1
|
Wang L, Ma WL, Yang PF, Huo CY, Hu PT, Li WL, Fu MQ. Occurrence, spatial-seasonal variation and air-soil exchange of traditional and novel organochlorine pesticides across 30° latitude in Eastern China: Old tales and new realities. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137772. [PMID: 40022934 DOI: 10.1016/j.jhazmat.2025.137772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
While traditional organochlorine pesticides (OCPs) have been phased out under international regulations, novel OCPs are increasingly used as substitutes, however, their environmental behavior was not well clarified. Here, the first comprehensive study on the occurrence, seasonal-spatial variation, and air-soil exchange of both traditional and novel OCPs across a 30° latitudinal gradient (22°N to 52°N) in Eastern China were conducted. Air concentrations of ΣOCPs peaked during summer months, whereas soil concentrations were elevated in winter. Notably, novel OCPs exhibited pronounced spatial-seasonal variations due to the influence of ongoing application practices. Distinct source-sink relationships were observed between traditional and novel OCPs: soils acted as a "secondary source" for traditional OCPs year-round, while for novel OCPs, soils changed from a "secondary source" in summer to a "sink" in winter. Air-soil exchange net fluxes demonstrated significant seasonal variations, with enhancement at higher temperatures and lower latitudes. Emission fluxes to soil for traditional OCPs were concentrated in central and northeastern regions influenced by historical use and distillation effect. In contrast, novel OCPs showed higher emission fluxes in central and southeastern regions, correlating with current usage patterns. In summary, this study provided baseline information on the pollution characteristics and environmental behaviors of both traditional and novel OCPs, which would help us for better understanding their migration and fate in China, even on the global scale.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Yan Huo
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Peng-Tuan Hu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Wen-Long Li
- College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Meng-Qi Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Folorunsho O, Bogush A, Kourtchev I. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178436. [PMID: 39813836 DOI: 10.1016/j.scitotenv.2025.178436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The widespread occurrence of new and emerging and persistent organic pollutants (NEPs and POPs) in surface water poses a risk to drinking water supply and consequently human health. The aim of this work was to investigate the occurrence and potential transport of 42 target NEPs and POPs (including per-and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides and bisphenols) along the rural and urban environments of three rivers in England. The type and concentrations of pollutants varied between the sampling days and points. Two pharmaceuticals (diclofenac and ibuprofen), two pesticides (diethyl-meta-toluamide (DEET) and prosulfocarb) and a range of PFAS were detected above the method detection limit. The observed PFAS include restricted perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS) and a newer generation substitute 6:2 fluorotelomer sulfonate (6:2 FTS). The levels of PFOS and diclofenac observed in all studied rivers exceeded the European environmental quality standard (EQS). PFOS and diclofenac high detection frequency in the river Ouse suggests their persistence and potential to contaminate connecting tributaries. An assessment of the ecological risk of prosulfocarb levels in the samples from river Ouse, using the risk quotient method, showed a potential risk to algae, planktonic crustaceans, and fish. Our results suggest that the presence of 12 NEPs and POPs, could potentially be influenced by anthropogenic activities across urban and rural environments of the studied rivers. The study highlights the need for continuous monitoring of restricted and new-generation chemicals in the surface waters to understand their impact on the ecosystem and public health.
Collapse
Affiliation(s)
- Omotola Folorunsho
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Anna Bogush
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK
| | - Ivan Kourtchev
- Centre for Agroecology Water and Resilience (CAWR), Coventry University, Wolston Lane, Ryton on Dunsmore, CV8 3LG, UK.
| |
Collapse
|
3
|
Cai QL, Tong L, Zhong N, Zheng J, He MM, Xiao H. Sampling efficiency of flow-through air sampler: Effect of sampling rate. J Chromatogr A 2024; 1738:465474. [PMID: 39481180 DOI: 10.1016/j.chroma.2024.465474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
The Flow Through Sampler (FTS) serves as an efficient wind-powered active sampling device, enabling the collection of a significant air volume within a short duration. Throughout the actual sampling process, the sampling rate of FTS experiences continuous fluctuations, highlighting the need for in-depth investigation into its impact on breakthrough. In this study, we interconnected the FTS sampling column with three distinct pumps, operating at five varied sampling rates under 293 K and 303 K; and breakthrough profiles of PCBs, PAHs and OCPs on the FTS sampling column were investigated to understand the impacts of sampling rate, expressed as linear wind velocity through the cross section of FTS tube (u) on the sampling efficiency of the sampling column. It revealed that the number of theoretical plates (N) and the logarithm of breakthrough volume (logVB) of compounds on the FTS-PUF column exhibit linear relationships with the inverse of wind velocity (1/u). The slopes of the fitted lines (KNu) are closely associated with the volatility of the compounds. Compounds with volatility experience a greater impact from variations in wind velocity on their N value on the sampling column. The effect on the most volatile PCBs surpasses that of PAHs and OCPs. Moreover, the slopes of logVB for different compounds affected by wind speed (KVB-u), display a significant correlation with compound volatility (logPL). Wind speed exerts a stronger influence on the breakthrough volume of low volatile compounds compared to volatile compounds. Multiple linear regression and LSER analysis further confirms a significant positive correlation between N and logVB across different temperatures and wind velocities (log(VB/m3)=2010/(T/K)-0.00066/(u/(m/s))+0.55N-5.41, R2=0.83, n = 423, p = 0). Therefore, the collection performance of the FTS-PUF sampling column for all types of compounds can be predicted under varying temperatures and wind velocitiess/sampling rates. Given the known sampled air volume, the breakthrough level for any chemicals can be estimated, which provids valuable data support for accurate monitoring of atmospheric organic pollutant concentrations.
Collapse
Affiliation(s)
- Qiu-Liang Cai
- Guangxi Key Laboratory of Urban Water Environment & Key Laboratory of Guangxi Universities in Ecological Environment Analysis and Pollution Control in the Western Guangxi, Baise University, Baise 533000, China; Key Laboratory of Urban Environment and Health & Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Lei Tong
- Key Laboratory of Urban Environment and Health & Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Key Laboratory of Urban Environmental Pollution and Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Ning Zhong
- Minnan Normal University, Zhangzhou 363000, China
| | - Jie Zheng
- Key Laboratory of Urban Environment and Health & Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Key Laboratory of Urban Environmental Pollution and Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Meng-Meng He
- Key Laboratory of Urban Environment and Health & Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Key Laboratory of Urban Environmental Pollution and Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health & Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Ningbo Key Laboratory of Urban Environmental Pollution and Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
4
|
Zhang P, Wang J, Sweetman A, Ge L, Xing R, Ji H, Yan J, Xiao Q, Cui Y, Ma H, Xu S. An overview on the legacy and risks of Polychlorinated Biphenyls (PCBs) and Organochlorinated Pesticides (OCPs) in the polar regions. MARINE POLLUTION BULLETIN 2024; 209:117042. [PMID: 39393231 DOI: 10.1016/j.marpolbul.2024.117042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/07/2024] [Accepted: 09/22/2024] [Indexed: 10/13/2024]
Abstract
Polychlorinated Biphenyls (PCBs) and Organochlorinated Pesticides (OCPs) are 'trapped' in a variety of environmental media and can therefore undergo further processing by geochemical cycles. By reviewing a wide range of research studies, we present and discuss the main progresses that affect legacy contaminants, such as migration and transformation processes, biological effects assessment across all Arctic media. PCBs and OCPs demonstrated an overall decreasing concentration trend over time in the Arctic. Ecological risk assessment was undertaken by comparison with two standards, suggesting that there was no ecological risk in either soil or sediment. The concentrations of HCB, ΣHCHs, ΣDDTs, chlordane, mirex, and ΣPCBs increased with trophic levels (TLs), showing a significant linear correlation (P < 0.001). The calculated trophic magnification factors (TMFs) values ranged from 0.0004 to 26.63, among which DDTs had the highest value. Future research need to focus on the long-term fate of PCBs and OCPs.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jing Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Andrew Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Linke Ge
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Rongguang Xing
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hao Ji
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingfeng Yan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Qian Xiao
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Yaqing Cui
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Hongrui Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Sisi Xu
- Resources and Environment Innovation Institute, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
5
|
Zhang X, Li L, Xie Z, Ma J, Li YF, Cai M, Ren NQ, Kallenborn R, Zhang ZF, Zhang X, C.G. Muir D. Exploring global oceanic persistence and ecological effects of legacy persistent organic pollutants across five decades. SCIENCE ADVANCES 2024; 10:eado5534. [PMID: 39321284 PMCID: PMC11423884 DOI: 10.1126/sciadv.ado5534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Global monitoring of persistent organic pollutants (POPs) has intensified following regulatory efforts aimed at reducing their release. In this context, we compiled over 10,000 POP measurements, reported from 1980 to 2023, to assess the effectiveness of these legislative measures in the global marine environments. While a general decreasing trend in legacy POP concentrations is evident across various maritime regions, highlighting the success of source control measures, the Arctic Ocean and its marginal seas have experienced a rise in POP levels. This increase suggests the northward migration of pollutants via ocean currents from mid-latitude regions to polar areas. Despite global efforts to reduce emissions, the continued transport and accumulation of pollutants to the Arctic regions may have substantial ecological impacts. Addressing these environmental challenges demands a thorough understanding of POP dynamics, including response times, multiphase transport, and biogeochemical cycling. Continued research into these processes is vital to accurately map their distribution and temporal variations within marine systems.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno NV 89557, USA
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Jianmin Ma
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
- IJRC-PTS-NA, Toronto, Ontario M2N 6X9, Canada
| | - Minghong Cai
- Key Laboratory of Polar Science, Ministry of Natural Resources, Polar Research Institute of China, Shanghai 200136, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nan-Qi Ren
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås 1430, Norway
- University of the Arctic, Rovaniemi, Finland
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
- International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
- Department of Geography, Planning & Environment, Concordia University, Montreal, Quebec H3G 1M8, Canada
| | - Derek C.G. Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S1A1, Canada
| |
Collapse
|
6
|
Hosen MHA, Whitworth DJ, Leusch FDL, Yuen N, Bengtson Nash SM. Bioenergetic Shifts in Humpback Whale Fibroblasts Upon Chemical Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12313-12319. [PMID: 38958666 DOI: 10.1021/acs.est.3c10595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Southern Hemisphere humpback whales accumulate persistent and toxic chemicals, which are transported to Antarctica through distant sources and in situ usage. The extreme seasonal migration-associated fast of humpback whales results in the remobilization of persistent and lipophilic environmental contaminants from liberated fat stores. Mitochondria play a key role in lipid metabolism, and any disruption to mitochondrial function is expected to influence whole-organism bioenergetics. It is therefore of interest to advance understanding of the impact of known contaminants of the Antarctic sea-ice ecosystem upon humpback whale cellular bioenergetics. Using cell line-based in vitro testing, this study employed the Seahorse Extracellular Flux Analyzer to study cellular metabolic activity in live humpback whale fibroblast cells. The assay, based on oxygen consumption rate, provides insights into the cause of cellular bioenergetic disruption. Immortalized skin fibroblasts were exposed to four priority environmental chemicals found in the Antarctic sea-ice ecosystem. Our findings reveal chemical-dependent functional alterations and varying bioenergetic profile responses. Chlorpyrifos was observed to decrease mitochondrial basal oxygen consumption; dieldrin increased basal oxygen consumption; trifluralin's impact was dose-specific, and endosulfan displayed no effect. Our results provide unique insights into environmental chemical mechanisms of action on cellular bioenergetics, generating much-needed taxa-specific chemical effect data in support of evidence-based conservation policy and management.
Collapse
Affiliation(s)
- Md Hafiz All Hosen
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Deanne J Whitworth
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas Yuen
- The School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Susan M Bengtson Nash
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
7
|
Chen Y, Tan Y, Feng Y, Dong T, Jiang C, Wang C, Yang Y, Zhang Z. Selected legacy and emerging organic contaminants in sediments of China's Yangtze - the world's third longest river: Response to anthropogenic activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123608. [PMID: 38428792 DOI: 10.1016/j.envpol.2024.123608] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
To explore contaminant concerns as a result of anthropogenic disturbance of the river system, this study provided the first extensive investigation of the contamination profiles, possible driving factors, and ecological risks of 40 target compounds including pharmaceuticals and personal care products (PPCPs), neonicotinoid pesticides (NNIs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in sediments of the whole Yangtze River (the world's third longest river). Among these target compounds, PPCPs were the dominant contaminants with a total concentration (∑15PPCPs) of 2.13-14.99 ng/g, followed by ∑7PCBs (
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuying Feng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Tao Dong
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chen Wang
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
8
|
Cai QL, Huang CY, Tong L, Zhong N, Dai XR, Li JR, Zheng J, He MM, Xiao H. Sampling efficiency of a polyurethane foam air sampler: Effect of temperature. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 18:100327. [PMID: 37908224 PMCID: PMC10613919 DOI: 10.1016/j.ese.2023.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/02/2023]
Abstract
Effective monitoring of atmospheric concentrations is vital for assessing the Stockholm Convention's effectiveness on persistent organic pollutants (POPs). This task, particularly challenging in polar regions due to low air concentrations and temperature fluctuations, requires robust sampling techniques. Furthermore, the influence of temperature on the sampling efficiency of polyurethane foam discs remains unclear. Here we employ a flow-through sampling (FTS) column coupled with an active pump to collect air samples at varying temperatures. We delved into breakthrough profiles of key pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs), and organochlorine pesticides (OCPs), and examined the temperature-dependent behaviors of the theoretical plate number (N) and breakthrough volume (VB) using frontal chromatography theory. Our findings reveal a significant relationship between temperature dependence coefficients (KTN, KTV) and compound volatility, with decreasing values as volatility increases. While distinct trends are noted for PAHs, PCBs, and OCPs in KTN, KTV values exhibit similar patterns across all chemicals. Moreover, we establish a binary linear correlation between log (VB/m3), 1/(T/K), and N, simplifying breakthrough level estimation by enabling easy conversion between N and VB. Finally, an empirical linear solvation energy relationship incorporating a temperature term is developed, yielding satisfactory results for N at various temperatures. This approach holds the potential to rectify temperature-related effects and loss rates in historical data from long-term monitoring networks, benefiting polar and remote regions.
Collapse
Affiliation(s)
- Qiu-Liang Cai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Key Laboratory of Ecological Environment Analysis and Pollution Control in Western Guangxi Region, College of Agriculture and Food Engineering, Baise University, Baise, 533000, China
| | - Cen-Yan Huang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Lei Tong
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Ning Zhong
- Minnan Normal University, Zhangzhou, 363000, China
| | - Xiao-Rong Dai
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Jian-Rong Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Jie Zheng
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Meng-Meng He
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Hang Xiao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| |
Collapse
|
9
|
Wang L, Cao G, Liu LY, Zhang ZF, Jia SM, Fu MQ, Ma WL. Cross-regional scale studies of organochlorine pesticides in air in China: Pollution characteristic, seasonal variation, and gas/particle partitioning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166709. [PMID: 37659555 DOI: 10.1016/j.scitotenv.2023.166709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
Few simultaneous studies of organochlorine pesticides (OCPs) in the atmosphere have been conducted across Southeast and Northeast China, and no data on the gas/particle (G/P) partitioning behaviors of several current-use OCPs are available. In this study, a one-year synchronous monitoring program was conducted for OCPs in Chinese atmosphere spanning 30° latitude and 60 °C temperature. A total of 111 pairs of gas and particle samples were collected from Mohe and Harbin in Northeast China and from Shenzhen in Southeast China. The detection frequency for 66.7 % of the OCPs exceeded 80 %, indicating their prevalence in the atmosphere. The concentrations of individual OCPs spanned six orders of magnitude, indicating different pollution levels. Highest levels of hexachlorobenzene were observed at all sites. Banned OCPs were found predominantly in secondary distribution patterns, whereas current-use OCPs were dominated by primary distribution patterns. In Harbin and Mohe, the concentrations of OCPs were highest in summer, followed by autumn and winter. No obvious seasonal variation was observed in Shenzhen associated with different cultivation types. At all three sites, OCPs were predominantly found in the gas phase, and higher percentages of particle-phase OCPs were observed in Harbin and Mohe than in Shenzhen. In this study, G/P partitioning models were used to study the G/P partitioning mechanism of OCPs. The Li-Ma-Yang model provided the most accurate prediction of the G/P partitioning behavior of OCPs with high molecular weights and low vapor pressures, particularly at low temperatures. However, OCPs with lower molecular weights and higher vapor pressures were predominantly in the equilibrium state, for which the Junge-Pankow model was suitable. This systematic cross-scale study provides new insights into pollution, G/P partitioning, and the environmental behavior of OCPs in the atmosphere.
Collapse
Affiliation(s)
- Liang Wang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Gang Cao
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Shi-Ming Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Fu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Egas C, Galbán-Malagón C, Castro-Nallar E, Molina-Montenegro MA. Role of Microbes in the degradation of organic semivolatile compounds in polar ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163046. [PMID: 36965736 DOI: 10.1016/j.scitotenv.2023.163046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
The Arctic and the Antarctic Continent correspond to two eco-regions with extreme climatic conditions. These regions are exposed to the presence of contaminants resulting from human activity (local and global), which, in turn, represent a challenge for life forms in these environments. Anthropogenic pollution by semi-volatile organic compounds (SVOCs) in polar ecosystems has been documented since the 1960s. Currently, various studies have shown the presence of SVOCs and their bioaccumulation and biomagnification in the polar regions with negative effects on biodiversity and the ecosystem. Although the production and use of these compounds has been regulated, their persistence continues to threaten biodiversity and the ecosystem. Here, we summarize the current literature regarding microbes and SVOCs in polar regions and pose that bioremediation by native microorganisms is a feasible strategy to mitigate the presence of SVOCs. Our systematic review revealed that microbial communities in polar environments represent a wide reservoir of biodiversity adapted to extreme conditions, found both in terrestrial and aquatic environments, freely or in association with vegetation. Microorganisms adapted to these environments have the potential for biodegradation of SVOCs through a variety of genes encoding enzymes with the capacity to metabolize SVOCs. We suggest that a comprehensive approach at the molecular and ecological level is required to mitigate SVOCs presence in these regions. This is especially patent when considering that SVOCs degrade at slow rates and possess the ability to accumulate in polar ecosystems. The implications of SVOC degradation are relevant for the preservation of polar ecosystems with consequences at a global level.
Collapse
Affiliation(s)
- Claudia Egas
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile
| | - Cristóbal Galbán-Malagón
- Centro de Genómica, Ecología y Medio Ambiente (GEMA), Universidad Mayor, Campus Huechuraba, Santiago, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA
| | - Eduardo Castro-Nallar
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca, Chile
| | - Marco A Molina-Montenegro
- Centre for Integrative Ecology (CIE), Universidad de Talca, Campus Lircay, Talca, Chile; Instituto de Ciencias Biológicas (ICB), Universidad de Talca, Campus Lircay, Talca, Chile; Centro de Investigación en Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
11
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Pala N, Jiménez B, Roscales JL, Bertolino M, Baroni D, Figuerola B, Avila C, Corsolini S. First evidence of legacy chlorinated POPs bioaccumulation in Antarctic sponges from the Ross sea and the South Shetland Islands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121661. [PMID: 37085102 DOI: 10.1016/j.envpol.2023.121661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Antarctica is no longer pristine due to the confirmed presence of anthropogenic contaminants like Persistent Organic Pollutants (POPs). Benthic organisms are poorly represented in contamination studies in Antarctica although they are known to bioaccumulate contaminants. Sponges (Phylum Porifera) are dominant members in Antarctic benthos, both in terms of abundance and biomass, and are an important feeding source for other organisms, playing key functional roles in benthic communities. To the best of our knowledge, legacy chlorinated POPs such as polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and dichlorodiphenyltrichloroethane (DDT) and their metabolites have never been investigated in this Phylum in Antarctica. The aim of this work was to evaluate the bioaccumulation of PCBs, HCB, o,p'- and p,p'-DDT and their DDE and DDD isomers in 35 sponge samples, belonging to 17 different species, collected along the coast of Terra Nova Bay (Adèlie Cove and Tethys Bay, Ross Sea), and at Whalers Bay (Deception Island, South Shetland Islands) in Antarctica. Lipid content showed a significant correlation with the three pollutant classes. The overall observed pattern in the three study sites was ΣPCBs>ΣDDTs>HCB and it was found in almost every species. The ΣPCBs, ΣDDTs, and HCB ranged from 54.2 to 133.7 ng/g lipid weight (lw), from 17.5 to 38.6 ng/g lw and from 4.8 to 8.5 ng/g lw, respectively. Sponges showed contamination levels comparable to other Antarctic benthic organisms from previous studies. The comparison among sponges of the same species from different sites showed diverse patterns for PCBs only in one out of four cases. The concentration of POPs did not vary significantly among the three sites. The predominance of lower chlorinated organochlorines in the samples suggested that long-range atmospheric transportation (LRAT) could be the major driver of contamination as molecules with a high long range transport potential (e.g. low chlorinated PCBs, HCB) prevails on heavier ones.
Collapse
Affiliation(s)
- Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Jose L Roscales
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Marco Bertolino
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy
| | - Blanca Figuerola
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona & Biodiversity Research Institute (IRBio), Av. Diagonal 643, 08028, Barcelona, Catalonia, Spain
| | - Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100, Siena, Italy.
| |
Collapse
|
13
|
Wu Z, Lin T, Sun H, Li R, Liu X, Guo Z, Ma X, Yao Z. Polycyclic aromatic hydrocarbons in Fildes Peninsula, maritime Antarctica: Effects of human disturbance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120768. [PMID: 36473643 DOI: 10.1016/j.envpol.2022.120768] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
This study provides the first data on the distribution, sources, and transport dynamics of polycyclic aromatic hydrocarbons (PAHs) in Fildes Peninsula, Antarctica via summertime analyses of lakes, seawater, snow, and air in 2013. Relatively high PAH levels and similar composition profiles (dominance of two- and three-ring PAHs) in the investigated marine and terrestrial environmental matrices were found, indicating substantial primary emissions of petrogenic PAHs. This result was corroborated by nonequilibrium partitioning of atmospheric PAHs caused by release of anthropically-derived lighter PAHs and air mass movement trajectories mainly originated from the Antarctic marginal seas. Notable geographical disparities of PAH pollution in the various types of samples consistently suggested impacts of station-related activities, rather than long-range atmospheric transport, on PAHs in Fildes Peninsula. The lack for temperature dependence for gas-phase concentrations and various molecular diagnostic ratios of atmospheric PAHs demonstrated that the impact of local anthropogenic inputs on air PAH variability supersedes the re-emission effect. The derived air-water and air-snow exchanges of PAHs in this remote region indicated a disequilibrium state, partially associated with intense local emissions of PAHs. PAH outgassing from, and absorption into, lake and marine waters were both observed, probably due to differences in anthropogenic influences among sites, while the net deposition of gaseous PAHs into snow prevailed. The results of this study shed lights on the major importance of native anthropogenic sources in the footprint and fate of PAHs in the Fildes Peninsula, which merits further monitoring.
Collapse
Affiliation(s)
- Zilan Wu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Hao Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Ruijing Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Xing Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Institute of Atmospheric Sciences, Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xindong Ma
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| | - Ziwei Yao
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| |
Collapse
|
14
|
Xuan Z, Ma Y, Zhang J, Zhu J, Cai M. Dissolved legacy and emerging organochlorine pesticides in the Antarctic marginal seas: Occurrence, sources and transport. MARINE POLLUTION BULLETIN 2023; 187:114511. [PMID: 36580836 DOI: 10.1016/j.marpolbul.2022.114511] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Polar regions are recognized as final sinks of the persistent contaminants, however, environmental investigations in the Antarctica are greatly limited by harsh field conditions. In this study, seawater samples were collected in the Antarctic marginal seas during the austral summer of 2021 to investigate the environmental behavior and fate of organochlorine pesticides (OCPs). The concentrations and source markers of representative legacy hexachlorocyclohexane (HCH), hexachlorobenzene (HCB) and dichlorodiphenyltrichloroethanes (DDTs) indicated the coexistent sources of historical residues and fresh inputs. While the emerging OCPs, including quintozene, pentachloroaniline and dichlobenil, showed relatively lower detection frequency. Due to the differences in temperature and sea ice coverage, dissolved OCPs generally displayed higher concentrations in the eastern Antarctic than those in the western Antarctic. The 'surface depleted and depth enrichment' vertical profile of representative OCPs in the continental shelf of Prydz Bay was jointly controlled by biological pump and water mass structure.
Collapse
Affiliation(s)
- Zhaojie Xuan
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Jinghua Zhang
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| |
Collapse
|
15
|
Corsolini S, Ademollo N. POPs in Antarctic ecosystems: is climate change affecting their temporal trends? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1631-1642. [PMID: 36043527 DOI: 10.1039/d2em00273f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Climate change is affecting Antarctica and the Southern Ocean and effects have been already reported for the abiotic compartments of the ecosystems, e.g. ice loss and iceberg calving. Global warming can alter also the distribution of persistent organic pollutant (POPs) both at a global scale and in the Antarctic Region, due to their physical-chemical characteristics. Effects of climate changes have been already reported on feeding behaviour and reproductive process of organisms. Another consequence for organisms includes the POP bioaccumulation. Here we review the literature reporting the linkage between recorded effects of climate changes and POP bioaccumulation in resident marine Antarctic species (fish and penguins). Notwithstanding Antarctica is a final sink for persistent contaminants due to the extreme cold climate, a general decreasing POP trend has been observed for some POPs. Their concentrations in biota are reported to be linked to ice melting and large iceberg calving; the peculiar marine Antarctic ecosystems and the pelagic-benthic coupling may also contribute to alterations in the bioaccumulation processes. These effects are similar in polar regions, although the comparison with the Arctic biota is not possible due to the lack of data in the Antarctic Region. It remains an open question if the POP amount accumulated in the Antarctic ecosystems is decreasing or not.
Collapse
Affiliation(s)
- Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P. A. Mattioli, 4, I-53100 Siena, Italy.
| | - Nicoletta Ademollo
- Institute of Polar Sciences of the Italian National Research Council, (ISP-CNR), Strada Provinciale 35d, km 0.7, 00010 Montelibretti, Roma
| |
Collapse
|
16
|
Hao Y, Xiong S, Wang P, Yang R, Pei Z, Li Y, Zhang Q, Jiang G. Novel brominated and organophosphate flame retardants in the atmosphere of Fildes Peninsula, West Antarctica: Continuous observations from 2011 to 2020. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129776. [PMID: 35988490 DOI: 10.1016/j.jhazmat.2022.129776] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Novel brominated flame retardants (NBFRs) and organophosphate esters (OPEs) have been widely detected in various environmental matrices worldwide and raised public concerns in recent years. However, few studies reported their occurrence and temporal trend in Antarctic air. In this study, concentrations, distribution, and temporal trends of NBFRs and OPEs in the air of Fildes Peninsula, West Antarctica, were investigated using XAD resin-based passive air sampling from January 2011 to January 2020. Air concentrations of the total OPEs (Σ7OPEs) were one to two orders of magnitude higher than those of the total NBFRs (Σ6NBFRs). Decabromodiphenyl ethane and tris(2-chloroethyl) phosphate were the most abundant NBFR and OPE congeners, respectively. Significant positive correlations were observed among hexabromobenzene, pentabromoethylbenzene, and pentabromotoluene, indicating that their occurrence in Antarctic air may be affected by similar sources. No spatial differences in any of the NBFR and OPE congeners were observed, implying minor impact from local scientific research stations. Linear regression analysis was used to evaluate the temporal trends of NBFRs and OPEs in Antarctic air, with decreasing trends observed for Σ6NBFRs and Σ7OPEs. This is one of the rare studies providing a comprehensive investigation of the temporal trends in NBFRs and OPEs in Antarctic air and highlights concern regarding the contamination of these chemicals in remote polar regions.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Precision Blasting, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siyuan Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- State Key Laboratory of Precision Blasting, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Xie Z, Zhang P, Wu Z, Zhang S, Wei L, Mi L, Kuester A, Gandrass J, Ebinghaus R, Yang R, Wang Z, Mi W. Legacy and emerging organic contaminants in the polar regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155376. [PMID: 35461927 DOI: 10.1016/j.scitotenv.2022.155376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
The presence of numerous emerging organic contaminants (EOCs) and remobilization of legacy persistent organic pollutants (POPs) in polar regions have become significant concerns of the scientific communities, public groups and stakeholders. This work reviews the occurrences of EOCs and POPs and their long-range environmental transport (LRET) processes via atmosphere and ocean currents from continental sources to polar regions. Concentrations of classic POPs have been systematically monitored in air at several Arctic stations and showed seasonal variations and declining trends. These chemicals were also the major POPs reported in the Antarctica, while their concentrations were lower than those in the Arctic, illustrating the combination of remoteness and lack of potential local sources for the Antarctica. EOCs were investigated in air, water, snow, ice and organisms in the Arctic. Data in the Antarctica are rare. Reemission of legacy POPs and EOCs accumulated in glaciers, sea ice and snow may alter the concentrations and amplify their effects in polar regions. Thus, future research will need to understand the various biogeochemical and geophysical processes under climate change and anthropogenic pressures.
Collapse
Affiliation(s)
- Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany.
| | - Peng Zhang
- School of Environmental Science and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Zilan Wu
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Shuang Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Lijia Wei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Anette Kuester
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany
| | - Juergen Gandrass
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ralf Ebinghaus
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, 21502 Geesthacht, Germany
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhen Wang
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21025, Germany
| |
Collapse
|
18
|
Zhang X, Zhang X, Zhang ZF, Yang PF, Li YF, Cai M, Kallenborn R. Pesticides in the atmosphere and seawater in a transect study from the Western Pacific to the Southern Ocean: The importance of continental discharges and air-seawater exchange. WATER RESEARCH 2022; 217:118439. [PMID: 35452973 DOI: 10.1016/j.watres.2022.118439] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The global oceans are known as terminal sink or secondary source for diffusive emission of organochlorine pesticides (OCPs) and selected current used pesticides (CUPs) into the overlaying atmosphere. Many pesticides have been widely produced worldwide, subsequently applied, and released into the environment. However, information on the occurrence patterns, spatial variability, and air-seawater exchange of pesticides is limited to easily accessible regions and, hence, only few studies are reported from the remote Southern Ocean. To fill this information gap, a large-scale ship-based sampling campaign was conducted. In the samples from this campaign, we measured concentrations of 221 pesticides. Both gaseous and aqueous samples were collected along a sampling transect from the western Pacific to the Southern Ocean (19.75° N-76.16° S) from November 2018 to March 2019. Twenty-seven individual pesticides were frequently (≥ 50%) detected in gaseous and aqueous samples. Tebuconazole, diphenylamine, myclobutanil, and hexachlorobenzene (HCB) dominated the composition profile in both phases. Spatial trends analysis in atmospheric and seawater concentrations showed a substantial level reduction from the western Pacific towards the Southern Ocean. Back-trajectory analysis showed that atmospheric pesticide concentrations were strongly influenced by air masses origins. Continental and riverine inputs are important sources of pesticides in the western Pacific and Indian Oceans. Atmospheric and seawater concentrations for the target pesticide residues in the Southern Ocean are low and evenly distributed due to the large distance from potential pollution sources as well as the effective isolation by the Antarctic Convergence (AC). Air-seawater fugacity ratios and fluxes indicated that the western Pacific and Indian Oceans were secondary sources for most pesticides emitted to the atmosphere, while the Southern Ocean was still considered to be a sink.
Collapse
Affiliation(s)
- Xue Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Pu-Fei Yang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Heilongjiang Provincial Key Laboratory of Polar Environment and Ecosystem (HPKL-PEE), Harbin Institute of Technology (HIT), Harbin 150090, China; IJRC-PTS-NA, Toronto, M2N 6×9, Canada
| | - Minghong Cai
- Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China; School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China.
| | - Roland Kallenborn
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; International Joint Research Center for Arctic Environment and Ecosystem (IJRC-AEE), Polar Academy, Harbin Institute of Technology, Harbin 150090, China; Faculty of Chemistry, Biotechnology & Food Sciences (KBM), Norwegian University of Life Sciences (NMBU), Norway
| |
Collapse
|
19
|
Passive Sampling as a Tool to Assess Atmospheric Pesticide Contamination Related to Vineyard Land Use. ATMOSPHERE 2022. [DOI: 10.3390/atmos13040504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The massive use of pesticides in agriculture has led to widespread contamination of the environment, particularly the atmospheric compartment. Thirty-six pesticides, most used in viticulture, were monitored in ambient air using polyurethane foams as passive air samplers (PUF-PAS). Spatiotemporal data were collected from the samplers for 10 months (February–December 2013), using two different sampling times (1 and 2 months) at two different sites in a chateau vineyard in Gironde (France). A high-volume active air sampler was also deployed in June. Samples were extracted with dichloromethane using accelerated solvent extraction (ASE) (PUFs from both passive and active) or microwave-assisted extraction (MAE) (filters from active sampling). Extracts were analyzed by both gas and liquid chromatography coupled with tandem mass spectrometry. A total of 23 airborne pesticides were detected at least once. Concentrations in PUF exposed one month ranged from below the limits of quantification (LOQs) to 23,481 ng PUF−1. The highest concentrations were for folpet, boscalid, chlorpyrifos-methyl, and metalaxyl-m—23,481, 17,615, 3931, and 3324 ng PUF−1. Clear seasonal trends were observed for most of the pesticides detected, the highest levels (in the ng m−3 range or the µg PUF−1 range) being measured during their application period. Impregnation levels at both sites were heterogeneous, but the same pesticides were involved. Sampling rates (Rs) were also estimated using a high-volume active air sampler and varied significantly from one pesticide to another. These results provide preliminary information on the seasonality of pesticide concentrations in vineyard areas and evidence for the effectiveness of PUF-PAS to monitor pesticides in ambient air.
Collapse
|
20
|
Wild S, Eulaers I, Covaci A, Bossi R, Hawker D, Cropp R, Southwell C, Emmerson L, Lepoint G, Eisenmann P, Nash SB. South polar skua (Catharacta maccormicki) as biovectors for long-range transport of persistent organic pollutants to Antarctica. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118358. [PMID: 34653585 DOI: 10.1016/j.envpol.2021.118358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Migratory bird species may serve as vectors of contaminants to Antarctica through the local deposition of guano, egg abandonment, or mortality. To further investigate this chemical input pathway, we examined the contaminant burdens and profiles of the migratory South polar skua (Catharacta maccormicki) and compared them to the endemic Adélie penguin (Pygoscelis adeliae). A range of persistent organic pollutants were targeted in muscle and guano to facilitate differentiation of likely exposure pathways. A total of 56 of 65 targeted analytes were detected in both species, but there were clear profile and magnitude differences between the species. The South polar skua and Adélie penguin muscle tissue burdens were dominated by p,p'-dichlorodiphenyldichloroethylene (mean 5600 ng g-1 lw and 330 ng g-1 lw respectively) and hexachlorobenzene (mean 2500 ng g-1 lw and 570 ng g-1 lw respectively), a chemical profile characteristic of the Antarctic and Southern Ocean region. Species profile differences, indicative of exposure at different latitudes, were observed for polychlorinated biphenyls (PCBs), with lower chlorinated congeners and deca-chlorinated PCB-209 detected in South polar Skua, but not in Adélie penguins. Notably, the more recently used perfluoroalkyl substances and the brominated flame retardants, hexabromocyclododecane and tetrabromobisphenol A, were detected in both species. This finding suggests local exposure, given the predicted slow and limited long-range environmental transport capacity of these compounds to the eastern Antarctic sector.
Collapse
Affiliation(s)
- Seanan Wild
- Griffith University, Centre for Planetary Health and Food Security, Southern Ocean Persistent Organic Pollutants Program, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Igor Eulaers
- Aarhus University, Department of Bioscience, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Adrian Covaci
- University of Antwerp, Toxicological Centre, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Rossana Bossi
- Aarhus University, Department of Environmental Sciences, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Darryl Hawker
- Griffith University, School of Environment and Science, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Roger Cropp
- Griffith University, School of Environment and Science, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Colin Southwell
- Australian Antarctic Division (AAD), Department of Agriculture, Water and the Environment, Kingston, Tasmania, 7050, Australia
| | - Louise Emmerson
- Australian Antarctic Division (AAD), Department of Agriculture, Water and the Environment, Kingston, Tasmania, 7050, Australia
| | - Gilles Lepoint
- Laboratory of Oceanology, UR FOCUS, gMARE Centre, University of Liège, 3 15 Allée de la Chimiedu six Août, 4000, Liège, Belgium
| | - Pascale Eisenmann
- Griffith University, Centre for Planetary Health and Food Security, Southern Ocean Persistent Organic Pollutants Program, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Susan Bengtson Nash
- Griffith University, Centre for Planetary Health and Food Security, Southern Ocean Persistent Organic Pollutants Program, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
21
|
Gyllenhammar I, Aune M, Fridén U, Cantillana T, Bignert A, Lignell S, Glynn A. Are temporal trends of some persistent organochlorine and organobromine compounds in Swedish breast milk slowing down? ENVIRONMENTAL RESEARCH 2021; 197:111117. [PMID: 33823189 DOI: 10.1016/j.envres.2021.111117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
We investigated body burdens of persistent organic pollutants (POPs) in Swedish first-time mothers by measurements in breast milk, and followed up the temporal trends between 1996 and 2017. POPs were analysed in individual samples (n = 539) from participants from Uppsala county, Sweden. This made it possible to adjust temporal trends for age of the mother, pre-pregnancy BMI, weight gain during pregnancy, weight loss after delivery, and education, the main determinants for POP body burdens, apart from sampling year. We also compared observed body burdens with the body burdens determined to be safe from a health perspective in the risk assessment of dioxin-like polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), published by the European Food Safety Authority (EFSA). Declining temporal trends in breast milk of on average -4 to 14% per year were observed 1996-2017 for PCBs, PCDD/Fs, chlorinated pesticides, and brominated flame retardants, except for the polybrominated diphenyl ethers (PBDEs) BDE-153 and BDE-209. The toxic equivalents (TEQs) for PCDD declined faster than PCDF TEQs, -6.6% compared to -3.5% per year. For CB-169, CB-180, PCDDs, PCDFs, Total TEQ, and hexachlorobenzene (HCB), a change point year (CP) was observed around 2008-2009 and after that, the decline in levels has slowed down. If breast milk levels follows the exponential declining trend of total TEQ estimated for the entire period (-5.7% per year), 97.5% of first time mothers from the Uppsala area will have body burdens below the estimated safe level in year 2022. If instead it follows the estimated % decline after the CP in 2008 (-1.6% per year), it will take until 2045 before 97.5% is below the estimated safe level. It is important to proceed with the monitoring of POPs in breast milk from Swedish mothers in order to further observe if the levels are stabilizing or continue to decline.
Collapse
Affiliation(s)
- Irina Gyllenhammar
- Swedish Food Agency, Uppsala, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | | | | | | | | | | | - Anders Glynn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
22
|
Miglioranza KSB, Ondarza PM, Costa PG, de Azevedo A, Gonzalez M, Shimabukuro VM, Grondona SI, Mitton FM, Barra RO, Wania F, Fillmann G. Spatial and temporal distribution of Persistent Organic Pollutants and current use pesticides in the atmosphere of Argentinean Patagonia. CHEMOSPHERE 2021; 266:129015. [PMID: 33261838 DOI: 10.1016/j.chemosphere.2020.129015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
XAD-based passive air samplers (PAS) were used to evaluate organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and some current use pesticides (chlorotalonil, trifluralin and dichlofluanid) in the atmosphere of Argentinian Patagonia. The PAS were deployed for 12 months during three consecutive years along a longitudinal (Rio Negro watershed) and a latitudinal (Patagonian coast) transect. Endosulfan, trifluralin and DDT-related substances were the most prevalent pesticides in the Rio Negro watershed, an intensive agricultural basin, consistent with ongoing use of endosulfan at the time of sampling. Concentrations of industrial contaminants were low (mean 25 pg/m3 and 1.9 pg/m3 for Σ38 PCBs, and Σ5PBDEs, respectively) and similar among sites. However, along the Patagonian coast, air concentrations of total contaminants were highly variable (14-400 pg/m3) with highest values recorded at Bahia Blanca, an important industrial area that is also downwind of the most intensively agriculturally used area of Argentina. Contaminant levels decreased toward the south, with the exception of the southernmost sampling site (Rio Gallegos) where a slight increase of total pollutant levels was observed, mainly due to the lower chlorinated PCB congeners. Interannual variability was small, although the last year tended to have slightly higher levels for different contaminant groups at most sampling sites. This large-scale spatial atmospheric monitoring of POPs and some CUPs in the South of Argentina highlights the important and continuing role of rural and urban areas as emission sources of these chemicals.
Collapse
Affiliation(s)
- Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina.
| | - Paola M Ondarza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Patricia G Costa
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Universidade Federal Do Río Grande, Rio Grande, RS, Brazil
| | - Amaro de Azevedo
- Instituto Federal de Ciência e Tecnologia Do Rio Grande Do Sul, Caxias Do Sul, RS, Brazil.Programa de Pós-graduação Em Química Tecnológica e Ambiental, Universidade Federal Do Rio Grande, Rio Grande, RS, Brazil
| | - Mariana Gonzalez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Valeria M Shimabukuro
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Sebastián I Grondona
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina; Instituto de Geología de Costas y Del Cuaternario, Universidad Nacional de Mar Del Plata, Argentina
| | - Francesca M Mitton
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Instituto de Investigaciones Marinas y Costeras, Universidad Nacional de Mar Del Plata-CONICET, Mar Del Plata, Argentina. Funes 3350, Mar Del Plata, 7600, Argentina
| | - Ricardo O Barra
- Departamento de Sistemas Acuáticos, Facultad de Ciencias Ambientales y Centro EULA, Universidad de Concepción, 4070386, Chile
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Gilberto Fillmann
- Laboratório de Microcontaminantes Orgânicos e Ecotoxicologia Aquática, Universidade Federal Do Río Grande, Rio Grande, RS, Brazil
| |
Collapse
|
23
|
Bestley S, Ropert-Coudert Y, Bengtson Nash S, Brooks CM, Cotté C, Dewar M, Friedlaender AS, Jackson JA, Labrousse S, Lowther AD, McMahon CR, Phillips RA, Pistorius P, Puskic PS, Reis AODA, Reisinger RR, Santos M, Tarszisz E, Tixier P, Trathan PN, Wege M, Wienecke B. Marine Ecosystem Assessment for the Southern Ocean: Birds and Marine Mammals in a Changing Climate. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.566936] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
24
|
Wu X, Chen A, Yuan Z, Kang H, Xie Z. Atmospheric organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in the Antarctic marginal seas: Distribution, sources and transportation. CHEMOSPHERE 2020; 258:127359. [PMID: 32544807 DOI: 10.1016/j.chemosphere.2020.127359] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/03/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
From November 2013 to March 2014, air samples were collected in the Antarctic marginal seas during the 30th Chinese Antarctic research expedition. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were analyzed in these samples. The mean concentrations were observed for hexachlorobenzene (HCB) >ΣPCBs >Σhexachlorocyclohexanes(HCHs) >Σdichlorodiphenyltrichloroethane(DDTs)>Σchlordanes. High levels of HCB were found near east Antarctica and in the Ross Sea, reflecting the re-emission of HCB from environmental reservoirs of these regions. Parent DDTs (p,p'- and o,p'-DDT) were rarely detected, suggesting that atmospheric DDT was predominantly influencedby weathered DDT from some secondarysources. However, fresh inputs of DDTs could not be excluded because there were still some samples with high proportions of parent DDTs. HCHs only were detected in the South Indian Ocean (near Australia), andthis result might be related to the intense emissions of HCHs from southern Australia. Ratios of trans-chlordane/cis-chlordanein most samples were lower than that in technical chlordane, reflecting the main influence of weathered chlordane. High levels of ΣPCBs were found in the Ross Sea, suggesting an intense re-emission of PCBs. Furthermore, atmospheric PCBs near the Antarctic Peninsula were also relatively high, this finding might be attributed to the emissions of PCBs from nearby Antarctic research stations. Comparing with the Arctic, transport of OCPs and PCBs towards Antarctica is more difficult. The Antarctic marginal seas would act as both barriers and "buffer zones"during the transportation processes.
Collapse
Affiliation(s)
- Xiaoguo Wu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, 97331, USA
| | - Afeng Chen
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, Anhui, 241002, PR China
| | - Hui Kang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
25
|
Wania F, Shunthirasingham C. Passive air sampling for semi-volatile organic chemicals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1925-2002. [PMID: 32822447 DOI: 10.1039/d0em00194e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During passive air sampling, the amount of a chemical taken up in a sorbent from the air without the help of a pump is quantified and converted into an air concentration. In an equilibrium sampler, this conversion requires a thermodynamic parameter, the equilibrium sorption coefficient between gas-phase and sorbent. In a kinetic sampler, a time-averaged air concentration is obtained using a sampling rate, which is a kinetic parameter. Design requirements for kinetic and equilibrium sampling conflict with each other. The volatility of semi-volatile organic compounds (SVOCs) varies over five orders of magnitude, which implies that passive air samplers are inevitably kinetic samplers for less volatile SVOCs and equilibrium samplers for more volatile SVOCs. Therefore, most currently used passive sampler designs for SVOCs are a compromise that requires the consideration of both a thermodynamic and a kinetic parameter. Their quantitative interpretation depends on assumptions that are rarely fulfilled, and on input parameters, that are often only known with high uncertainty. Kinetic passive air sampling for SVOCs is also challenging because their typically very low atmospheric concentrations necessitate relatively high sampling rates that can only be achieved without the use of diffusive barriers. This in turn renders sampling rates dependent on wind conditions and therefore highly variable. Despite the overall high uncertainty arising from these challenges, passive air samplers for SVOCs have valuable roles to play in recording (i) spatial concentration variability at scales ranging from a few centimeters to tens of thousands of kilometers, (ii) long-term trends, (iii) air contamination in remote and inaccessible locations and (iv) indoor inhalation exposure. Going forward, thermal desorption of sorbents may lower the detection limits for some SVOCs to an extent that the use of diffusive barriers in the kinetic sampling of SVOCs becomes feasible, which is a prerequisite to decreasing the uncertainty of sampling rates. If the thermally stable sorbent additionally has a high sorptive capacity, it may be possible to design true kinetic samplers for most SVOCs. In the meantime, the passive air sampling community would benefit from being more transparent by rigorously quantifying and explicitly reporting uncertainty.
Collapse
Affiliation(s)
- Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | | |
Collapse
|
26
|
Hwang JI, Wilson PC, Kim JE. Accumulation characteristics of endosulfan soil residues in soybean and reduction in their phytoavailability by treatment with powdered activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21260-21272. [PMID: 32266632 DOI: 10.1007/s11356-020-08596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Powdered activated carbon (PAC) has been utilized for sorptive remediation of environmental sites contaminated with various organic chemicals. In the present study, time-dependent sorption/desorption characteristics of the α- and β-isomers and a sulfate-metabolite of endosulfan (ED) were investigated in PAC-amended soils to determine the optimal PAC amendment dosage. Subsequently, ED phytoavailability to soybean (Glycine max Merr.) plants were examined in the presence or absence of PAC under restricted laboratory conditions. Based on the results of sorption/desorption tests, the optimal dosage of PAC amendment for ED-contaminated soils was determined as 1% (w/w), and at this dosage, all ED residues were sorbed completely onto the PAC-amended soils without any desorption. In soil amended with 1% PAC, the extents of ED accumulated by soybean plants were reduced by 89.4-100.0% within 20 days compared to those extents observed in unamended controls. Moreover, PAC treatment precluded the formation of the toxic metabolite ED-sulfate in either the soil or soybean plants. Therefore, PAC amendment in ED-contaminated soils could be highly effective for limiting uptake of ED into plants from contaminated soil and may be useful as an alternative method to produce safe food resources from contaminated arable soils.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Soil and Water Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | | | - Jang-Eok Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
27
|
Maner J, Burkard M, Cassano JC, Nash SMB, Schirmer K, Suter MJF. Hexachlorobenzene exerts genotoxic effects in a humpback whale cell line under stable exposure conditions. RSC Adv 2019; 9:39447-39457. [PMID: 35540658 PMCID: PMC9076109 DOI: 10.1039/c9ra05352b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
Humpback whales, like other polar wildlife, accumulate persistent organic pollutants. In Southern hemisphere populations, hexachlorobenzene (HCB) dominates the contaminant profiles. HCB is linked to a variety of health effects and is classified as a group 2B carcinogen, but the mechanism of action is a matter of contention. Potential toxicological effects to humpback whales remain entirely unknown. The recently established humpback whale fibroblast cell line (HuWa) offers an in vitro model for toxicological investigations. We here combine this novel cell line with a passive dosing strategy to investigate whale-specific toxicity of HCB. The relevant partitioning coefficients were determined to produce stable and predictable exposure concentrations in small-scale bioassays. The system was used to assess acute toxicity as well as genotoxicity of HCB to the HuWa cell line. While we found some transient reductions in metabolic activity, measured with the indicator dye alamarBlue, no clear acute toxic effects were discernible. Yet, a significant increase in DNA damage, detected in the alkaline comet assay, was found in HuWa cells exposed to 10 μg L-1 HCB during the sensitive phase of cell attachment. Collectively, this work provides a ready-to-use passive dosing system and delivers evidence that HCB elicits genotoxicity in humpback whale cells.
Collapse
Affiliation(s)
- Jenny Maner
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| | - Michael Burkard
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Juan Carlos Cassano
- Empa, Swiss Laboratories for Material Science and Technology, Particle-Biology Interactions Laboratory 9014 St Gallen Switzerland
| | - Susan M Bengtson Nash
- Southern Ocean Persistent Organic Pollutants Program, Environmental Futures Research Institute, Griffith University Brisbane QLD 4108 Australia
| | - Kristin Schirmer
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
- School of Architecture, Civil and Environmental Engineering, EPF Lausanne 1015 Lausanne Switzerland
| | - Marc J-F Suter
- Department Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology 8600 Dübendorf Switzerland
- Department of Environmental Systems Science, ETH Zürich 8092 Zürich Switzerland
| |
Collapse
|
28
|
Corsolini S, Baroni D, Martellini T, Pala N, Cincinelli A. PBDEs and PCBs in terrestrial ecosystems of the Victoria Land, Antarctica. CHEMOSPHERE 2019; 231:233-239. [PMID: 31129404 DOI: 10.1016/j.chemosphere.2019.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
The Victoria Land (East Antarctica) is characterized by the presence of lakes and ponds where rare water is found during the Summer months. These freshwater ecosystems are an important resource for migrating seabirds that use them and leave there their droppings and feathers, contributing to enrich the water with organic matter. Persistent organic pollutants (POPs) are long-range transported to polar regions and their detection in the Antarctic ecosystems date back to the 1960s. Most studies have been related to POP concentrations in marine environment, and terrestrial ecosystems have been poorly investigated. This study reports the concentration of PBDEs (23 congeners) and PCBs (21 among non-, mono-, di-, and ortho congeners) in lake sediment, soil and vegetation mat (community of algae, cyanobacteria, bryophites) collected close to six lakes in the Victoria Land (74°31'S-74°97'S, 165°07'E-162°51'E): Edmonson Point 14 and 15A, Carezza, Enigma, Tarn Flat 20, Inexpressible Island 10B. The ∑PBDEs averaged 0.09-0.28 ng/g and BDEs 28, 47 and 154 were higher in mat and soils, while BDEs 183 and 47 in sediment samples. PCBs ranged <0.003-0.807 ng/g and congeners nos. 114, 138, and 187 were the most abundant. In addition, TEQs were derived for the non-and mono-ortho PCBs detected and values were very low in each matrix (0.010 pg/g in the soil, 0.012 pg/g in sediment and mat). The long-range atmospheric transport can be confirmed as the most important POP source in Antarctica, although the scientific stations and seabird colonies may be potential local sources and contribute to contaminant release.
Collapse
Affiliation(s)
- Simonetta Corsolini
- Department of Physical, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy.
| | - Davide Baroni
- Department of Physical, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (FI), 50019, Italy
| | - Nicolas Pala
- Department of Physical, Earth and Environmental Sciences, University of Siena, I-53100 Siena, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino (FI), 50019, Italy
| |
Collapse
|
29
|
Casà MV, van Mourik LM, Weijs L, Mueller J, Nash SB. First detection of short-chain chlorinated paraffins (SCCPs) in humpback whales (Megaptera novaeangliae) foraging in Antarctic waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:953-959. [PMID: 31085482 DOI: 10.1016/j.envpol.2019.04.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/27/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are particularly prone to environmental dispersal through long range atmospheric transport. Consequently, they have been detected in biota and environmental matrices at both the North Pole and South Pole. This study shows the first detection of SCCPs in southern hemisphere humpback whales feeding in Antarctic waters. Blubber of specimens stranded along the Australian coastline was analysed and SCCPs were detected in 7 out of 9 individuals. Levels of SCCPs detected in this study were generally low with concentrations up to only 46 ng/g lw. These results were significantly lower than those detected in Northern Hemisphere odontocetes from previous studies, although no reported burdens in northern hemisphere baleen whales are available for comparison. Both the highest level and lowest (<MDL) were measured in calves-of-the-year. Congener group profile in the samples showed that the predominant carbon chain length was C11, followed by C10 = C12 > C13. Further investigation is needed in order to evaluate the presence and distribution of SCCPs in the remote Antarctica ecosystem, and delineate longer term environmental consequences of recent inclusion of SCCPs under Annex A of the Stockholm Convention, securing their phase out in ratifying nations.
Collapse
Affiliation(s)
- Maria Valeria Casà
- Environmental Futures Research Institute (EFRI), School of Environment and Science, Griffith University, 170 Kessels Rd, Nathan QLD, 4111, Australia.
| | - Louise M van Mourik
- Dept. of Environment and Health (E&H), Faculty of Sciences, Vrije Universiteit, De Boelelaan 1087, 1081, HV, Amsterdam, the Netherlands; Queensland Alliance for Environmental Health Sciences (QAEHS), Faculty of Health and Behavioural Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Liesbeth Weijs
- Australian Rivers Institute, School of Environment and Science, Griffith University, Southport QLD, 4222, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), Faculty of Health and Behavioural Sciences, The University of Queensland, 20 Cornwall Street, Woolloongabba, 4102, QLD, Australia
| | - Susan Bengtson Nash
- Environmental Futures Research Institute (EFRI), School of Environment and Science, Griffith University, 170 Kessels Rd, Nathan QLD, 4111, Australia
| |
Collapse
|
30
|
Hao Y, Li Y, Han X, Wang T, Yang R, Wang P, Xiao K, Li W, Lu H, Fu J, Wang Y, Shi J, Zhang Q, Jiang G. Air monitoring of polychlorinated biphenyls, polybrominated diphenyl ethers and organochlorine pesticides in West Antarctica during 2011-2017: Concentrations, temporal trends and potential sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:381-389. [PMID: 30913437 DOI: 10.1016/j.envpol.2019.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 05/21/2023]
Abstract
Annual air samples were collected at various sites in the Fildes Peninsula, West Antarctica from December 2010 to January 2018 using XAD-2 resin passive air samplers to investigate concentrations, temporal trends and potential sources of persistent organic pollutants (POPs) in Antarctic air. Relatively low concentrations of polychlorinated biphenyls (PCBs) (Σ19PCBs: 1.5-29.7 pg/m3), polybrominated diphenyl ethers (PBDEs) (Σ12PBDEs: 0.2-2.9 pg/m3) and organochlorine pesticides (OCPs) (Σ13OCPs: 101-278 pg/m3) were found in the atmosphere of West Antarctica. PCB-11, BDE-47 and hexachlorobenzene (HCB) were the predominant compounds in the atmosphere. The concentrations of PCBs, HCHs, DDTs and endosulfans were found to show decreasing temporal trends, whereas uniform temporal trends were observed for HCB. The atmospheric half-life values for PCBs, HCHs, DDTs and endosulfans in Antarctic air were estimated for the first time, using regressions of the natural logarithm of the concentrations versus the number of years, obtaining the values of 2.0, 2.0, 2.4 and 1.2 year, respectively. An increasing ratio of α-HCH/γ-HCH indicated long residence time for α-HCH and possible transformation of γ-HCH to α-HCH in the atmosphere. The ratios of p,p'-DDT/p,p'-DDE were mostly lower than unity in this study, which could be attributed to aged sources. It was found that long-range atmospheric transport was still considered to be the main contributing factor to the atmospheric levels of the POPs in West Antarctica whereas the contribution of human activities at the Chinese Great Wall Station was minor. The results of this study give a view on the most recent temporal trends and provide new insights regarding the occurrence of various POPs in the Antarctic atmosphere.
Collapse
Affiliation(s)
- Yanfen Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Thanh Wang
- MTM Research Center, Örebro University, SE-701 82, Örebro, Sweden
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ke Xiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenjuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huili Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|