1
|
Zhan F, Li Y, Shunthirasingham C, Oh J, Lei YD, Lu Z, Ben Chaaben A, Lee K, Gobas FAPC, Hung H, Breivik K, Wania F. Archetypes of Spatial Concentration Variability of Organic Contaminants in the Atmosphere: Implications for Identifying Sources and Mapping the Gaseous Outdoor Inhalation Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18273-18283. [PMID: 39359192 PMCID: PMC11485095 DOI: 10.1021/acs.est.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Whereas inhalation exposure to organic contaminants can negatively impact human health, knowledge of their spatial variability in the ambient atmosphere remains limited. We analyzed the extracts of passive air samplers deployed at 119 unique sites in Southern Canada between 2019 and 2022 for 353 organic vapors. Hierarchical clustering of the obtained data set revealed four archetypes of spatial concentration variability in the outdoor atmosphere, which are indicative of common sources and similar atmospheric dispersion behavior. "Point Source" signatures are characterized by elevated concentration in the vicinity of major release locations. A "Population" signature applies to compounds whose air concentrations are highly correlated with population density, and is associated with emissions from consumer products. The "Water Source" signature applies to substances with elevated levels in the vicinity of water bodies from which they evaporate. Another group of compounds displays a "Uniform" signature, indicative of a lack of major sources within the study area. We illustrate how such a data set, and the derived spatial patterns, can be applied to support the identification of sources, the quantification of atmospheric emissions, the modeling of air quality, and the investigation of potential inequities in inhalation exposure.
Collapse
Affiliation(s)
- Faqiang Zhan
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Yuening Li
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | | | - Jenny Oh
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Ying Duan Lei
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Amina Ben Chaaben
- Institut
des Sciences de la Mer, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Kelsey Lee
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Frank A. P. C. Gobas
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Hayley Hung
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Knut Breivik
- Norwegian
Institute for Air Research, P.O. Box
100, Kjeller NO-2027, Norway
| | - Frank Wania
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C
1A4, Canada
| |
Collapse
|
2
|
Bidleman TF, Agosta K, Shipley E, Tysklind M, Vlahos P. Air-surface exchange of halomethoxybenzenes in a Swedish subarctic catchment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174849. [PMID: 39025150 DOI: 10.1016/j.scitotenv.2024.174849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Halomethoxybenzenes (HMBs) and related halomethoxyphenols are produced naturally in the marine and terrestrial environment and some also have anthropogenic origins. They are relatively volatile and water soluble and undergo atmospheric exchange with water bodies and soil. Here we report air-surface exchange of HMB compounds brominated anisoles and chlorinated dimethoxybenzenes in a Subarctic lake and catchment in Sweden during September 2022. HMBs were isolated from water on solid-phase extraction cartridges and from ground litter/soil by solvent extraction and determined by capillary gas chromatography - quadrupole mass spectrometry. Identified compounds in lake and stream water in the 10-100 pg L-1 range were 1,2,4,5-tetrachloro-3,6-dimethoxybenzene (DAME) > 2,4-dibromoanisole (DiBA) ≥ 2,4,6-tribromoanisole (TriBA) > 1,2,3,4-tetrachloro-5,6-dimethoxybenzene (tetrachloroveratrole, TeCV). DAME and the related compound 2,3,5,6-tetrachloro-4-methoxyphenol (DA) are reported in Subarctic litter/soil in the range 0.005-1.1 mg kg-1 dry weight (dw), whereas DiBA and TriBA were not detected in any litter/soil sample and TeCV in only one. Exchanges were assessed from concentrations in water and soil, air concentrations from a monitoring station at Pallas, Finland, and the physicochemical properties of the HMBs. Fluxes to and from the lake were estimated using the two-film gas exchange model. Net loadings (deposition minus volatilization) for the month of September were - 23, -15 and - 68 g for DiBA, TriBA and DAME, respectively, which amounted to about 4-7 % of the estimated lake inventory. An exchange assessment for DAME from litter/soil showed significant net volatilization at five sites, net deposition at one site and near-equilibrium at one site. The Torneträsk catchment appeared close to steady state with respect to HMB exchange during September 2022. The situation could be different during the warmer and colder seasons, and extending the study to cover these periods is a suggested next step.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | - Kathleen Agosta
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Emma Shipley
- Department of Marine Science, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Penny Vlahos
- Department of Marine Science, University of Connecticut, 1080 Shennecossett Road, Groton, CT 06340, USA
| |
Collapse
|
3
|
Liu Y, Hou X, Li X, Liu J, Jiang G. Simultaneous determination of 19 bromophenols by gas chromatography-mass spectrometry (GC-MS) after derivatization. Talanta 2024; 274:126015. [PMID: 38581850 DOI: 10.1016/j.talanta.2024.126015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Bromophenols (BPs) are a class of ubiquitous emerging halogenated pollutants. Their 19 congeners are problematically separated and detected. This work described the separation and detection of 19 BP congeners by gas chromatography-mass spectrometry (GC-MS). Investigations into the derivatization of bromophenols were carried out using two silylation reagents (N,O-bis(trimethylsilyl)trifluoroacetamide and N-methyl-N-(trimethylsily)trifluoroacetamide), two alkylation reagents (methyl iodide and trimethylsilyldiazomethane) and acetic anhydride prior to GC-MS analysis. Optimal chromatographic separation, sensitivity, and linearity were achieved after BP derivatization using acetic anhydride, featuring the equipment detection limits of 0.39-1.26 pg and correlation coefficients of 0.9948-0.9999 (linear range: 0.5-250 ng mL-1) for all 19 BP congeners. Furthermore, the simultaneous determination of 19 bromophenols and 19 bromoanisoles, common environmental transformation products of BPs, is also demonstrated. The improved analytical performance on GC-MS after derivatization would benefit investigations on the environmental origins, behaviors and fates of BPs and their environmental metabolites.
Collapse
Affiliation(s)
- Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaoying Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
4
|
Zhan F, Shunthirasingham C, Li Y, Oh J, Lei YD, Ben Chaaben A, Dalpé Castilloux A, Lu Z, Lee K, Gobas FA, Alexandrou N, Hung H, Wania F. Sources and environmental fate of halomethoxybenzenes. SCIENCE ADVANCES 2023; 9:eadi8082. [PMID: 37824609 PMCID: PMC10569719 DOI: 10.1126/sciadv.adi8082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Halomethoxybenzenes are pervasive in the atmosphere at concentration levels that exceed, often by an order of magnitude, those of the persistent organic pollutants with which they share the attributes of persistence and potential for long-range transport, bioaccumulation, and toxic effects. Long ignored by environmental chemists because of their predominantly natural origin-namely, synthesis by terrestrial wood-rotting fungi, marine algae, and invertebrates-knowledge of their environmental pathways remains limited. Through measuring the spatial and seasonal variability of four halomethoxybenzenes in air and precipitation and performing complementary environmental fate simulations, we present evidence that these compounds undergo continental-scale transport in the atmosphere, which they enter largely by evaporation from water. This also applies to halomethoxybenzenes originating in terrestrial environments, such as drosophilin A methyl ether, which reach aquatic environments with runoff, possibly in the form of their phenolic precursors. Our findings contribute substantially to the comprehension of sources and fate of halomethoxybenzenes, illuminating their widespread atmospheric dispersal.
Collapse
Affiliation(s)
- Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | | | - Yuening Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Jenny Oh
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Amina Ben Chaaben
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Abigaëlle Dalpé Castilloux
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
| | - Kelsey Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Frank A. P. C. Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Nick Alexandrou
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| |
Collapse
|
5
|
Bidleman T, Andersson A, Brorström-Lundén E, Brugel S, Ericson L, Hansson K, Tysklind M. Halomethoxybenzenes in air of the Nordic region. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100209. [PMID: 36437890 PMCID: PMC9682362 DOI: 10.1016/j.ese.2022.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Halomethoxybenzenes (HMBs) are a group of compounds with natural and anthropogenic origins. Here we extend a 2002-2015 survey of bromoanisoles (BAs) in the air and precipitation at Råö on the Swedish west coast and Pallas in Subarctic Finland. New BAs data are reported for 2018 and 2019 and chlorinated HMBs are included for these and some previous years: drosophilin A methyl ether (DAME: 1,2,4,5-tetrachloro-3,6-dimethoxybenzene), tetrachloroveratrole (TeCV: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene), and pentachloroanisole (PeCA). The order of abundance of HMBs at Råö was ΣBAs > DAME > TeCV > PeCA, whereas at Pallas the order of abundance was DAME > ΣBAs > TeCA > PeCA. The lower abundance of BAs at Pallas reflects its inland location, away from direct marine influence. Clausius-Clapeyron (CC) plots of log partial pressure (Pair)/Pa versus 1/T suggested distant transport at both sites for PeCA and local exchange for DAME and TeCV. BAs were dominated by distant transport at Pallas and by both local and distant sources at Råö. Relationships between air and precipitation concentrations were examined by scavenging ratios, SR = (ng m-3)precip/(ng m-3)air. SRs were higher at Pallas than Råö due to greater Henry's law partitioning of gaseous compounds into precipitation at colder temperatures. DAME is produced by terrestrial fungi. We screened 19 fungal species from Swedish forests and found seven of them contained 0.01-3.8 mg DAME per kg fresh weight. We suggest that the volatilization of DAME from fungi and forest litter containing fungal mycelia may contribute to atmospheric levels at both sites.
Collapse
Affiliation(s)
- Terry Bidleman
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology & Environmental Science, Umeå University, 901 87, Umeå, Sweden
- Umeå Marine Science Centre, Umeå University, 905 71, Hörnefors, Sweden
| | - Eva Brorström-Lundén
- IVL, Swedish Environmental Research Institute (IVL), Aschebergsgatan 44, 411 33, Gothenburg, Sweden
| | - Sonia Brugel
- Department of Ecology & Environmental Science, Umeå University, 901 87, Umeå, Sweden
- Umeå Marine Science Centre, Umeå University, 905 71, Hörnefors, Sweden
| | - Lars Ericson
- Department of Ecology & Environmental Science, Umeå University, 901 87, Umeå, Sweden
| | - Katarina Hansson
- IVL, Swedish Environmental Research Institute (IVL), Aschebergsgatan 44, 411 33, Gothenburg, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
6
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
7
|
Zhang Q, Hou X, Wei L, Kong W, Luo Y, Ren Z, Sun Z, Liu J, Jiang G. Bromophenol Induced Multiple Stress Responses in Rice Plants: Impact of Doses and Congener Structures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16885-16894. [PMID: 36426421 DOI: 10.1021/acs.est.2c05731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bromophenols (BPs) have both natural and artificial sources in the environment and are frequently detected in plants. Herein, the ubiquitous 2,4,6-TriBP was hydroponically exposed to rice seedlings at two concentrations (0.2 and 2.0 mg/L) to characterize the dose-dependent abiotic stress responses of rice plants to BPs. The 2,4,6-TriBP induced oxidative damage to rice roots and subsequently inhibited plant transpiration and growth at the end of exposure in both concentrations. Moreover, the gene expression of OsUGT72B1 and the activity of glycosyltransferases of exposed rice roots were 2.36-to-4.41-fold and 1.23-to-1.72-fold higher than that of the blank controls after 24 h, following the formation of glycoconjugates in response to 2,4,6-TriBP exposure. It was notable that the glycosylation rates also showed a dose-effect relationship in rice roots. One and six glycoconjugates of 2,4,6-TriBP were detected in 0.2 and 2.0 mg/L exposure groups, respectively. Considering the detected species of glycoconjugates for four other types of BPs, the numbers of bromine atoms were found to dramatically affect their glycosylation process in rice plants. These results improve our fundamental understanding of the impact of congener structures and exposure concentrations of organic contaminants on the glycosylation process in response to phytotoxicity.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
8
|
Hung H, Halsall C, Ball H, Bidleman T, Dachs J, De Silva A, Hermanson M, Kallenborn R, Muir D, Sühring R, Wang X, Wilson S. Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1577-1615. [PMID: 35244108 DOI: 10.1039/d1em00485a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Climate change brings about significant changes in the physical environment in the Arctic. Increasing temperatures, sea ice retreat, slumping permafrost, changing sea ice regimes, glacial loss and changes in precipitation patterns can all affect how contaminants distribute within the Arctic environment and subsequently impact the Arctic ecosystems. In this review, we summarized observed evidence of the influence of climate change on contaminant circulation and transport among various Arctic environment media, including air, ice, snow, permafrost, fresh water and the marine environment. We have also drawn on parallel examples observed in Antarctica and the Tibetan Plateau, to broaden the discussion on how climate change may influence contaminant fate in similar cold-climate ecosystems. Significant knowledge gaps on indirect effects of climate change on contaminants in the Arctic environment, including those of extreme weather events, increase in forests fires, and enhanced human activities leading to new local contaminant emissions, have been identified. Enhanced mobilization of contaminants to marine and freshwater ecosystems has been observed as a result of climate change, but better linkages need to be made between these observed effects with subsequent exposure and accumulation of contaminants in biota. Emerging issues include those of Arctic contamination by microplastics and higher molecular weight halogenated natural products (hHNPs) and the implications of such contamination in a changing Arctic environment is explored.
Collapse
Affiliation(s)
- Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M5P 1W4, Canada.
| | - Crispin Halsall
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hollie Ball
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Terry Bidleman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Barcelona, Catalonia 08034, Spain
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mark Hermanson
- Hermanson & Associates LLC, 2000 W 53rd Street, Minneapolis, Minnesota 55419, USA
| | - Roland Kallenborn
- Department of Arctic Technology, University Centre in Svalbard (UNIS), Longyearbyen, 9171, Norway
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences (NMBU), Ås, 1432, Norway
| | - Derek Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Roxana Sühring
- Department for Environmental Science, Stockholm University, 114 19 Stockholm, Sweden
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xiaoping Wang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme Secretariat, The Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
9
|
Zhang Q, Kong W, Wei L, Wang Y, Luo Y, Wang P, Liu J, Schnoor JL, Jiang G. Uptake, phytovolatilization, and interconversion of 2,4-dibromophenol and 2,4-dibromoanisole in rice plants. ENVIRONMENT INTERNATIONAL 2020; 142:105888. [PMID: 32593840 PMCID: PMC7670850 DOI: 10.1016/j.envint.2020.105888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/26/2020] [Accepted: 06/10/2020] [Indexed: 05/27/2023]
Abstract
The structural analogs, 2,4-dibromophenol (2,4-DBP) and 2,4-dibromoanisole (2,4-DBA), have both natural and artificial sources and are frequently detected in environmental matrices. Their environmental fates, especially volatilization, including both direct volatilization from cultivation solution and phytovolatilization through rice plants were evaluated using hydroponic exposure experiments. Results showed that 2,4-DBA displayed stronger volatilization tendency and more bioaccumulation in aboveground rice tissues. Total volatilized 2,4-DBA accounted for 4.74% of its initial mass and was 3.43 times greater than 2,4-DBP. Phytovolatilization of 2,4-DBA and 2,4-DBP contributed to 6.78% and 41.7% of their total volatilization, enhancing the emission of these two contaminants from hydroponic solution into atmosphere. In this study, the interconversion processes between 2,4-DBP and 2,4-DBA were first characterized in rice plants. The demethylation ratio of 2,4-DBA was 12.0%, 32.0 times higher than methylation of 2,4-DBP. Formation of corresponding metabolites through methylation and demethylation processes also contributed to the volatilization of 2,4-DBP and 2,4-DBA from hydroponic solution into the air phase. Methylation and demethylation processes increased phytovolatilization by 12.1% and 36.9% for 2,4-DBP and 2,4-DBA. Results indicate that phytovolatilization and interconversion processes in rice plants serve as important pathways for the global cycles of bromophenols and bromoanisoles.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Bidleman TF, Andersson A, Haglund P, Tysklind M. Will Climate Change Influence Production and Environmental Pathways of Halogenated Natural Products? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6468-6485. [PMID: 32364720 DOI: 10.1021/acs.est.9b07709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thousands of halogenated natural products (HNPs) pervade the terrestrial and marine environment. HNPs are generated by biotic and abiotic processes and range in complexity from low molecular mass natural halocarbons (nHCs, mostly halomethanes and haloethanes) to compounds of higher molecular mass which often contain oxygen and/or nitrogen atoms in addition to halogens (hHNPs). nHCs have a key role in regulating tropospheric and stratospheric ozone, while some hHNPs bioaccumulate and have toxic properties similar those of anthropogenic-persistent organic pollutants (POPs). Both chemical classes have common sources: biosynthesis by marine bacteria, phytoplankton, macroalgae, and some invertebrate animals, and both may be similarly impacted by alteration of production and transport pathways in a changing climate. The nHCs scientific community is advanced in investigating sources, atmospheric and oceanic transport, and forecasting climate change impacts through modeling. By contrast, these activities are nascent or nonexistent for hHNPs. The goals of this paper are to (1) review production, sources, distribution, and transport pathways of nHCs and hHNPs through water and air, pointing out areas of commonality, (2) by analogy to nHCs, argue that climate change may alter these factors for hHNPs, and (3) suggest steps to improve linkage between nHCs and hHNPs science to better understand and predict climate change impacts.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology & Environmental Science, UmU, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, UmU, SE-905 71 Hörnefors, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| |
Collapse
|
11
|
Zhang Q, Liu Y, Lin Y, Kong W, Zhao X, Ruan T, Liu J, Schnoor JL, Jiang G. Multiple Metabolic Pathways of 2,4,6-Tribromophenol in Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7473-7482. [PMID: 31244074 PMCID: PMC6931395 DOI: 10.1021/acs.est.9b01514] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bromophenols occur naturally and are used globally as man-made additives in various industrial products. They are decomposition products of many emerging organic pollutants, such as tetrabromobisphenol A, polybrominated dibenzo- p-dioxin (PBDD), polybrominated diphenyl ethers (PBDE), and others. To characterize their biotransformation pathways, bromophenol congener 2,4,6-tribromophenol, being used most frequently in the synthesis of brominated flame retardants and having the greatest environmental abundance, was selected to hydroponically expose rice plants. After exposure for 5 days, 99.2% of 2,4,6-tribromophenol was metabolized by rice. Because of the lack of relative reference standards, an effective screening strategy was used to screen for potential metabolites that were further qualitatively identified by gas and liquid chromatography combined with high-resolution mass spectrometry. Forty transformation products were confirmed or tentatively identified at different confidence levels, including 9 phase I and 31 phase II metabolites. A large number of metabolites (39) were found in rice root, and 10 of them could be translocated and detected in rice stems or leaves. Many transformation pathways were proposed, including debromination, hydroxylation, methylation, coupling reactions, sulfation, and glycosylation. It was remarkable that a total of seven hydrophobic, persistent, and toxic OH-PBDEs and PBDD/Fs were found, indicating the biotic dimeric reactions of 2,4,6-tribromophenol that occurred in the rice plants. These results improve our understanding of the transformation and environmental fates of bromophenols, and they indicate new potential sources for OH-PBDEs and PBDD/Fs in the environment, especially in food chains.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding Author: Phone: +86-010-62849334.
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Bidleman TF, Andersson A, Brugel S, Ericson L, Haglund P, Kupryianchyk D, Lau DCP, Liljelind P, Lundin L, Tysklind A, Tysklind M. Bromoanisoles and methoxylated bromodiphenyl ethers in macroalgae from Nordic coastal regions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:881-892. [PMID: 31032511 DOI: 10.1039/c9em00042a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Marine macroalgae are used worldwide for human consumption, animal feed, cosmetics and agriculture. In addition to beneficial nutrients, macroalgae contain halogenated natural products (HNPs), some of which have toxic properties similar to those of well-known anthropogenic contaminants. Sixteen species of red, green and brown macroalgae were collected in 2017-2018 from coastal waters of the northern Baltic Sea, Sweden Atlantic and Norway Atlantic, and analyzed for bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). Target compounds were quantified by gas chromatography-low resolution mass spectrometry (GC-LRMS), with qualitative confirmation in selected species by GC-high resolution mass spectrometry (GC-HRMS). Quantified compounds were 2,4-diBA, 2,4,6-triBA, 2'-MeO-BDE68, 6-MeO-BDE47, and two tribromo-MeO-BDEs and one tetrabromo-MeO-BDE with unknown bromine substituent positions. Semiquantitative results for pentabromo-MeO-BDEs were also obtained for a few species by GC-HRMS. Three extraction methods were compared; soaking in methanol, soaking in methanol-dichloromethane, and blending with mixed solvents. Extraction yields of BAs did not differ significantly (p > 0.05) with the three methods and the two soaking methods gave equivalent yields of MeO-BDEs. Extraction efficiencies of MeO-BDEs were significantly lower using the blend method (p < 0.05). For reasons of simplicity and efficiency, the soaking methods are preferred. Concentrations varied by orders of magnitude among species: ∑2BAs 57 to 57 700 and ∑5MeO-BDEs < 10 to 476 pg g-1 wet weight (ww). Macroalgae standing out with ∑2BAs >1000 pg g-1 ww were Ascophyllum nodosum, Ceramium tenuicorne, Ceramium virgatum, Fucus radicans, Fucus serratus, Fucus vesiculosus, Saccharina latissima, Laminaria digitata, and Acrosiphonia/Spongomorpha sp. Species A. nodosum, C. tenuicorne, Chara virgata, F. radicans and F. vesiculosus (Sweden Atlantic only) had ∑5MeO-BDEs >100 pg g-1 ww. Profiles of individual compounds showed distinct differences among species and locations.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kupryianchyk D, Giesler R, Bidleman TF, Liljelind P, Lau DCP, Sponseller RA, Andersson PL. Industrial and natural compounds in filter-feeding black fly larvae and water in 3 tundra streams. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3011-3017. [PMID: 30183099 DOI: 10.1002/etc.4267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
We report concentrations of polychlorinated biphenyls, polybrominated diphenyl ethers, novel flame retardants, and naturally occurring bromoanisoles in water and filter-feeding black fly (Simuliidae) larvae in 3 tundra streams in northern Sweden. The results demonstrate that black fly larvae accumulate a wide range of organic contaminants and can be used as bioindicators of water pollution in Arctic streams. Environ Toxicol Chem 2018;37:3011-3017. © 2018 SETAC.
Collapse
Affiliation(s)
| | - Reiner Giesler
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | | - Per Liljelind
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Danny Chun Pong Lau
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | - Ryan A Sponseller
- Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
| | | |
Collapse
|
14
|
Bidleman TF, Tysklind M. Breakthrough during air sampling with polyurethane foam: What do PUF 2/PUF 1 ratios mean? CHEMOSPHERE 2018; 192:267-271. [PMID: 29107878 DOI: 10.1016/j.chemosphere.2017.10.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Frontal chromatography theory is applied to describe movement of gaseous semivolatile organic compounds (SVOCs) through a column of polyurethane foam (PUF). Collected mass fractions (FC) are predicted for sample volume/breakthrough volume ratios (τ = VS/VB) up to 6.0 and PUF bed theoretical plate numbers (N) from 2 to 16. The predictions assume constant air concentrations and temperatures. Extension of the calculations is done to relate the collection efficiency of a 2-PUF train (FC1+2) to the PUF 2/PUF 1 ratio. FC1+2 exceeds 0.9 for PUF 2/PUF 1 ≤ 0.5 and lengths of PUF commonly used in air samplers. As the PUF 2/PUF 1 ratio approaches unity, confidence in these predictions is limited by the analytical ability to distinguish residues on the two PUFs. Field data should not be arbitrarily discarded because some analytes broke through to the backup PUF trap. The fractional collection efficiencies can be used to estimate air concentrations from quantities retained on the PUF trap when sampling is not quantitative.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|