1
|
Pan T, Zhou YY, Huang X, Xu JX, Guo XY, Su JQ, Li H, Yang XR. Thermophilic degradation of sulfamethazine by Geobacillus sp. S-07: pathway and mechanism. ENVIRONMENTAL RESEARCH 2025; 279:121823. [PMID: 40355059 DOI: 10.1016/j.envres.2025.121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/02/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Biodegradation is crucial for the removal and remediation of sulfonamide antibiotic (SA) contamination. Comprehensively understanding the thermophilic degradation mechanism is essential for the application of SA-biodegrading isolates in engineered systems, such as composting. In this study, we explored the thermophilic biodegradation mechanism of Geobacillus sp. S-07 on sulfamethazine (SMZ). Targeted metabolite analysis unveiled that strain S-07 effectively detoxifies SMZ by modifying the amino moiety and disassembling the sulfonamide bridge moiety. By integrating genomic and proteomic analysis, enzymes potentially involved in the SMZ biotransformation were further proposed, including an adenine deaminase, a dimethylsulfone monooxygenase, and a putative heme-containing peroxidase. Genomic analysis indicated that S-07 carries five antibiotic resistance genes, presenting a low mobility in horizontal transfer, implying its low resistance pollution risk in bioremediation application. This study offers novel insights into the thermophilic SA biodegradation mechanism, and provides biological resources for the development of thermophilic bioremediation technologies aimed at enhanced SA removal.
Collapse
Affiliation(s)
- Ting Pan
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yan-Yan Zhou
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xu Huang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jian-Xin Xu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
| | - Xiao-Yu Guo
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Jian-Qiang Su
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Hu Li
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiao-Ru Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
2
|
Cao L, Garcia SL, Wurzbacher C. Profiling trace organic chemical biotransformation genes, enzymes and associated bacteria in microbial model communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136811. [PMID: 39662353 DOI: 10.1016/j.jhazmat.2024.136811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Microbial biotransformation of trace organic chemicals (TOrCs) is an essential process in wastewater treatment to eliminate environmental pollution. Understanding TOrC biotransformation mechanisms, especially at their original concentrations, is important to optimize treatment performance, whereas our current knowledge is limited. Here, we investigated the biotransformation of seven TOrCs by 24 model communities. The genome-centric analyses unraveled potential biotransformation drivers concerning functional genes, enzymes, and responsible bacteria. We obtained efficient model communities for completely removing ibuprofen, caffeine, and atenolol, with transformation efficiencies between 0 % and 45 % for sulfamethoxazole, carbamazepine, trimethoprim, and gabapentin. Biotransformation performance was not fully reflected by the presence of known biotransformation genes and enzymes in the metagenomes of the communities. Functional similar homologs to existing biotransformation genes and enzymes (e.g., long-chain-fatty-acid-CoA ligase encoded by fadD and fadD13 gene) could play critical roles in TOrC metabolism. Finally, we identified previously undescribed degrading strains, e.g., Rhodococcus qingshengii for caffeine, carbamazepine, sulfamethoxazole, and ibuprofen biotransformation, and potential transformation enzymes, e.g., SDR family oxidoreductase targeting sulfamethoxazole and putative hypothetical proteins for caffeine, atenolol and gabapentin biotransformation. This study provides fundamental insights into naturally assembled low-complexity degrader communities that can help to identify and tackle the current research gaps on biotransformation.
Collapse
Affiliation(s)
- Lijia Cao
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany
| | - Sarahi L Garcia
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden; Institute for Chemistry and Biology of the Marine environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
3
|
Li J, Wang Y, Fang Y, Lyu X, Zhu Z, Wu C, Xu Z, Li W, Liu N, Du C, Wang Y. Phycospheric Bacteria Alleviate the Stress of Erythromycin on Auxenochlorella pyrenoidosa by Regulating Nitrogen Metabolism. PLANTS (BASEL, SWITZERLAND) 2025; 14:121. [PMID: 39795382 PMCID: PMC11722778 DOI: 10.3390/plants14010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Macrolide pollution has attracted a great deal of attention because of its ecotoxic effects on microalgae, but the role of phycospheric bacteria under antibiotic stress remains unclear. This study explored the toxic effects of erythromycin (ERY) on the growth and nitrogen metabolism of Auxenochlorella pyrenoidosa; then, it analyzed and predicted the effects of the composition and ecological function of phycospheric bacteria on microalgae under ERY stress. We found that 0.1, 1.0, and 10 mg/L ERY inhibited the growth and chlorophyll of microalgae, but the microalgae gradually showed enhanced growth abilities over the course of 21 days. As the exposure time progressed, the nitrate reductase activities of the microalgae gradually increased, but remained significantly lower than that of the control group at 21 d. NO3- concentrations in all treatment groups decreased gradually and were consistent with microalgae growth. NO2- concentrations in the three treatment groups were lower than those in the control group during ERY exposure over 21 d. ERY changed the community composition and diversity of phycospheric bacteria. The relative abundance of bacteria, such as unclassified-f-Rhizobiaceae, Mesorhizobium, Sphingopyxis, Aquimonas, and Blastomonas, varied to different degrees. Metabolic functions, such ABC transporters, the microbial metabolism in diverse environments, and the biosynthesis of amino acids, were significantly upregulated in the treatments of higher concentrations (1.0 and 10 mg/L). Higher concentrations of ERY significantly inhibited nitrate denitrification, nitrous oxide denitrification, nitrite denitrification, and nitrite and nitrate respiration. The findings of this study suggest that phycospheric bacteria alleviate antibiotic stress and restore the growth of microalgae by regulating nitrogen metabolism in the exposure system.
Collapse
Affiliation(s)
- Jiping Li
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Ying Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Yuan Fang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Xingsheng Lyu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Zixin Zhu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Chenyang Wu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Zijie Xu
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Wei Li
- College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Naisen Liu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Chenggong Du
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| | - Yan Wang
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; (J.L.); (Y.W.); (Y.F.); (N.L.); (C.D.); (Y.W.)
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China; (X.L.); (Z.Z.); (C.W.); (Z.X.)
| |
Collapse
|
4
|
Zhao K, Si T, Liu S, Liu G, Li D, Li F. Co-metabolism of microorganisms: A study revealing the mechanism of antibiotic removal, progress of biodegradation transformation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176561. [PMID: 39362550 DOI: 10.1016/j.scitotenv.2024.176561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
The widespread use of antibiotics has resulted in large quantities of antibiotic residues entering aquatic environments, which can lead to the development of antibiotic-resistant bacteria and antibiotic-resistant genes, posing a potential environmental risk and jeopardizing human health. Constructing a microbial co-metabolism system has become an effective measure to improve the removal efficiency of antibiotics by microorganisms. This paper reviews the four main mechanisms involved in microbial removal of antibiotics: bioaccumulation, biosorption, biodegradation and co-metabolism. The promotion of extracellular polymeric substances for biosorption and extracellular degradation and the regulation mechanism of enzymes in biodegradation by microorganisms processes are detailed therein. Transformation pathways for microbial removal of antibiotics are discussed. Bacteria, microalgae, and microbial consortia's roles in antibiotic removal are outlined. The factors influencing the removal of antibiotics by microbial co-metabolism are also discussed. Overall, this review summarizes the current understanding of microbial co-metabolism for antibiotic removal and outlines future research directions.
Collapse
Affiliation(s)
- Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Tingting Si
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China; Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shenghe Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, 5088 Xincheng Street, Changchun 130118, China
| | - Gaolei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donghao Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
6
|
Huang Y, Pan A, Song Y, Deng Y, Wu ALH, Lau CSH, Zhang T. Strain-level diversity in sulfonamide biodegradation: adaptation of Paenarthrobacter to sulfonamides. THE ISME JOURNAL 2024; 18:wrad040. [PMID: 38366247 PMCID: PMC10873849 DOI: 10.1093/ismejo/wrad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/11/2023] [Accepted: 12/26/2024] [Indexed: 02/18/2024]
Abstract
The widespread occurrence of sulfonamides raises significant concerns about the evolution and spread of antibiotic resistance genes. Biodegradation represents not only a resistance mechanism but also a clean-up strategy. Meanwhile, dynamic and diverse environments could influence the cellular function of individual sulfonamide-degrading strains. Here, we present Paenarthrobacter from different origins that demonstrated diverse growth patterns and sulfonamide-degrading abilities. Generally, the degradation performance was largely associated with the number of sadA gene copies and also relied on its genotype. Based on the survey of sad genes in the public database, an independent mobilization of transposon-borne genes between chromosome and plasmid was observed. Insertions of multiple sadA genes could greatly enhance sulfonamide-degrading performance. Moreover, the sad gene cluster and sadA transposable element showed phylogenetic conservation currently, being identified only in two genera of Paenarthrobacter (Micrococcaceae) and Microbacterium (Microbacteriaceae). Meanwhile, Paenarthrobacter exhibited a high capacity for genome editing to adapt to the specific environmental niche, opening up new opportunities for bioremediation applications.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Anxin Pan
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Ying Song
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yu Deng
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Alnwick Long-Hei Wu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Colin Shiu-Hay Lau
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Qian G, Shao J, Hu P, Tang W, Xiao Y, Hao T. From micro to macro: The role of seawater in maintaining structural integrity and bioactivity of granules in treating antibiotic-laden mariculture wastewater. WATER RESEARCH 2023; 246:120702. [PMID: 37837903 DOI: 10.1016/j.watres.2023.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
Granular sludge (GS) has superior antibiotic removal ability to flocs, due to GS's layered structure and rich extracellular polymeric substances. However, prolonged exposure to antibiotics degrades the performance and stability of GS. This study investigated how a seawater matrix might help maintain the structural integrity and bioactivity of granules. The results demonstrated that GS had better sulfadiazine (SDZ) removal efficiency in a seawater matrix (85.6 %) than in a freshwater matrix (57.6 %); the multiple ions in seawater enhanced boundary layer diffusion (kiR1 = 0.0805 mg·g-1·min-1/2 and kiR2 = 0.1112 mg·g-1·min-1/2) and improved adsorption performance by 15 % (0.123 mg/g-SS freshwater vs. 0.141 mg/g-SS seawater). Moreover, multiple hydrogen bonds (1-3) formed between each SDZ and lipid bilayer fortified the adsorption. Beyond S-N and S-C bond hydrolyses that took place in freshwater systems, there was an additional biodegradation pathway for GS to be cultivated in a saltwater system that involved sulfur dioxide extrusion. This additional pathway was attributable to the greater microbial diversity and larger presence of sulfadiazine-degrading bacteria containing SadAC genes, such as Leucobacter and Arthrobacter, in saltwater wastewater. The findings of this study elucidate how seawater influences GS properties and antibiotic removal ability.
Collapse
Affiliation(s)
- Guangsheng Qian
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Jingyi Shao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Wentao Tang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China; Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China.
| |
Collapse
|
8
|
Zhang J, Li X, Klümper U, Lei H, Berendonk TU, Guo F, Yu K, Yang C, Li B. Deciphering chloramphenicol biotransformation mechanisms and microbial interactions via integrated multi-omics and cultivation-dependent approaches. MICROBIOME 2022; 10:180. [PMID: 36280854 PMCID: PMC9590159 DOI: 10.1186/s40168-022-01361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND As a widely used broad-spectrum antibiotic, chloramphenicol is prone to be released into environments, thus resulting in the disturbance of ecosystem stability as well as the emergence of antibiotic resistance genes. Microbes play a vital role in the decomposition of chloramphenicol in the environment, and the biotransformation processes are especially dependent on synergistic interactions and metabolite exchanges among microbes. Herein, the comprehensive chloramphenicol biotransformation pathway, key metabolic enzymes, and interspecies interactions in an activated sludge-enriched consortium were elucidated using integrated multi-omics and cultivation-based approaches. RESULTS The initial biotransformation steps were the oxidization at the C1-OH and C3-OH groups, the isomerization at C2, and the acetylation at C3-OH of chloramphenicol. Among them, the isomerization is an entirely new biotransformation pathway of chloramphenicol discovered for the first time. Furthermore, we identified a novel glucose-methanol-choline oxidoreductase responsible for the oxidization of the C3-OH group in Sphingomonas sp. and Caballeronia sp. Moreover, the subsequent biotransformation steps, corresponding catalyzing enzymes, and the microbial players responsible for each step were deciphered. Synergistic interactions between Sphingomonas sp. and Caballeronia sp. or Cupriavidus sp. significantly promoted chloramphenicol mineralization, and the substrate exchange interaction network occurred actively among key microbes. CONCLUSION This study provides desirable strain and enzyme resources for enhanced bioremediation of chloramphenicol-contaminated hotspot sites such as pharmaceutical wastewater and livestock and poultry wastewater. The in-depth understanding of the chloramphenicol biotransformation mechanisms and microbial interactions will not only guide the bioremediation of organic pollutants but also provide valuable knowledge for environmental microbiology and biotechnological exploitation. Video Abstract.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Huaxin Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Thomas U Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Fangliang Guo
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
9
|
BPA biodegradation driven by isolated strain SQ-2 and its metabolism mechanism elucidation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Liang Y, Zhou X, Wu Y, Wu Y, Gao S, Zeng X, Yu Z. Rhizobiales as the Key Member in the Synergistic Tris (2-chloroethyl) Phosphate (TCEP) Degradation by Two Bacterial Consortia. WATER RESEARCH 2022; 218:118464. [PMID: 35461102 DOI: 10.1016/j.watres.2022.118464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Tris(2-chloroethyl) phosphate (TCEP) is of growing concern because of its ubiquitous occurrence, potential toxicity, and persistence in the environment. In this study, two efficient TCEP degradation consortia (AT1 and AT3) were developed and were able to completely hydrolyze TCEP within 20-25 h. Rhizobiales was identified as the key degrader in both consortia, because Rhizobiales-related phosphoesterase genes were enriched by one to two orders of magnitude when the carbon source was changed from acetate to TCEP. In addition, the increase in Rhizobiales abundance was related to the development of TCEP degradation. The isolation of Xanthobacter strains confirmed the efficient TCEP and bis(2-chloroethyl) phosphate (BCEP) degradation of Rhizobiales. The higher abundances of phosphoesterase genes affiliated with Rhizobiales genera (Bradyrhizobium and Ancylobacter), Cytophagales genus (Spirosoma), Sphingobacteriales genus (Pedobacter), and Burkholderia genus (Methylibium), may be related to the faster TCEP degradation in AT3, while the higher abundance of Rhizobiales genus (Hyphomicrobium)-related phosphodiesterase (PDE) genes may contribute to the faster BCEP degradation in AT1. The stepwise hydrolysis of TCEP was likely catalyzed by different bacterial guilds, which was confirmed by the coculture of TCEP- and BCEP-degrading isolates and highlighted the importance of synergistic interactions during TCEP degradation.
Collapse
Affiliation(s)
- Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiangyu Zhou
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yiding Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Shutao Gao
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
11
|
Zeng L, Li W, Wang X, Zhang Y, Tai Y, Zhang X, Dai Y, Tao R, Yang Y. Bibliometric analysis of microbial sulfonamide degradation: Development, hotspots and trend directions. CHEMOSPHERE 2022; 293:133598. [PMID: 35033513 DOI: 10.1016/j.chemosphere.2022.133598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Microbial sulfonamide degradation (MSD) is an efficient and safe treatment in both natural and engineered ecosystems. In order to systematically understand the research status and frontier trends of MSD, this study employed CiteSpace to conduct a bibliometric analysis of data from the Web of Science (WoS) and the China National Knowledge Infrastructure (CNKI) published from 2000 to 2021. During this time, China, Germany, Spain, the United States and Australia played leading roles by producing numerous high impact publications, while the Chinese Academy of Sciences was the leading research institution in this interdisciplinary research category. The Chemosphere was the top journal in terms of the number of citations. MSD research has gradually progressed from basic laboratory-based experiments to more complex environmental microbial communities and finally to deeper research on molecular mechanisms and engineering applications. Although multi-omics and synthetic community are the key techniques in the frontier research, they are also the current challenges in this field. A summary of published articles shows that Proteobacteria, Gammaproteobacteria, Burkholderiales and Alcaligenaceae are the most frequently observed MSD phylum, class, order and family, respectively, while Bacillus, Pseudomonas and Achromobacter are the top three MSD genera. To our knowledge, this study is the first to investigate the development and current challenges of MSD research, put forward future perspective, and form a relatively complete list of sulfonamide-degrading microorganisms for reference.
Collapse
Affiliation(s)
- Luping Zeng
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Wanxuan Li
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Xiaoyan Wang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Yixin Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Yiping Tai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Xiaomeng Zhang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Yunv Dai
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China
| | - Ran Tao
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China.
| | - Yang Yang
- Research Center of Hydrobiology, Department of Ecology, Jinan University, Guangzhou, 510632, China; Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Zhou J, Wang D, Ju F, Hu W, Liang J, Bai Y, Liu H, Qu J. Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127167. [PMID: 34536843 DOI: 10.1016/j.jhazmat.2021.127167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Although there is growing evidence that micropollutants can be microbially converted in rapid sand filters of drinking water treatment plants (DWTPs), little is known about the biotransformation pathways and associated microbial strains in this process. Here, we constructed sand filter columns filled with manganese or quartz sand obtained from full-scale DWTPs to explore the biotransformation of eight micropollutants. Under seven different empty bed contact times (EBCTs), the column experiments showed that caffeine and atenolol were easily removed (up to 92.1% and 97.6%, respectively) with adsorption and microbial biotransformation of the filters. In contrast, the removal of other six micropollutants (i.e., naproxen, carbamazepine, atrazine, trimethoprim, sulfamethoxazole, and sulfadiazine) in the filters were less than 27.1% at shorter EBCTs, but significantly increased at EBCT = 4 h, indicating the dominant role of microbial biotransformation in these micropollutants removal. Integrated analysis of metagenomic reads and transformation products of micropollutants showed a shift in caffeine oxidation and demethylation pathways at different EBCTs, simultaneous occurrence of atrazine hydrolysis and oxidation pathways, and sulfadiazine and sulfamethoxazole oxidation in the filters. Furthermore, using genome-centric analysis, we observed previously unidentified degrading strains, e.g., Piscinibacter, Hydrogenophaga, and Rubrivivax for caffeine transformation, and Methylophilus and Methyloversatilis for atenolol transformation.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Wanchao Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
13
|
Pan Y, Kang P, Hu J, Song N. Bacterial community demonstrates stronger network connectivity than fungal community in desert-grassland salt marsh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149118. [PMID: 34332392 DOI: 10.1016/j.scitotenv.2021.149118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The diversity of soil bacterial and fungal communities is closely related to the soil characteristics and vegetation types in salt marsh ecosystems, but the biogeographic patterns and driving factors in desert-grassland salt marsh (DGSM) are still unclear. In this study, we divided sample plots according to the dominant species in Jiantan Lake wetland of a typical DGSM in Northwestern China. The effects of different environmental factors and halophytes on the structure of soil bacterial and fungal communities were investigated using soil physicochemical characterization and high-throughput sequencing analysis. The diversity of bacterial communities in bulk soil and three dominant halophytes (Kalidium cuspidatum, Nitraria tangutorum and Sophora alopecuroides) were the main factors affecting soil physicochemical properties and halophyte vegetation coverage. Proteobacteria, Bacteroides and Gemmatimonadetes had the highest abundance in bulk soil and the lowest in Sophora alopecuroides sample soil; the opposite was true for Acidobacteria and Chloroflexi. The abundance of Ascomycota in bulk soil and Sophora alopecuroides sample soil was higher than Kalidium cuspidatum and Nitraria tangutorum sample soils, whereas the Mortierellomycota was the highest in Nitraria tangutorum sample soil. Co-occurrence network analysis showed that halophyte cover increased the connectivity and complexity of the bacterial-fungal interaction network, and the halophytic shrub sample soil had a more stable network relationship than the halophytic herb soil. The key taxa of each plot were identified through network relationships. It was found that the keystone taxa of Proteobacteria, Firmicutes, Ascomycota and Chytridiomycota played important roles in maintaining community functions, and most of them were not significantly influenced by soil physicochemical properties. The results of this study provide new insights for a deeper understanding of the halophytes that drive the multifunctionality and stability of soil ecosystems in DGSM.
Collapse
Affiliation(s)
- Yaqing Pan
- College of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan 750021, Ningxia, China; Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ministry of Education, Ningxia University, Yinchuan 750021, China
| | - Peng Kang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan 750021, China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China
| | - Jinpeng Hu
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan 750021, China
| | - Naiping Song
- College of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of Northwest China, Yinchuan 750021, Ningxia, China; Key Laboratory for Restoration and Reconstruction of Degraded Ecosystems in Northwest China, Ministry of Education, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
14
|
Pei Z, Li F, Zhang D, Zhang Y, Zhou J, Guo H, Jiaqin Wang LZ. Synthesis of Oxygen-Rich Bismuth Oxybromide (Bi 24O 31Br 10) Photocatalyst for High Efficiency Degradation of Sulfadiazine Under Simulated Sunlight. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5477-5485. [PMID: 33980357 DOI: 10.1166/jnn.2021.19479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
At present, compared with other antibiotic degradation systems, there are few literatures on pho- tocatalytic degradation of sulfadiazine (SDZ). In this research, it was firstly discovered that the oxygen-rich bismuth oxybromide (Bi24O31 Br10) photocatalyst can efficiently degrade SDZ under simulated sunlight. In this paper, the prepared Bi24O31Br10 photocatalyst by mixed solvothermal method represented outstanding photocatalytic performance. The catalyst synthesized at 120 °C and pH = 10 showed optimum degradation function in the samples prepared at various temperatures and pH value. After 3 h of irradiation, 96.2% of SDZ solution could be decomposed. The effects of preparation conditions, catalyst dosage, initial SDZ concentration and initial SDZ pH value on photocatalytic degradation efficiency were investigated systematically. Besides, the effect of active species was studied by trapping tests, and it was concluded that 'O₂ contributes the most to the photocatalytic process. A possible photocatalytic degradation mechanism was proposed.
Collapse
Affiliation(s)
- Zhenzhao Pei
- School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, p. R. China
| | - Feng Li
- School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, p. R. China
| | - Dandan Zhang
- School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, p. R. China
| | - Yulong Zhang
- School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, p. R. China
| | - Jiaxin Zhou
- School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, p. R. China
| | | | - Lifang Zhufand Jiaqin Wang
- School of Materials Science and Engineering, Hebei University of Engineering, Handan 056038, p. R. China
| |
Collapse
|
15
|
Microbiome assembly for sulfonamide subsistence and the transfer of genetic determinants. THE ISME JOURNAL 2021; 15:2817-2829. [PMID: 33820946 PMCID: PMC8443634 DOI: 10.1038/s41396-021-00969-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023]
Abstract
Antibiotic subsistence in bacteria represents an alternative resistance machinery, while paradoxically, it is also a cure for environmental resistance. Antibiotic-subsisting bacteria can detoxify antibiotic-polluted environments and prevent the development of antibiotic resistance in environments. However, progress toward efficient in situ engineering of antibiotic-subsisting bacteria is hindered by the lack of mechanistic and predictive understanding of the assembly of the functioning microbiome. By top-down manipulation of wastewater microbiomes using sulfadiazine as the single limiting source, we monitored the ecological selection process that forces the wastewater microbiome to perform efficient sulfadiazine subsistence. We found that the community-level assembly selects for the same three families rising to prominence across different initial pools of microbiomes. We further analyzed the assembly patterns using a linear model. Detailed inspections of the sulfonamide metabolic gene clusters in individual genomes of isolates and assembled metagenomes reveal limited transfer potential beyond the boundaries of the Micrococcaceae lineage. Our results open up new possibilities for engineering specialist bacteria for environmental applications.
Collapse
|
16
|
Zhang X, Zhu R, Li W, Ma J, Lin H. Genomic insights into the antibiotic resistance pattern of the tetracycline-degrading bacterium, Arthrobacter nicotianae OTC-16. Sci Rep 2021; 11:15638. [PMID: 34341372 PMCID: PMC8329189 DOI: 10.1038/s41598-021-94840-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 11/09/2022] Open
Abstract
Although many bacteria have the potential to remove antibiotic residues from environmental niches, the benefits of using antibiotic-degrading bacteria to manage antibiotic pollution should be assessed against the risk of the potential expansion of antimicrobial resistance. This study investigated the antibiotic resistance pattern of the bacterium Arthrobacter nicotianae OTC-16, which shows substantial biodegradation of oxytetracycline (OTC)/tetracycline. The results showed that this strain could be resistant to at least seven categories of 15 antibiotics, based on antimicrobial susceptibility testing. The genome of A. nicotianae OTC-16 contains one chromosome (3,643,989 bp) and two plasmids (plasmid1, 123,894 bp and plasmid2, 29,841 bp). Of the 3,561 genes isolated, eight were related to antibiotic resistance. During OTC degradation by the strain OTC-16, the expression of ant2ia, sul1, tet33, and cml_e8 in the plasmid, and one gene (tetV) in the chromosome were tracked using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Only the plasmid-derived resistance genes were up-regulated in the presence of OTC. The presence of OTC increased the tolerance of strain OTC-16 to streptomycin sulphate. The findings of this study can help deepen our understanding of the behavioural characteristics of resistance genes and adaptive evolution of drug-resistant bacteria.
Collapse
Affiliation(s)
- Xin Zhang
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Rongrong Zhu
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Weilin Li
- College of Forest and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junwei Ma
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hui Lin
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
17
|
Diversity of Multidrug-Resistant Bacteria in an Urbanized River: A Case Study of the Potential Risks from Combined Sewage Overflows. WATER 2021. [DOI: 10.3390/w13152122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wastewater contamination and urbanization contribute to the spread of antibiotic resistance in aquatic environments. This is a particular concern in areas receiving chronic pollution of untreated waste via combined sewer overflow (CSO) events. The goal of this study was to expand knowledge of CSO impacts, with a specific focus on multidrug resistance. We sampled a CSO-impacted segment of the James River (Virginia, USA) during both clear weather and an active overflow event and compared it to an unimpacted upstream site. Bacteria resistant to ampicillin, streptomycin, and tetracycline were isolated from all samples. Ampicillin resistance was particularly abundant, especially during the CSO event, so these isolates were studied further using disk susceptibility tests to assess multidrug resistance. During a CSO overflow event, 82% of these isolates were resistant to five or more antibiotics, and 44% were resistant to seven or more. The latter statistic contrasts starkly with the upstream reference site, where only 4% of isolates displayed resistance to more than seven antibiotics. DNA sequencing (16S rRNA gene) revealed that ~35% of our isolates were opportunistic pathogens, comprised primarily of the genera Stenotrophomonas, Pseudomonas, and Chryseobacterium. Together, these results demonstrate that CSOs can be a significant source of viable clinically-relevant bacteria to the natural environment and that multidrug resistance is an important understudied component of the environmental spread of antibiotic resistance.
Collapse
|
18
|
Zhao X, Chen L, Ren Q, Wu Z, Fang S, Jiang Y, Chen Y, Zhong Y, Wang D, Wu J, Zhang G. Potential Applications in Sewage Bioremediation of the Highly Efficient Pyridine-Transforming Paenochrobactrum sp. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821030145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Qi M, Liang B, Zhang L, Ma X, Yan L, Dong W, Kong D, Zhang L, Zhu H, Gao SH, Jiang J, Liu SJ, Corvini PFX, Wang A. Microbial Interactions Drive the Complete Catabolism of the Antibiotic Sulfamethoxazole in Activated Sludge Microbiomes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3270-3282. [PMID: 33566597 DOI: 10.1021/acs.est.0c06687] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microbial communities are believed to outperform monocultures in the complete catabolism of organic pollutants via reduced metabolic burden and increased robustness to environmental challenges; however, the interaction mechanism in functional microbiomes remains poorly understood. Here, three functionally differentiated activated sludge microbiomes (S1: complete catabolism of sulfamethoxazole (SMX); S2: complete catabolism of the phenyl part of SMX ([phenyl]-SMX) with stable accumulation of its heterocyclic product 3-amino-5-methylisoxazole (3A5MI); A: complete catabolism of 3A5MI rather than [phenyl]-SMX) were enriched. Combining time-series cultivation-independent microbial community analysis, DNA-stable isotope probing, molecular ecological network analysis, and cultivation-dependent function verification, we identified key players involved in the SMX degradation process. Paenarthrobacter and Nocardioides were primary degraders for the initial cleavage of the sulfonamide functional group (-C-S-N- bond) and 3A5MI degradation, respectively. Complete catabolism of SMX was achieved by their cross-feeding. The co-culture of Nocardioides, Acidovorax, and Sphingobium demonstrated that the nondegraders Acidovorax and Sphingobium were involved in the enhancement of 3A5MI degradation. Moreover, we unraveled the internal labor division patterns and connections among the active members centered on the two primary degraders. Overall, the proposed methodology is promisingly applicable and would help generate mechanistic, predictive, and operational understanding of the collaborative biodegradation of various contaminants. This study provides useful information for synthetic activated sludge microbiomes with optimized environmental functions.
Collapse
Affiliation(s)
- Mengyuan Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchen Dong
- Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
| | - Deyong Kong
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Liying Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhen Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Philippe F-X Corvini
- Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz 4132, Switzerland
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
20
|
Zhang J, Gan W, Zhao R, Yu K, Lei H, Li R, Li X, Li B. Chloramphenicol biodegradation by enriched bacterial consortia and isolated strain Sphingomonas sp. CL5.1: The reconstruction of a novel biodegradation pathway. WATER RESEARCH 2020; 187:116397. [PMID: 32947114 DOI: 10.1016/j.watres.2020.116397] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Figuring out the comprehensive metabolic mechanism of chloramphenicol (CAP) is critical to improving CAP removal in the bioremediation process. In this study, CAP biodegradation by six consortia and isolated Sphingomonas sp. CL5.1 were systematically investigated using the combination of high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, second-generation, and third-generation sequencing technologies. The CAP-degrading capability of six consortia was enhanced while CAP mineralization rate declined after long-term enrichment. The microbial community structures of six consortia were all simplified with 69%-82% decline in species richness after continuous passages for one year. The core genera of consortia CL and CH included Sphingomonas, Cupriavidus, Burkholderia, Chryseobacterium, and Pigmentiphaga, which accounted for over 98% of the total population. Sphingomonas was discovered as a new CAP degrader that could subsist on CAP as the sole carbon, nitrogen, and energy sources. Sphingomonas sp. CL5.1 was able to completely remove 120 mg/L CAP within 48 hours with a mineralization rate of 50.4%. The presence of acetate or nitrite could inhibit CAP metabolization by strain CL5.1. Four CAP metabolic pathways were constructed, including modification of the C3 hydroxyl group of CAP via acetylation, oxidization, dehydration and the bond cleavage between C1 and C2. C3 hydroxyl group dehydration and C1-C2 bond-cleavage were first reported regarding to CAP biotransformation. Strain CL5.1 played a core role in the consortia and was responsible for C3 hydroxyl oxidation, C3 dehydration, and C1-C2 bond cleavage. Genomic information of strain CL5.1 revealed the further mineralization pathways of downstream product p-nitrobenzoic acid via ortho- and meta-cleavage.
Collapse
Affiliation(s)
- Jiayu Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenhui Gan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Huaxin Lei
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiyang Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
21
|
Ma Q, Liu S, Li S, Hu J, Tang M, Sun Y. Removal of malodorant skatole by two enriched microbial consortia: Performance, dynamic, function prediction and bacteria isolation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138416. [PMID: 32302841 DOI: 10.1016/j.scitotenv.2020.138416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Malodor emission has become one of the major challenges in animal husbandry. Skatole, one of the most offensive odorous compounds, can cause several diseases to organisms and is resistant to biodegradation. However, the microbial community information for skatole degradation has yet to be reported. In this study, the aerobic sequencing batch reactors with two different inocula were constructed. Both Group N (sample from cattle house) and Group E (sample from goose house) could efficiently degrade skatole after 70 days operation under conditions of pH 7.0-9.0 and temperature 20-40 °C. High-throughput sequencing results showed that the α-diversity in Group N was higher than that in Group E, while neither of them changed during the whole operation process. Bacterial community structures in both groups shifted. Generally, Lactococcus, Pseudomonas and Flavobacterium remarkably reduced, while Arthrobacter became the dominant population. Function prediction results indicated that the xenobiotics biodegradation and metabolism category was significantly up-regulated in Group E but remained unchanged in Group N. On the other hand, culture-dependent technique was applied and ten bacteria were obtained from the sludges. Two strains belonged to Rhodococcus, a minor genus in the communities, were firstly proven to harbor excellent skatole-degrading capacity. This study proved that skatole could be effectively removed by activated sludges, and the non-core bacteria Rhodococcus would be functionally important in the degradation process. These findings provide new insights into our understanding of skatole biotransformation process, and offer valuable bacterial resources for bioremediation application.
Collapse
Affiliation(s)
- Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Shengwei Liu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shuzhen Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiabao Hu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Minyi Tang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
22
|
From Laboratory Tests to the Ecoremedial System: The Importance of Microorganisms in the Recovery of PPCPs-Disturbed Ecosystems. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10103391] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The presence of a wide variety of emerging pollutants in natural water resources is an important global water quality challenge. Pharmaceuticals and personal care products (PPCPs) are known as emerging contaminants, widely used by modern society. This objective ensures availability and sustainable management of water and sanitation for all, according to the 2030 Agenda. Wastewater treatment plants (WWTP) do not always mitigate the presence of these emerging contaminants in effluents discharged into the environment, although the removal efficiency of WWTP varies based on the techniques used. This main subject is framed within a broader environmental paradigm, such as the transition to a circular economy. The research and innovation within the WWTP will play a key role in improving the water resource management and its surrounding industrial and natural ecosystems. Even though bioremediation is a green technology, its integration into the bio-economy strategy, which improves the quality of the environment, is surprisingly rare if we compare to other corrective techniques (physical and chemical). This work carries out a bibliographic review, since the beginning of the 21st century, on the biological remediation of some PPCPs, focusing on organisms (or their by-products) used at the scale of laboratory or scale-up. PPCPs have been selected on the basics of their occurrence in water resources. The data reveal that, despite the advantages that are associated with bioremediation, it is not the first option in the case of the recovery of systems contaminated with PPCPs. The results also show that fungi and bacteria are the most frequently studied microorganisms, with the latter being more easily implanted in complex biotechnological systems (78% of bacterial manuscripts vs. 40% fungi). A total of 52 works has been published while using microalgae and only in 7% of them, these organisms were used on a large scale. Special emphasis is made on the advantages that are provided by biotechnological systems in series, as well as on the need for eco-toxicological control that is associated with any process of recovery of contaminated systems.
Collapse
|
23
|
Zhu F, Doyle E, Zhu C, Zhou D, Gu C, Gao J. Metagenomic analysis exploring microbial assemblages and functional genes potentially involved in di (2-ethylhexyl) phthalate degradation in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137037. [PMID: 32041058 DOI: 10.1016/j.scitotenv.2020.137037] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Widespread use of di (2-ethylhexyl) phthalate (DEHP) as a plasticizer has caused considerable soil pollution; however, little is known about indigenous microbial communities involved in its degradation in soil. In this study, metagenomic sequencing combined with metabolite determination was used to explore microorganisms and genes potentially involved in DEHP degradation in aerobic and anaerobic soils. The results showed that under both dryland aerobic and flooded anaerobic conditions, DEHP was initially hydrolyzed into mono (2-ethylhexyl) phthalate which was then hydrolyzed into phthalic acid; benzoic acid was the central intermediate during further metabolism steps. Bacteria were more responsive to DEHP presence than fungi/archaea, and potential degradative genes stimulated by DEHP were predominantly associated with bacteria, reflecting the dominant role of bacteria in DEHP degradation. Members of the Actinomycetales seemed to be the dominant degraders under aerobic conditions, while a number of phyla i.e. Gemmatimonadetes, Proteobacteria, Acidobacteria and Bacteroidetes appeared to be involved under anaerobic conditions. Interestingly, ~50% of esterase/lipase/cytochrome P450 genes enriched by DEHP under aerobic conditions were from Nocardioides, a bacterial genus that has not been previously directly linked to phthalate ester degradation. The results indicate that novel degraders may play an important role in DEHP degradation in natural soil environments. This study provides a better understanding of the phthalate ester biodegradation processes occurring in soil.
Collapse
Affiliation(s)
- Fengxiao Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; School of the Environment, Nanjing University, Nanjing 210003, PR China
| | - Evelyn Doyle
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Changyin Zhu
- School of the Environment, Nanjing University, Nanjing 210003, PR China
| | - Dongmei Zhou
- School of the Environment, Nanjing University, Nanjing 210003, PR China
| | - Cheng Gu
- School of the Environment, Nanjing University, Nanjing 210003, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
24
|
Biodiversity, isolation and genome analysis of sulfamethazine-degrading bacteria using high-throughput analysis. Bioprocess Biosyst Eng 2020; 43:1521-1531. [PMID: 32303845 DOI: 10.1007/s00449-020-02345-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 04/03/2020] [Indexed: 12/14/2022]
Abstract
Sulfamethazine (SM2) is one of the sulfonamide antibiotics that is frequently detected in aquatic environment. Given the complex structure of SM2 and its potential threat to the environment, it is necessary to determine the degradation behavior of high-concentration SM2. The mechanisms of community structure and diversity of activated sludge were analyzed. A novel SM2-degrading strain YL1 was isolated which can degrade SM2 with high concentration of 100 mg L-1. Strain YL1 was identified as Paenarthrobacter ureafaciens and there was also a significant increase in the genus during acclimation. Additional SM2 metabolic mechanisms and genomic information of YL1 were analyzed for further research. The succession of the community structure also investigated the effect of SM2 on the activated sludge. This result not only advances the current understanding of microbial ecology in activated sludge, but also has practical implications for the design and operation of the environmental bioprocesses for treatment of antimicrobial-bearing waste streams.
Collapse
|
25
|
Oh S, Choi D, Cha CJ. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep 2019; 9:4598. [PMID: 30872712 PMCID: PMC6418085 DOI: 10.1038/s41598-019-40936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/21/2019] [Indexed: 11/30/2022] Open
Abstract
Ecological processes shaping the structure and diversity of microbial communities are of practical importance for managing the function and resilience of engineered biological ecosystems such as activated sludge processes. This study systematically evaluated the ecological processes acting during continuous exposure to a subinhibitory level of antimicrobial triclosan (TCS) as an environmental stressor. 16S rRNA gene-based community profiling revealed significant perturbations on the community structure and dramatic reduction (by 20-30%) in species diversity/richness compared to those under the control conditions. In addition, community profiling determined the prevalence of the deterministic processes overwhelming the ecological stochasticity. Analysis of both community composition and phenotypes in the TCS-exposed communities suggested the detailed deterministic mechanism: selection of TCS degrading (Sphingopyxis) and resistant (Pseudoxanthomonas) bacterial populations. The analysis also revealed a significant reduction of core activated sludge members, Chitinophagaceae (e.g., Ferruginibacter) and Comamonadaceae (e.g., Acidovorax), potentially affecting ecosystem functions (e.g., floc formation and nutrient removal) directly associated with system performance (i.e., wastewater treatment efficiency and effluent quality). Overall, our study provides new findings that inform the mechanisms underlying the community structure and diversity of activated sludge, which not only advances the current understanding of microbial ecology in activated sludge, but also has practical implications for the design and operation of environmental bioprocesses for treatment of antimicrobial-bearing waste streams.
Collapse
Affiliation(s)
- Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Donggeon Choi
- Department of Civil Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
Song M, Luo C, Jiang L, Peng K, Zhang D, Zhang R, Li Y, Zhang G. The presence of in situ sulphamethoxazole degraders and their interactions with other microbes in activated sludge as revealed by DNA stable isotope probing and molecular ecological network analysis. ENVIRONMENT INTERNATIONAL 2019; 124:121-129. [PMID: 30641255 DOI: 10.1016/j.envint.2018.12.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Wastewater treatment plants (WWTPs) are the main hotspots for the release of antibiotics, including the widely used sulphonamides. Microbes play important roles in eliminating sulphonamides in WWTPs, and knowledge about these degraders and their interactions within the microbial community is crucial for operating and optimising WWTPs. In the present study, stable isotope probing (SIP) coupled with high-throughput sequencing as culture-independent approach revealed four operational taxonomic units (OTUs) involved in sulphamethoxazole (SMX) degradation in activated sludge. Except for the OTU affiliated with Gammaproteobacteria, the others have not been previously reported to possess the ability to metabolise SMX. The isolated SMX degrader by culture-dependent method did not participate in SMX biodegradation in situ according to the SIP analysis, and showed weak correlations with other members in the activated sludge. The complex interactions between in situ active SMX degraders and non-degrading microbes might explain our failure to isolate these degraders. In addition, sul1 genes associated with SMX resistance were also labelled with 13C, suggesting that they might benefit from SMX degradation and/or originate from the active SMX degraders. These findings broaden our understanding of the diversity of SMX-degrading microbes and their associated characteristics in WWTPs.
Collapse
Affiliation(s)
- Mengke Song
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ke Peng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruijie Zhang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Joint Institute for Environmental Research and Education, South China Agricultural University, Guangzhou 510642, China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|