1
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int J Mol Sci 2024; 25:2861. [PMID: 38474107 DOI: 10.3390/ijms25052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
2
|
León Ninin JM, Muehe EM, Kölbl A, Higa Mori A, Nicol A, Gilfedder B, Pausch J, Urbanski L, Lueders T, Planer-Friedrich B. Changes in arsenic mobility and speciation across a 2000-year-old paddy soil chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168351. [PMID: 37939938 DOI: 10.1016/j.scitotenv.2023.168351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Rice accumulates arsenic (As) when cultivated under flooded conditions in paddy soils threatening rice yield or its safety for human consumption, depending on As speciation. During long-term paddy use, repeated redox cycles systematically alter soil biogeochemistry and microbiology. In the present study, incubation experiments from a 2000-year-old paddy soil chronosequence revealed that As mobilization and speciation also change with paddy soil age. Younger paddies (≤100 years) showed the highest total As mobilization, with speciation dominated by carcinogenic inorganic oxyarsenic species and highly mobile inorganic thioarsenates. Inorganic thioarsenates formed by a high availability of reduced sulfur (S) due to low concentrations of reducible iron (Fe) and soil organic carbon (SOC). Long-term paddy use (>100 years) resulted in higher microbial activity and SOC, increasing the share of phytotoxic methylated As. Methylated oxyarsenic species are precursors for cytotoxic methylated thioarsenates. Methylated thioarsenates formed in soils of all ages being limited either by the availability of methylated As in young soils or that of reduced-S in older ones. The present study shows that via a linkage of As to the biogeochemistry of Fe, S, and C, paddy soil age can influence the kind and the extent of threat that As poses for rice cultivation.
Collapse
Affiliation(s)
- José M León Ninin
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - E Marie Muehe
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), 04318 Leipzig, Germany; Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Angelika Kölbl
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Alejandra Higa Mori
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Alan Nicol
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Ben Gilfedder
- Limnological Research Station, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Johanna Pausch
- Agroecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Livia Urbanski
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil-Ramann-Str. 2, 85354 Freising, Germany
| | - Tillmann Lueders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany.
| |
Collapse
|
3
|
Colina Blanco AE, Pischke E, Higa Mori A, Kerl CF, Clemens S, Planer-Friedrich B. In Planta Arsenic Thiolation in Rice and Arabidopsis thaliana. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21846-21854. [PMID: 38093687 DOI: 10.1021/acs.est.3c06603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Inorganic and methylated thioarsenates have recently been reported to form in paddy soil pore waters and accumulate in rice grains. Among them, dimethylmonothioarsenate (DMMTA) is particularly relevant because of its high cytotoxicity and potential misidentification as nonregulated dimethylarsenate (DMA). Studying DMMTA uptake and flag leaf, grain, and husk accumulation in rice plants during grain filling, substantial dethiolation to DMA was observed with only 8.0 ± 0.1, 9.1 ± 0.6, and 1.4 ± 0.2% DMMTA remaining, respectively. More surprisingly, similar shares of DMMTA were observed in control experiments with DMA, indicating in planta DMA thiolation. Exposure of different rice seedling varieties to not only DMA but also to arsenite and monomethylarsenate (MMA) revealed in planta thiolation as a common process in rice. Up to 35 ± 7% DMA thiolation was further observed in the shoots and roots of the model plant Arabidopsis thaliana. Parameters determining the ratio and kinetics of thiolation versus dethiolation are unknown, yet, but less DMA thiolation in glutathione-deficient mutants compared to wild-type plants suggested glutathione concentration as one potential parameter. Our results demonstrate that pore water is not the only source for thioarsenates in rice grains and that especially the currently nonregulated DMA needs to be monitored as a potential precursor of DMMTA formation inside rice plants.
Collapse
Affiliation(s)
- Andrea E Colina Blanco
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Erik Pischke
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Alejandra Higa Mori
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
4
|
Monroy-Licht A. Effect of phosphate on arsenic species uptake in plants under hydroponic conditions. JOURNAL OF PLANT RESEARCH 2023; 136:729-742. [PMID: 35179661 DOI: 10.1007/s10265-022-01381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Monothioarsenate (MTA) is a newly discovered arsenic (As) compound that can be formed under reduced sulfur conditions, mainly in paddy soil pore waters. It is structurally similar to arsenate As(V) and inorganic phosphate (Pi), which is taken up through phosphate transporters. Due to the similarity between As(V) and Pi, As(V) enters into plants instead of Pi. The important role played by phytochelatin (PC), glutathione (GSH), and the PC-vacuolar transporters ABCC1 and ABCC2 under As stress in plants is well known. However, the plant uptake and mechanisms surrounding MTA still have not been completely addressed. This investigation was divided in two stages: first, several hydroponic assays were set up to establish the sensibility-tolerance of wild-type Arabidopsis thaliana (accession Columbia-0, Col-0). Then Col-0 was used as a control plant to evaluate the effects of As(V) or MTA in (PC)-deficient mutant (cad1-3), glutathione biosynthesis mutant (cad2), and PC transport (abcc1-2). The inhibitory concentration (IC50) root length was calculated for both As species. According to the results, both arsenic species (As(V) and MTA) exhibited high toxicity for the genotypes evaluated. This could mean that these mechanisms play a constitutive role in MTA detoxification. Second, for the Pi-MTA and As(V)-Pi competition assays, a series of experiments on hydroponic seedlings of A. thaliana were carried out using Col-0 and a pht1;1. The plants were grown under increasing Pi concentrations (10 μM, 0.1 mM, or 1 mM) at 10 μM As(V) or 50 μM MTA. The total As concentration in the roots was significantly lower in plants exposed to MTA, there being less As content in the pht1;1 mutant at the lowest Pi concentrations tested compared with the As(V)/Pi treatments. In addition, a higher rate of As translocation from the roots to the shoots under MTA was observed in comparison to the As(V)-treatments.
Collapse
Affiliation(s)
- Andrea Monroy-Licht
- School of Pharmaceutical Sciences, University of Cartagena, Cartagena de Indias, 130015, Colombia.
- Department of Chemistry and Biology, Universidad del Norte, Barranquilla, 081007, Colombia.
| |
Collapse
|
5
|
Hu R, Cooper JA, Daroub SH, Kerl CF, Planer-Friedrich B, Seyfferth AL. Low levels of arsenic and cadmium in rice grown in southern Florida Histosols - Impacts of water management and soil thickness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161712. [PMID: 36682547 DOI: 10.1016/j.scitotenv.2023.161712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Rice is planted as a rotation crop in the sugarcane-dominant Everglades Agricultural Area (EAA) in southern Florida. The Histosols in this area are unlike other mineral soils used to grow rice due to the high organic content and land subsidence caused by rapid oxidation of organic matter upon drainage. It remains unknown if such soils pose a risk of arsenic (As) or cadmium (Cd) mobilization and uptake into rice grain. Both As and Cd are carcinogenic trace elements of concern in rice, and it is important to understand their soil-plant transfer into rice, a staple food of global importance. Here, a mesocosm pot study was conducted using two thicknesses of local soil, deep (D, 50 cm) and shallow (S, 25 cm), under three water managements, conventional flooding (FL), low water table (LWT), and alternating wetting and drying (AWD). Rice was grown to maturity and plant levels of As and Cd were determined. Regardless of treatments, rice grown in these Florida Histolsols has very low Cd concentrations in polished grain (1.5-5.6 μg kg-1) and relatively low total As (35-150 μg kg-1) and inorganic As (35-87 μg kg-1) concentrations in polished grain, which are below regulatory limits. This may be due to the low soil As and Cd levels, high soil cation exchange capacity due to high soil organic matter content, and slightly alkaline soil pH. Grain As was significantly affected by water management (AWD < FL = LWT) and its interaction effect with soil thickness (AWD-D ≤ AWD-S ≤ FL-D = LWT-S = LWT-D ≤ FL-S), resulting in as much as 62 % difference among treatments. Grain Cd was significantly affected by water management (AWD > FL > LWT) without any soil thickness impact. In conclusion, even though water management has more of an impact on rice As and Cd than soil thickness, the low concentrations of As and Cd in rice pose little health risk for consumers.
Collapse
Affiliation(s)
- Ruifang Hu
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
| | - Jennifer A Cooper
- Soil and Water Sciences, Everglades Research and Education Center, IFAS, University of Florida, Belle Glade, FL, United States
| | - Samira H Daroub
- Soil and Water Sciences, Everglades Research and Education Center, IFAS, University of Florida, Belle Glade, FL, United States
| | - Carolin F Kerl
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry Group, Bayreuth Center for Ecology and Environmental Research (BAYCEER), Bayreuth University, 95440 Bayreuth, Germany
| | - Angelia L Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
6
|
Fang X, Christl I, Colina Blanco AE, Planer-Friedrich B, Zhao FJ, Kretzschmar R. Decreasing arsenic in rice: Interactions of soil sulfate amendment and water management. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121152. [PMID: 36731739 DOI: 10.1016/j.envpol.2023.121152] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Accumulation of inorganic arsenic (iAs) and dimethylarsenate (DMA) in rice threatens human health and rice yield, respectively. We studied the yet unclear interactions of soil sulfate amendment and water management for decreasing As accumulation in rice grain in a pot experiment. We show that soil sulfate amendment (+200 mg S/kg soil) decreased grain iAs by 44% without clearly increasing grain DMA under intermittent flooding from booting stage to maturation. Under continuous flooding during this period, sulfate amendment decreased grain iAs only by 25% but increased grain DMA by 68%. The mechanisms of sulfate amendment effects on grain iAs were not explained by porewater composition or in-planta As sequestration but were allocated to the rhizosphere. Grain iAs closely correlated with As in the root iron-plaque (r = 0.92) which was effectively decreased by sulfate amendment and may have acted as an iAs source for rice uptake. Although both sulfate amendment and intermittent flooding substantially increased porewater DMA concentrations, it was the continuous flooding, irrespective of sulfate amendment, that resulted in rice straighthead disease with 47-55% less yield and 258-320% more DMA in grains than intermittent flooding. This study suggests that combining soil sulfate amendment and intermittent flooding can help to secure the quantity and quality of rice produced in As-affected areas. Our results also imply the key role of rhizosphere processes in controlling both iAs and DMA accumulation in rice which should be elucidated in the future.
Collapse
Affiliation(s)
- Xu Fang
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, CH-8092, Switzerland.
| | - Iso Christl
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, 95440, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, 95440, Germany
| | - Fang-Jie Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruben Kretzschmar
- Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Zurich, CH-8092, Switzerland
| |
Collapse
|
7
|
Müller V, Chavez-Capilla T, Feldmann J, Mestrot A. Increasing temperature and flooding enhance arsenic release and biotransformations in Swiss soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156049. [PMID: 35598661 DOI: 10.1016/j.scitotenv.2022.156049] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/25/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Reductive dissolution is one of the main causes for arsenic (As) mobilisation in flooded soils while biomethylation and biovolatilisation are two microbial mechanisms that greatly influence the mobility and toxicity of As. Climate change results in more extreme weather events such as flooding and higher temperatures, potentially leading to an increase in As release and biotransformations. Here, we investigated the effects of flooding and temperature on As release, biomethylation and biovolatilisation from As-rich soils with different pH and source of As (one acidic and anthropogenic (Salanfe) and one neutral and geogenic (Liesberg)). Flooded soils incubated at 23 °C for two weeks showed a ~ 3-fold (Liesberg site) and ~ 7-fold (Salanfe site) increase in the total As concentration of soil solution compared to those incubated at 18 °C. Methyl- and thio-As species were found in the acidic soil and soil solution. High temperatures enhanced thiolation and methylation although inorganic As was predominant. We also show that volatile As fluxes increased more than 4-fold between treatments, from 18 ± 5 ng/kg/d at 18 °C to 75 ± 6 ng/kg/d at 23 °C from Salanfe soil. Our results suggest that high As soils with acidic pH can become an important source of As to the surrounding environment according to realistic climatic scenarios, and that biovolatilisation is very sensitive to increases in temperature. This study provides new data and further justifies further investigations into climate-induced changes on As release and speciation and its links to important factors such as microbial ecology and sulfate or iron biogeochemistry. SYNOPSIS: In the studied Swiss soils, elevated temperature increases arsenic mobility through volatilisation and methylation.
Collapse
Affiliation(s)
- Viktoria Müller
- TESLA - Environmental Analytical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Teresa Chavez-Capilla
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland
| | - Jörg Feldmann
- TESLA - Environmental Analytical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Adrien Mestrot
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012 Bern, Switzerland.
| |
Collapse
|
8
|
Planer-Friedrich B, Kerl CF, Colina Blanco AE, Clemens S. Dimethylated Thioarsenates: A Potentially Dangerous Blind Spot in Current Worldwide Regulatory Limits for Arsenic in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9610-9618. [PMID: 35901520 DOI: 10.1021/acs.jafc.2c02425] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic (As) occurrence in rice is a serious human health threat. Worldwide, regulations typically limit only carcinogenic inorganic As, but not possibly carcinogenic dimethylated oxyarsenate (DMA). However, there is emerging evidence that "DMA", determined by routine acid-based extraction and analysis, hides a substantial share of dimethylated thioarsenates that have similar or higher cytotoxicities than arsenite. Risk assessments characterizing the in vivo toxicity of rice-derived dimethylated thioarsenates are urgently needed. In the meantime, either more sophisticated methods based on enzymatic extraction and separation of dimethylated oxy- and thioarsenates have to become mandatory or total As should be regulated.
Collapse
Affiliation(s)
- Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
9
|
Pischke E, Barozzi F, Colina Blanco AE, Kerl CF, Planer-Friedrich B, Clemens S. Dimethylmonothioarsenate Is Highly Toxic for Plants and Readily Translocated to Shoots. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10072-10083. [PMID: 35759640 DOI: 10.1021/acs.est.2c01206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic is one of the most relevant environmental pollutants and human health threats. Several arsenic species occur in soil pore waters. Recently, it was discovered that these include inorganic and organic thioarsenates. Among the latter, dimethylmonothioarsenate (DMMTA) is of particular concern because in mammalian cells, its toxicity was found to exceed even that of arsenite. We investigated DMMTA toxicity for plants in experiments with Arabidopsis thaliana and indeed observed stronger growth inhibition than with arsenite. DMMTA caused a specific, localized deformation of root epidermal cells. Toxicity mechanisms apparently differ from those of arsenite since no accumulation of reactive oxygen species was observed in DMMTA-exposed root tips. Also, there was no contribution of the phytochelatin pathway to the DMMTA detoxification as indicated by exposure experiments with respective mutants and thiol profiling. RNA-seq analysis found strong transcriptome changes dominated by stress-responsive genes. DMMTA was taken up more efficiently than the methylated oxyarsenate dimethylarsenate and highly mobile within plants as revealed by speciation analysis. Shoots showed clear indications of DMMTA toxicity such as anthocyanin accumulation and a decrease in chlorophyll and carotenoid levels. The toxicity and efficient translocation of DMMTA within plants raise important food safety issues.
Collapse
Affiliation(s)
- Erik Pischke
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Fabrizio Barozzi
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
10
|
Bali AS, Sidhu GPS. Arsenic acquisition, toxicity and tolerance in plants - From physiology to remediation: A review. CHEMOSPHERE 2021; 283:131050. [PMID: 34147983 DOI: 10.1016/j.chemosphere.2021.131050] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 05/25/2023]
Abstract
Globally, environmental contamination by potentially noxious metalloids like arsenic is becoming a critical concern to the living organisms. Arsenic is a non-essential metalloid for plants and can be acclimatised in plants to toxic levels. Arsenic acquisition by plants poses serious health risks in human due to its entry in the food chain. High arsenic regimes disturb plant water relations, promote the generation of reactive oxygen species (ROS) and induce oxidative outburst in plants. This review evidences a conceivable tie-up among arsenic levels, speciation, its availability, uptake, acquisition, transport, phytotoxicity and arsenic detoxification in plants. The role of different antioxidant enzymes to confer plant tolerance towards the enhanced arsenic distress has also been summed up. Additionally, the mechanisms involved in the modulation of different genes coupled with arsenic tolerance have been thoroughly discussed. This review is intended to present an overview to rationalise the contemporary progressions on the recent advances in phytoremediation approaches to overcome ecosystem contamination by arsenic.
Collapse
Affiliation(s)
| | - Gagan Preet Singh Sidhu
- Centre for Applied Biology in Environment Sciences, Kurukshetra University, Kurukshetra, 136119, India.
| |
Collapse
|
11
|
Colina Blanco AE, Kerl CF, Planer-Friedrich B. Detection of Thioarsenates in Rice Grains and Rice Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2287-2294. [PMID: 33566616 DOI: 10.1021/acs.jafc.0c06853] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inorganic and methylated thioarsenates have recently been reported to contribute substantially to arsenic (As) speciation in paddy-soil pore waters. Here, we show that thioarsenates can also accumulate in rice grains and rice products. For their detection, a method was developed using a pepsin-pancreatin enzymatic extraction followed by chromatographic separation at pH 13. From 54 analyzed commercial samples, including white, parboiled and husked rice, puffed rice cakes, and rice flakes, 50 contained dimethylmonothioarsenate (DMMTA) (maximum 25.6 μg kg-1), 18 monothioarsenate (MTA) (maximum 5.6 μg kg-1), 14 dimethyldithioarsenate (DMDTA) (maximum 2.8 μg kg-1), and 5 dithioarsenate (DTA) (maximum 2.3 μg kg-1). Additionally, we show that the commonly used nitric acid extraction transforms MTA to arsenite and DMMTA and DMDTA to dimethylarsenate (DMA). Current food guidelines do not require an analysis of thioarsenates in rice and only limit the contents of inorganic oxyarsenic species (including acid-extraction-transformed MTA), but not DMA (including acid-extraction-transformed DMMTA and DMDTA).
Collapse
Affiliation(s)
- Andrea E Colina Blanco
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Carolin F Kerl
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
12
|
Dykes GE, Chari NR, Seyfferth AL. Si-induced DMA desorption is not the driver for enhanced DMA availability after Si addition to flooded soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139906. [PMID: 32758940 DOI: 10.1016/j.scitotenv.2020.139906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/26/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Silicon (Si) addition to flooded rice paddy soil tends to decrease grain inorganic arsenic (iAs) and increase grain dimethylarsinic acid (DMA) concentrations, but the mechanism for the increase in plant-available DMA is unresolved. It has been suggested that Si displaces DMA from soil solids, rendering it plant-available; however, we hypothesize that Si desorbs primarily iAs from soil solids, which stimulates methylation to DMA. We added silicic acid to a contaminated paddy soil and a flooded upland soil that had been historically contaminated with lead arsenate in a batch incubation experiment, and measured changes in solid-phase As speciation, porewater As speciation, and As-methylating microbial (AsMM) abundance over time. We found that DMA was not detectable in soils prior to the start of the experiment nor throughout the experiment, so it comprised a trace amount of total soil As. Upon Si addition to paddy soil, total As increased in porewater following Si spike and this increase was mainly due to iAs desorption, and an order of magnitude less MMA and DMA was desorbed. The upland soil transitioned to reducing conditions throughout the experiment, but when they were achieved, iAs was desorbed first and this was followed by an increase of MMA and then DMA compared to control soils. Total microbial community abundance increased over the course of the experiments and arsM gene abundance increased from initial conditions, but did not differ between treatments. In the paddy soil, the ratio of arsM:16S gene abundance decreased from the initial conditions, but it increased in the upland soil with historic As contamination. These results suggest that Si-induced desorption of DMA is small and likely does not explain the increases of plant-available DMA upon Si fertilization in prior work. Likely, Si-induced iAs desorption drives microorganisms to methylate iAs, but degree of methylation will differ between soils.
Collapse
Affiliation(s)
- Gretchen E Dykes
- Department of Plant and Soil Sciences, University of Delaware, 531 South College Avenue, Newark, DE 19716, United States
| | - Nikhil R Chari
- Department of Chemistry, University of California, Berkeley, 419 Latimer Hall, Berkeley, CA 94720, United States
| | - Angelia L Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, 531 South College Avenue, Newark, DE 19716, United States.
| |
Collapse
|
13
|
Upadhyay MK, Majumdar A, Suresh Kumar J, Srivastava S. Arsenic in Rice Agro-Ecosystem: Solutions for Safe and Sustainable Rice Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Wang J, Halder D, Wegner L, Brüggenwirth L, Schaller J, Martin M, Said-Pullicino D, Romani M, Planer-Friedrich B. Redox Dependence of Thioarsenate Occurrence in Paddy Soils and the Rice Rhizosphere. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3940-3950. [PMID: 32182045 DOI: 10.1021/acs.est.9b05639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In flooded paddy soils, inorganic and methylated thioarsenates contribute substantially to arsenic speciation besides the much-better-investigated oxyarsenic species, and thioarsenate uptake into rice plants has recently been shown. To better understand their fate when soil redox conditions change, that is, from flooding to drainage to reflooding, batch incubations and unplanted microcosm experiments were conducted with two paddy soils covering redox potentials from EH -260 to +200 mV. Further, occurrence of thioarsenates in the oxygenated rice rhizosphere was investigated using planted rhizobox experiments. Soil flooding resulted in rapid formation of inorganic thioarsenates with a dominance of trithioarsenate. Maximum thiolation of inorganic oxyarsenic species was 57% at EH -130 mV and oxidation caused nearly complete dethiolation. Only monothioarsenate formed again upon reflooding and was the major inorganic thioarsenate detected in the rhizosphere. Maximum thiolation of mono- and dimethylated oxyarsenates was about 70% and 100%, respectively, below EH 0 mV. Dithiolated species dominated over monothiolated species below EH -100 mV. Among all thioarsenates, dimethylated monothioarsenate showed the least transformation upon prolonged oxidation. It also was the major thiolated arsenic species in the rhizosphere with concentrations comparable to its precursor dimethylated oxyarsenate, which is especially critical since dimethylated monothioarsenate is highly carcinogenic.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Dipti Halder
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Laura Wegner
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Lena Brüggenwirth
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| | - Jörg Schaller
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
- Leibniz Center for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Maria Martin
- Department of Agriculture, Forest and Food Sciences, University of Turin, 10124 Turin, Italy
| | - Daniel Said-Pullicino
- Department of Agriculture, Forest and Food Sciences, University of Turin, 10124 Turin, Italy
| | - Marco Romani
- Rice Research Centre, Ente Nazionale Risi, 27030 Castello d'Agogna, Pavia Italy
| | - Britta Planer-Friedrich
- Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BAYCEER), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
15
|
Kerl CF, Ballaran TB, Planer-Friedrich B. Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13666-13674. [PMID: 31675232 DOI: 10.1021/acs.est.9b04158] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Iron (hydr)oxide coating at rice roots, so-called iron plaque (IP), is often an important barrier for uptake of inorganic oxyarsenic species and their accumulation in rice grains. Sorption of methylated thioarsenates, which can co-exist with inorganic and methylated oxyarsenates in paddy soils, was not studied yet, even though these toxic species were detected in xylem and grains of rice plants before. Hydroponic experiments at pH 6.5 with 20 day-old rice plants showed lower net arsenic enrichment in IP for plants exposed to monomethylthioarsenate (MMMTA) compared to monomethylarsenate (MMA) and no enrichment for dimethylmonothioarsenate (DMMTA). Goethite was the dominant mineral phase in our IP. Sorption experiments with synthesized goethite and ferrihydrite revealed a 30-times-higher sorption capacity for MMMTA to amorphous ferrihydrite than to crystalline goethite, comparable to methylated oxyarsenates. No evidence for direct MMMTA binding was found. Instead, we postulate that MMMTA transformation to MMA is a prerequisite for removal. DMMTA showed very little sorption, even to amorphous ferrihydrite, which is in line with a lack of direct binding and reported slow transformation to dimethylarsenate. Our study implies that IP is no effective barrier for methylated thioarsenates and that especially DMMTA is very mobile with a high risk of uptake in rice plants.
Collapse
|
16
|
Clemens S. Safer food through plant science: reducing toxic element accumulation in crops. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5537-5557. [PMID: 31408148 DOI: 10.1093/jxb/erz366] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/31/2019] [Indexed: 05/24/2023]
Abstract
Natural processes and human activities have caused widespread background contamination with non-essential toxic elements. The uptake and accumulation of cadmium (Cd), arsenic (As), and lead (Pb) by crop plants results in chronic dietary exposure and is associated with various health risks. Current human intake levels are close to what is provisionally regarded as safe. This has recently triggered legislative actions to introduce or lower limits for toxic elements in food. Arguably, the most effective way to reduce the risk of slow poisoning is the breeding of crops with much lower accumulation of contaminants. The past years have seen tremendous progress in elucidating molecular mechanisms of toxic element transport. This was achieved in the model systems Arabidopsis thaliana and, most importantly, rice, the major source of exposure to As and Cd for a large fraction of the global population. Many components of entry and sequestration pathways have been identified. This knowledge can now be applied to engineer crops with reduced toxic element accumulation especially in edible organs. Most obvious in the case of Cd, it appears likely that subtle genetic intervention has the potential to reduce human exposure to non-essential toxic elements almost immediately. This review outlines the risks and discusses our current state of knowledge with emphasis on transgenic and gene editing approaches.
Collapse
Affiliation(s)
- Stephan Clemens
- Department of Plant Physiology, and Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
17
|
Kerl CF, Schindele RA, Brüggenwirth L, Colina Blanco AE, Rafferty C, Clemens S, Planer-Friedrich B. Methylated Thioarsenates and Monothioarsenate Differ in Uptake, Transformation, and Contribution to Total Arsenic Translocation in Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5787-5796. [PMID: 31033272 DOI: 10.1021/acs.est.9b00592] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methylated and inorganic thioarsenates have recently been reported from paddy fields besides the better-known oxyarsenates. Methylated thioarsenates are highly toxic for humans, yet their uptake, transformation, and translocation in rice plants is unknown. Here, hydroponic experiments with 20 day old rice plants showed that monomethylmonothioarsenate (MMMTA), dimethylmonothioarsenate (DMMTA), and monothioarsenate (MTA) were taken up by rice roots and could be detected in the xylem. Total arsenic (As) translocation from roots to shoots was higher for plants exposed to DMMTA, MTA, and dimethylarsenate (DMAV) compared to MMMTA and monomethylarsenate (MMAV). All thioarsenates were partially transformed in the presence of rice roots, but processes and extents differed. MMMTA was subject to abiotic oxidation and largely dethiolated to MMAV already outside the plant, probably due to root oxygen loss. DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either as DMAV or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid extraction, DMMTA is determined as DMAV and thus escapes regulation despite its toxicity.
Collapse
Affiliation(s)
- Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Ruth Alina Schindele
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Lena Brüggenwirth
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Colleen Rafferty
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER) , University of Bayreuth , D-95440 Bayreuth , Germany
| |
Collapse
|