that the SWAT-FN2O model is a useful method for capturing the hotspots in riverine N2O emissions. The model showed strong riverine N2O absorption and weak N2O emissions from September to February, which acted as a sink for atmospheric N2O in this cold temperate area. High N2O emissions occurred from April to July, which accounted for 83.34% of the yearly emissions. Spatial analysis indicated that the main stream and its tributary could contribute 302.3-1043.7 and 41.5-163.4 μg N2O/(m2·d) to the total riverine N2O emissions (15.02 t/a), respectively. The riverine N2O emissions rates in the subbasins dominated by forests and paddy fields were lower than those in the subbasins dominated by arable and residential land. Riverine N2O emissions can be overestimated under the static atmospheric N2O rather than under the increasing atmospheric N2O. This overestimation has increased from 1.52% to 23.97% from 1990 to 2016 under the static atmospheric N2O. The results of this study are valuable for water quality and future climate change assessments that aim to protect aquatic and atmospheric environments.
Collapse
Affiliation(s)
- Xiang Gao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China; College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China.
| | - Chunye Lin
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Kaicun Wang
- College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China
| | - Fanghua Hao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Xin Hao
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| | - Zhongmin Lian
- School of Environment, State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
27
|
Ma P, Li X, Chen F, Liu S, Hou C. The isotopomer ratios of N 2O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and productions of N 2O in the heavy ammonia polluted rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:1315-1326. [PMID: 31412465 DOI: 10.1016/j.scitotenv.2019.06.080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
In order to figure out the effects of nitrogen pollution and dams on N2O production paths in the river systems, the isotopomer ratios in N2O, NH4+ and NO3-, as well as N2 concentrations and physico-chemical characteristics of water and sediments from the Shaying River system, which is the biggest tributary and major NH4+ contributor of the Huai River, were analyzed in the years 2015 and 2016. The results showed that the net productions of N2O (△N2O) in the river were pretty high, ranging from 12.9 to 440 nmol/L. N2O exhibited a narrow range in δ15Nbulk (-0.04 to 13.51‰), nevertheless a wide range in δ18O (22.54 to 59.90‰). Isotopocule diagram and Pearson correlation analysis indicated that isotopomer ratios of N2O were significantly affected by the mixing of N2O from difference production paths, not by N2O reduction. Relative contributions of nitrification and denitrification to N2O in the Shaying river system were deduced from the two end-members model. The contribution of nitrification to gross N2O was 58.5% on average, almost equal to the contribution of denitrification in summer, although denitrification was the dominant N2O source with average contribution of 75.6% in winter. No significant relationship was found either between △N2O and NH4+ or between △N2O and NO3- in the Shaying River. Heavy NO3- and COD loading reduced nitrification and increased the relative contribution of denitrification to N2O in winter. Heavy ammonia pollution caused pH values to decrease apparently, from 7.5 ± 0.3 in July to 6.3 ± 0.1 in December, resulting in denitrification being the dominant source to N2O in winter. Assimilation enhanced by the construction of dams had weakened the contribution of nitrification to N2O in summer in the Shaying River.
Collapse
Affiliation(s)
- Pei Ma
- School of Resources and Environment Engineering, Henan University of Engineering, Zhengzhou 451191, Henan, China.
| | - Xinyan Li
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu, China
| | - Feng Chen
- School of Resources and Environment Engineering, Henan University of Engineering, Zhengzhou 451191, Henan, China
| | - Shuaixia Liu
- School of Resources and Environment Engineering, Henan University of Engineering, Zhengzhou 451191, Henan, China
| | - Cuicui Hou
- College of Life Sciences, Henan Normal university, Xinxiang 453007, Henan, China
| |
Collapse
|
28
|
Qin X, Li Y, Goldberg S, Wan Y, Fan M, Liao Y, Wang B, Gao Q, Li Y. Assessment of Indirect N 2O Emission Factors from Agricultural River Networks Based on Long-Term Study at High Temporal Resolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10781-10791. [PMID: 31438664 DOI: 10.1021/acs.est.9b03896] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessment of indirect emission factors (EF5r) of nitrous oxide (N2O) from agricultural river networks remains challenging, and results are uncertain due to limited data availability. This study compared two methods of assessing EF5r using data from long-term observations at high temporal resolution in a typical agricultural catchment in subtropical central China. The concentration method (method 1) and the Intergovernmental Panel on Climate Change (IPCC) 2006 method (method 2) were employed to evaluate the emission factor. EF5r estimated using method 1 (i.e., EF5r1) was 0.00077 ± 0.00025 (0.00038-0.00097). EF5r calculated using method 2 (i.e., EF5r2) was lower than EF5r1, with a mean value of 0.00004 (0.000015-0.00012). Both EF5r1 and EF5r2 were significantly lower than the IPCC 2006 default value of 0.0025, suggesting that N2O emissions from China and world river networks may be grossly overestimated. A complex N2O production pathway and diffusion mechanism were responsible for the transfer of N2O from the sediment to river water and then to the atmosphere. These findings provide essential data for refining national greenhouse gas inventories and contribute evidence for downward revision of indirect emission factors adopted by the IPCC.
Collapse
Affiliation(s)
- Xiaobo Qin
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Yong Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha 410125 , China
| | - Stefanie Goldberg
- Kunming Institute of Botany , Chinese Academy of Sciences , Kunming 6502021 , China
| | - Yunfan Wan
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Meirong Fan
- Changsha Environmental Protection College , Changsha 410004 , China
| | - Yulin Liao
- Soils and Fertilizer Institute of Hunan Province , Changsha 410125 , China
| | - Bin Wang
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| | - Yu'e Li
- Institute of Environment and Sustainable Development in Agriculture , Chinese Academy of Agricultural Sciences/Key Laboratory for Agro-Environment, Ministry of Agriculture and Rural Affairs , No.12, Zhongguancun South Street , Haidian District, Beijing 100081 , China
| |
Collapse
|
29
|
Xiao Q, Hu Z, Fu C, Bian H, Lee X, Chen S, Shang D. Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:185-192. [PMID: 31078090 DOI: 10.1016/j.envpol.2019.04.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Agriculture is one of major emission sources of nitrous oxide (N2O), an important greenhouse gas dominating stratospheric ozone destruction. However, indirect N2O emissions from agriculture watershed water surfaces are poorly understood. Here, surface-dissolved N2O concentration in water bodies of the agricultural watershed in Eastern China, one of the most intensive agricultural regions, was measured over a two-year period. Results showed that the dissolved N2O concentrations varied in samples taken from different water types, and the annual mean N2O concentrations for rivers, ponds, reservoir, and ditches were 30 ± 18, 19 ± 7, 16 ± 5 and 58 ± 69 nmol L-1, respectively. The N2O concentrations can be best predicted by the NO3--N concentrations in rivers and by the NH4+-N concentrations in ponds. Heavy precipitation induced hot moments of riverine N2O emissions were observed during farming season. Upstream waters are hot spots, in which the N2O production rates were two times greater than in non-hotspot locations. The modeled watershed indirect N2O emission rates were comparable to direct emission from fertilized soil. A rough estimate suggests that indirect N2O emissions yield approximately 4% of the total N2O emissions yield from N-fertilizer at the watershed scale. Separate emission factors (EF) established for rivers, ponds, and reservoir were 0.0013, 0.0020, and 0.0012, respectively, indicating that the IPCC (Inter-governmental Panel on Climate Change) default value of 0.0025 may overestimate the indirect N2O emission from surface water in eastern China. EF was inversely correlated with N loading, highlighting the potential constraints in the IPCC methodology for water with a high anthropogenic N input.
Collapse
Affiliation(s)
- Qitao Xiao
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Congsheng Fu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hang Bian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xuhui Lee
- Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, 210044, China; School of Forestry and Environmental Studies, Yale University, New Haven, CT, 06511, USA
| | - Shutao Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Dongyao Shang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
30
|
Zhou W, Lin J, Tang Q, Wei Z, Schwenke G, Liu DL, Yan X. Indirect N 2O emissions from groundwater under high nitrogen-load farmland in eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:238-246. [PMID: 30798025 DOI: 10.1016/j.envpol.2019.02.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Current estimates of global indirect N2O emissions are based on a relatively small dataset and remain a major source of uncertainly in the global N2O budget. Nitrogen (N)-enriched groundwater from agricultural fields may act as an important source of indirect N2O emissions as it discharges to adjacent watershed areas. During 2015-2017, dissolved N2O concentrations in groundwater were measured and indirect N2O emission factors (EF5g) calculated under three typical high-N land-use types (vineyard, vegetable field and paddy field) in eastern China. The average dissolved N2O concentrations in groundwater were 58.1 ± 40.4, 18.5 ± 11.5 and 0.72 ± 0.27 μg N L-1 for vineyard, vegetable field and paddy field, respectively. The dissolved N2O was over-saturated and was therefore a net source of N2O to the atmosphere. The indirect N2O emission factors (EF5g) of vineyard (0.0091) and vegetable (0.0092) fields were much higher than the current Intergovernmental Panel on Climate Change (IPCC) default value of 0.0025 which indicated that these land-uses may have led to indirect N2O emissions from the underlying groundwater. In contrast, the EF5g of the paddy field (0.0019) was slightly lower than the default EF5g proposed by IPCC (2006) and contributed minimal indirect N2O emissions to the atmosphere. However, the current IPCC method may have overestimated the contribution of groundwater N2O to the global N cycle because it took residual but not initial groundwater NO3--N concentration into account when calculating EF5g. Therefore, we proposed the adoption of an improved method for calculating the EF5g and compared it to the current IPCC (2006) method using data from the present study and other published data. The results of the comparison showed that the improved method was more scientifically appropriate measurement for calculating EF5g.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu, 215555, China
| | - Jinghui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu, 215555, China
| | - Quan Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhijun Wei
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Graeme Schwenke
- NSW Department of Primary Industries, 4 Marsden Park Road, Tamworth, NSW, 2340, Australia
| | - De Li Liu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia; Climate Change Research Centre and ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaoyuan Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Changshu Agro-ecological Experimental Station, Chinese Academy of Sciences, Changshu, 215555, China.
| |
Collapse
|
31
|
Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizábal T, Sigua G, Spokas K, Ippolito JA, Novak J. Biochar, soil and land-use interactions that reduce nitrate leaching and N 2O emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2354-2364. [PMID: 30336425 DOI: 10.1016/j.scitotenv.2018.10.060] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 05/14/2023]
Abstract
Biochar can reduce both nitrous oxide (N2O) emissions and nitrate (NO3-) leaching, but refining biochar's use for estimating these types of losses remains elusive. For example, biochar properties such as ash content and labile organic compounds may induce transient effects that alter N-based losses. Thus, the aim of this meta-analysis was to assess interactions between biochar-induced effects on N2O emissions and NO3- retention, regarding the duration of experiments as well as soil and land use properties. Data were compiled from 88 peer-reviewed publications resulting in 608 observations up to May 2016 and corresponding response ratios were used to perform a random effects meta-analysis, testing biochar's impact on cumulative N2O emissions, soil NO3- concentrations and leaching in temperate, semi-arid, sub-tropical, and tropical climate. The overall N2O emissions reduction was 38%, but N2O emission reductions tended to be negligible after one year. Overall, soil NO3- concentrations remained unaffected while NO3- leaching was reduced by 13% with biochar; greater leaching reductions (>26%) occurred over longer experimental times (i.e. >30 days). Biochar had the strongest N2O-emission reducing effect in paddy soils (Anthrosols) and sandy soils (Arenosols). The use of biochar reduced both N2O emissions and NO3- leaching in arable farming and horticulture, but it did not affect these losses in grasslands and perennial crops. In conclusion, the time-dependent impact on N2O emissions and NO3- leaching is a crucial factor that needs to be considered in order to develop and test resilient and sustainable biochar-based N loss mitigation strategies. Our results provide a valuable starting point for future biochar-based N loss mitigation studies.
Collapse
Affiliation(s)
- Nils Borchard
- Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sindang Barang, Bogor 16115, Indonesia; Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland.
| | - Michael Schirrmann
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany
| | - Maria Luz Cayuela
- Department of Soil and Water Conservation and Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain
| | - Claudia Kammann
- Geisenheim University, Department of Applied Ecology, Von-Lade-Straße 1, 65366 Geisenheim, Germany
| | - Nicole Wrage-Mönnig
- University of Rostock, Faculty of Agricultural and Environmental Sciences, Grassland and Fodder Sciences, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Jose M Estavillo
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, Apdo. 644, E-48080 Bilbao, Spain
| | - Teresa Fuertes-Mendizábal
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, Apdo. 644, E-48080 Bilbao, Spain
| | - Gilbert Sigua
- United States Department of Agriculture, Agriculture Research Service, Coastal Plains Research Center, 2611 West Lucas Street, Florence, SC 29501, USA
| | - Kurt Spokas
- United States Department of Agriculture, Agriculture Research Service, Soil & Water Management Research Unit, 439 Borlaug Hall, 1991 Buford Circle, University of Minnesota, St. Paul, MN 55108, USA
| | - James A Ippolito
- Department of Soil and Crop Sciences, C127 Plant Sciences Building, Colorado State University, Fort Collins, CO 80523-1170, USA
| | - Jeff Novak
- United States Department of Agriculture, Agriculture Research Service, Coastal Plains Research Center, 2611 West Lucas Street, Florence, SC 29501, USA
| |
Collapse
|
32
|
Wang G, Wang J, Xia X, Zhang L, Zhang S, McDowell WH, Hou L. Nitrogen removal rates in a frigid high-altitude river estimated by measuring dissolved N 2 and N 2O. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:318-328. [PMID: 30025239 DOI: 10.1016/j.scitotenv.2018.07.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Rivers are important sites of both nitrogen removal and emission of nitrous oxide (N2O), a powerful greenhouse gas. Previous measurements have focused on nitrogen-rich temperate rivers, with cold, low-nitrogen river systems at high-altitude receiving less attention. Here, nitrogen removal rates were estimated by directly measuring dissolved N2 and N2O of the Yellow River in its source region of the Tibetan Plateau, a frigid high-altitude environment. We measured the dissolved N2 and N2O using N2:Ar ratio method and headspace equilibrium technique, respectively. Dissolved N2 in the river water ranged from 337 to 513 μmol N2 L-1, and dissolved N2O ranged from 10.4 to 15.4 nmol N2O L-1. Excess dissolved N2 (△N2) ranged from -8.6 to 10.5 μmol N2 L-1, while excess dissolved N2O (△N2O) ranged from 2.1 to 8.3 nmol N2O L-1; they were relatively low compared with most other rivers in the world. However, N2 removal fraction (△N2/DIN, average 21.6%) and EF5r values (N2O - N/NO3 - N, range 1.6 × 10-4-5.0 × 10-2) were comparable with many other rivers despite the high altitude for the Yellow River source region. Furthermore, the EF5r values increased with altitude. Estimated fluxes of N2 and N2O to the atmosphere from the river surface ranged from -67.5 to 93.5 mmol N m-2 d-1 and from 4.8 to 93.8 μmol N m-2 d-1, respectively, and the nitrogen removal from rivers was estimated to be 1.87 × 107 kg N yr-1 for the Yellow River source region. This is the first report of nitrogen removal for a frigid high-altitude river; the results suggest that N removal and N2O emission from cold high-altitude rivers should be considered in the global nitrogen budget.
Collapse
Affiliation(s)
- Gongqin Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Junfeng Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Liwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Sibo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - William H McDowell
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| |
Collapse
|