1
|
Grapeloup C, Cornu S, Giraud X, Pupier J, Team A, Guillou V, Ciffroy P, Cabana BL, Couegnas C, Hatté C, Benedetti L. 36Cl, a new tool to assess soil carbon dynamics. Sci Rep 2023; 13:15085. [PMID: 37699917 PMCID: PMC10497631 DOI: 10.1038/s41598-023-41555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
Soil organic carbon is one of the largest surface pools of carbon that humans can manage in order to partially mitigate annual anthropogenic CO2 emissions. A significant element to assess soil sequestration potential is the carbon age, which is evaluated by modelling or experimentally using carbon isotopes. Results, however, are not consistent. The 14C derived approach seems to overestimate by a factor of 6-10 the average carbon age in soils estimated by modeling and 13C approaches and thus the sequestration potential. A fully independent method is needed. The cosmogenic chlorine nuclide, 36Cl, is a potential alternative. 36Cl is a naturally occurring cosmogenic radionuclide with a production that increased by three orders of magnitude during nuclear bomb tests. Part of this production is retained by soil organic matter in organochloride form and hence acts as a tracer of the fate of soil organic carbon. We here quantify the fraction and the duration of 36Cl retained in the soil and we show that retention time increases with depth from 20 to 322 years, in agreement with both modelling and 13C-derived estimates. This work demonstrates that 36Cl retention duration can be a proxy for the age of soil organic carbon.
Collapse
Affiliation(s)
- Cécile Grapeloup
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | - Sophie Cornu
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France.
| | - Xavier Giraud
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | - Julie Pupier
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | - Aster Team
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | - Valery Guillou
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| | | | | | | | - Christine Hatté
- LSCE, CEA, CNRS, UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette Cedex, France
- Institute of Physics, Silesian University of Technology (SUT), 44-100, Gliwice, Poland
| | - Lucilla Benedetti
- Aix Marseille University, CNRS, IRD, INRAE, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
2
|
Svensson T, Löfgren A, Saetre P, Kautsky U, Bastviken D. Chlorine Distribution in Soil and Vegetation in Boreal Habitats along a Moisture Gradient from Upland Forest to Lake Margin Wetlands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37469326 PMCID: PMC10399286 DOI: 10.1021/acs.est.2c09571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The assumed dominance of chloride (Cl-) in terrestrial ecosystems is challenged by observations of extensive formation of organically bound Cl (Clorg), resulting in large soil Cl storage and internal cycling. Yet, little is known about the spatial distribution of Cl in ecosystems. We quantified patterns of Cl distribution in different habitats along a boreal hillslope moisture gradient ranging from relatively dry upland coniferous forests to wet discharge areas dominated by alder. We confirmed that dry habitats are important for Cl storage but found that Cl pools tended to be larger in moist and wet habitats. The storage of Clorg was less important in wet habitats, suggesting a shift in the balance between soil chlorination and dechlorination rates. Cl concentrations in the herb layer vegetation were high in wet and moist sites attributed to a shift in plant species composition, indicating plant community-dependent ecosystem Cl cycling. Mass-balance calculations showed that internal Cl cycling increased overall ecosystem Cl residence times at all sites and that plant uptake rates of Cl- were particularly high at wet sites. Our results indicate that habitat characteristics including plant communities and hydrology are key for understanding Cl cycling in the environment.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| | | | - Peter Saetre
- Swedish Nuclear Fuel and Waste Management Co. (SKB), P.O. Box 3091, 169 03 Solna, Sweden
| | - Ulrik Kautsky
- Swedish Nuclear Fuel and Waste Management Co. (SKB), P.O. Box 3091, 169 03 Solna, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
3
|
Svensson T, Redon PO, Thiry Y, Montelius M, Bastviken D. Chlorination of soil organic matter: The role of humus type and land use. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150478. [PMID: 34582876 DOI: 10.1016/j.scitotenv.2021.150478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The levels of natural organic chlorine (Clorg) typically exceed levels of chloride in most soils and is therefore clearly of high importance for continental chlorine cycling. The high spatial variability raises questions on soil organic matter (SOM) chlorination rates among topsoils with different types of organic matter. We measured Clorg formation rates along depth profiles in six French temperate soils with similar Cl deposition using 36Cl tracer experiments. Three forest sites with different humus types and soils from grassland and arable land were studied. The highest specific chlorination rates (fraction of chlorine pool transformed to Clorg per time unit) among the forest soils were found in the humus layers. Comparing the forest sites, specific chlorination was highest in mull-type humus, characterized by high microbial activity and fast degradation of the organic matter. Considering non-humus soil layers, grassland and forest soils had similar specific chlorination rates in the uppermost layer (0-10 cm below humus layer). Below this depth the specific chlorination rate decreased slightly in forests, and drastically in the grassland soil. The agricultural soil exhibited the lowest specific chlorination rates, similar along the depth profile. Across all sites, specific chlorination rates were correlated with soil moisture and in combination with the patterns on organic matter types, the results suggest an extensive Cl cycling where humus types and soil moisture provided best conditions for microbial activity. Clorg accumulation and theoretical residence times were not clearly linked to chlorination rates. This indicates intensive Cl cycling between organic and inorganic forms in forest humus layers, regulated by humic matter reactivity and soil moisture, while long-term Clorg accumulation seems more linked with overall deep soil organic carbon stabilization. Thus, humus types and factors affecting soil carbon storage, including vegetation land use, could be used as indicators of potential Clorg formation and accumulation in soils.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden.
| | - Paul-Olivier Redon
- Andra, Research and Development Division, 1/7 rue Jean-Monnet, 92298 Chatenay-Malabry Cedex, France
| | - Yves Thiry
- Andra, Research and Development Division, 1/7 rue Jean-Monnet, 92298 Chatenay-Malabry Cedex, France
| | - Malin Montelius
- Swedish Geotechnical Institute (SGI), 581 93 Linköping, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
4
|
Effect of Soil Aggregate Separation Methods on the Occurrence Characteristics of Typical Pollutants. Processes (Basel) 2022. [DOI: 10.3390/pr10020216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To study the distribution characteristics of typical pollutants in soil aggregates using different sieving methods, urban and arable soils were collected from Beijing and separated to different sizes by dry and wet sieving methods, to analyze present concentrations of inorganic chlorine and nine typical heavy metals (Cr, Mn, Co, Ni, Cu, Zn, Cd, As, and Pb). Results revealed that the distribution of wet-sieved aggregates was biased towards microaggregates (<250 μm), while the contrary result was found for the dry sieving method. Inorganic chlorine was more likely to be enriched in <53 μm fractions attained by both sieving methods. However, the content of inorganic chlorine in wet-sieved aggregates was significantly lower than in those that were dry sieved, which means the water’s effect on soluble ions was more pronounced. Heavy metals in urban soils were preferentially enriched in microaggregates no matter what kind of sieving method was applied. As for Mn and As found in agricultural soils using the dry sieving method, they were preferentially enriched in the fractions of 1000–2000 μm and 250–1000 μm, while the other seven heavy metals were preferentially enriched in <53 μm fractions, indicating that Mn and As in agricultural soils were easily transferred in aggregates with different particle sizes. Samples with particle sizes <53 μm showed the highest distribution factors for all heavy metals when the wet sieving method was applied. The dry sieving method resulted in a higher mass loading of heavy metals in coarser fractions and lower proportions in finer fractions. Results of a potential ecological risk analysis showed that the ecological risk (Eri) value of Cd found in aggregates by the different sieving methods was significantly different (p < 0.05). The findings suggest that different sieving methods could result in different occurrence patterns of pollutants in the soil aggregates of different land use types.
Collapse
|
5
|
Svensson T, Kylin H, Montelius M, Sandén P, Bastviken D. Chlorine cycling and the fate of Cl in terrestrial environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7691-7709. [PMID: 33400105 PMCID: PMC7854439 DOI: 10.1007/s11356-020-12144-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 05/11/2023]
Abstract
Chlorine (Cl) in the terrestrial environment is of interest from multiple perspectives, including the use of chloride as a tracer for water flow and contaminant transport, organochlorine pollutants, Cl cycling, radioactive waste (radioecology; 36Cl is of large concern) and plant science (Cl as essential element for living plants). During the past decades, there has been a rapid development towards improved understanding of the terrestrial Cl cycle. There is a ubiquitous and extensive natural chlorination of organic matter in terrestrial ecosystems where naturally formed chlorinated organic compounds (Clorg) in soil frequently exceed the abundance of chloride. Chloride dominates import and export from terrestrial ecosystems while soil Clorg and biomass Cl can dominate the standing stock Cl. This has important implications for Cl transport, as chloride will enter the Cl pools resulting in prolonged residence times. Clearly, these pools must be considered separately in future monitoring programs addressing Cl cycling. Moreover, there are indications that (1) large amounts of Cl can accumulate in biomass, in some cases representing the main Cl pool; (2) emissions of volatile organic chlorines could be a significant export pathway of Cl and (3) that there is a production of Clorg in tissues of, e.g. plants and animals and that Cl can accumulate as, e.g. chlorinated fatty acids in organisms. Yet, data focusing on ecosystem perspectives and combined spatiotemporal variability regarding various Cl pools are still scarce, and the processes and ecological roles of the extensive biological Cl cycling are still poorly understood.
Collapse
Affiliation(s)
- Teresia Svensson
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden.
| | - Henrik Kylin
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Malin Montelius
- Swedish Geotechnical Institute (SGI), SE-581 93, Linkoping, Sweden
| | - Per Sandén
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
| | - David Bastviken
- Department of Thematic Studies - Environmental Change, Linköping University, SE-581 83, Linkoping, Sweden
| |
Collapse
|
6
|
Banks PJ, Banks JC. Relationship between soil and groundwater salinity in the Western Canada Sedimentary Basin. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:761. [PMID: 31745657 DOI: 10.1007/s10661-019-7865-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Saturated soil paste extracts indicate soluble ions in soil pore water that are available to vegetation. As such, they are thought to accurately describe the relationship between soil and groundwater salinity. To test this assumption, soil and groundwater samples were collected from 575 monitoring wells in saline regions of the Western Canadian Sedimentary Basin (WCSB). Samples were analyzed for electrical conductivity (EC) and Cl-, Na+, Ca2+, Mg2+, K+, SO42-, and HCO- 3 content. We compared groundwater ionic concentrations to paste extracts derived from matching soils, finding that differences from in situ soil porosity cause saturated pastes to underestimate groundwater salinity. Therefore, we provide pedotransfer functions for accurately calculating groundwater quality from soil data. In addition, we discuss the effects of porosity and soil composition on the saturated paste method, as measured through hydraulic conductivity, saturation percent, and sample lithology. Groundwater salinity may also influence further leaching of salts from soil. As produced water (NaCl brine) spills are common across the sulfate-rich soils of the WCSB, we considered the effects of NaCl on leaching of other ions, finding that influx of Na+ into groundwater is associated with increased sulfate leaching from soil. Therefore, considering the secondary effects of produced water on groundwater quality is essential to spill management.
Collapse
Affiliation(s)
- Parker J Banks
- Matrix Solutions Inc., Suite 600, 214-11 Ave SW, Calgary, AB, T2R 0K1, Canada.
| | - John C Banks
- Matrix Solutions Inc., Suite 600, 214-11 Ave SW, Calgary, AB, T2R 0K1, Canada
| |
Collapse
|