1
|
Bartels Y, Jekel M, Putschew A. Impact of the reductive deiodination on the sorption of iodinated X-ray contrast media to filter sand and activated carbon. WATER RESEARCH 2024; 258:121801. [PMID: 38810597 DOI: 10.1016/j.watres.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
Iodinated X-ray contrast media (ICM) and their aerobic transformation products (TPs) are widespread in the aquatic environment due to their persistent and mobile character. In a previous lab study, we have shown that the reductive (partial) deiodination of selected triiodobenzene derivatives increases the sorption to aquifer sand and loam soil, since iodine affects the compounds by steric hindrance, repulsive forces, resonance and inductive effects. These results suggest that the (partial) deiodination generally occurring to ICM and aerobic ICM TPs during anoxic/anaerobic bank filtration has a potential to increase their removal by sorption to natural sorbents. To basically assess the sorption potential to technically applied materials for drinking water treatment subsequent to bank filtration, we investigated the sorption of iopromide, diatrizoate and 5-amino-2,4,6-triiodoisophtalic acid and their di, mono and deiodinated structures to used filter sand from a waterworks and different fresh powdered activated carbons in batch tests using Berlin drinking water. The filter material, coated by iron and manganese oxides as well as organic material (including biofilm), preferentially removed monoiodinated derivatives, but diffusion through the organic layer heavily slowed the sorption. Therefore, the removal potential by sorption in rapid sand filters of waterworks for (partially) deiodinated benzene derivatives is suggested to be low. The deiodination of iopromide and diatrizoate significantly increased the sorption affinity to activated carbon and the competitiveness with regard to drinking water DOC. Despite the large atom radius of iodine, no clear correlation was found between the pore characteristics of the activated carbons and the molecular size of the compounds. This study emphasises the importance of anoxic/anaerobic conditions for the removal of persistent and mobile ICM and ICM TPs during drinking water treatment.
Collapse
Affiliation(s)
- Yuki Bartels
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair of Water Quality Engineering, Strasse des 17. Juni 135 10623 Berlin, Germany
| | - Martin Jekel
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair of Water Quality Engineering, Strasse des 17. Juni 135 10623 Berlin, Germany
| | - Anke Putschew
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair of Water Quality Engineering, Strasse des 17. Juni 135 10623 Berlin, Germany.
| |
Collapse
|
2
|
Yan H, Zhang T, Yang Y, Li J, Liu Y, Qu D, Feng L, Zhang L. Occurrence of iodinated contrast media (ICM) in water environments and their control strategies with a particular focus on iodinated by-products formation: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119931. [PMID: 38154220 DOI: 10.1016/j.jenvman.2023.119931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Iodinated contrast media (ICM), one of the pharmaceutical and personal care products (PPCPs), are frequently detected in various water bodies due to the strong biochemical stability and recalcitrance to conventional water treatment. Additionally, ICM pose a risk of forming iodinated by-products that can be detrimental to the aquatic ecosystem. Consequently, effectively removing ICM from aqueous environments is a significant concern for environmental researchers. This article provides a comprehensive review of the structural characteristics of ICM, their primary source (e.g., domestic and hospital wastewater), detected concentrations in water environments, and ecological health hazards associated with them. The current wastewater treatment technologies for ICM control are also reviewed in detail with the aim of providing a reference for future research. Prior researches have demonstrated that traditional treatment processes (such as physical adsorption, biochemical method and chemical oxidation method) have inadequate efficiencies in the removal of ICM. Currently, the application of advanced oxidation processes to remove ICM has become extensive, but there are some issues like poor deiodination efficiency and the risk of forming toxic intermediates or iodinated by-products. Conversely, reduction technologies have a high deiodination rate, enabling the targeted removal of ICM. But the subsequent treatment issues related to iodine (such as I- and OI-) are often underestimated, potentially generating iodinated by-products during the subsequent treatment processes. Hence, we proposed using combined reduction-oxidation technologies to remove ICM and achieved synchronous control of iodinated by-products. In the future, it is recommended to study the degradation efficiency of ICM and the control efficiency of iodinated by-products by combining different reduction and oxidation processes.
Collapse
Affiliation(s)
- Hao Yan
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tao Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yi Yang
- University of Science and Technology of China, Anhui 230026, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Dan Qu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Paparo R, Fortunato ME, Carotenuto G, Uggeri F, Nicolais L, Di Serio M, Trifuoggi M, Russo V. Iopamidol Abatement from Waters: A Rigorous Approach to Determine Physicochemical Parameters Needed to Scale Up from Batch to Continuous Operation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18983-18994. [PMID: 38085695 PMCID: PMC10753885 DOI: 10.1021/acs.langmuir.3c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
The abatement of iopamidol (IPM), an X-ray iodinated contrast agent, in aqueous solution using powdered activated carbon (PAC) as a sorbent was investigated in the present work. The material was characterized by various analytical techniques such as thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, dynamic light scattering, and zeta potential measurements. Both thermodynamic and kinetic experiments were conducted in a batch apparatus, and the effects of the initial concentration of IPM, the temperature, and the adsorbent bulk density on the adsorption kinetics were investigated. The adsorption isotherms were interpreted well using the Langmuir model. Moreover, it was demonstrated that IPM adsorption on PAC is spontaneous and exothermic (ΔH0 = -27 kJ mol-1). The adsorption kinetic data were described using a dynamic intraparticle model for fluid-solid adsorption kinetics (ADIM) allowing determination of a surface activation energy Es = 6 ± 1 kJ mol-1. Comparing the experimental results and the model predictions, a good model fit was obtained.
Collapse
Affiliation(s)
- Rosanna Paparo
- Chemical
Sciences Department, University of Naples
Federico II, IT-80126 Naples, Italy
- CeSMA—Centre
of Meteorologic and Avanced Thecnology Services, University of Naples Federico II, corso N. Protopisani 70, 80146 Naples, Italy
| | | | - Gianfranco Carotenuto
- Institute
for Polymers, Composites, and Biomaterials, National Research Council, SS Napoli/Portici, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Fulvio Uggeri
- Bracco
SpA, via Caduti di Marcinelle,
13, 20134 Milano, Italy
| | - Luigi Nicolais
- Materias
Srl, corso N. Protopisani
70, 80146 Naples, Italy
| | - Martino Di Serio
- Chemical
Sciences Department, University of Naples
Federico II, IT-80126 Naples, Italy
- CeSMA—Centre
of Meteorologic and Avanced Thecnology Services, University of Naples Federico II, corso N. Protopisani 70, 80146 Naples, Italy
| | - Marco Trifuoggi
- Chemical
Sciences Department, University of Naples
Federico II, IT-80126 Naples, Italy
- CeSMA—Centre
of Meteorologic and Avanced Thecnology Services, University of Naples Federico II, corso N. Protopisani 70, 80146 Naples, Italy
| | - Vincenzo Russo
- Chemical
Sciences Department, University of Naples
Federico II, IT-80126 Naples, Italy
| |
Collapse
|
4
|
James SN, Sengar A, Vijayanandan A. Investigating the biodegradability of iodinated X-ray contrast media in simultaneous nitrification and denitrification system. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131196. [PMID: 36940530 DOI: 10.1016/j.jhazmat.2023.131196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
The present study investigated the biodegradation of three iodinated X-ray contrast media (ICM), namely, iopamidol, iohexol, and iopromide, in simultaneous nitrification-denitrification (SND) system maintained in a sequencing batch reactor (SBR). The results showed that variable aeration patterns (anoxic-aerobic-anoxic) and micro-aerobic condition were most effective in the biotransformation of ICM while achieving organic carbon and nitrogen removal. The highest removal efficiencies of iopamidol, iohexol, and iopromide were 48.24%, 47.75%, and 57.46%, respectively, in micro-aerobic condition. Iopamidol was highly resistant to biodegradation and possessed the lowest Kbio value, followed by iohexol and iopromide, regardless of operating conditions. The removal of iopamidol and iopromide was affected by the inhibition of nitrifiers. The transformation products after hydroxylation, dehydrogenation, and deiodination of ICM were detected in the treated effluent. Due to the addition of ICM, the abundance of denitrifier genera Rhodobacter and Unclassified Comamonadaceae increased, and the abundance of class TM7-3 decreased. The presence of ICM affected the microbial dynamics, and the diversity of microbes in SND resulted in improving the biodegradability of the compounds.
Collapse
Affiliation(s)
- Susan N James
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
5
|
Bartels Y, Jekel M, Putschew A. Can reductive deiodination improve the sorption of iodinated X-ray contrast media to aquifer material during bank filtration? CHEMOSPHERE 2023; 326:138438. [PMID: 36940829 DOI: 10.1016/j.chemosphere.2023.138438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Iodinated X-ray contrast media (ICM) as well as their aerobic transformation products (TPs), are highly polar triiodobenzoic acid derivatives, ubiquitously found in the urban water cycle. Based on their polarity, their sorption affinity to sediment and soil is negligible. However, we hypothesize that the iodine atoms bound to the benzene ring play a decisive role for sorption, due to their large atom radius, high electron number and symmetrical positioning within the aromatic system. The aim of this study is to investigate, if the (partial) deiodination, occurring during anoxic/anaerobic bank filtration, improves the sorption to aquifer material. Tri, di, mono and deiodinated structures of two ICMs (iopromide and diatrizoate) and one precursor/TP of ICM (5-amino-2,4,6-triiodoisophtalic acid) were tested in batch experiments, using two aquifer sands and a loam soil with and without organic matter. The di, mono and deiodinated structures were produced by (partial) deiodination of the triiodinated initial compounds. The results demonstrated that the (partial) deiodination increases the sorption to all tested sorbents, even though the theoretical polarity increases with decreasing number of iodine atoms. Whereas lignite particles positively affected the sorption, mineral components decreased it. Kinetics tests show biphasic sorption for the deiodinated derivatives. We have concluded that iodine affects the sorption by sterical hindrance, repulsive forces, resonance and inductive effects, depending on the number and position of iodine, side chain characteristics and composition of the sorbent material. Our study has revealed an increased sorption potential of ICMs and their iodinated TPs to aquifer material during anoxic/anaerobic bank filtration as a result of (partial) deiodination, whereby a complete deiodination is not necessary for efficient removal by sorption. Furthermore, it suggests that the combination of an initial aerobic (side chain transformations) and a subsequent anoxic/anaerobic (deiodination) redox milieu supports the sorption potential.
Collapse
Affiliation(s)
- Yuki Bartels
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair Water Quality Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Martin Jekel
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair Water Quality Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany
| | - Anke Putschew
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Environmental Technology, Chair Water Quality Engineering, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
6
|
Zhang W, Fourcade F, Amrane A, Geneste F. Removal of Iodine-Containing X-ray Contrast Media from Environment: The Challenge of a Total Mineralization. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010341. [PMID: 36615536 PMCID: PMC9822505 DOI: 10.3390/molecules28010341] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023]
Abstract
Iodinated X-ray contrast media (ICM) as emerging micropollutants have attracted considerable attention in recent years due to their high detected concentration in water systems. It results in environmental issues partly due to the formation of toxic by-products during the disinfection process in water treatment. Consequently, various approaches have been investigated by researchers in order to achieve ICM total mineralization. This review discusses the different methods that have been used to degrade them, with special attention to the mineralization yield and to the nature of formed by-products. The problem of pollution by ICM is discussed in the first part dedicated to the presence of ICM in the environment and its consequences. In the second part, the processes for ICM treatment including biological treatment, advanced oxidation/reductive processes, and coupled processes are reviewed in detail. The main results and mechanisms involved in each approach are described, and by-products identified during the different treatments are listed. Moreover, based on their efficiency and their cost-effectiveness, the prospects and process developments of ICM treatment are discussed.
Collapse
Affiliation(s)
- Wei Zhang
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
| | - Florence Fourcade
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- Correspondence: (F.F.); (F.G.)
| | - Abdeltif Amrane
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
| | - Florence Geneste
- CNRS, ISCR-UMR 6226, Univ Rennes, 35000 Rennes, France
- Correspondence: (F.F.); (F.G.)
| |
Collapse
|
7
|
Cheng X, Ji Q, Sun D, Zhang J, Chen X, He H, Li S, Yang S, Zhang L. A comparative study on adsorption behavior of iodinated X-ray contrast media iohexol and amidotrizoic acid by magnetic-activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45404-45420. [PMID: 35147873 DOI: 10.1007/s11356-022-19127-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
As persistent and ubiquitous contaminants in water, iodinated X-ray contrast media (ICM) pose a non-negligible risk to the environment and human health. In this study, we investigated the adsorption behavior of two typical ICM compounds, iohexol (IOH) and amidotrizoic acid (DTZ), on magnetic activated carbon. Theoretical investigations, using density functional theory, identified the molecule structures and calculated the molecular diameters of IOH (1.68 nm) and DTZ (1.16 nm), which revealed that ICM could be adsorbed by mesopores and larger micropores. Therefore, magnetic activated carbon with a porous structure was prepared by the co-precipitation method to investigate the adsorption mechanism of IOH and DTZ. MAC--5 (magnetic activated carbon with a theoretical iron oxide content of 37%) showed the best adsorption ability for both IOH and DTZ, with maximum adsorption capacities of 86.05 and 43.00 mg g-1, respectively. Adsorption kinetics and isotherm models were applied to explore the mechanisms involved, and the effects of solution pH, initial concentration, temperature, ionic strength, and natural organic matter were also investigated. The pore filling effect, π-π stacking, hydrogen bonding, and electrostatic interaction, were found to be the main adsorption mechanisms. The co-adsorption data showed that competition may occur in ICM coexisting environments. Interestingly, the used MAC--5 could be successfully regenerated and its adsorption efficiency did not decrease significantly after five cycles, indicating that it is a promising adsorbent for ICM. The results from this study provide some new insights for the treatment of water containing ICM.
Collapse
Affiliation(s)
- Xinying Cheng
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Qiuyi Ji
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Dunyu Sun
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jinghua Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
- College of Ecological and Resource Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Wuyishan, Fujian, 354300, People's Republic of China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, People's Republic of China.
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, Jiangsu, 210023, People's Republic of China.
| |
Collapse
|
8
|
Edefell E, Falås P, Torresi E, Hagman M, Cimbritz M, Bester K, Christensson M. Promoting the degradation of organic micropollutants in tertiary moving bed biofilm reactors by controlling growth and redox conditions. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125535. [PMID: 33684823 DOI: 10.1016/j.jhazmat.2021.125535] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A novel process configuration was designed to increase biofilm growth in tertiary moving bed biofilm reactors (MBBRs) by providing additional substrate from primary treated wastewater in a sidestream reactor under different redox conditions in order to improve micropollutant removal in MBBRs with low substrate availability. This novel recirculating MBBR was operated on pilot scale for 13 months, and a systematic increase was seen in the biomass concentration and the micropollutant degradation rates, compared to a tertiary MBBR without additional substrate. The degradation rates per unit carrier surface area increased in the order of ten times, and for certain micropollutants, such as atenolol, metoprolol, trimethoprim and roxithromycin, the degradation rates increased 20-60 times. Aerobic conditions were critical for maintaining high micropollutant degradation rates. With innovative MBBR configurations it may be possible to improve the biological degradation of organic micropollutants in wastewater. It is suggested that degradation rates be normalized to the carrier surface area, in favor of the biomass concentration, as this reflects the diffusion limitations of oxygen, and will facilitate the comparison of different biofilm systems.
Collapse
Affiliation(s)
- Ellen Edefell
- Sweden Water Research AB, Ideon Science Park, Scheelevägen 15, SE-223 70 Lund, Sweden; Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | - Per Falås
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Elena Torresi
- Veolia Water Technologies AB - AnoxKaldnes, Klosterängsvägen 11 A, SE-226 47 Lund, Sweden
| | - Marinette Hagman
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Michael Cimbritz
- Department of Chemical Engineering, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | - Kai Bester
- Department of Environmental Science, Aarhus University, Frederiksborgsvej 399, DK-4000 Roskilde, Denmark
| | - Magnus Christensson
- Veolia Water Technologies AB - AnoxKaldnes, Klosterängsvägen 11 A, SE-226 47 Lund, Sweden
| |
Collapse
|
9
|
Son DJ, Kim CS, Park JW, Lee SH, Chung HM, Jeong DH. Spatial variation of pharmaceuticals in the unit processes of full-scale municipal wastewater treatment plants in Korea. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112150. [PMID: 33611069 DOI: 10.1016/j.jenvman.2021.112150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Several reports have elucidated the removal of pharmaceutical residues in municipal wastewater treatment plants (WWTPs). However, there remains a need to determine the spatial distribution of pharmaceuticals in the unit processes of full-scale municipal WWTPs. Herein, spatial variations of fifteen pharmaceuticals in the unit processes of four full-scale municipal WWTPs were assessed by analyzing both solid and liquid samples. Furthermore, different pathways of each pharmaceutical such as biodegradation, adsorption, deconjugation, and electrostatic interaction were investigated. Pharmaceutical mass loading were measured at various points for the different unit process and evaluated using liquid chromatography-tandem mass spectrometry. The average mass loading of acetaminophen and caffeine decreased tremendously in the first biological treatment process regardless of the process configuration. In contrast, a temporary increase was observed in the mass loading of ibuprofen in the anaerobic and/or anoxic processes, which was presumably caused by deconjugation. Additionally, the adverse effect of coagulation on ibuprofen removal was validated. The major removal mechanism for the selected antibiotics, except for sulfamethoxazole, was the adsorption by biosolids due to electrostatic interaction. Subsequently, a drastic decrease was observed in their mass loadings in the solid-liquid separation process of the WWTPs. The membrane bioreactor (MBR) shows excellent capability for mitigation of pharmaceuticals in municipal wastewater because it comprises a high concentration of biosolids that act as adsorbents. The evaluation of the spatial variations of the selected pharmaceuticals in different unit processes provides valuable information on their behavior and removal mechanisms.
Collapse
Affiliation(s)
- Dong-Jin Son
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Chang-Soo Kim
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jun-Won Park
- Division of Monitoring and Analysis, Yeongsan River Basin Environmental Office, Gwangju, 61945, Republic of Korea
| | - Soo-Hyung Lee
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hyen-Mi Chung
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Dong-Hwan Jeong
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea.
| |
Collapse
|
10
|
Sengar A, Vijayanandan A. Comprehensive review on iodinated X-ray contrast media: Complete fate, occurrence, and formation of disinfection byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144846. [PMID: 33736235 DOI: 10.1016/j.scitotenv.2020.144846] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 05/22/2023]
Abstract
Iodinated contrast media (ICM) are drugs which are used in medical examinations for organ imaging purposes. Wastewater treatment plants (WWTPs) have shown incapability to remove ICM, and as a consequence, ICM and their transformation products (TPs) have been detected in environmental waters. ICM show limited biotransformation and low sorption potential. ICM can act as iodine source and can react with commonly used disinfectants such as chlorine in presence of organic matter to yield iodinated disinfection byproducts (IDBPs) which are more cytotoxic and genotoxic than conventionally known disinfection byproducts (DBPs). Even highly efficient advanced treatment systems have failed to completely mineralize ICM, and TPs that are more toxic than parent ICM are produced. This raises issues regarding the efficacy of existing treatment technologies and serious concern over disinfection of ICM containing waters. Realizing this, the current review aims to capture the attention of scientific community on areas of less focus. The review features in depth knowledge regarding complete environmental fate of ICM along with their existing treatment options.
Collapse
Affiliation(s)
- Ashish Sengar
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arya Vijayanandan
- Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
11
|
Simultaneous attenuation of trace organics and change in organic matter composition in the hyporheic zone of urban streams. Sci Rep 2021; 11:4179. [PMID: 33603043 PMCID: PMC7892836 DOI: 10.1038/s41598-021-83750-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Trace organic compounds (TrOCs) enter rivers with discharge of treated wastewater. These effluents can contain high loads of dissolved organic matter (DOM). In a 48 h field study, we investigated changes in molecular composition of seven DOM compound classes (FTICR-MS) and attenuation of 17 polar TrOCs in a small urban stream receiving treated wastewater. Correlations between TrOCs and DOM were used to identify simultaneous changes in surface water and the hyporheic zone. Changes in TrOC concentrations in surface water ranged between a decrease of 29.2% for methylbenzotriazole and an increase of 152.2% for the transformation product gabapentin-lactam. In the hyporheic zone, only decreasing TrOC concentrations were observed, ranging from 4.9% for primidone to 93.8% for venlafaxine . TrOC attenuation coincided with a decline of molecular diversity of easily biodegradable DOM compound classes while molecular diversity of poorly biodegradable DOM compound classes increased. This concurrence indicates similar or linked attenuation pathways for biodegradable DOM and TrOCs. Strong correlations between TrOCs and DOM compound classes as well as high attenuation of TrOCs primarily occurred in the hyporheic zone. This suggests high potential for DOM turnover and TrOC mitigation in rivers if hyporheic exchange is sufficient.
Collapse
|
12
|
Dong Z, Chen G, Li M, Sun F, Jiang C, Bharti B. Fe(II)-activated persulfate oxidation to degrade iopamidol in water: parameters optimization and degradation paths. Sci Rep 2020; 10:21548. [PMID: 33299055 PMCID: PMC7726144 DOI: 10.1038/s41598-020-78468-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/21/2020] [Indexed: 01/30/2023] Open
Abstract
Iodinated contrast media (ICM), which was widely used in medical imaging and was difficult to remove by conventional wastewater treatment methods, attained much attention due to its potential environmental impacts. Herein, iopamidol (IPM), one typical compound of ICM, was found to be rapidly degraded by ferrous activated persulfate oxidation (Fe(II)/PS) as compared with PS or Fe(II) alone. With a persulfate concentration of 1 mmol L−1, n(Fe(II))/n(PS) of 1:10, and a pH of 3.0, 78% IPM was degraded within 60 min, with a degradation rate of 0.1266 min−1. It was demonstrated that IPM degradation and deiodination were favored by a high temperature, while affected positively by acidic and neutral conditions. Radical quenching experiments and Electron Paramagnetic Resonace (EPR) spectra showed that the combined effects of SO4−· and ·OH contributed dominantly to degrade IPM, while the ·OH played an essential role during the degradation reaction. Through the Discrete Fourier Transform quantum chemical calculation, the possible reaction pathways for the oxidation of IPM by ·OH are as follows: IPM-TP651-TP667-TP541-TP557, IPM-TP651-TP525-TP557, IPM-TP705-TP631-TP661, and IPM-TP705-TP735. The obtained results showed that IPM could be degraded effectively by Fe(II)/PS system, giving a promising technique for IPM removal from water.
Collapse
Affiliation(s)
- Zijun Dong
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Guanhan Chen
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Mu Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| | - Chengchun Jiang
- School of Civil and Environmental Engineering, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Bandna Bharti
- School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
13
|
Wang Z, Wang X, Yuan R, Xiao D. Resolving the kinetic and intrinsic constraints of heat-activated peroxydisulfate oxidation of iopromide in aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121281. [PMID: 31585288 DOI: 10.1016/j.jhazmat.2019.121281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Iopromide (IOP) has been identified as one of the most persistent pharmaceuticals in wastewater treatment processes, however, kinetic and intrinsic factors constraining its fast removal in advanced oxidation processes (AOPs) are yet to be resolved. Here oxidation of IOP by heat-activated peroxydisulfate (PDS) was investigated both experimentally and theoretically. Rates of IOP degradation were enhanced by elevating solution temperature and acidity. An apparent kinetic rate equation was developed, based on the pseudo-first-order reaction model and assumption of steady state of SO4-. The common water constituents showed inhibitory effects on IOP decomposition to various extent. An insufficient supply of SO4- was considered as the major kinetic constraint. Eight byproducts were identified and most of which had intact triiodinated benzene ring. O-demethylation, oxidation of amino moiety and oxidation/elimination of alcohol groups are proposed as the primary degradation pathways, in accordance with the incomplete mineralization and non-detectable release of inorganic iodine. Quantum chemical calculations predict that oxidation of alkyl chains of IOP preferentially occurs and IOP byproducts with shorter side chains and intact triiodinated ring are more reactive than IOP. By virtue of the identified kinetic and intrinsic constraints, strategies to maximize degradation efficiency of IOP are proposed.
Collapse
Affiliation(s)
- Zhaohui Wang
- Shanghai Key Laboratory of Urbanization and Ecological Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Eco-Chongming (IEC), Shanghai 200062, China.
| | - Xiaoxiao Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Ruixia Yuan
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Dongxue Xiao
- Chinese Academy of Fishery Sciences, East China Sea Fisheries Research Institute, Shanghai 200090, China
| |
Collapse
|
14
|
El-Athman F, Jekel M, Putschew A. Reaction kinetics of corrinoid-mediated deiodination of iodinated X-ray contrast media and other iodinated organic compounds. CHEMOSPHERE 2019; 234:971-977. [PMID: 31519106 DOI: 10.1016/j.chemosphere.2019.06.135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Iodinated contrast media (ICM) are found at considerably higher concentrations than any other pharmaceutical in waste water, surface water and bank filtrate. While the compounds are persistent to deiodination in aerobic environments, field data from bank filtration transects have demonstrated a partial deiodination in reducing soil-water environments. In a previous lab study, we have shown that this reductive deiodination is abiotically catalyzed by (free) corrinoids. To achieve a better understanding of the incomplete deiodination in the environment, we now investigated the reaction kinetics based on the decrease of the iodinated compound, the formation of deiodinated transformation products and the iodide release. The deiodination follows first-order kinetics and consists of three partial reactions for the release of three iodine atoms. The deiodination rate decreased with decreasing iodination degree with the deiodination rate constants k1 > k2 > k3. In contrast to the ICM, 2,4,6- and 2,3,5-triiodobenzoic acid, 5-amino-2,4,6-triiodoisophthalic acid and monoiodobenzoic acids did not show a complete deiodination under the same test conditions. Our results show that the deiodination strongly depends on the substitution pattern of the bound iodine atoms as well as on adjacent functional groups. Iodine atoms in ortho-position to another iodine atom or a carboxyl group were released more easily while an amino group in ortho-position inhibited the deiodination. Tests in tap water in the presence of B12 showed a much slower deiodination than in ultrapure water, most likely caused by competitive electron acceptors in the water matrix.
Collapse
Affiliation(s)
- Fatima El-Athman
- Technische Universität Berlin, Department of Environmental Science and Technology, Chair of Water Quality Engineering, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Martin Jekel
- Technische Universität Berlin, Department of Environmental Science and Technology, Chair of Water Quality Engineering, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Anke Putschew
- Technische Universität Berlin, Department of Environmental Science and Technology, Chair of Water Quality Engineering, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
15
|
Schaper JL, Posselt M, Bouchez C, Jaeger A, Nuetzmann G, Putschew A, Singer G, Lewandowski J. Fate of Trace Organic Compounds in the Hyporheic Zone: Influence of Retardation, the Benthic Biolayer, and Organic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4224-4234. [PMID: 30905154 DOI: 10.1021/acs.est.8b06231] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fate of 28 trace organic compounds (TrOCs) was investigated in the hyporheic zone (HZ) of an urban lowland river in Berlin, Germany. Water samples were collected hourly over 17 h in the river and in three depths in the HZ using minipoint samplers. The four relatively variable time series were subsequently used to calculate first-order removal rates and retardation coefficients via a one-dimensional reactive transport model. Reversible sorption processes led to substantial retardation of many TrOCs along the investigated hyporheic flow path. Some TrOCs, such as dihydroxy-carbamazepine, O-desmethylvenlafaxine, and venlafaxine, were found to be stable in the HZ. Others were readily removed with half-lives in the first 10 cm of the HZ ranging from 0.1 ± 0.01 h for iopromide to 3.3 ± 0.3 h for tramadol. Removal rate constants of the majority of reactive TrOCs were highest in the first 10 cm of the HZ, where removal of biodegradable dissolved organic matter was also the highest. Because conditions were oxic along the top 30 cm of the investigated flow path, we attribute this finding to the high microbial activity typically associated with the shallow HZ. Frequent and short vertical hyporheic exchange flows could therefore be more important for reach-scale TrOC removal than long, lateral hyporheic flow paths.
Collapse
Affiliation(s)
- Jonas L Schaper
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Chair of Water Quality Engineering , Technische Universität Berlin , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Malte Posselt
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , 114 19 Stockholm , Sweden
| | - Camille Bouchez
- CNRS , Univ Rennes , Géosciences Rennes, UMR 6118 , 35000 Rennes , France
| | - Anna Jaeger
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Geography Department , Humboldt University Berlin , Rudower Chaussee 16 , 12489 Berlin , Germany
| | - Gunnar Nuetzmann
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Geography Department , Humboldt University Berlin , Rudower Chaussee 16 , 12489 Berlin , Germany
| | - Anke Putschew
- Chair of Water Quality Engineering , Technische Universität Berlin , Strasse des 17. Juni 135 , 10623 Berlin , Germany
| | - Gabriel Singer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
| | - Joerg Lewandowski
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries , Department Ecohydrology , Müggelseedamm 310 , 12587 Berlin , Germany
- Geography Department , Humboldt University Berlin , Rudower Chaussee 16 , 12489 Berlin , Germany
| |
Collapse
|
16
|
Müller J, Jewell KS, Schulz M, Hermes N, Ternes TA, Drewes JE, Hübner U. Capturing the oxic transformation of iopromide - A useful tool for an improved characterization of predominant redox conditions and the removal of trace organic compounds in biofiltration systems? WATER RESEARCH 2019; 152:274-284. [PMID: 30682571 DOI: 10.1016/j.watres.2018.12.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The biological degradation of many trace organic compounds has been reported to be strongly redox dependent. The traditional characterization of redox conditions using the succession of inorganic electron acceptors such as dissolved oxygen and nitrate falls short in accurately describing the critical transition state between oxic and suboxic conditions. Novel monitoring strategies using intrinsic redox tracers might be suitable to close that gap. This study investigated the potential use of the successive biological transformation of the iodinated contrast medium iopromide as an intrinsic tracer of prevailing redox conditions in biofiltration systems. Iopromide degradation in biofiltration systems was monitored by quantifying twelve known biological transformation products formed under oxic conditions. A novel dimensionless parameter (TIOP) was introduced as a measure for the successive transformation of iopromide. A strong correlation between the consumption of dissolved oxygen and iopromide transformation emphasized the importance of general microbial activity on iopromide degradation. However, results disproved a direct correlation between oxic (>1 mg/L O2) and suboxic (<1 mg/L O2) conditions and the degree of iopromide transformation. Results indicated that besides redox conditions also the availability of biodegradable organic substrate affects the degree of iopromide transformation. Similar behavior was found for the compounds gabapentin and benzotriazole, while the oxic degradation of metoprolol remained stable under varying substrate conditions.
Collapse
Affiliation(s)
- Johann Müller
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748, Garching, Germany.
| | - Kevin S Jewell
- Federal Institute of Hydrology, Mainzer Tor 1, 56068, Koblenz, Germany.
| | - Manoj Schulz
- Federal Institute of Hydrology, Mainzer Tor 1, 56068, Koblenz, Germany.
| | - Nina Hermes
- Federal Institute of Hydrology, Mainzer Tor 1, 56068, Koblenz, Germany.
| | - Thomas A Ternes
- Federal Institute of Hydrology, Mainzer Tor 1, 56068, Koblenz, Germany.
| | - Jörg E Drewes
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748, Garching, Germany.
| | - Uwe Hübner
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748, Garching, Germany.
| |
Collapse
|