1
|
Lobos AE, Brandt AM, Gallard-Góngora JF, Korde R, Brodrick E, Harwood VJ. Persistence of sewage-associated genetic markers in advanced and conventional treated recycled water: implications for microbial source tracking in surface waters. mBio 2024; 15:e0065524. [PMID: 38864636 PMCID: PMC11253620 DOI: 10.1128/mbio.00655-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Sewage contamination of environmental waters is increasingly assessed by measuring DNA from sewage-associated microorganisms in microbial source tracking (MST) approaches. However, DNA can persist through wastewater treatment and reach surface waters when treated sewage/recycled water is discharged, which may falsely indicate pollution from untreated sewage. Recycled water discharged from an advanced wastewater treatment (AWT) facility into a Florida stream elevated the sewage-associated HF183 marker 1,000-fold, with a minimal increase in cultured Escherichia coli. The persistence of sewage-associated microorganisms was compared by qPCR in untreated sewage and recycled water from conventional wastewater treatment (CWT) and AWT facilities. E. coli (EC23S857) and sewage-associated markers HF183, H8, and viral crAssphage CPQ_056 were always detected in untreated sewage (6.5-8.7 log10 GC/100 mL). Multivariate analysis found a significantly greater reduction of microbial variables via AWT vs CWT. Bacterial markers decayed ~4-5 log10 through CWT, but CPQ_056 was ~100-fold more persistent. In AWT facilities, the log10 reduction of all variables was ~5. In recycled water, bacterial marker concentrations were significantly correlated (P ≤ 0.0136; tau ≥ 0.44); however, CPQ_056 was not correlated with any marker, suggesting varying drivers of decay. Concentrations of cultured E. coli carrying the H8 marker (EcH8) in untreated sewage were 5.24-6.02 log10 CFU/100 mL, while no E. coli was isolated from recycled water. HF183 and culturable EcH8 were also correlated in contaminated surface waters (odds ratio β1 = 1.701). Culturable EcH8 has a strong potential to differentiate positive MST marker signals arising from treated (e.g., recycled water) and untreated sewage discharged into environmental waters. IMPORTANCE Genes in sewage-associated microorganisms are widely accepted indicators of sewage pollution in environmental waters. However, DNA persists through wastewater treatment and can reach surface waters when recycled water is discharged, potentially causing false-positive indications of sewage contamination. Previous studies have found that bacterial and viral sewage-associated genes persist through wastewater treatment; however, these studies did not compare different facilities or identify a solution to distinguish sewage from recycled water. In this study, we demonstrated the persistence of bacterial marker genes and the greater persistence of a viral marker gene (CPQ_056 of crAssphage) through varying wastewater treatment facilities. We also aim to provide a tool to confirm sewage contamination in surface waters with recycled water inputs. This work showed that the level of wastewater treatment affects the removal of microorganisms, particularly viruses, and expands our ability to identify sewage in surface waters.
Collapse
Affiliation(s)
- Aldo E. Lobos
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Amanda M. Brandt
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Javier F. Gallard-Góngora
- Department of Earth, Marine, and Environmental Sciences, Institute of Marine Science, University of North Carolina at Chapel Hill, Morehead City, North Carolina, USA
| | - Ruchi Korde
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Eleanor Brodrick
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Hachimi O, Falender R, Davis G, Wafula RV, Sutton M, Bancroft J, Cieslak P, Kelly C, Kaya D, Radniecki T. Evaluation of molecular-based methods for the detection and quantification of Cryptosporidium spp. in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174219. [PMID: 38917908 DOI: 10.1016/j.scitotenv.2024.174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/μL DNA) and the QIAamp DNA Mini kit (238 gc/μL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/μL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.
Collapse
Affiliation(s)
- Oumaima Hachimi
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rebecca Falender
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Gabriel Davis
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rispa Vranka Wafula
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Melissa Sutton
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - June Bancroft
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Paul Cieslak
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Tyler Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
3
|
Bhatt A, Dada AC, Prajapati SK, Arora P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160842. [PMID: 36509266 DOI: 10.1016/j.scitotenv.2022.160842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
4
|
Kelmer GAR, Ramos ER, Dias EHO. Coliphages as viral indicators in municipal wastewater: A comparison between the ISO and the USEPA methods based on a systematic literature review. WATER RESEARCH 2023; 230:119579. [PMID: 36640612 DOI: 10.1016/j.watres.2023.119579] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The use of traditional faecal indicator bacteria as surrogate organisms for pathogenic viruses in domestic wastewater has been noted as a problematic as concentrations and removal rates of bacteria and viruses do not seem to correlate. In this sense, bacteriophages (phages) emerge as potential viral indicators, as they are commonly found in wastewater in high levels, and can be quantified using simple, fast, low-cost methods. Somatic and F-specific coliphages comprise groups of phages commonly used as indicators of water quality. There are two internationally recognised methods to detect and enumerate coliphages in water samples, the International Standardization Organization (ISO) and the US Environmental Protection Agency (USEPA) methods. Both methods are based on the lysis of specific bacterial host strains infected by phages. Within this context, this systematic literature review aimed at gathering concentrations in raw and treated domestic wastewater (secondary, biological treatment systems and post-treatment systems), and removal efficiencies of somatic and F-specific coliphages obtained by ISO and USEPA methods, and then compare both methods. A total of 33 research papers were considered in this study. Results showed that the ISO method is more commonly applied than the USEPA method. Some discrepancies in terms of concentrations and removal efficiencies were observed between both methods. Higher removal rates were observed for both somatic and F-specific coliphages in activated sludge systems when using the USEPA method compared to the ISO method; in other secondary (biological) treatment systems, this was observed only for F-specific coliphages. The use of different standardised methods available might lead to difficulties in obtaining and comparing phage data in different conditions and locations. Future research comparing both ISO and USEPA methods as well as viral and bacterial pathogens and indicators in WWTP is recommended.
Collapse
Affiliation(s)
- Gisele A R Kelmer
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Elloís R Ramos
- Environmental and Sanitary Engineering Course, Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil
| | - Edgard H O Dias
- Postgraduate Programme in Civil Engineering (PEC), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil; Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora (UFJF). Rua José Lourenço Kelmer, s/n, Campus UFJF. São Pedro, Juiz de Fora - MG, CEP 36036-900, Brazil.
| |
Collapse
|
5
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
6
|
Onchoke KK, Franclemont CM. Evaluation and removal efficiencies of a rural WWTP for metals and anions in Lufkin, East Texas (USA). ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:920. [PMID: 36257995 PMCID: PMC9579637 DOI: 10.1007/s10661-022-10622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The present study quantified element concentrations and evaluated the removal efficiencies of the Lufkin Wastewater Treatment Plant (LWWTP): a public municipal wastewater treatment plant in East Texas. Macroelements (Na, K, Mg, Ca, Al, Fe, Se, Zn, P, and S) and microelements (Ni, Pb, Mn, Cr, Mo, Cu, Co, V, As, B, Ba) were detected using ICP-OES and ICP-MS. In addition, the anion concentrations (Br-, NO3-, NO2-, PO43-, F-, Cl-, and SO42-) and their percent removal from the LWWTP were assessed by using ion chromatography. Whereas macroelements in the influent were above the maximum ceiling limits, the total metal concentrations in the effluent were found below the USEPA (below μg/L) guidelines. In general, the removal efficiencies for metals in LWWTP were ≥ 94%. The removal efficiencies of the anions were > 100% (Br-), 16.42% (Cl-), 78.89% (F-), 182.59% (NO3-), > 100% (NO2-), 51.81% (PO43-), and 67.01% (SO42-). In addition, Pierson correlation coefficients between the anions and cations, and implications for usage and suggested improvements of the treatment plants are proposed.
Collapse
Affiliation(s)
- Kefa K Onchoke
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-13006, USA.
| | - Christopher M Franclemont
- Department of Chemistry & Biochemistry, Stephen F. Austin State University, Box 13006 - SFA Station, Nacogdoches, TX, 75962-13006, USA
| |
Collapse
|
7
|
Korajkic A, Kelleher J, Shanks OC, Herrmann MP, McMinn BR. Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154861. [PMID: 35358531 PMCID: PMC9291237 DOI: 10.1016/j.scitotenv.2022.154861] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Primary influent and final effluent samples were collected from wastewater treatment plants using either chlorination or ultraviolet (UV) disinfection biweekly for one year. Paired measurements were determined for fecal indicator bacteria (Escherichia coli and enterococci), cultivated bacteriophages (somatic, F+, and CB-390 coliphage and GB-124 Bacteroides phage), human-associated viral markers (human polyomavirus [HPyV] and crAssphage), enteric pathogens (adenovirus, noroviruses genogroups I and II) as well as total infectious enteric virus. To increase the probability of detecting low concentration targets, both primary (10L) and final effluent wastewater samples (40-100 L) were concentrated using a dead-end hollow-fiber ultrafilter (D-HFUF). Despite seasonal temperature fluctuations, concentration shifts of FIB, bacteriophages, human-associated viruses, and viral pathogens measured in primary influent samples were minimal, while levels of infectious enteric virus were significantly higher in the spring and fall (P range: 0.0003-0.0409). FIB levels measured in primary influents were 1-2 log10 higher than bacteriophage, human-associated viral markers (except crAssphage) and viral pathogens measured. FIB displayed the greatest sensitivity to chlorine disinfection, while crAssphage, adenoviruses and infectious enteric viruses were significantly less sensitive (P ≤ 0.0096). During UV treatment, bacteriophages F+ and GB-124 were the most resistant of the culturable viruses measured (P ≤ 0.001), while crAssphage were the most resistant (P ≤ 0.0124) overall. When UV lamps were inactive, infectious enteric viruses were significantly more resilient to upstream treatment processes than all other targets measured (P ≤ 0.0257). Similar to infectious enteric viruses and adenoviruses; GB-124, F+, and crAssphages displayed the highest resistance to UV irradiation, signaling a potential applicability as pathogen surrogates in these systems. The use of D-HFUF enhanced the ability to estimate removal of viruses through wastewater treatment, with the expectation that future applications of this method will be used to better elucidate viral behavior within these systems.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Orin C Shanks
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Michael P Herrmann
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Laboratory, Cincinnati, OH 45268, United States.
| |
Collapse
|
8
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
9
|
Wang M, Chen H, Liu S, Xiao L. Removal of pathogen and antibiotic resistance genes from waste activated sludge by different pre-treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143014. [PMID: 33190880 DOI: 10.1016/j.scitotenv.2020.143014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
In wastewater treatment plants, most of the pathogens and antibiotic resistant genes (ARGs) transferred into and concentrated in waste activated sludge (WAS), which would cause severe public health risks. In this study, the capabilities of several WAS pre-treatment approaches to inactivate coliforms/E. coli and ARGs, as well as the subsequent regrowth of coliforms/E. coli and ARGs/intI1 in treated sludge were investigated. The results showed that electro-Fenton (EF), with continuous hydroxyl radical generation, could efficiently inactivate coliforms/E. coli in 60 min (about 4 log units), followed by methanol (MT), anode oxidization (AO), and acidification (AT). Kinetic analysis showed that the inactivation mainly occurred in the first 10 min. However, the efficiencies of all studied pre-treatment approaches on inactivating ARGs/intI1 (<2 log units) were lower than coliforms/E. coli, whilst EF still had the highest efficiency of ARGs/intI1 reduction. Mechanical ultrasound treatment (ULS) could not inactivate coliforms/E. coli in WAS, but it could efficiently reduce ARGs/intI1. High regrowth rates of coliforms/E. coli were observed in the treated WAS in 10 days, but the abundances of ARGs/intI1 continuously reduced during the after-treatment incubation. Our study showed that EF could efficiently disinfect potential pathogens, however, the reduction of ARGs/intI1 in WAS need further investigation.
Collapse
Affiliation(s)
- Min Wang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiping Chen
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shulei Liu
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Xiao
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
10
|
Daraei H, Oliveri Conti G, Sahlabadi F, Thai VN, Gholipour S, Turki H, Fakhri Y, Ferrante M, Moradi A, Mousavi Khaneghah A. Prevalence of Cryptosporidium spp. in water: a global systematic review and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9498-9507. [PMID: 33150505 DOI: 10.1007/s11356-020-11261-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidium spp., as a genus of protozoan intestinal parasites, is recognized as responsible for cryptosporidiosis. The present study was conducted to provide an overview of the prevalence of Cryptosporidium based on water. In this regard, some databases such as Scopus, PubMed, Embase, and Web of Science were screened in order to retrieve the related citations from 1 January 1983 to 10 September 2019. The pooled prevalence of Cryptosporidium spp. was calculated by using a random effect model (REM) based on defined subgroups, including countries, water type, treatment conditions (treated and untreated), economic condition, World Health Organization (WHO) regions, and method of detection. In contrast, this index for treated and untreated water was 25.7% and 40.1%, respectively. Also, the overall prevalence of Cryptosporidium spp. among all water types was defined as 36 (95% CI: 31.4-40.7). The rank order of prevalence of Cryptosporidium spp. based on water type was wastewater (46.9%) > surface water (45.3%) > raw water (31.6%) > drinking water (25.5%) > reservoirs water (24.5%) > groundwater (18.8%) > swimming pool water (7.5%) > marine water (0.20%). Identifying the key contributing factors to Cryptosporidium spp. survival can help provide solutions at both local and global scales.
Collapse
Affiliation(s)
- Hasti Daraei
- Department of Environmental Health Engineering, School of Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Gea Oliveri Conti
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Catania, Italy
| | - Fatemeh Sahlabadi
- Food Health Research Center, Department of Environmental Health Engineering, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Van Nam Thai
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Vietnam
| | - Sahar Gholipour
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Habibollah Turki
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Yadolah Fakhri
- Food Health Research Center, Department of Environmental Health Engineering, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Margherita Ferrante
- Environmental and Food Hygiene Laboratories (LIAA) of Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Hygiene and Public Health, University of Catania, Catania, Italy.
| | - Ali Moradi
- Occupational Health and Safety Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
11
|
Schmitz BW, Innes GK, Xue J, Gerba CP, Pepper IL, Sherchan S. Reduction of erythromycin resistance gene erm(F) and class 1 integron-integrase genes in wastewater by Bardenpho treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1042-1050. [PMID: 31989707 DOI: 10.1002/wer.1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Wastewaters routinely contain antibiotic-resistant bacteria (ARB) and genes (ARG) that are removed to a varying degree during wastewater treatment. This study investigated the removal of the erythromycin ribosome methylase class F (erm(F)) and class 1 integron-integrase (intI1) genes at each stage from two water resource recovery facilities in southern Arizona. Although genes were significantly reduced by Bardenpho treatment, erm(F) and intI1 were still observed in ≥ 9 and 7 out of 12 secondary effluent samples. Primary processes via sedimentation or dissolved air flotation, as well as chlorine disinfection, did not significantly impact erm(F) and intI1 concentrations. Therefore, Bardenpho treatment was critical to reduce erm(F) and intI1. Concentrations of erm(F) and intI1 were compared with each other and other markers for anthropogenic pollution. Results from this study support intI1 as one suitable marker to measure erythromycin resistance genes in wastewater, as intI1 was found at higher concentrations, persisted more throughout treatment, and correlated with erm(F) at nearly every treatment stage. PRACTITIONER POINTS: Bardenpho treatment was the key process responsible for the reduction of intI1 and erm(F) genes during wastewater treatment. Primary treatment and chlorine disinfection did not impact erm(F) and intI1 gene concentrations. The intI1 gene is a suitable marker for measuring erm(F) genes in wastewater.
Collapse
Affiliation(s)
- Bradley W Schmitz
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Gabriel K Innes
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jia Xue
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| | - Charles P Gerba
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, Arizona
| | - Ian L Pepper
- Water & Energy Sustainable Technology (WEST) Center, University of Arizona, Tucson, Arizona
| | - Samendra Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
12
|
Razzolini MTP, Breternitz BS, Kuchkarian B, Bastos VK. Cryptosporidium and Giardia in urban wastewater: A challenge to overcome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113545. [PMID: 31733962 DOI: 10.1016/j.envpol.2019.113545] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to quantify Giardia and Cryptosporidium in disinfected water reuse samples from two Wastewater Treatment Plants (A and B), which were quantified by USEPA 1693/2014 Method. Giardia was found in 35.8% of the total samples (<0.03 to 16 cysts/L) while Cryptosporidium in 30.2% (<0.03 to 25.8 oocysts/L). This study highlights the presence of both parasites in water for reuse despite treatment processes for their removal, which means there is a challenge to overcome. Their presence is preoccupant even though in low concentrations because the infectivity dose is low coupled with high prevalence in the global population. The practice of water recycling is valuable for sustainable water management and it is in line with Sustainable Developments Goals but should not threaten human health. Tackling this issue is more critical in developing countries because treatment processes are often more limited, the monitoring data from water reuse are not always available, the lack of regulation for water reuse quality and the lack of planning for its sustainable usage.
Collapse
Affiliation(s)
- M T P Razzolini
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil.
| | - B S Breternitz
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil
| | - B Kuchkarian
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil
| | - V K Bastos
- School of Public Health, University of São Paulo, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil; NARA - Center for Research in Environmental Risk Assessment, Av. Dr Arnaldo 715, 1°andar, 01246-904 São Paulo, Brazil
| |
Collapse
|
13
|
Tumwebaze IK, Rose JB, Hofstra N, Verbyla ME, Musaazi I, Okaali DA, Kaggwa RC, Nansubuga I, Murphy HM. Translating pathogen knowledge to practice for sanitation decision-making. JOURNAL OF WATER AND HEALTH 2019; 17:896-909. [PMID: 31850897 DOI: 10.2166/wh.2019.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Sanitation planners make complex decisions in the delivery of sanitation services to achieve health outcomes. We present findings from a stakeholder engagement workshop held in Kampala, Uganda, to educate, interact with, and solicit feedback from participants on how the relevant scientific literature on pathogens can be made more accessible to practitioners to support decision-making. We targeted Water, Sanitation and Hygiene (WASH) practitioners involved in different levels of service delivery. Practitioners revealed that different sanitation planning tools are used to inform decision-making; however, most of these tools are not user-friendly or adapted to meet their needs. Most stakeholders (68%) expressed familiarity with pathogens, yet less than half (46%) understood that fecal coliforms were bacteria and used as indicators for fecal pollution. A number of stakeholders were unaware that fecal indicator bacteria do not behave and persist the same as helminths, protozoa, or viruses, making fecal indicator bacteria inadequate for assessing pathogen reductions for all pathogen groups. This suggests a need for awareness and capacity development around pathogens found in excreta. The findings underscore the importance to engage stakeholders in the development of support tools for sanitation planning and highlighted broader opportunities to bridge science with practice in the WASH sector.
Collapse
Affiliation(s)
- Innocent K Tumwebaze
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, USA E-mail:
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Nynke Hofstra
- Water Systems and Global Change Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Matthew E Verbyla
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA, USA
| | - Isaac Musaazi
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA, USA
| | - Daniel A Okaali
- Water Systems and Global Change Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Rose C Kaggwa
- National Water and Sewerage Corporation, Kampala, Uganda
| | | | - Heather M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, USA E-mail:
| |
Collapse
|
14
|
Xue J, Schmitz BW, Caton K, Zhang B, Zabaleta J, Garai J, Taylor CM, Romanchishina T, Gerba CP, Pepper IL, Sherchan SP. Assessing the spatial and temporal variability of bacterial communities in two Bardenpho wastewater treatment systems via Illumina MiSeq sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1543-1552. [PMID: 30677920 DOI: 10.1016/j.scitotenv.2018.12.141] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Next generation sequencing provides new insights into the diversity and ecophysiology of bacteria communities throughout wastewater treatment plants (WWTP), as well as the fate of pathogens in wastewater treatment system. In the present study, we investigated the bacterial communities and human-associated Bacteroidales (HF183) marker in two WWTPs in North America that utilize Bardenpho treatment processes. Although, most pathogens were eliminated during wastewater treatment, some pathogenic bacteria were still observed in final effluents. The HF183 genetic marker demonstrated significant reductions between influent and post-Bardenpho treated samples in each WWTP, which coincided with changes in bacteria relative abundances and community compositions. Consistent with previous studies, the major phyla in wastewater samples were predominantly comprised by Proteobacteria (with Gammaproteobacteria and Alphaproteobacteria among the top two classes), Actinobacteria, Bacteroidetes, and Firmicutes. Dominant genera were often members of Proteobacteria and Firmicutes, including several pathogens of public health concern, such as Pseudomonas, Serratia, Streptococcus, Mycobacterium and Arcobacter. Pearson correlations were calculated to observe the seasonal variation of relative abundances of gene sequences at different levels based on the monthly average temperature. These findings profile how changes in bacterial communities can function as a robust method for monitoring wastewater treatment quality and performance for public and environmental health purposes.
Collapse
Affiliation(s)
- Jia Xue
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Bradley W Schmitz
- JHU/Stantec Alliance, Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, MD, United States of America
| | - Kevin Caton
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America
| | - Bowen Zhang
- Department of Natural Resources and Environmental Management, Ball State University, Muncie, IN, United States of America
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, 70112, USA
| | - Jone Garai
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, New Orleans, Louisiana, 70112, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology & Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Tatiana Romanchishina
- Department of Computer Science, College of Science, Technology, and Health, University of Southern Maine, Portland, ME, United States of America
| | - Charles P Gerba
- WEST Center, University of Arizona, Tucson, AZ, United States of America
| | - Ian L Pepper
- WEST Center, University of Arizona, Tucson, AZ, United States of America
| | - Samendra P Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States of America.
| |
Collapse
|