1
|
Hua Y, Meng X, Zhao G, Li M, Wu X, Zhang X, Liu Q, Cai T, Yang J, Zhang WX, Hu N. Uranium immobilization via sulfur-modified Fe 0 nanoparticles: U(VI) trapping kinetics and long-term stability evaluation. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138093. [PMID: 40184976 DOI: 10.1016/j.jhazmat.2025.138093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/04/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The modification of nanoscale zero-valent iron (nZVI) by loading or incorporating sulfur into the iron crystal lattice can augment their efficacy in the removal of hydrophobic contaminants from wastewater. Nevertheless, the reactivity of sulfur-embedded nZVI (SnZVI) in immobilizing hydrophilic uranyl ions and the long-term stability of the sequestered uranium has received little attention. This study employed Na2S2O4 to modify the nZVI with different S/Fe molar ratios (0.1 and 0.3), following one-step and two-step approaches to create SnZVI-1 and SnZVI-2, respectively. Both experimental and theoretical calculation results revealed that the U(VI) ions exhibited low affinity for the surface of SnZVI. Additionally, the hindered electron transfer between the electron donors of SnZVI and U(VI) led to a diminished U(VI) reduction efficiency for SnZVI-1 (50.71 %∼67.74 %) and SnZVI-2 (68.03 %∼86.89 %), inferior to that of nZVI (78.63 %∼90.78 %). Consequently, the uranium detachment ratios of SnZVI (0.04 %∼0.85 %) during the 210-day stability assessment were higher compared to those of nZVI (0.04 %∼0.34 %). Hence, this study offered novel insights into how sulfur affected the adsorptive and redox properties of nZVI for U(VI) immobilization through solid and aqueous samples analyses, complemented by theoretical calculations. The findings are instrumental in designing SnZVI for effective and environmentally sound treatment of uranium-contaminated radioactive wastewater.
Collapse
Affiliation(s)
- Yilong Hua
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; Key Discipline Laboratory in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Xue Meng
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Guodong Zhao
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; Key Discipline Laboratory in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Mi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Wu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xiaowen Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qing Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China; Key Discipline Laboratory in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Tao Cai
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Hu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Lei M, Tong J, Wang S, Zhang Z, Chen J, Li L, Li J, Wu D, Ma Z. Synergistic reduction of iron single-atom and clusters enhances chloramphenicol degradation: Implications of surface functional groups absorbing reactive hydrogen. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137604. [PMID: 39955995 DOI: 10.1016/j.jhazmat.2025.137604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Previous studies have shown that the traditional copyrolysis method for the preparation of carbon-based Fe0 composite materials leads to a significant increase in the surface free energy of the metal, which inevitably leads to the coexistence of iron atoms and iron clusters, and thus affects the reduction and degradation performance of pollutants. In this study, we prepared a carbon-embedded reducing agent material, referred to as NC/Fe, which incorporates both iron atoms and iron clusters. This composite effectively mitigates the pollution caused by chloramphenicol (CAP) antibiotics, which are prevalent contaminants in wastewater that pose a serious threat to global freshwater resources. The maximum degradation efficiency of CAP achieved by NC/Fe reached 98.05 % within 20 minutes, whereas the maximum dechlorination efficiency attained was 70.19 % within 8 hours. Compared with the NC/Fe material, NC/Fe-SAC-comprising only iron atoms-exhibited slightly reduced performance regarding CAP degradation; notably, the existence of iron clusters did not further influence the activity of these iron atoms. Additionally, H* is formed by the electron transfer of the encapsulated Fe0, and H* is then briefly adsorbed by the shell of the packaging material, thereby inhibiting the hydrogen evolution reaction. This study elucidates the reduction mechanism associated with Fe0 composite materials and offers novel insights into their application for environmental remediation efforts.
Collapse
Affiliation(s)
- Ming Lei
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jue Tong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Shuaima Wang
- Jiangxi Academy of Eco-Environmental Sciences and Planning, Nanchang 330077, China
| | - Zhuo Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Jianxin Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jianlong Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Daishe Wu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, China
| | - Zhifei Ma
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
3
|
Settimi C, Zingaretti D, Verginelli I, Baciocchi R. Sulfidated zero-valent iron bimetals for passive remediation of chlorinated vapors in the subsurface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126202. [PMID: 40187526 DOI: 10.1016/j.envpol.2025.126202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
This study explores a novel application of sulfidated zero-valent iron (S-ZVI) bimetals for the treatment of chlorinated solvents in the vapor phase. The potential of these reactive materials was investigated through batch, column, and modeling tests. The materials were produced by disc milling of ZVI, sulfur (S), copper (Cu), and nickel (Ni) with molar ratios of 0.05 and 0.2. The reactivity of the materials was assessed through vapor degradation batch tests conducted under partially saturated conditions using trichloroethylene (TCE) as a model compound. Sulfidated materials with a 0.05 S/ZVI molar ratio were the most reactive, achieving up to 99 % degradation of TCE vapors within 18 h and first-order degradation constants of 5-5.7 d-1. Compared to the non-sulfidated materials, sulfidated ones remained reactive even after aging by exposure to air for 30 days. In all tests, C3-C6 hydrocarbons were detected as main byproducts, indicating β-elimination as the dominant TCE degradation pathway, with minor dichloroethylene and vinyl chloride amounts from the hydrogenolysis pathway. To evaluate the use of sulfidated bimetals as Horizontal Permeable Reactive Barriers (HPRBs) for treating chlorinated vapors in the subsurface, TCE diffusion column tests were performed using a 5 cm thick reactive layer of S-ZVI-Ni. These tests demonstrated up to 70 % degradation over 25 days. By integrating the column test results into an analytical model, it was estimated that an 18 cm HPRB could ensure up to 99 % degradation of TCE vapors. These findings highlight the potential of S-ZVI bimetals as an effective passive mitigation system for reducing chlorinated solvent vapor emissions from the subsurface.
Collapse
Affiliation(s)
- Clarissa Settimi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy
| | - Daniela Zingaretti
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy.
| | - Iason Verginelli
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy
| | - Renato Baciocchi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133, Rome, Italy
| |
Collapse
|
4
|
Gao F, Xu G, Zhang M, Lyu H, Wu H, Tang J, Xu X, He J. Integrative Lattice and Surface Engineering of Nanoscale Fe 0 for Superior Dechlorination of Trichloroethene in Groundwater: Coordination in Reactivity, Selectivity, and Stability. Angew Chem Int Ed Engl 2025:e202502867. [PMID: 40289018 DOI: 10.1002/anie.202502867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/11/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Nanoscale zero-valent iron (nFe0) materials hold great promise in environmental remediation, yet achieving high reactivity, selectivity, and stability in reduction remains a long-standing challenge. Here we address this challenge by employing Ni lattice and FeS surface engineering to fabricate novel nFe0-based nanomaterials (dubbed as FeNix@FeSy), featuring FeNi as the core and FeS as the shell. The FeNi5@FeS10 delivered approximately 242.7- and 81.2-times higher reactivity and selectivity, respectively, over unmodified nFe° for the remediation of trichloroethene (TCE; a notorious environmental pollutant), while maintaining high stability in groundwater remediation. We found that the core composition (i.e., Ni/Fe ratio) of FeNix@FeSy primarily determined reactivity, governed by a tradeoff between the galvanic effect and lattice strain, while shell properties mainly controlled selectivity, despite some interactions between them. Density functional theory (DFT) calculations revealed that the FeS surface served as a favorable adsorption site for TCE, and the low energy barriers (TS2, 0.19 eV) of FeNi5@FeS10 facilitated the cleavage of the first chlorine from TCE. Moreover, the core-shell structure promoted electron transfer from the core to the shell and TCE. This integrative lattice and surface engineering strategy provides a new avenue for designing advanced functional materials for environmental remediation and beyond.
Collapse
Affiliation(s)
- Feilong Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guofang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Mingyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Han Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
5
|
Li F, Qu G, Dai Y, Zhao C, Xu C. Optimizing FeS crystallinity of sulfidated nZVI to enhance electron transport capacity for clothianidin efficient degradation: Regulation of biochar pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137256. [PMID: 39837039 DOI: 10.1016/j.jhazmat.2025.137256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Clothianidin (CTD), a highly water soluble neonicotinoid insecticide, easily enters water through runoff. Developing eco-friendly materials to degrade CTD is essential. Nano zero valent iron (nZVI) is effective for contaminant removal, but it deactivates due to agglomeration. Biochar supported sulfidated nano zero valent iron (S-nZVI-BC) can effectively mitigate nZVI aggregation while enhancing anti-passivation and electron transfer. However, the regulation of BC preparation conditions on S-nZVI-BC performance and contaminant degradation mechanism remains elusive. This work systematically investigated the effects of BC pyrolysis temperature on FeS formation in S-nZVI-BC and CTD degradation mechanism. BC enhanced FeS crystallinity and increased Fe0 lattice constants, facilitating electron transfer. Compared to S-ZVI, the CTD removal kinetics constants of S-nZVI-BC was 2.30 folds higher. Competitive dynamics model revealed BC pyrolysis temperature and S modulated the competition between O2 and CTD, enhancing electron utilization efficiency and improving nZVI anti-passivation under oxic conditions. Quenching experiment and electrochemical tests indicated S incorporation and changes in BC pyrolysis temperature modulated nZVI active reduced species (H*) production and contribution to CTD degradation. Additionally, increasing FeS crystallinity by adjusting BC pyrolysis temperature improved the electron transfer efficiency of S-nZVI-BC, enabling efficient CTD degradation. Density functional theory (DFT) calculations revealed CTD preferentially underwent nitro-reduction over dechlorination. All these findings can provide guidance for the application of S-nZVI-BC.
Collapse
Affiliation(s)
- Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Guanjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yinshun Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chengxuan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Wang X, Zhang P, Wang W, Rončević SAD, Sun H. New Insights into the Role of Crystalline Fe 3P in Phosphatized Zerovalent Iron for Enhancing Advanced Oxidation Processes and Storage Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6319-6330. [PMID: 40107854 DOI: 10.1021/acs.est.4c14797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Zerovalent iron (ZVI) is a widely utilized remediation agent for contaminated soil and groundwater; however, it has consistently faced the challenge of balancing catalytic activity with storage stability. Herein, submicron ZVI particles were phosphatized to produce phosphatized ZVI (P-ZVI), which was employed to activate peroxydisulfate (PDS) for phenol degradation. As anticipated, phosphatization significantly enhanced both the storage stability (>10 months vs 1 d) and catalytic activity (4.37 vs 0.12 L m-2 h-1) of ZVI compared to unphosphatized counterparts attributed to the formation of a crystalline Fe3P shell on P-ZVI. This Fe3P shell selectively interacts with H2O/O2/PDS, maintaining the stability of P-ZVI under high humidity and oxygen conditions while creating mass transfer channels that enhance reactivity in the presence of PDS. Characterization results from the reaction process demonstrated that the Fe3P shell activated PDS through both direct (via Fe cations) and indirect pathways (through a phosphorus anion-mediated Fe3+/Fe2+ cycle), generating reactive species and facilitating mass transfer between core Fe0 and external PDS for efficient PDS activation and phenol degradation. This study elucidates how constructing an Fe3P shell can realize selective activation of PDS while simultaneously enhancing both the storage and catalytic stabilities of ZVI, thereby boosting the practical application of PDS-based advanced oxidation processes in various environmental remediation.
Collapse
Affiliation(s)
- Xinhua Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Wenjiang Wang
- CCCC-TDC Environmental Engineering Co.Ltd., Tianjin 300450, China
| | - Srd An D Rončević
- University Novi Sad, Fac Sci, Trg Dositeja Obradovica 3, Novi Sad 21000, Serbia
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
7
|
Cai S, Tan Y, Li H, Chen B, He F. Sulfophilic metal ions in groundwater induce particle structure and dechlorination efficiency change of sulfidated zero-valent iron. WATER RESEARCH 2025; 281:123588. [PMID: 40187146 DOI: 10.1016/j.watres.2025.123588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Sulfidated microscale zero-valent iron (S-mZVI) is a promising ZVI material for remediation of chlorinated hydrocarbons (CHCs). However, the structure and dechlorination behavior change of S-mZVI induced by sulfophilic metal (Me) ions in groundwater are barely studied. Here we show that Me ion-amended S-mZVI (S-mZVIMe) have a rate sequence of S-mZVICo>S-mZVINi>S-mZVI>S-mZVICu>S-mZVICd≈S-mZVIZn and S-mZVINi>S-mZVICd>S-mZVI≈S-mZVIZn≈S-mZVICu≈S-mZVICo for trichlorethylene (TCE) dechlorination and hydrogen evolution reaction (HER), respectively. This results in the highest ever reported electron efficiency (98.6 %) for TCE dechlorination by S-mZVICo. Cross-section SEM-EDS, XRD, and XPS analyses confirm the formation of MeSx on the surface of all S-mZVIMe. Additionally, Ni0, Cu0, and possibly Cd° formed on the S-mZVINi, S-mZVICu, and S-mZVICd, respectively. Theoretical calculations indicate that the nascent metal sulfides are more hydrophobic than FeS, indicating the faster HER with Ni and Cd amendment is likely due to formation of bimetallic structures. Correlation analyses suggest that both low band gap and high work function of the semi-conductive Co sulfide contribute to the high reactivity of S-mZVICo. Column studies further show that implementing Co2+ enables the dechlorination of TCE from 2000 µg/L to <70 µg/L up to 1000 pore volumes by S-mZVI, compared to >1.2 mg/L without Co2+. These findings have important implications for remediation of CHC-contaminated sites using S-mZVI.
Collapse
Affiliation(s)
- Shichao Cai
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Yurou Tan
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Hongyi Li
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Bo Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Feng He
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Feng X, Dong W, Chen C, Liu Y, Pan Z, Gao Y, Hu X, Chen D, Lin D, Zhu L, Xu J. Impregnating Lattice Sulfur into Iron Crystal Allows Anaerobic Degradation of Extracellular Antibiotic Resistance Genes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500203. [PMID: 40079106 DOI: 10.1002/smll.202500203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Indexed: 03/14/2025]
Abstract
Lattice sulfur-impregnated nanoscale zerovalent iron (S-nFe0) has been recognized as a promising groundwater remediation agent. However, little information is available on its reactivity with ubiquitous extracellular antibiotic resistance genes (eARGs) in anaerobic groundwater, and how S content and speciation affect their interactions. Here, the efficient anaerobic degradation of eARGs by S-nFe0 (6 log within 5 min), resulting in completely inhibited transformation is showed. The removal rate of eARGs by S-nFe0 (0.26 mg m-2 min-1) is correlated well with the S-induced hydrophobicity and electron transfer ability of materials, and this reactivity improvement (up to 22-fold) compared to nFe0 largely depended on the S content and speciation. Multiple measurements are applied to verify the degradation of eARGs and their interactions with materials, where Fe-O-P coordination, hydrophobic interaction, and electron transfer play critical roles. The application potential of S-nFe0 is strongly supported by their long-term reactivity and stability in real groundwater and universal reactivity with multiple eARGs. These findings elucidate the mechanistic role of lattice S in the degradation of eARGs by S-nFe0, unveil binding sites and interactions between eARGs and S-nFe0, and will advance understanding toward better design of S-nFe° for eARGs-contaminated groundwater remediation.
Collapse
Affiliation(s)
- Xia Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhua Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyu Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiman Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
9
|
Lu F, Wang J, Zhang C, Xin Z, Deng Z, Ren J, Shi J. Sodium citrate-modification enhanced Fe 3S 4 for Cr(Ⅵ) removal from aqueous solution and soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125889. [PMID: 39986560 DOI: 10.1016/j.envpol.2025.125889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Fe3S4 has been widely employed to remove Cr(Ⅵ) from wastewater, however, its practical effectiveness is often limited by agglomeration and passivation. This study introduces sodium citrate (SC) as a ligand to synthesize an Fe3S4-SC magnetic micro-crystal for Cr(Ⅵ) removal from aqueous solutions and contaminated soils. Experimental results show that Fe3S4-SC exhibits superior Cr(Ⅵ) removal efficiency, especially in acidic environments, with a maximum adsorption capacity of 449.12 mg/g. When Fe3S4-SC was used to remediate Cr(Ⅵ)-contaminated soil with a Cr(Ⅵ) content of 664.98 mg/kg and a TCLP-Cr(Ⅵ) concentration of 26.57 mg/L, the removal efficiencies of Cr(Ⅵ) and TCLP-Cr(Ⅵ) were 99.29% and 98.52% after 60 days. Cr speciation shifted from exchangeable fraction and weak acid-soluble fraction to more stable species bound to Fe-Mn oxides and residual fraction. Cr(Ⅵ) removal was primarily facilitated by surface Fe(Ⅱ), dissolved Fe(Ⅱ), and surface S(-Ⅱ). Surface S(-Ⅱ) provided electrons to Fe(Ⅲ), facilitating Fe(Ⅱ) regeneration for the continuous reduction of Cr(Ⅵ). The SC ligand enhanced material dispersion and stability, promoted Fe(Ⅱ) dissolution, reduced passivation layer formation, and improved electron transfer efficiency, thus increasing the efficacy of Fe3S4-SC in Cr(Ⅵ) removal. These findings provide a valuable reference for effectively remediating Cr(Ⅵ) contamination in wastewater and soil.
Collapse
Affiliation(s)
- Feiyu Lu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Ziming Xin
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhenkun Deng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; MOE Key laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Nunez Garcia A, Lee M, Ding L, Liang X, Wang C, He F, O'Carroll DM. Sulfidation of Magnetite for Superior Dechlorination of Trichloroethene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3172-3182. [PMID: 39902826 DOI: 10.1021/acs.est.4c07127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The reported contributions of magnetite to the abiotic natural attenuation of chlorinated ethenes have generated interest in its potential for soil and groundwater remediation. In this study, we investigated the impact of the two-step sulfidation method on the physicochemical properties and reactivity of magnetite with trichloroethene (TCE). We systematically evaluated the effect of different sulfur precursors (dithionite, thiosulfate, and sulfide) and sulfur-to-iron ([S/Fe]dosed) molar ratios on the reactivity. Results were compared to those of sulfidated nZVI (S-nZVI) as a benchmark for assessing the efficacy of sulfidated magnetite (S-Fe3O4). The findings indicated limited reactivity of magnetite when sulfidated with dithionite and thiosulfate. However, sulfidation with sulfide yielded reaction rates comparable to those of S-nZVI, particularly at lower [S/Fe]dosed ratios. At higher [S/Fe]dosed ratios (>0.1), sulfide-sulfidated magnetite (S-Fe3O4_S) exhibited reaction rates surpassing those of S-nZVI, with the major dechlorination product being acetylene. Nonetheless, reusability experiments demonstrated that the performance of S-Fe3O4 diminished with aging. These results show that S-Fe3O4_S achieved complete transformation of TCE to acetylene, with reaction rates comparable to S-nZVI. Given its lower cost of production, engineered S-Fe3O4_S remediation systems could serve as a more affordable alternative for in situ chemical reduction of TCE with further research and development.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, ON N6A 5B8, Canada
| | - Matt Lee
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Ding
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiguang Liang
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chengqi Wang
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Feng He
- Institute of Environmental Chemistry and Pollution Control College of Environment, Zhejiang University of Technology, 18 Chaowang Rd., Hangzhou 310014, China
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Ng WM, Chong WH, Abdullah AZ, Lim J. Magnetic Capture of Functionalized Nanoscale Zerovalent Iron for Soil Remediation: A Feasibility Study on Transport Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3572-3582. [PMID: 39893692 DOI: 10.1021/acs.langmuir.4c04720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nanoscale zerovalent iron (nZVI) has been proposed as a promising nanomaterial for soil remediation. However, injecting nZVI into contaminated sites to target and treat pollutant sources may pose potential environmental risks due to its colloidal stability and mobility in the environment. In this regard, this study assessed the feasibility of implementing magnetic capture of surface-functionalized nZVI in soil environments under the influence of the convective flow current. Here, functionalized nZVI particles were prepared by introducing carboxymethyl cellulose (CMC) as a stabilizing agent during the synthesis of nZVI by using the liquid-phase reduction method. The functionalized nZVI particles were then injected into a two-dimensional flow column containing a sand matrix with a high gradient magnetic trap (HGMT) embedded within the system. Particle transports in both the absence and presence of a magnetic field were recorded by using a digital camera, and the breakthrough curves were generated from the data collected spectrophotometrically. The results showed that the relative breakthrough concentration of nZVI decreased from 0.92 to nearly zero, with a delayed breakthrough time as the applied magnetic field strength increased from zero (no magnetic field) to 0.093 T, demonstrating a 100% capture efficiency. It was found that the magnetic capture for the nZVI particles was contributed by two mechanisms: (1) low gradient magnetic separation (LGMS), driven by the penetrating magnetic field from the permanent magnets, and (2) high gradient magnetic separation (HGMS), which occurred near the wire surfaces within the HGMT section magnetized by the permanent magnets. Findings in this work have proven the feasibility of magnetic separation as a control strategy for nanoparticle applications in environmental remediation.
Collapse
Affiliation(s)
- Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
12
|
Wang A, Hou J, Miao L, You G, Yang Z, Wu M, Wu J, Xing B. Long-term performance and mechanism of in-situ biogenetic sulfidated zero-valent iron for enhanced nitrate reduction. BIORESOURCE TECHNOLOGY 2025; 415:131696. [PMID: 39447920 DOI: 10.1016/j.biortech.2024.131696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/12/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The biogenetic sulfidation of zero-valent iron (BS-ZVI) by sulfate-reducing bacteria (SRB) has been demonstrated to enhance the reactivity of ZVI. However, long-term performance of BS-ZVI and related mechanism were still unknown. Therefore, columns containing sponge iron and SRB are built to prepare BS-ZVI in-situ and study its long-term performance. Over 80 % of NO3‾ was reduced to NH4+ by in-situ BS-ZVI within 140 days, which was higher than the sole ZVI treatment (40 %-60 %). The bonding of ZVI and FeSx was in-situ firstly and finally loaded on ZVI. The reduction of Fe(III) by S(-II) and SRB contributed to the formation of FeSx, which improved the electrons transfer. Moreover, BS-ZVI enhanced the enzymes activity of SRB, thus accelerating the metabolic transformation of lactic acid to acetic acid. The accumulation of acetic acid enhanced the removal efficiency of NO3‾ through the dissolution of passivation layer. Overall, this study demonstrated a reactivity enhancement of ZVI through biogenetic sulfidation, which provided a new alternative method for the remediation of groundwater.
Collapse
Affiliation(s)
- Anqi Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Miao Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Zhang X, Han C, Sun X, Yang S, Sun Y. Surfactant-assisted biodegradation of nitrobenzene in groundwater by sulfided nano-zero valent iron activated persulfate: Synergistic effect, mechanism, and application. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123185. [PMID: 39515016 DOI: 10.1016/j.jenvman.2024.123185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Groundwater contamination by dense non-aqueous phase liquids (DNAPLs), particularly nitrobenzene, represents a significant environmental challenge due to their chemical stability, persistence, and low solubility. This study aims to develop a synergistic approach for the biodegradation of nitrobenzene in groundwater, leveraging a combined system of Tween 80-assisted solubilization, sulfidized nano-zero valent iron (S-nZVI), and persulfate (PS) activation. The reduction process is facilitated by S-nZVI, while PS activation generates strong oxidizing radicals, and Tween 80 enhances nitrobenzene solubilization, thus improving the overall treatment efficacy. Laboratory experiments, including both batch and column studies, were conducted to evaluate the performance of this approach. Furthermore, a persulfate slow-release gel system was introduced to provide sustained activation, leading to improved long-term degradation efficiency. The results demonstrated that the synergistic combination of S-nZVI, PS, and Tween 80 led to significantly enhanced degradation of nitrobenzene and its byproduct aniline, achieving degradation rates of up to 96.74% for nitrobenzene and 100% for aniline after 6 h under optimal conditions. Additionally, the oxidation rate of aniline reached 91.53% within 5 min when the optimal dosage of 1.2 mM PS was used. The Tween-80/S-nZVI/PS slow-release gel system further achieved cumulative degradation rates of 87.49% for nitrobenzene over 14 pore volumes in a column study, demonstrating its potential for practical applications in groundwater remediation. These findings provide a promising new direction for the remediation of contaminated groundwater.
Collapse
Affiliation(s)
- Xueyan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Caohui Han
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Xiaoyin Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Shengke Yang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an, 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China.
| |
Collapse
|
14
|
Cheng H, Zheng X, Zhu Y, Wang P, Zhu J, Wei J, Liu Z, Huang C. Stabilization of sulfidated nano zerovalent iron with biochar: Enhanced transport and application for hexavalent chromium removal from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123045. [PMID: 39481156 DOI: 10.1016/j.jenvman.2024.123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/06/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Nano zerovalent iron (nZVI) has been broadly used in the treatment of chromium (Cr) pollution. However, conventional nZVI particles are prone to surface oxidation and particle agglomeration, limiting their effectiveness in contaminant removal. To address these issues, sulfidated nZVI (S-nZVI) was synthesized on the corn stover biochar (BC) surface for rapid removal of Cr(VI) from water. Sedimentation and column transport experiments demonstrated that S-nZVI@BC exhibits excellent dispersion and transport properties, efficiently removing Cr(VI) in the pH range of 2.5-5.0 and showing minimal impact from dissolved oxygen. The Fe0, Fe(Ⅱ), and S2- components of the material, along with the leached Fe2+ ions, contributed to the Cr(VI) removal. A portion of the removed Cr(VI) was reduced to Cr(III) in solution, while another portion was adsorbed on the material's surface through precipitation, with 42.0% of Cr being adsorbed within 30 min. Cycling and water matrix interference experiments further demonstrated the material's excellent reusability and resistance to interference. Notably, the continuous Cr(VI) removal capability in column experiments and the reactivation potential of S-nZVI@BC highlight its promise for practical applications. Future studies are suggested to explore the ecotoxicological effects of the S-nZVI@BC and its capacity for the simultaneous removal of multiple contaminants.
Collapse
Affiliation(s)
- Hao Cheng
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Xiaoyu Zheng
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Yi Zhu
- Hunan Changsha Ecological Environment Monitoring Center, Changsha, 410001, China
| | - Ping Wang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jian Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jie Wei
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zili Liu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Chao Huang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
15
|
Zeng G, Ma Z, Zhang R, He Y, Fan X, Lei X, Xiao Y, Zhang M, Sun D. The Application of Nano Zero-Valent Iron in Synergy with White Rot Fungi in Environmental Pollution Control. TOXICS 2024; 12:721. [PMID: 39453141 PMCID: PMC11511283 DOI: 10.3390/toxics12100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Developing efficient and sustainable pollution control technologies has become a research priority in the context of escalating global environmental pollution. Nano zero-valent iron (nZVI), with its high specific surface area and strong reducing power, demonstrates remarkable performance in pollutant removal. Still, its application is limited by issues such as oxidation, passivation, and particle aggregation. White rot fungi (WRF) possess a unique enzyme system that enables them to degrade a wide range of pollutants effectively, yet they face challenges such as long degradation cycles and low degradation efficiency. Despite the significant role of nZVI in pollutant remediation, most contaminated sites still rely on microbial remediation as a concurrent or ultimate treatment method to achieve remediation goals. The synergistic combination of nZVI and WRF can leverage their respective advantages, thereby enhancing pollution control efficiency. This paper reviews the mechanisms, advantages, and disadvantages of nZVI and WRF in pollution control, lists application examples, and discusses their synergistic application in pollution control, highlighting their potential in pollutant remediation and providing new insights for combined pollutant treatment. However, research on the combined use of nZVI and WRF for pollutant remediation is still relatively scarce, necessitating a deeper understanding of their synergistic potential and further exploration of their cooperative interactions.
Collapse
Affiliation(s)
- Guoming Zeng
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
- Chongqing Academy of Science and Technology, Chongqing 401123, China
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Intelligent Construction Technology Application Service Center, Chongqing City Vocational College, Chongqing 402160, China
| | - Zilong Ma
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Rui Zhang
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yu He
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xuanhao Fan
- School of Civil and Hydraulic Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Xiaoling Lei
- Chongqing Academy of Science and Technology, Chongqing 401123, China
| | - Yong Xiao
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Maolan Zhang
- School of Metallurgy and Power Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Institute of Life Sciences, Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
16
|
Xu W, Xia C, He F, Wang Z, Liang L. Sulfidation of Nanoscale Zero-Valent Iron by Sulfide: The Dynamic Process, Mechanism, and Role of Ferrous Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39262330 DOI: 10.1021/acs.est.4c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Sulfidation of nanoscale zerovalent iron (nZVI) can enhance particle performance. However, the underlying mechanisms of nZVI sulfidation are poorly known. We studied the effects of Fe2+ on 24-h dynamics of nZVI sulfidation by HS- using a dosed S to Fe molar ratio of 0.2. This shows that in the absence of Fe2+, HS- rapidly adsorbed onto nZVI particles and reacted with surface iron oxide to form mackinawite and greigite (<0.5 h). As nZVI corrosion progressed, amorphous FeSx in solution deposited on nZVI, forming S-nZVI (0.5-24 h). However, in the initial presence of Fe2+, the rapid reaction between HS- and Fe2+ produced amorphous FeSx, which deposited on the nZVI and corroded the surface iron oxide layer (<0.25 h). This was followed by redeposition of colloidal iron (hydr)oxide on the particle surface (0.25-8 h) and deposition of residual FeSx (8-24 h) on S-nZVI. S loading on S-nZVI was 1 order of magnitude higher when Fe2+ was present. Surface characterization of the sulfidated particles by TEM-SAED, XPS, and XAFS verified the solution dynamics and demonstrated that S2- and S22-/Sn2- were the principal reduced S species on S-nZVI. This study provides a methodology to tune sulfur loading and S speciation on S-nZVI to suit remediation needs.
Collapse
Affiliation(s)
- Wenqiang Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
17
|
Yan Z, Ouyang J, Wu B, Liu C, Wang H, Wang A, Li Z. Nonmetallic modified zero-valent iron for remediating halogenated organic compounds and heavy metals: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100417. [PMID: 38638605 PMCID: PMC11024576 DOI: 10.1016/j.ese.2024.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Zero Valent Iron (ZVI), an ideal reductant treating persistent pollutants, is hampered by issues like corrosion, passivation, and suboptimal utilization. Recent advancements in nonmetallic modified ZVI (NM-ZVI) show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties. Despite its promise, a thorough synthesis of research advancements in this domain remains elusive. Here we review the innovative methodologies, regulatory principles, and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants: halogenated organic compounds and heavy metals. We start by evaluating different nonmetallic modification techniques, such as liquid-phase reduction, mechanical ball milling, and pyrolysis, and their respective advantages. The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity, electron selectivity, and electron utilization efficiency. This is achieved by optimizing the elemental compositions, content ratios, lattice constants, hydrophobicity, and conductivity. Furthermore, we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges. This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals, contributing to the broader discourse on green remediation technologies.
Collapse
Affiliation(s)
- Zimin Yan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jia Ouyang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Bin Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Chenchen Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Hongcheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
18
|
Liang Z, Jiang C, Li Y, Liu Y, Yu J, Zhang T, Alvarez PJJ, Chen W. Single-Atom Iron Can Steer Atomic Hydrogen toward Selective Reductive Dechlorination: Implications for Remediation of Chlorinated Solvents-Impacted Groundwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11833-11842. [PMID: 38910294 DOI: 10.1021/acs.est.4c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Atomic hydrogen (H*) is a powerful and versatile reductant and has tremendous potential in the degradation of oxidized pollutants (e.g., chlorinated solvents). However, its application for groundwater remediation is hindered by the scavenging side reaction of H2 evolution. Herein, we report that a composite material (Fe0@Fe-N4-C), consisting of zerovalent iron (Fe0) nanoparticles and nitrogen-coordinated single-atom Fe (Fe-N4), can effectively steer H* toward reductive dechlorination of trichloroethylene (TCE), a common groundwater contaminant and primary risk driver at many hazardous waste sites. The Fe-N4 structure strengthens the bond between surface Fe atoms and H*, inhibiting H2 evolution. Nonetheless, H* is available for dechlorination, as the adsorption of TCE weakens this bond. Interestingly, H* also enhances electron delocalization and transfer between adsorbed TCE and surface Fe atoms, increasing the reactivity of adsorbed TCE with H*. Consequently, Fe0@Fe-N4-C exhibits high electron selectivity (up to 86%) toward dechlorination, as well as a high TCE degradation kinetic constant. This material is resilient against water matrix interferences, achieving long-lasting performance for effective TCE removal. These findings shed light on the utilization of H* for the in situ remediation of groundwater contaminated with chlorinated solvents, by rational design of earth-abundant metal-based single-atom catalysts.
Collapse
Affiliation(s)
- Zongsheng Liang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yueyue Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Road, Tianjin 300350, P. R. China
| |
Collapse
|
19
|
Zhou B, Fan B, Gong Z, Shao S, Zhou D, Gao S. Optimized preparation of Ni-Fe bm bimetallic particles by ball milling NiSO 4 and iron powder for efficient removal of triclosan. CHEMOSPHERE 2024; 360:142359. [PMID: 38782133 DOI: 10.1016/j.chemosphere.2024.142359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 μM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.
Collapse
Affiliation(s)
- Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shuai Shao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Chen D, Hu X, Chen C, Gao Y, Zhou Q, Feng X, Xu X, Lin D, Xu J. Impacts of Perfluoroalkyl Substances on Aqueous and Nonaqueous Phase Liquid Dechlorination by Sulfidized Nanoscale Zerovalent Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11193-11202. [PMID: 38859757 DOI: 10.1021/acs.est.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.
Collapse
Affiliation(s)
- Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiman Gao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qianhai Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xia Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
21
|
Xu Q, Ling L. Interface Visualization of Bio-material Interaction Via Cryo-AEM Using the Biosynthesis of Iron-Based Nanoparticles as a Model. Anal Chem 2024; 96:9756-9760. [PMID: 38781095 DOI: 10.1021/acs.analchem.3c05877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Although interaction between organisms and nonorganisms is vital in environmental processes, it is difficult to characterize at nanoscale resolution. Biosynthesis incorporates intracellular and extracellular processes involving crucial interfacial functions and electron and substance transfer processes, especially on the inorganic-organic interface. This work chooses the biosynthesis of iron-based nanoparticles (nFe) as a model for biomaterial interaction and employs Cryo-AEM (i.e., S/TEM, EELS, and EDS analysis based on sample preparation with cryo-transfer holder system), combined with CV, Raman, XPS, and FTIR to reveal the inorganic-organic interface process. The inorganic-organic interactions in the biosynthesis of iron-based nanoparticles by Shewanella oneidensis MR-1 (M-nFe) were characterized by changes in electron cloud density, and the corresponding chemical shifts of Fe and C EELS edges confirm that M-nFe acquires electrons from MR-1 on the interface. Capturing intact filamentous-like, slightly curved, and bundled structure provides solid evidence of a "circuit channel" for electron transfer between organic and inorganic interface. CV results also confirm that adding M-nFe can enhance electron transfer from MR-1 to ferric ions. A mechanism for the synthesis of M-nFe with MR-1 based on intracellular and extracellular conditions under facultative anaerobic was visualized, providing a protocol for investigating the organic-inorganic interface.
Collapse
Affiliation(s)
- Qianyu Xu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
22
|
Sun Y, Zheng K, Du X, Qin H, Guan X. Insights into the contrasting effects of sulfidation on dechlorination of chlorinated aliphatic hydrocarbons by zero-valent iron. WATER RESEARCH 2024; 255:121494. [PMID: 38552485 DOI: 10.1016/j.watres.2024.121494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 04/24/2024]
Abstract
Contrasting effects of sulfidation on contaminants reduction by zero-valent iron (ZVI) has been reported in literature but the underlying mechanisms remain unclear. Here, under well-controlled conditions, we compared the performance of ZVI and sulfidated ZVI (S-ZVI) toward a series of chlorinated compounds. Results revealed that, although S-ZVI was more reactive than ZVI toward hexachloroethane, pentachloroethane, tetrachloroethylene, and trichloroethene, sulfidation hindered the dechlorination of the other ten tested chlorinated aliphatics by a factor of 1.5-125. Moreover, S-ZVI may lead to an accumulation of toxic partially-dechlorinated products. Analogous to its effects on ZVI reactivity, sulfidation also exerted positive, negligible, or negative effects on the electron efficiency of ZVI. Solvent kinetic isotope effect analysis suggested that direct electron transfer rather than reaction with atomic hydrogen was the dominant reduction mechanism in S-ZVI system. Hence, the sulfidation enhancing effects could be expected only when direct electron transfer is the preferred reduction route for target contaminants. Furthermore, linear free energy relationships analysis indicated one-electron reduction potential could be used to predict the transformation of chlorinated ethanes by S-ZVI, whereas for chlorinated ethenes, their adsorption properties on S-ZVI determined the dechlorination process. All these findings may offer guidance for the decision-making regarding the application of S-ZVI.
Collapse
Affiliation(s)
- Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Kaiwei Zheng
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xueying Du
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hejie Qin
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Science, East China Normal University, Shanghai, 200241, China; College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
23
|
Ri C, Kim M, Mun H, Liu L, Tang J. Unveiling the effect of different dissolved organic matter (DOM) on catalytic dechlorination of nFe/Ni particles: Corrosion and passivation effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133901. [PMID: 38430602 DOI: 10.1016/j.jhazmat.2024.133901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/30/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Dissolved organic matter (DOM), which is ubiquitously distributed in groundwater, has a crucial role in the fate and reactivity of iron materials. However, there is a lack of direct evidence on how different DOMs interact with nFe/Ni in promoting or inhibiting the dechlorination efficiency of chlorinated aromatic contaminants. By comparing humic acid (HA), fulvic acid (FA), and biochar-derived dissolved organic matter (BDOM) at different pyrolysis temperatures, we first demonstrated that the dechlorination effect of nFe/Ni on 2,4-dichlorophenol (2,4-DCP) depended on the nature of DOMs and their adsorption on nFe/Ni. HA showed an enhancing effect on the dechlorination of 2,4-DCP by nFe/Ni, while the inhibition effect of other DOMs resulted in the following dechlorination order: BDOM300 ≈FA>BDOM700 ≈BDOM500. The C2 component with higher aromaticity and molecular weight promoted the corrosion of nFe/Ni and the production of reactive hydrogen atoms (H*). The effects of different DOMs on nFe/Ni include that (1) HA accelerates the corrosion and H* production of nFe/Ni, (2) FA and BDOM300 enhance the corrosion but inhibit H* production, and (3) Both nFe/Ni corrosion and H* formation are suppressed by BDOM500/BDOM700. Therefore, this study will provide a reference for understanding the nature of DOM-nFe/Ni interaction and improving the catalytic activity of nFe/Ni when different DOMs coexist in practical applications.
Collapse
Affiliation(s)
- Cholnam Ri
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of Microbiology, State Academy of Sciences, Pyongyang, Democatic People's Republic of Korea
| | - Munchol Kim
- Institute of Microbiology, State Academy of Sciences, Pyongyang, Democatic People's Republic of Korea
| | - Hyokchol Mun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Institute of National Energy, State Academy of Sciences, Pyongyang, Democatic People's Republic of Korea
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Zhou H, Lv L, Ye M, Baig SA, Luo Y, Chen J, Hu S, Zhang H, Wang J. Improvement strategy of citrate and biochar assisted nano-palladium/iron composite for effective dechlorination of 2,4-dichlorophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34661-34674. [PMID: 38713350 DOI: 10.1007/s11356-024-33475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 05/08/2024]
Abstract
Rapid passivation and aggregation of nanoscale zero-valent iron (nZVI) seriously limit its performance in the remediation of different contaminants from wastewater. To overcome such issues, in the present study, nano-palladium/iron (nPd/Fe) was simultaneously improved by biochar (BC) prepared from discarded peanut shells and green complexing agent sodium citrate (SC). For this purpose, a composite (SC-nPd/Fe@BC) was successfully synthesized to remove 2,4-dichlorophenol (2,4-DCP) from wastewater. In the SC-nPd/Fe@BC, BC acts as a carrier with dispersed nPd/Fe particles to effectively prevent its agglomeration, and increased the specific surface area of the composite, thereby improving the reactivity and stability of nPd/Fe. Characterization results demonstrated that the SC-nPd/Fe@BC composites were well dispersed, and the agglomeration was weakened. The formation of the passivation layer on the surface of the particles was inhibited, and the mechanism of SC and BC improving the reactivity of nPd/Fe was clarified. Different factors were found to influence the reductive dichlorination of 2,4-DCP, including Pd loading, Fe:C, SC addition, temperature, initial pH, and initial pollutant concentration. The dechlorination results revealed that the synergistic effect of the BC and SC made the removal efficiency and dechlorination rate of 2,4-DCP by SC-nPd/Fe@BC reached to 96.0 and 95.6%, respectively, which was better than that of nPd/Fe (removal: 46.2%, dechlorination: 45.3%). Kinetic studies explained that the dechlorination reaction of 2,4-DCP and the data were better represented by the pseudo-first-order kinetic model. The reaction rate constants followed the order of SC-nPd/Fe@BC (0.0264 min-1) > nPd/Fe@BC (0.0089 min-1) > SC-nPd/Fe (0.0081 min-1) > nPd/Fe (0.0043 min-1). Thus, SC-nPd/Fe@BC was capable of efficiently reducing 2,4-DCP and the dechlorination efficiency of BC and SC synergistically assisted composite on 2,4-DCP was much better than that of SC-nPd/Fe, nPd/Fe@BC and nPd/Fe. Findings suggested that SC-nPd/Fe@BC can be promising for efficient treatment of chlorinated pollutants.
Collapse
Affiliation(s)
- Hongyi Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Longfei Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mengyao Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shams Ali Baig
- Department of Environmental Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, 23200, Pakistan
| | - Yangchun Luo
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, Zhejiang, China
| | - Jinhai Chen
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312000, Zhejiang, China
| | - Shufen Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hao Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Junliang Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
25
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
26
|
Qiao J, Zhao Z, Zhou Z, Wu D. Enhanced hydrodechlorination of 4-chlorophenol through carboxymethylcellulose-modified Pd/Fe nanosuspension synthesized by one-step methods. CHEMOSPHERE 2024; 356:141857. [PMID: 38570045 DOI: 10.1016/j.chemosphere.2024.141857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Palladized iron (Pd/Fe) represents one of the most common modification strategies for nanoscale zero-valent iron (nZVI). Most studies prepared Pd/Fe by reducing iron salts and depositing Pd species on the surface of pre-synthesized nZVI, which can be called the two-step method. In this study, we proposed a one-step method to obtain Pd/Fe by the concurrent formation of Fe0 and Pd0 and investigated the effects of these two methods on 4-chlorophenol (4-CP) removal, with carboxymethylcellulose (CMC) coated as a surface modifier. Results indicated that the one-step method, not only streamlined the synthesis process, but also Pd/Fe-CMCone-step, synthesized by it, exhibited a higher 4-CP removal rate (97.9%) compared to the two-step method material Pd/Fe-CMCtwo-step (82.4%). Electrochemical analyses revealed that the enhanced activity of Pd/Fe-CMCone-step was attributed to its higher electron transfer efficiency and more available reactive species, active adsorbed hydrogen species (Hads*). Detection of intermediate products demonstrated that, under the influence of Pd/Fe-CMCone-step, the main route of 4-CP was through hydrodechlorination (HDC) to form phenol and H* was the main active specie, supported by EPR tests, quenching experiments and product analysis. Additionally, the effects of initial 4-CP concentration, initial pH, O2 concentration, anions such as Cl-, SO42-, HCO3-, and humic acid (HA) were also investigated. In conclusion, the results of this study suggest that Pd/Fe-CMCone-step, synthesized through the one-step method, is a convenient and efficient nZVI-modifying material suitable for the HDC of chlorinated organic compounds.
Collapse
Affiliation(s)
- Juan Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
27
|
Gong L, Ying S, Xia C, Pan K, He F. Carboxymethyl cellulose stabilization induced changes in particle characteristics and dechlorination efficiency of sulfidated nanoscale zero-valent iron. CHEMOSPHERE 2024; 355:141726. [PMID: 38521105 DOI: 10.1016/j.chemosphere.2024.141726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/13/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024]
Abstract
Polymer stabilization, exemplified by carboxymethyl cellulose (CMC), has demonstrated effectiveness in enhancing the transport of nanoscale zero-valent iron (nZVI). And, sulfidation is recognized for enhancing the reactivity and selectivity of nZVI in dechlorination processes. The influence of polymer stabilization on sulfidated nZVI (S-nZVI) with various sulfur precursors remains unclear. In this study, CMC-stabilized S-nZVI (CMC-S-nZVI) was synthesized using three distinct sulfur precursors (S2-, S2O42-, and S2O32-) through one-step approach. The antioxidant properties of CMC significantly elevated the concentration of reduced sulfur species (S2-) on CMC-S-nZVIs, marking a 3.1-7.0-fold increase compared to S-nZVIs. The rate of trichloroethylene degradation (km) by CMC-S-nZVIs was observed to be 2.2-9.0 times higher than that achieved by their non-stabilized counterparts. Among the three CMC-S-nZVIs, CMC-S-nZVINa2S exhibited the highest km. Interesting, while the electron efficiency of CMC-S-nZVIs surged by 7.9-12 times relative to nZVI, it experienced a reduction of 7.0-34% when compared with S-nZVIs. This phenomenon is attributed to the increased hydrophilicity of S-nZVI particles due to CMC stabilization, which inadvertently promotes the hydrogen evolution reaction (HER). In conclusion, the findings of this study underscores the impact of CMC stabilization on the properties and dechlorination performance of S-nZVI sulfidated using different sulfur precursors, offering guidance for engineering CMC-S-nZVIs with desirable properties for contaminated groundwater remediation.
Collapse
Affiliation(s)
- Li Gong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuaixuan Ying
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyun Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ke Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
28
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
29
|
Slijepčević N, Rađenović D, Beljin J, Kozma G, Kónya Z, Maletić S, Tomašević Pilipović D. A novel co-contaminated sediment treatment approach: Quercus petraea leaf-extracted nZVI supported on native clay and biochar for potentially toxic elements and PAHs removal. JOURNAL OF SOILS AND SEDIMENTS 2024; 24:509-524. [DOI: 10.1007/s11368-023-03682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/30/2023] [Indexed: 01/18/2025]
|
30
|
Xu J, Chen C, Hu X, Chen D, Bland G, Wielinski J, Kaegi R, Lin D, Lowry GV. Particle-Scale Understanding of Arsenic Interactions with Sulfidized Nanoscale Zerovalent Iron and Their Impacts on Dehalogenation Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21917-21926. [PMID: 38091483 PMCID: PMC10753793 DOI: 10.1021/acs.est.3c08635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Co-occurrence of organic contaminants and arsenic oxoanions occurs often at polluted groundwater sites, but the effect of arsenite on the reactivity of sulfidized nanoscale zerovalent iron (SNZVI) used to remediate groundwater has not been evaluated. Here, we study the interaction of arsenite [As(III)] with SNZVI at the individual-particle scale to better understand the impacts on the SNZVI properties and reactivity. Surface and intraparticle accumulation of As was observed on hydrophilic FeS-Fe0 and hydrophobic FeS2-Fe0 particles, respectively. X-ray absorption spectroscopy indicated the presence of realgar-like As-S and elemental As0 species at low and high As/Fe concentration ratios, respectively. Single-particle inductively coupled plasma time-of-flight mass spectrometry analysis identified As-containing particles both with and without Fe. The probability of finding As-containing particles without Fe increased with the S-induced hydrophobicity of SNZVI. The interactions of SNZVI materials with coexisting arsenite inhibited their reactivity with water (∼5.8-230.7-fold), trichloroethylene (∼3.6-67.5-fold), and florfenicol (∼1.1-5.9-fold). However, the overall selectivity toward trichloroethylene and florfenicol relative to water was improved (up to 9.0-fold) because the surface-associated As increased the SNZVI hydrophobicity. These results indicate that reactions of SNZVI with arsenite can remove As from groundwater and improve the properties of SNZVI for dehalogenation selectivity.
Collapse
Affiliation(s)
- Jiang Xu
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Chaohuang Chen
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Xiaohong Hu
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Du Chen
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Garret Bland
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jonas Wielinski
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ralf Kaegi
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf 8600, Switzerland
| | - Daohui Lin
- Zhejiang
Provincial Key Laboratory of Organic Pollution Process and Control,
Department of Environmental Science, Zhejiang
University, Hangzhou 310058, China
| | - Gregory V. Lowry
- Department
of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
31
|
Larrañaga-Tapia M, Betancourt-Tovar B, Videa M, Antunes-Ricardo M, Cholula-Díaz JL. Green synthesis trends and potential applications of bimetallic nanoparticles towards the sustainable development goals 2030. NANOSCALE ADVANCES 2023; 6:51-71. [PMID: 38125589 PMCID: PMC10729871 DOI: 10.1039/d3na00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/08/2023] [Indexed: 12/23/2023]
Abstract
The world faces threats that the United Nations has classified into 17 categories with different objectives as solutions for each challenge that are enclosed in the Sustainable Development Goals (SDGs). These actions involved the widespread use of science and technology as pathways to ensure their implementation. In this regard, sustainability science seeks the research community's contribution to addressing sustainable development challenges. Specifically, nanotechnology has been recognized as a key tool to provide disruptive and effective strategies to reach the SDGs. This review proposes the application of bimetallic nanoparticle substances capable of providing possible solutions to achieve target SDG 3: good health and well-being, SDG 6: clean water and sanitation, and SDG 12: responsible consumption and production. Furthermore, the term green nanotechnology is introduced in each section to exemplify how green synthesized bimetallic nanoparticles have been used to resolve each target SDG. This review also outlines the current scenario regarding the utilization of metallic nanomaterials in the market, together with the upscaling challenges and the lack of understanding of the long-term effects and hazards to the environment regarding bimetallic nanoparticles.
Collapse
Affiliation(s)
- Mariana Larrañaga-Tapia
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Benjamín Betancourt-Tovar
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marcelo Videa
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Marilena Antunes-Ricardo
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
- Institute for Obesity Research, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey Eugenio Garza Sada 2501, Tecnologico Monterrey 64849 NL Mexico
| |
Collapse
|
32
|
Wang B, Luo Q, Pan Y, Mei Z, Sun T, Zhong Z, He F, Liang L, Wang Z, Xing B. Enhanced Biogenic Sulfidation of Zero-Valent Iron in Columns: Implications for Promoting Dechlorination in Permeable Reactive Barriers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20951-20961. [PMID: 38009568 DOI: 10.1021/acs.est.3c06976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Biogenic sulfidation of zero-valent iron (ZVI) using sulfate reducing bacteria (SRB) has shown enhanced dechlorination rates comparable to those produced by chemical sulfidation. However, controlling and sustaining biogenic sulfidation to enhance in situ dechlorination are poorly understood. Detailed interactions between SRB and ZVI were examined for 4 months in column experiments under enhanced biogenic sulfidation conditions. SRB proliferation and changes in ZVI surface properties were characterized along the flow paths. The results show that ZVI can stimulate SRB activity by removing excessive free sulfide (S2-), in addition to lowering reduction potential. ZVI also hinders downgradient movement of SRB via electrostatic repulsion, restricting SRB presence near the upgradient interface. Dissolved organic carbon (e.g., >2.2 mM) was essential for intense biogenic sulfidation in ZVI columns. The presence of SRB in the upgradient zone appeared to promote the formation of iron polysulfides. Biogenic FeSx deposition increased the S content on ZVI surfaces ∼3-fold, corresponding to 3-fold and 2-fold improvements in the trichloroethylene degradation rate and electron efficiency in batch tests. Elucidation of SRB and ZVI interactions enhances sustained sulfidation in ZVI permeable reactive barrier.
Collapse
Affiliation(s)
- Binbin Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qin Luo
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yujia Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zihan Mei
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Taoyu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhong Zhong
- Eco-Environmental Science & Research Institute of Zhejiang Province, Hangzhou, Zhejiang 310007, China
| | - Feng He
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Liyuan Liang
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
33
|
Li Z, Guo Z, Wu X, Jiang X, Li H, Xu J, Yang K, Lin D. Few-Atomic Zero-Valent Palladium Ensembles for Efficient Reductive Dehydrogenation and Dehalogenation Catalysis. ACS NANO 2023; 17:22859-22871. [PMID: 37930274 DOI: 10.1021/acsnano.3c07724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-atom catalysts (SACs) offer immense potential in heterogeneous catalysis due to their maximized atomic utilization and high selectivity but suffer the problem of low reactivity in catalytic reductive reactions due to their high-valent state. Here, we demonstrate that supported palladium (Pd) ensembles consisting of a few zero-valent Pd atoms (Pd1+c-red/CN) exhibit exceptional reactivity in formic acid (FA) dehydrogenation and 4-chlorophenol (4-CP) dechlorination. The initial FA dehydrogenation and 4-CP dechlorination rates of Pd1+c-red/CN are 42-104 and 16-210 times higher than that of supported Pd SACs (Pd1-ox/CN), respectively. Experimental results and density functional theory (DFT) calculations reveal that optimal adsorption sites of Pd1+c-red/CN stimulate the formation of H*, which is indispensable for 4-CP dechlorination. Moreover, direct electron transfer from Pd atoms to FA with a high electron density on Pd1+c-red/CN also contributes to the rapid 4-CP dechlorination. The superior dehalogenation capability of Pd1+c-red/CN for organohalides of great environmental and health concerns suggested its immense application potential in environmental remediation. This work highlights the pivotal roles of the structure and valence state of Pd ensembles in catalytic reductive reactions and provides a strategy to broaden the application of Pd-based catalysts for dehydrogenation and dehalogenation.
Collapse
Affiliation(s)
- Zhenjie Li
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Zhongyuan Guo
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xunheng Jiang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Kun Yang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
34
|
Che M, Su H, Zhao X, Fu D, Huang R, Guo X, Su R. Tannic acid promotes the activation of persulfate with Fe(ii) for highly efficient trichloroethylene removal. RSC Adv 2023; 13:34371-34377. [PMID: 38024972 PMCID: PMC10665609 DOI: 10.1039/d3ra06004g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Trichloroethylene (TCE) is an Environmental Protection Agency (EPA) priority pollutant that is difficult to be removed by some remediation methods. For instance, TCE removal using persulfate (PS) activated by ferrous iron (Fe(ii)) has been tested but is limited by the unstable Fe(ii) concentration and the initial pH of contaminated water samples. Here we reported a new TCE removal system, in which tannic acid (TA) promoted the activation of PS with Fe(ii) (TA-Fe(ii)-PS system). The effect of initial pH, temperature, and concentrations of PS, Fe(ii), TA, inorganic anions and humic acid on TCE removal was investigated. We found that the TA-Fe(ii)-PS system with 80 mg L-1 of TA, 1.5 mM of Fe(ii) and 15 mM of PS yielded about 96.2-99.1% TCE removal in the pH range of 1.5-11.0. Radical quenching experiments were performed to identify active species. Results showed that SO4˙- and ˙OH were primarily responsible for TCE removal in the TA-Fe(ii)-PS system. In the presence of TA, the Fe-TA chelation and the reduction of TA could regulate Fe(ii) concentration and activate persulfate for continuously releasing reactive species under alkaline conditions. Based on the excellent removal performance for TCE, the TA-Fe(ii)-PS system becomes a promising candidate for controlling TCE in groundwater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Hongjian Su
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Xudong Zhao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Daqing Fu
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Renliang Huang
- School of Marine Science and Technology, Tianjin University Tianjin 300072 P. R. China
| | - Xuehui Guo
- 514 Brigade of North China Geological Exploration Bureau Chengde 067000 P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
35
|
Chen D, Hu X, Chen C, Lin D, Xu J. Tailoring Fe 0 Nanoparticles via Lattice Engineering for Environmental Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17178-17188. [PMID: 37903754 DOI: 10.1021/acs.est.3c05129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Lattice engineering of nanomaterials holds promise in simultaneously regulating their geometric and electronic effects to promote their performance. However, local microenvironment engineering of Fe0 nanoparticles (nFe0) for efficient and selective environmental remediation is still in its infancy and lacks deep understanding. Here, we present the design principles and characterization techniques of lattice-doped nFe0 from the point of view of microenvironment chemistry at both atomic and elemental levels, revealing their crystalline structure, electronic effects, and physicochemical properties. We summarize the current knowledge about the impacts of doping nonmetal p-block elements, transition-metal d-block elements, and hybrid elements into nFe0 crystals on their local coordination environment, which largely determines their structure-property-activity relationships. The materials' reactivity-selectivity trade-off can be altered via facile and feasible approaches, e.g., controlling doping elements' amounts, types, and speciation. We also discuss the remaining challenges and future outlooks of using lattice-doped nFe0 materials in real applications. This perspective provides an intuitive interpretation for the rational design of lattice-doped nFe0, which is conducive to real practice for efficient and selective environmental remediation.
Collapse
Affiliation(s)
- Du Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohong Hu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaohuang Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
36
|
Tang J, Su W, Liu J, Tang F, Yang X. Reductive dechlorination of trichloroethene by sulfided microscale zero-valent iron in fresh and saline groundwater: Reactivity, pathways, and selectivity. CHEMOSPHERE 2023; 340:139900. [PMID: 37611757 DOI: 10.1016/j.chemosphere.2023.139900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
S/mZVI is a promising material for groundwater remediation due to its excellent properties. However, the reactivity and electron selectivity toward target contaminant are critical. Thus, this study investigated the effect of complex groundwater chemistries (Milli-Q water, fresh groundwater and saline groundwater) on the reactivity of S/mZVI toward trichloroethylene (TCE), dechlorination pathway, hydrogen evolution kinetic, electron efficiency and aging behaviors. Results showed that sulfidation appreciably increased the reactivity and electron selectivity. The major degradation product of TCE dechlorination by S/mZVI was acetylene, which was consistent with TCE dechlorination by β-elimination. Moreover, reductive β-elimination was still the dominant dechlorination pathway for the application of S/mZVI in three groundwater conditions. However, the rates and the quantities of major products from TCE degradation varied significantly. S/mZVI in saline groundwater can maintain the reactivity towardTCE due to the protection of Fe0 by Fe3O4 deposited on the surface. Thus, the higher TCE removal efficiency and less hydrogen accumulation resulted in the greatest electron efficiency (4.3-79.2%). Overall, S/mZVI was more effective for the application in saline groundwater. This study proved insight into the comprehensive evaluation and implications for the application of S/mZVI based technologies in saline contaminated groundwater.
Collapse
Affiliation(s)
- Jiaojiao Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Wenzhen Su
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Jia Liu
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| | - Fenglin Tang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China.
| | - Xiupei Yang
- College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, 637000, PR China
| |
Collapse
|
37
|
Fan B, Zhou B, Chen S, Zhu F, Chen B, Gong Z, Wang X, Zhu C, Zhou D, He F, Gao S. Preparation of Fe/Cu bimetals by ball milling iron powder and copper sulfate for trichloroethylene degradation: Combined effect of FeS x and Fe/Cu alloy. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132402. [PMID: 37660624 DOI: 10.1016/j.jhazmat.2023.132402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The addition of a secondary metal (such as Cu, Co, Ni and Pd) to form iron-based bimetallic particles could enhance the reactivity of zero valent iron (ZVI). This study proposed a new synthesis method for preparing Cu-Fe bimetals (Cu-Febm (CuSO4)) by ball milling mZVI and CuSO4. During ball-milling process, 40% of Cu2+ can be reduced to Cu0, which formed galvanic couple with Fe0 in a way of Fe/Cu alloy structure. Part Cu2+ was only reduced to Cu+ (corresponding to Cu2O), while 29% of SO42- was reduced to Sx2- (corresponding to FeSx). The appearance of Cu2O was not conducive to the activity of Cu-Febm (CuSO4) particles, the formation of Fe0/FeSx structure compensated for the partial loss of Fe/Cu alloy. H•abs was identified as the main active species for TCE degradation by Cu-Febm (CuSO4) bimetals. The Cu-Febm (CuSO4) bimetals has great potential for the removal of chlorinated hydrocarbons in water.
Collapse
Affiliation(s)
- Bo Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingnan Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Si Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Bo Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhimin Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shixiang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
38
|
Chen JQ, Zhou GN, Ding RR, Li Q, Zhao HQ, Mu Y. Ferrous ion enhanced Fenton-like degradation of emerging contaminants by sulfidated nanosized zero-valent iron with pH insensitivity. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132229. [PMID: 37549576 DOI: 10.1016/j.jhazmat.2023.132229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/09/2023]
Abstract
In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.
Collapse
Affiliation(s)
- Jia-Qi Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Guan-Nan Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China
| | - Rong-Rong Ding
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Qi Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Han-Qing Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
39
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
40
|
Ouyang Q, Hansen HCB, Thygesen LG, Tobler DJ. Nitrogen amended graphene catalyses fast reduction of vinyl chloride by nano zerovalent iron. WATER RESEARCH 2023; 244:120535. [PMID: 37660466 DOI: 10.1016/j.watres.2023.120535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Vinyl chloride (VC) is a dominant carcinogenic residual in many aged chlorinated solvent plumes, and it remains a huge challenge to clean it up. Zerovalent iron (ZVI) is an effective reductant for many chlorinated compounds but shows low VC removal efficiency at field scale. Amendment of ZVI with a carbonaceous material may be used to both preconcentrate VC and facilitate redox reactions. In this study, nitrogen-doped graphene (NG) produced by a simple co-pyrolysis method using urea as nitrogen (N) source, was tested as a catalyst for VC reduction by nanoscale ZVI (nZVI). The extent of VC reduction to ethylene in the presence of 2 g/L of nZVI was less than 1% after 3 days, and barely improved with the addition of 4 g/L of graphene. In contrast, with amendment of nZVI with NG produced at pyrolysis temperature (PT) of 950 °C, the VC reduction extent increased more than 10-fold to 69%. The reactivity increased with NG PT increasing from 400 °C to an optimum at 950 °C, and it increased linearly with NG loadings. Interestingly, N dosage had little effect on reactivity if NG was produced at PT of 950 °C, while a positive correlation was observed for NG produced at PT of 600 °C. XPS and Raman analyses revealed that for NG produced at lower PT (<800 °C) mainly the content of pyridine-N-oxide (PNO) groups correlates with reactivity, while for NG produced at higher PT up to 950 °C, reactivity correlates mainly with N induced structural defects in graphene. The results of quenching and hydrogen yield experiments indicated that NG promote reduction of VC by storage of atomic hydrogen, thus increasing its availability for VC reduction, while likely also enabling electron transfer from nZVI to VC. Overall, these findings demonstrate effective chemical reduction of VC by a nZVI-NG composite, and they give insights into the effects of N doping on redox reactivity and hydrogen storage potential of carbonaceous materials.
Collapse
Affiliation(s)
- Qiong Ouyang
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark.
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Lisbeth Garbrecht Thygesen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, Frederiksberg C DK-1958, Denmark
| | - Dominique J Tobler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
41
|
He C, Ding Y, Li C, Yan W, Mao A, Wei S, Li M. Cost-effective core@shell structured zero-valent iron nanoparticles @ magnetic (nZVI@Fe 3O 4) for Cr(vi) removal from aqueous solutions: preparation by disproportionation of Fe(ii). RSC Adv 2023; 13:26983-26994. [PMID: 37692341 PMCID: PMC10485737 DOI: 10.1039/d3ra03133k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/06/2023] [Indexed: 09/12/2023] Open
Abstract
Nanoscale zero-valent iron (nZVI) and its composites are known for their excellent ability to remove Cr(vi), but their preparation can be expensive due to the reduction processes. This study presents a cost-effective method to prepare core@shell structured nZVI@Fe3O4 nanocomposites using a novel Fe(ii) disproportionation reaction. The nZVI@Fe3O4 was thoroughly characterized using various techniques, including FESEM, HRTEM, EDS, XPS, XRD, FTIR, and VSM. Batch experiments were performed to evaluate the removal efficiency of nZVI@Fe3O4 in eliminating Cr(vi) ions from aqueous solutions, while classical models were employed to investigate the influencing factors associated with the removal process. The results showed that a 0.7 mg per ml NaOH solution reacted with Fe(ii) at 150 °C for 0.5 h could be used to prepare nZVI@Fe3O4 composites efficiently and inexpensively. nZVI@Fe3O4 was able to remove more than 99% of Cr(vi) from both simulated Cr(vi) solutions and real electroplating wastewater, and the recovery and preparation could be easily performed using external magnets to separate it from the solution. At pH 6.0, the maximum adsorption capacity (qmax) for Cr(vi) reached 58.67 mg g-1. The reaction mechanism was discussed from the perspective of electron transfer. Overall, the results suggest that nZVI@Fe3O4, an efficient adsorbent prepared using an environmentally friendly and inexpensive Fe(ii) disproportionation reaction, is a promising option for the treatment of Cr(vi) from industrial wastewater and other contaminated water sources.
Collapse
Affiliation(s)
- Chuan He
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
- Jiuquan Vocational and Technical College Jiuquan 735000 China
| | - Yarong Ding
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Canhua Li
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
- Xuancheng Industrial Technology Research Institute, Anhui University of Technology Xuancheng 242002 China
| | - Wang Yan
- Jiuquan Vocational and Technical College Jiuquan 735000 China
| | - Aiqin Mao
- School of Materials Science and Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Shuxian Wei
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| | - Minghui Li
- College of Metallurgical Engineering, Anhui University of Technology Ma'anshan 243000 China
| |
Collapse
|
42
|
Cai S, Cao Z, Yang L, Wang H, He F, Wang Z, Xing B. Cations facilitate sulfidation of zero-valent iron by elemental sulfur: Mechanism and dechlorination application. WATER RESEARCH 2023; 242:120262. [PMID: 37390653 DOI: 10.1016/j.watres.2023.120262] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The solid-solid reaction of microscale zero-valent iron (mZVI) with elemental sulfur (S0) in water can form sulfidated mZVI (S-mZVI) with high reactivity and selectivity. However, the inherent passivation layer of mZVI hinders the sulfidation. In this study, we demonstrate that ionic solutions of Me-chloride (Me: Mg2+, Ca2+, K+, Na+ and Fe2+) can accelerate the sulfidation of mZVI by S0. The S0 with S/Fe molar ratio of 0.1 was fully reacted with mZVI in all solutions to form unevenly distributed FeS species on S-mZVIs as confirmed by SEM-EDX and XANES characterization. The cations depassivated the mZVI surface by driving the proton release from the surface site (FeOH) and resulting in localized acidification. The probe reaction test (tetrachloride dechlorination) and open circuit potential (EOCP) measurement demonstrated that Mg2+ was most efficient in depassivating the mZVI and therefore promoting sulfidation. The decrease of surface proton for hydrogenolysis on the S-mZVI synthesized in MgCl2 solution also inhibited the formation of cis-1,2-dichloroethylene by 14-79% compared to other S-mZVIs during trichloroethylene dechlorination. In addition, the synthesized S-mZVIs exhibited the highest reduction capacity reported so far. These findings provide a theoretical basis for the facile on-site sulfidation of mZVI by S0 with cation-rich natural waters for sustainable remediation of contaminated sites.
Collapse
Affiliation(s)
- Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Cao
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liwei Yang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huaqing Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
43
|
Settimi C, Zingaretti D, Verginelli I, Baciocchi R. Degradation of trichloroethylene vapors by micrometric zero-valent FeCu and FeNi bimetals under partially saturated conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 257:104204. [PMID: 37301040 DOI: 10.1016/j.jconhyd.2023.104204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The degradation of trichloroethylene (TCE) vapors by zero-valent Iron-Copper (Fe-Cu) and Iron-Nickel (Fe-Ni) bimetals with 1%, 5% and 20% weight content (%wt) of Cu or Ni was tested in anaerobic batch vapor systems carried out at ambient room temperature (20 ± 2 °C) under partially saturated conditions. The concentrations of TCE and byproducts were determined at discrete reaction time intervals (4 h-7 days) by analyzing the headspace vapors. In all the experiments, up to 99.9% degradation of TCE in the gas phase was achieved after 2-4 days with zero-order TCE degradation kinetic constants in the range of 134-332 g mair-3d-1. Fe-Ni showed a higher reactivity towards TCE vapors compared to Fe-Cu, with up to 99.9% TCE dechlorination after 2 days of reaction, i.e., significantly higher than zero-valent iron alone that in previous studies was found to achieve comparable TCE degradation after minimum 2 weeks of reaction. The only detectable byproducts of the reactions were C3-C6 hydrocarbons. Neither vinyl chloride or dichloroethylene peaks were detected in the tested conditions above their method quantification limits that were in the order of 0.01 g mair-3. In view of using the tested bimetals in horizontal permeable reactive barriers (HPRBs) placed in the unsaturated zone to treat chlorinated solvent vapors emitted from contaminated groundwater, the experimental results obtained were integrated into a simple analytical model to simulate the reactive transport of vapors through the barrier. It was found that an HPRB of 20 cm could be potentially effective to ensure TCE vapors reduction.
Collapse
Affiliation(s)
- Clarissa Settimi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy
| | - Daniela Zingaretti
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy
| | - Iason Verginelli
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy.
| | - Renato Baciocchi
- Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
44
|
Lyu H, Hu K, Wu Z, Shen B, Tang J. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163011. [PMID: 36965728 DOI: 10.1016/j.scitotenv.2023.163011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Chlorinated hydrocarbons (CHs) are the main contaminants in soil and groundwater and have posed great challenge on the remediation of soil and ground water. Different remediation materials have been developed to deal with the environmental problems caused by CHs. Remediation materials can be classified into three main categories according to the corresponding technologies: adsorption materials, chemical reduction materials and bioaugmentation materials. In this paper, the classification and preparation of the three materials are briefly described in terms of synthesis and properties according to the different types. Then, a detailed review of the remediation mechanisms and applications of the different materials in soil and groundwater remediation is presented in relation to the various properties of the materials and the different challenges encountered in laboratory research or in the environmental application. The removal trends in different environments were found to be largely similar, which means that composite materials tend to be more effective in removing CHs in actual remediation. For instance, adsorbents were found to be effective when combined with other materials, due to the ability to take advantage of the respective strengths of both materials. The rapid removal of CHs while minimizing the impact of CHs on another material and the material itself on the environment. Finally, suggestions for the next research directions are given in conjunction with this paper.
Collapse
Affiliation(s)
- Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
45
|
Zhou Y, Yao B, Yuan Y, Hu W, Liu J, Zou H, Zhou Y. Enhancement of Fenton processes at initial circumneutral pH for the degradation of norfloxacin with Fe@FeS core-shell nanowires. ENVIRONMENTAL TECHNOLOGY 2023; 44:2451-2461. [PMID: 35084294 DOI: 10.1080/09593330.2022.2033329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/15/2022] [Indexed: 06/08/2023]
Abstract
The disadvantages of narrow working pH range (2.5-4.0), accumulation of iron sludge and incomplete degradation have hindered the practical application of the traditional homogeneous Fenton technique. In this research, Fe@FeS core-shell nanowires were synthesised and the innovative Fe@FeS/Fe2+/H2O2 system was adopted for norfloxacin (NOR) degradation at an initial circumneutral pH. More than 95% NOR has been removed in the Fe@FeS/Fe2+/H2O2 system within 30 min at pH 7. After investigating the concentration change of total iron, Fe2+ and H2O2 during the degradation process, NOR degradation in the Fe@FeS/Fe2+/H2O2 system might be attributed to the combined effect of homogeneous Fenton reaction and heterogeneous Fenton process. Besides that, the added Fe@FeS has accelerated Fe3+/Fe2+ redox cycle with extremely high degree. The generated reactive ●OH has been identified by electron paramagnetic resonance spectrometer results, possible degradation intermediates have also been proposed according to Gas chromatography-mass spectrometry analysis results. Moreover, Fe@FeS core-shell nanowires showed excellent reusability, it is a promising heterogeneous Fenton catalyst that is applicable for practical application.
Collapse
Affiliation(s)
- Yuzhou Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Bin Yao
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yawen Yuan
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Wenyong Hu
- College of Biological Resources and Environmental Science, Jishou University, Jishou, People's Republic of China
| | - Jingyi Liu
- College of Biological Resources and Environmental Science, Jishou University, Jishou, People's Republic of China
| | - Huanwei Zou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
46
|
Shao S, Zhang P, Chen Y, Zhao X. Enhanced tetracycline abatement by peracetic acid activation with sulfidation of nanoscale zerovalent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27779-4. [PMID: 37231132 DOI: 10.1007/s11356-023-27779-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Iron-based heterogeneous catalysts due to the environmental friendliness have been widely studied for activation of peracetic acid (PAA) for abatement of organic contaminants in the water and wastewater treatment. However, the slow reduction from Fe(III) to Fe(II) of the iron-based catalysts as the rate-limiting step results in the low PAA activation efficiency. With regard to the excellent electron-donating capability of the reductive sulfur species, sulfidized nanoscale zerovalent iron is proposed for PAA activation (simplified as the S-nZVI/PAA process) and the tetracycline (TC) abatement efficacy and mechanism of this process are elucidated. The optimal sulfidation ratio (S/Fe) of S-nZVI is 0.07, which exhibits superior performance in PAA activation for TC abatement with the efficiency of 80-100% in the pH range of 4.0-10.0. The radical quenching experiments and oxygen release measurements confirm that acetyl(per)oxygen radicals (CH3C(O)OO•) are the main radical contributing to TC abatement. The influence of sulfidation on the crystalline structure, hydrophobicity, corrosion potential, and electron transfer resistance of S-nZVI is evaluated. The main sulfur species on the S-nZVI surface are identified as ferrous sulfide (FeS) and ferrous disulfide (FeS2). The analysis by X-ray photoelectron spectroscopy (XPS) and Fe(II) dissolution suggest that the reductive sulfur species can accelerate the conversion from Fe(III) to Fe(II). In summary, the S-nZVI/PAA process exhibits application prospects for the abatement of antibiotics in the aquatic environments.
Collapse
Affiliation(s)
- Shujing Shao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Pengyu Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yang Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Xiaodan Zhao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China.
| |
Collapse
|
47
|
Wu S, Cai S, Qin F, He F, Liu T, Yan X, Wang Z. Reductive dechlorination of chlorinated ethenes by ball milled and mechanochemically sulfidated microscale zero valent iron: A comparative study. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130730. [PMID: 36630876 DOI: 10.1016/j.jhazmat.2023.130730] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm). We show that simple ball milling exposed the active Fe0 sites, while mechanochemical sulfidation diminished Fe0 sites and meanwhile increased S2- sites. Mechanochemical sulfidation with [S/Fe]dosed increased from 0 to 0.20 promoted the particle reactivity most for TCE dechlorination (∼14-fold), followed by PCE and 1,1-DCE while it diminished the reactivity for trans-DCE (∼0.4-fold), cis-DCE (∼0.02-fold) and VC (∼0.002-fold) compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC and trans-DCE dechlorination positively correlated with surface Fe0 content, suggesting their dechlorination was mainly mediated by Fe0 site or reactive atomic hydrogen. The kSA of TCE dechlorination positively correlated with surface S2- content and the dechlorination mainly occurred on S2- sites via direct electron transfer. Increased sulfidation favored direct electron transfer mechanism. The kSA of PCE and 1,1-DCE was not dependent on either parameter and their dechlorination was equally achieved through either mechanism.
Collapse
Affiliation(s)
- Shuyan Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; College of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Shichao Cai
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengyang Qin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, China
| | - Xiuping Yan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
48
|
Li T, Teng Y, Li X, Luo S, Xiu Z, Wang H, Sun H. Sulfidated microscale zero-valent iron/reduced graphene oxide composite (S-mZVI/rGO) for enhanced degradation of trichloroethylene: The role of hydrogen spillover. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130657. [PMID: 36580785 DOI: 10.1016/j.jhazmat.2022.130657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Atomic hydrogen (H*) has long been thought to play an important role in the dechlorination of trichloroethylene (TCE) by carbon-supported zero-valent iron (ZVI), which offers an alternative pathway for TCE dechlorination. Herein, we demonstrate that the reductive dechlorination of TCE by sulfidated microscale ZVI (S-mZVI) can be further enhanced by promoting the formation of H* through the introduction of reduced graphene oxide (rGO). The completely degradation of 10 mg/L TCE can be achieved by S-mZVI/rGO within 24 h, which was 3.3 times faster than that of S-mZVI. The change in the distribution of TCE degradation products over time suggests that the introduction of rGO leads to a change in the dechlorination pathway. The percentage of ethane in the final products of TCE degradation by S-mZVI/rGO was 34.3 %, while that of S-mZVI was only 21.9 %. The electrochemical tests confirmed the occurrence of hydrogen spillover in the S-mZVI/rGO composite, which promoted the reductive dechlorination of TCE by H*. Although the S-mZVI/rGO composite had stronger hydrogen evolution propensity than S-mZVI, the S-mZVI/rGO composite still exhibited higher electron utilization efficiency than S-mZVI thanks to the increased utilization of hydrogen.
Collapse
Affiliation(s)
- Tielong Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yaxin Teng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuangjiang Luo
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongming Xiu
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haitao Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
49
|
Shi Z, Zhang P, Li X, Zheng Y, Huang J, Wang Y, Luo X, Zhang G, Xiao T, Long J, Li H. Thallium removal from wastewater using sulfidized zero-valent manganese: Effects of sulfidation method and liquid nitrogen pretreatment. CHEMOSPHERE 2023; 318:137971. [PMID: 36708777 DOI: 10.1016/j.chemosphere.2023.137971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Zero-valent manganese (ZVMn) possesses high reducibility in theory, while sulfide exhibits strong affinity towards a variety of heavy metals owing to the low solubility of metal sulfides. Yet the performance and mechanisms on using sulfidized zero-valent manganese (SZVMn) to remove thallium (Tl) from wastewater still remain unclear. In this study, the performance of Tl(I) removal using SZVMn synthesized by borohydrides reduction followed by sulfides modification, with and without liquid nitrogen treatment, was compared and the mechanism behind was investigated. The results show that at a S/Mn molar ratio of 1.0, liquid nitrogen modified SZVMn (LSZVMn) possessed more interior channels and pores than SZVMn, with 65.3% higher specific surface area and 73.7% higher porosity, leading to 6.4-8.1% improvement in adsorption of Tl(I) at pH 4-10. LSZVMn showed effectiveness and robustness in Tl(I) removal in the presence of co-existing ions up to 0.1 M. The adsorption of Tl(I) conformed to the pseudo-1st-order kinetic model, and followed the Langmuir isothermal model, with the maximum Tl adsorption capacity of 264.9 mg·g-1 at 288 K. The mechanism of Tl(I) removal with SZVMn was found to include sulfidation-induced precipitation, manganese reduction, surface complexation, and electrostatic attraction. The liquid nitrogen pretreatment embrittled and cracked the outer shell of S/Mn compounds, resulted in a highly hierarchical structure, enhancing the manganese reduction and improving the Tl(I) removal. Based on the above results, the SZVMn and its liquid nitrogen-modified derivatives are novel and effective environmental materials for Tl(I) removal from wastewater, and the application of SZVMn to the removal of other pollutants merits investigation in future study.
Collapse
Affiliation(s)
- Zhengqin Shi
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ping Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaohan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yijie Zheng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juanxi Huang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yaxuan Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiatiao Luo
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gaosheng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianyou Long
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Huosheng Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
50
|
Cai X, Xia RZ, Ye JJ, Huang CC, Yang YF, Zhang LK, Liang B, Yang M, Lin CH, Li PH, Huang XJ. Practical Strategy for Arsenic(III) Electroanalysis without Modifier in Natural Water: Triggered by Iron Group Ions in Solution. Anal Chem 2023; 95:4104-4112. [PMID: 36688529 DOI: 10.1021/acs.analchem.2c04935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Significant progress has been made in nanomaterial-modified electrodes for highly efficient electroanalysis of arsenic(III) (As(III)). However, the modifiers prepared using some physical methods may easily fall off, and active sites are not uniform, causing the potential instability of the modified electrode. This work first reports a promising practical strategy without any modifiers via utilizing only soluble Fe3+ as a trigger to detect trace-level As(III) in natural water. This method reaches an actual detection limit of 1 ppb on bare glassy carbon electrodes and a sensitivity of 0.296 μA ppb-1 with excellent stability. Kinetic simulations and experimental evidence confirm the codeposition mechanism that Fe3+ is preferentially deposited as Fe0, which are active sites to adsorb As(III) and H+ on the electrode surface. This facilitates the formation of AsH3, which could further react with Fe2+ to produce more As0 and Fe0. Meanwhile, the produced Fe0 can also accelerate the efficient enrichment of As0. Remarkably, the proposed sensing mechanism is a general rule for the electroanalysis of As(III) that is triggered by iron group ions (Fe2+, Fe3+, Co2+, and Ni2+). The interference analysis of coexisting ions (Cu2+, Zn2+, Al3+, Hg2+, Cd2+, Pb2+, SO42-, NO3-, Cl-, and F-) indicates that only Cu2+, Pb2+, and F- showed inhibitory effects on As(III) due to the competition of active sites. Surprisingly, adding iron power effectively eliminates the interference of Cu2+ in natural water, achieving a higher sensitivity for 1-15 ppb As(III) (0.487 μA ppb-1). This study provides effective solutions to overcome the potential instability of modified electrodes and offers a practical sensing platform for analyzing other heavy-metal anions.
Collapse
Affiliation(s)
- Xin Cai
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Rui-Ze Xia
- Institutes of Physical Science and Information Technology, Anhui University, Hefei230601, China
| | - Jia-Jia Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, China
| | - Cong-Cong Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Yuan-Fan Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Long-Ke Zhang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Bo Liang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China
| | - Chu-Hong Lin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore637459, Singapore
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology, and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei230031, China.,Department of Materials Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|