1
|
Etzel L, Ye Q, Apsley AT, Chiaro C, Petri LE, Kozlosky J, Propper C, Mills-Koonce R, Short SJ, Garrett-Peters P, Shalev I. Maternal telomere length and oxidative stress in pregnancy: cross-sectional analysis with an exploratory examination of systemic inflammation. BMC Pregnancy Childbirth 2025; 25:395. [PMID: 40186152 PMCID: PMC11971816 DOI: 10.1186/s12884-025-07542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Telomere length (TL) is a marker of cellular aging associated with risk for age-related diseases and is known to be influenced by various factors, including oxidative stress and inflammation, in the contexts of stress and aging. The physiological demands of pregnancy may impact maternal TL, though research in this area is sparse. We tested oxidative stress and explored inflammation as predictors of maternal TL in a sample of women with normative pregnancies. METHODS Participants (N = 88, aged 18 to 46 years, 25% non-Hispanic Black, 65% non-Hispanic White) were recruited during their 2nd or 3rd trimester. TL was measured using saliva via qPCR as absolute TL. Oxidative stress was derived from principal component analysis of selected metabolites measured via urinary metabolomics. Inflammation was quantified as total IL-6 in serum. Hypotheses were tested with stepwise generalized linear models. RESULTS Longer TL was predicted by higher oxidative stress (b = 0.20 ± 0.08; P =.019), controlling for maternal age, gestational age, race/ethnicity, maternal BMI, and income-to-needs ratio. In our exploratory analysis, longer TL was also predicted by higher IL-6 (b = 0.76 ± 0.20; P =.0003) controlling for covariates. There was no significant interaction between oxidative stress and inflammation predicting TL. CONCLUSION Our findings suggest that in normative pregnancies, both oxidative stress and inflammation are independently associated with longer telomere length. Given that these associations are inconsistent with the role of oxidative stress and inflammation on telomere biology in non-pregnant samples, future work should aim to replicate these findings in both normal and high-risk pregnancies, explore mechanisms underlying these associations using longitudinal designs, and examine how these relationships influence maternal and fetal health.
Collapse
Affiliation(s)
- Laura Etzel
- Social Science Research Institute, Duke University, Durham, NC, USA
| | - Qiaofeng Ye
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Abner T Apsley
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Chris Chiaro
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Lauren E Petri
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - John Kozlosky
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA
| | - Cathi Propper
- School of Nursing, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Roger Mills-Koonce
- School of Education, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Idan Shalev
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Shukla AK, Ahamad S, Kukshal P. Computational insights into maternal environmental pollutants and folate pathway regulation. Reprod Toxicol 2025; 132:108825. [PMID: 39732410 DOI: 10.1016/j.reprotox.2024.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Exposure to environmental pollutants during pregnancy can adversely affect fetal growth and postnatal development. While numerous studies have explored the interaction between environmental toxic chemicals and the folate pathway, few have examined their inhibitory effects on key targets. This computational study identified 27 maternal environmental toxicants using the Comparative Toxicogenomics Database (CTD) and analyzed them to identify their targets. Molecular modeling, docking, and dynamics simulations revealed that folate receptors (FOLR1, FOLR2, and FOLR3) and transporters (SLC19A1 and SLC46) are major targets. Among these, FOLR3 exhibited the strongest interactions with toxicants such as Dichlorodiphenyltrichloroethane (DDT), Bisphenols, Dioxin, and other investigated toxicants. Toxicity profiling showed that even minimal exposure to these pollutants significantly impacts maternal health and disrupts folate metabolism, leading to fetal malformations. This study highlights the critical role of maternal toxicants in hindering the folate pathway, with severe implications for fetal development.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana 121102, India..
| | - Shadab Ahamad
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana 121102, India
| | - Prachi Kukshal
- Department of Genomic Research, Sri Sathya Sai Sanjeevani Research Foundation, Palwal, Haryana 121102, India..
| |
Collapse
|
3
|
Siwakoti RC, Iyer G, Banker M, Rosario Z, Vélez-Vega CM, Alshawabkeh A, Cordero JF, Karnovsky A, Meeker JD, Watkins DJ. Metabolomic Alterations Associated with Phthalate Exposures among Pregnant Women in Puerto Rico. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18076-18087. [PMID: 39353139 PMCID: PMC11736900 DOI: 10.1021/acs.est.4c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Although phthalate exposure has been linked with multiple adverse pregnancy outcomes, their underlying biological mechanisms are not fully understood. We examined associations between biomarkers of phthalate exposures and metabolic alterations using untargeted metabolomics in 99 pregnant women and 86 newborns [mean (SD) gestational age = 39.5 (1.5) weeks] in the PROTECT cohort. Maternal urinary phthalate metabolites were quantified using isotope dilution high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), while metabolic profiles in maternal and cord blood plasma were characterized via reversed-phase LC-MS. Multivariable linear regression was used in metabolome-wide association studies (MWAS) to identify individual metabolic features associated with elevated phthalate levels, while clustering and correlation network analyses were used to discern the interconnectedness of biologically relevant features. In the MWAS adjusted for maternal age and prepregnancy BMI, we observed significant associations between specific phthalates, namely, di(2-ethylhexyl) phthalate (DEHP) and mono(3-carboxypropyl) phthalate (MCPP), and 34 maternal plasma metabolic features. These associations predominantly included upregulation of fatty acids, amino acids, purines, or their derivatives and downregulation of ceramides and sphingomyelins. In contrast, fewer significant associations were observed with metabolic features in cord blood. Correlation network analysis highlighted the overlap of features associated with phthalates and those identified as differentiating markers for preterm birth in a previous study. Overall, our findings underscore the complex impact of phthalate exposures on maternal and fetal metabolism, highlighting metabolomics as a tool for understanding associated biological processes. Future research should focus on expanding the sample size, exploring the effects of phthalate mixtures, and validating identified metabolic features in larger, more diverse populations.
Collapse
Affiliation(s)
- Ram C Siwakoti
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Gayatri Iyer
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Margaret Banker
- Northwestern University, Chicago, Illinois 60611, United States
| | - Zaira Rosario
- University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | - Carmen M Vélez-Vega
- University of Puerto Rico Medical Sciences Campus, San Juan 00921, Puerto Rico
| | | | - José F Cordero
- University of Georgia, Athens, Georgia 30602, United States
| | - Alla Karnovsky
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | - John D Meeker
- University of Michigan, Ann Arbor, Michigan 48105, United States
| | | |
Collapse
|
4
|
Zeng B, Wu Y, Huang Y, Colucci M, Bancaro N, Maddalena M, Valdata A, Xiong X, Su X, Zhou X, Zhang Z, Jin Y, Huang W, Bai J, Zeng Y, Zou X, Zhan Y, Deng L, Wei Q, Yang L, Alimonti A, Qi F, Qiu S. Carcinogenic health outcomes associated with endocrine disrupting chemicals exposure in humans: A wide-scope analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135067. [PMID: 38964039 DOI: 10.1016/j.jhazmat.2024.135067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are persistent and pervasive compounds that pose serious risks. Numerous studies have explored the effects of EDCs on human health, among which tumors have been the primary focus. However, because of study design flaws, lack of effective exposure levels of EDCs, and inconsistent population data and findings, it is challenging to draw clear conclusions on the effect of these compounds on tumor-related outcomes. Our study is the first to systematically integrate observational studies and randomized controlled trials from over 20 years and summarize over 300 subgroup associations. We found that most EDCs promote tumor development, and that exposure to residential environmental pollutants may be a major source of pesticide exposure. Furthermore, we found that phytoestrogens exhibit antitumor effects. The findings of this study can aid in the development of global EDCs regulatory health policies and alleviate the severe risks associated with EDCs exposure.
Collapse
Affiliation(s)
- Bin Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwei Wu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yin Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Manuel Colucci
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Aurora Valdata
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland
| | - Xingyu Xiong
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xingyang Su
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Weichao Huang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Jincheng Bai
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yuxiao Zeng
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Zou
- Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center of Geriatrics, The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China; Neurodegenerative Disorders Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Qiang Wei
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Yang
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), CH6500 Bellinzona, Switzerland; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Fang Qi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Shi Qiu
- Department of Urology, Institute of Urology and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Università della Svizzera Italiana, CH6900 Lugano, Switzerland; Department of Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Chang Y, Chiang CK. The Impact of Thallium Exposure in Public Health and Molecular Toxicology: A Comprehensive Review. Int J Mol Sci 2024; 25:4750. [PMID: 38731969 PMCID: PMC11084277 DOI: 10.3390/ijms25094750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a synthesis of the current understanding of the impact of low-dose thallium (Tl) on public health, specifically emphasizing its diverse effects on various populations and organs. The article integrates insights into the cytotoxic effects, genotoxic potential, and molecular mechanisms of thallium in mammalian cells. Thallium, a non-essential heavy metal present in up to 89 different minerals, has garnered attention due to its adverse effects on human health. As technology and metallurgical industries advance, various forms of thallium, including dust, vapor, and wastewater, can contaminate the environment, extending to the surrounding air, water sources, and soil. Moreover, the metal has been identified in beverages, tobacco, and vegetables, highlighting its pervasive presence in a wide array of food sources. Epidemiological findings underscore associations between thallium exposure and critical health aspects such as kidney function, pregnancy outcomes, smoking-related implications, and potential links to autism spectrum disorder. Thallium primarily exerts cellular toxicity on various tissues through mitochondria-mediated oxidative stress and endoplasmic reticulum stress. This synthesis aims to shed light on the intricate web of thallium exposure and its potential implications for public health, emphasizing the need for vigilant consideration of its risks.
Collapse
Affiliation(s)
- Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan;
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
6
|
Park S, Shim M, Lee G, You YA, Kim SM, Hur YM, Ko H, Park MH, Na SH, Kim YH, Cho GJ, Bae JG, Lee SJ, Lee SH, Lee DK, Kim YJ. Urinary metabolite biomarkers of pregnancy complications associated with maternal exposure to particulate matter. Reprod Toxicol 2024; 124:108550. [PMID: 38280687 DOI: 10.1016/j.reprotox.2024.108550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Particulate matter 2.5 (PM2.5) is associated with reproductive health and adverse pregnancy outcomes. However, studies evaluating biological markers of PM2.5 are lacking, and identifying biomarkers for estimating prenatal exposure to prevent pregnancy complications is essential. Therefore, we aimed to explore urine metabolites that are easy to measure as biomarkers of exposure. In this matched case-control study based on the PM2.5 exposure, 30 high PM2.5 group (>15 μg/m3) and 30 low PM2.5 group (<15 μg/m3) were selected from air pollution on pregnancy outcome (APPO) cohort study. We used a time-weighted average model to estimate individual PM exposure, which used indoor PM2.5 and outdoor PM2.5 concentrations by atmospheric measurement network based on residential addresses. Clinical characteristics and urine samples were collected from participants during the second trimester of pregnancy. Urine metabolites were quantitatively measured using gas chromatography-mass spectrometry following multistep chemical derivatization. Statistical analyses were conducted using SPSS version 21 and MetaboAnalyst 5.0. Small for gestational age and gestational diabetes (GDM) were significantly increased in the high PM2.5 group, respectively (P = 0.042, and 0.022). Fifteen metabolites showed significant differences between the two groups (P < 0.05). Subsequent pathway enrichment revealed that four pathways, including pentose and glucuronate interconversion with three pentose sugars (ribose, arabinose, and xylose; P < 0.05). The concentration of ribose increased preterm births (PTB) and GDM (P = 0.044 and 0.049, respectively), and the arabinose concentration showed a tendency to increase in PTB (P = 0.044). Therefore, we identified urinary pentose metabolites as biomarkers of PM2.5 and confirmed the possibility of their relationship with pregnancy complications.
Collapse
Affiliation(s)
- Sunwha Park
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Minki Shim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Gain Lee
- Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea
| | - Young-Ah You
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Soo Min Kim
- Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea
| | - Young Min Hur
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Hyejin Ko
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea
| | - Mi Hye Park
- Department of Obstetrics and Gynecology, Ewha Womans University Seoul Hospital, Korea
| | - Sung Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University, School of Medicine, Korea
| | - Young-Han Kim
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine, Korea
| | - Jin-Gon Bae
- Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Dongsan Medical Center, Korea
| | - Soo-Jeong Lee
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Korea
| | | | - Dong-Kyu Lee
- College of Pharmacy, Chung-Ang University, Seoul, Korea.
| | - Young Ju Kim
- Department of Obstetrics and Gynecology, College of Medicine, Ewha Medical Research Institute, Ewha Womans University, Seoul, Korea; Graduate program in system health science and engineering, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
7
|
Hall AM, Fleury E, Papandonatos GD, Buckley JP, Cecil KM, Chen A, Lanphear BP, Yolton K, Walker DI, Pennell KD, Braun JM, Manz KE. Associations of a Prenatal Serum Per- and Polyfluoroalkyl Substance Mixture with the Cord Serum Metabolome in the HOME Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21627-21636. [PMID: 38091497 PMCID: PMC11185318 DOI: 10.1021/acs.est.3c07515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous and persistent chemicals associated with multiple adverse health outcomes; however, the biological pathways affected by these chemicals are unknown. To address this knowledge gap, we used data from 264 mother-infant dyads in the Health Outcomes and Measures of the Environment (HOME) Study and employed quantile-based g-computation to estimate covariate-adjusted associations between a prenatal (∼16 weeks' gestation) serum PFAS mixture [perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)] and 14,402 features measured in cord serum. The PFAS mixture was associated with four features: PFOS, PFHxS, a putatively identified metabolite (3-monoiodo-l-thyronine 4-O-sulfate), and an unidentified feature (590.0020 m/z and 441.4 s retention time; false discovery rate <0.20). Using pathway enrichment analysis coupled with quantile-based g-computation, the PFAS mixture was associated with 49 metabolic pathways, most notably amino acid, carbohydrate, lipid and cofactor and vitamin metabolism, as well as glycan biosynthesis and metabolism (P(Gamma) <0.05). Future studies should assess if these pathways mediate associations of prenatal PFAS exposure with infant or child health outcomes, such as birthweight or vaccine response.
Collapse
Affiliation(s)
- Amber M Hall
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, United States
| | - Elvira Fleury
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, United States
| | - George D Papandonatos
- Department of Biostatistics, Brown University, Providence, Rhode Island 02912, United States
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island 02912, United States
| | - Katherine E Manz
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Palaniswamy S, Abass K, Rysä J, Grimalt JO, Odland JØ, Rautio A, Järvelin MR. Investigating the relationship between non-occupational pesticide exposure and metabolomic biomarkers. Front Public Health 2023; 11:1248609. [PMID: 37900012 PMCID: PMC10602903 DOI: 10.3389/fpubh.2023.1248609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
The relationship between pesticide exposures and metabolomics biomarkers is not well understood. We examined the changes in the serum metabolome (early biomarkers) and the metabolic pathways associated with various pesticide exposure scenarios (OPE: overall exposure, PEM: exposure in months, PEY: exposure in years, and PEU: reported specific pesticides use) using data from the Northern Finland Birth Cohort 1966 31-year cross-sectional examination. We utilized questionnaire data on pesticide exposures and serum samples for nuclear magnetic resonance (NMR)-based metabolomics analyses. For exposures and metabolites associations, participants size varied between 2,361 and 5,035. To investigate associations between metabolomics biomarkers and exposure to pesticide scenarios compared to those who reported no exposures multivariable regression analyses stratified by sex and adjustment with covariates (season of pesticide use, socioeconomic position (SEP), alcohol consumption, BMI, and latitude of residence) were performed. Multiple testing by Benjamini-Hochberg false discovery rate (FDR) correction applied. Pesticide exposures differed by sex, season of pesticide use, alcohol, SEP, latitude of residence. Our results showed that all pesticide exposure scenarios were negatively associated with decreased HDL concentrations across all lipoprotein subclasses in women. OPE, PEY, and PEU were associated with decreased branched-chain amino acid concentrations in men and decreased albumin concentrations in women. OPE, PEY and PEU were also associated with changes in glycolysis metabolites and ketone bodies in both sexes. Specific pesticides exposure was negatively associated with sphingolipids and inflammatory biomarkers in men. In women, OPE, PEM, and PEU were associated with decreased apolipoprotein A1 and increased apolipoprotein B/apolipoprotein A1 ratio. Our findings suggest that identification of early biomarkers of disease risk related to pesticide exposures can inform strategies to reduce exposure and investigate causal pathways. Women may be more susceptible to non-occupational pesticide exposures when compared to men, and future sex-specific studies are warranted.
Collapse
Affiliation(s)
- Saranya Palaniswamy
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Khaled Abass
- Arctic Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jaana Rysä
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Joan O. Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Barcelona, Spain
| | - Jon Øyvind Odland
- The Norwegian University of Science and Technology, Trondheim, Norway
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Arja Rautio
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Thule Institute, University of Arctic, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, London, United Kingdom
| |
Collapse
|
9
|
Zhao S, Yang X, Xu Q, Li H, Su Y, Xu Q, X Li Q, Xia Y, Shen R. Association of maternal metals exposure, metabolites and birth outcomes in newborns: A prospective cohort study. ENVIRONMENT INTERNATIONAL 2023; 179:108183. [PMID: 37690219 DOI: 10.1016/j.envint.2023.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Maternal exposure to metals may pose a risk to the health of newborns, however, the underlying mechanisms remain ambiguous. Herein, we aimed to investigate the influence of metals exposure on birth outcomes and reveal the importance of metabolites in the exposure-outcomes association by using metabolomics methods. METHODS In our study, 292 mother-pairs were included who were recruited from the affiliated hospitals of Nanjing Medical University between 2006 and 2011. We measured fifteen metals (mercury, lead, vanadium, arsenic, zinc, cadmium, rubidium, copper, cobalt, iron, molybdenum, strontium, thallium, magnesium and calcium) and metabolites in maternal second trimester serums by using inductively coupled plasma mass spectrometry and ultra-high performance liquid chromatography high resolution accurate mass spectrometry, respectively. A multi-step statistical analysis strategy including exposome-wide association study (ExWAS) model, variable selection models and multiple-exposure models were performed to systematically appraise the associations of individual and mixed metals exposure with birth outcomes. Furthermore, differential metabolites that associated with metals exposure and birth outcomes were identified using linear regression models. RESULTS Metal's levels in maternal serums ranged from 0.05 μg/L to 1864.76 μg/L. In the ExWAS model, maternal exposure to arsenic was negatively associated with birth weight (β = 188.83; 95% CI: -368.27, -9.39), while maternal mercury exposure showed a positive association (β = 533.65; 95%CI: 179.40, 887.90) with birth weight. Moreover, each unit increase in mercury (1 ng/mL-log transformed) was associated with a 1.82 week-increase (95%CI: 0.85, 2.79) in gestational age. These findings were subsequently validated by variable selection models and multiple exposure models. Metabolomic analysis further revealed the significant role of 3-methyladenine in the relationship between arsenic exposure and birth weight. CONCLUSION This study provides new epidemiological evidence indicating the associations of metals exposure and neonatal birth outcomes, and emphasizes the potential role of metabolite biomarkers and their importance in monitoring adverse birth outcomes.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China; State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Hang Li
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Su
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qiaoqiao Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Rong Shen
- Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
10
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
11
|
Albouy M, Deceuninck Y, Migeot V, Doumas M, Dupuis A, Venisse N, Engene PP, Veyrand B, Geny T, Marchand P, Le Bizec B, Bichon E, Carato P. Characterization of pregnant women exposure to halogenated parabens and bisphenols through water consumption. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130945. [PMID: 36758432 DOI: 10.1016/j.jhazmat.2023.130945] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/29/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Exposure of pregnant women to endocrine disruptor compounds, such as parabens and bisphenol A is of concern for fetal transition. Their halogenated degradation products, mainly coming from water treatment plans, could be problematic as well, depending on their occurrence in drinking water in the first place. Thus, 25 halogenated compounds were synthesised in order to investigate 60 substances (Bisphenols, parabens and their degradation products) in 325 drinking water samples coming from a French cohort study of pregnant women. Analysis was performed by tandem mass spectrometry coupled to gas chromatography (GC-MS/MS) after SPE extraction and derivation of the contaminants. Results indicate that parabens (methylparaben, n-propylparaben, ethylparaben and n-butylparaben), bisphenols S, A and F, and their degradation product, 4-hydroxybenzoic acid, were detected up to several hundred ng/L in drinking water, with detection frequencies between 16% and 88%. Regarding halogenated degradation products, the highest detection frequencies were found for monochlorinated products (about 50% for 2-chlorobisphenol A), which were quantified up to several tens of ng/L. Such analytical approaches with broader spectrum of monitoring (i.e. chemical hazards and their degradation products) constitute in the beginning of a solution to exhaustively answer the questions related to the characterization of the human chemical exposome.
Collapse
Affiliation(s)
- Marion Albouy
- Université de Poitiers, F-86000 Poitiers, France; Pole Biospharm Service de Santé Publique, CHU, Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| | | | - Virginie Migeot
- Université de Poitiers, F-86000 Poitiers, France; Pole Biospharm Service de Santé Publique, CHU, Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| | - Manon Doumas
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France; IC2MP, CNRS 7285, UFR Médecine Pharmacie, Poitiers, France.
| | - Antoine Dupuis
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Pharmacie, CHU, Poitiers, France.
| | - Nicolas Venisse
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France; Service de Toxicologie et Pharmacocinétique, CHU, Poitiers, France.
| | - Pascale Pierre Engene
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| | | | - Thomas Geny
- Oniris, INRAE, LABERCA, 44307 Nantes, France.
| | | | | | | | - Pascal Carato
- Université de Poitiers, F-86000 Poitiers, France; CIC INSERM 1402, UFR Médecine Pharmacie, Poitiers, France.
| |
Collapse
|
12
|
Wang C, Xu Z, Qiu X, Wei Y, Peralta AA, Yazdi MD, Jin T, Li W, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Sparrow D, Amarasiriwardena C, Wright RO, Baccarelli AA, Schwartz JD. Epigenome-wide DNA methylation in leukocytes and toenail metals: The normative aging study. ENVIRONMENTAL RESEARCH 2023; 217:114797. [PMID: 36379232 PMCID: PMC9825663 DOI: 10.1016/j.envres.2022.114797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Yaguang Wei
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Adjani A Peralta
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mahdieh Danesh Yazdi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tingfan Jin
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Wenyuan Li
- School of Public Health and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - David Sparrow
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chitra Amarasiriwardena
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
13
|
Thomson S, Drummond K, O'Hely M, Symeonides C, Chandran C, Mansell T, Saffery R, Sly P, Mueller J, Vuillermin P, Ponsonby AL. Increased maternal non-oxidative energy metabolism mediates association between prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure and offspring autism spectrum disorder symptoms in early life: A birth cohort study. ENVIRONMENT INTERNATIONAL 2023; 171:107678. [PMID: 36516674 DOI: 10.1016/j.envint.2022.107678] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted.
Collapse
Affiliation(s)
- Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Chitra Chandran
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Peter Sly
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia; Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| |
Collapse
|
14
|
Lee SH, Du ZY, Tseng WC, Lin WY, Chen MH, Lin CC, Liang HJ, Wen HJ, Guo YL, Chen PC, Lin CY. Identification of serum metabolic signatures of environmental-leveled phthalate in the Taiwanese child population using NMR-based metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120454. [PMID: 36306885 DOI: 10.1016/j.envpol.2022.120454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates have become important environmental pollutants due to their high exposure frequency in daily life; thus, phthalates are prevalent in humans. Although several epidemiologic surveys have linked phthalates with several adverse health effects in humans, the molecular events underlying phthalate exposure have not been fully elucidated. The purpose of this study was to reveal associations between phthalate exposure and the serum metabolome in Taiwanese children using a metabolomic approach. A total of 256 Taiwanese children (8-10 years old) from two cohorts were enrolled in this study. Twelve urinary phthalate metabolites were analyzed by high-performance liquid chromatography/tandem mass spectrometry, while a nuclear magnetic resonance-based metabolomic approach was used to record serum metabolic profiles. The associations between metabolic profiles and phthalate levels were assessed by partial least squares analysis coupled with multiple linear regression analysis. Our results revealed that unique phthalate exposures, such as mono-isobutyl phthalate, mono-n-butyl phthalate, and mono (2-ethyl-5-oxohexyl) phthalate, were associated with distinct serum metabolite profiles. These phthalate-mediated metabolite changes may be associated with perturbed energy mechanisms, increased oxidative stress, and lipid metabolism. In conclusion, this study suggests that metabolomics is a valid approach to examine the effects of environmental-level phthalate on the serum metabolome. This study also highlighted potentially important phthalates and their possible effects on children.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Zhi-Yi Du
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wei-Chen Tseng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wan-Yu Lin
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Mei-Huei Chen
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Chun Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Hui-Ju Wen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yue-Leon Guo
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
15
|
Ventura-Miranda MI, Fernández-Medina IM, Guillén-Romera E, Ortíz-Amo R, Ruíz-Fernández MD. Effect of Gestational Pesticide Exposure on the Child's Respiratory System: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15418. [PMID: 36430137 PMCID: PMC9690583 DOI: 10.3390/ijerph192215418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND In recent years, concern has arisen worldwide about the potential adverse effects that could result from early-life exposure to pesticides. Asthma, bronchitis, and persistent cough in children have been linked to gestational exposure to pesticides. The respiratory effects of gestational exposure to pesticides are controversial. The aim of this study was to determine the relationship between pesticide exposure in pregnant women and its effect on the respiratory system of their children. METHODS A narrative review was carried out by means of a search in the main databases. RESULTS Findings of studies confirmed the effects of pesticides on the child's health. These substances cross the placenta and become transmitters of exposure to the individual at the most sensitive stage of her development. CONCLUSIONS Chronic exposure to pesticides in fetuses is associated with chronic respiratory symptoms and disease.
Collapse
Affiliation(s)
| | | | | | - Rocío Ortíz-Amo
- Department of Psychology, University of Almería, 04120 Almería, Spain
| | | |
Collapse
|
16
|
Maitre L, Bustamante M, Hernández-Ferrer C, Thiel D, Lau CHE, Siskos AP, Vives-Usano M, Ruiz-Arenas C, Pelegrí-Sisó D, Robinson O, Mason D, Wright J, Cadiou S, Slama R, Heude B, Casas M, Sunyer J, Papadopoulou EZ, Gutzkow KB, Andrusaityte S, Grazuleviciene R, Vafeiadi M, Chatzi L, Sakhi AK, Thomsen C, Tamayo I, Nieuwenhuijsen M, Urquiza J, Borràs E, Sabidó E, Quintela I, Carracedo Á, Estivill X, Coen M, González JR, Keun HC, Vrijheid M. Multi-omics signatures of the human early life exposome. Nat Commun 2022; 13:7024. [PMID: 36411288 PMCID: PMC9678903 DOI: 10.1038/s41467-022-34422-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Environmental exposures during early life play a critical role in life-course health, yet the molecular phenotypes underlying environmental effects on health are poorly understood. In the Human Early Life Exposome (HELIX) project, a multi-centre cohort of 1301 mother-child pairs, we associate individual exposomes consisting of >100 chemical, outdoor, social and lifestyle exposures assessed in pregnancy and childhood, with multi-omics profiles (methylome, transcriptome, proteins and metabolites) in childhood. We identify 1170 associations, 249 in pregnancy and 921 in childhood, which reveal potential biological responses and sources of exposure. Pregnancy exposures, including maternal smoking, cadmium and molybdenum, are predominantly associated with child DNA methylation changes. In contrast, childhood exposures are associated with features across all omics layers, most frequently the serum metabolome, revealing signatures for diet, toxic chemical compounds, essential trace elements, and weather conditions, among others. Our comprehensive and unique resource of all associations ( https://helixomics.isglobal.org/ ) will serve to guide future investigation into the biological imprints of the early life exposome.
Collapse
Affiliation(s)
- Léa Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carles Hernández-Ferrer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Denise Thiel
- Department of Mathematics, Imperial College London, South Kensington, London, UK
| | - Chung-Ho E Lau
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Alexandros P Siskos
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Marta Vives-Usano
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Dolors Pelegrí-Sisó
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Solène Cadiou
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Inserm, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Barbara Heude
- Centre for Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Sunyer
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eleni Z Papadopoulou
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine B Gutzkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Leda Chatzi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ibon Tamayo
- Computational Biology program, CIMA-University of Navarra, Pamplona, Spain
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Eva Borràs
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduard Sabidó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Inés Quintela
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Medicine Genomics Group, Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), University of Santiago de Compostela, CIMUS, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Muireann Coen
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Oncology Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Juan R González
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Hector C Keun
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
17
|
Lin Y, Yuan Y, Ouyang Y, Wang H, Xiao Y, Zhao X, Yang H, Li X, Guo H, He M, Zhang X, Xu G, Qiu G, Wu T. Metabolome-Wide Association Study of Multiple Plasma Metals with Serum Metabolomic Profile among Middle-to-Older-Aged Chinese Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16001-16011. [PMID: 36269707 PMCID: PMC9671050 DOI: 10.1021/acs.est.2c05547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal exposure has been associated with risk of various cardio-metabolic disorders, and investigation on the association between exposure to multiple metals and metabolic responses may reveal novel clues to the underlying mechanisms. Based on a metabolome-wide association study of 17 plasma metals with untargeted metabolomic profiling of 189 serum metabolites among 1992 participants within the Dongfeng-Tongji cohort, we replicated two metal-associated pathways, linoleic acid metabolism and aminoacyl-tRNA biosynthesis, with novel metal associations (false discovery rate, FDR < 0.05), and we also identified two novel pathways, including biosynthesis of unsaturated fatty acids and alpha-linolenic acid metabolism, as associated with metal exposure (FDR < 0.05). Moreover, two-way orthogonal partial least-squares analysis showed that five metabolites, including aspartylphenylalanine, free fatty acid 14:1, uridine, carnitine C14:2, and LPC 18:2, contributed most to the joint covariation between the two data matrices (12.3%, 8.3%, 8.0%, 7.4%, and 7.3%, respectively). Further BKMR analysis showed significant positive joint associations of plasma Al, As, Ba, and Zn with aspartylphenylalanine and of plasma Ba, Co, Mn, and Pb with carnitine C14:2, when all the metals were at the 55th percentiles or above, compared with the median. We also found significant interactions between As and Ba in the association with aspartylphenylalanine (P for interaction = 0.048) and between Ba and Pb in the association with carnitine C14:2 (P for interaction < 0.001). Together, these findings may provide new insights into the mechanisms underlying the adverse health effects induced by metal exposure.
Collapse
Affiliation(s)
- Yuhui Lin
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu Yuan
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Ouyang
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Wang
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xiao
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinjie Zhao
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Yang
- Department
of Cardiovascular Disease, Dongfeng Central
Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiulou Li
- Department
of Cardiovascular Disease, Dongfeng Central
Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Huan Guo
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guowang Xu
- CAS
Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy
of Sciences, Dalian 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaokun Qiu
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Ministry
of Education and State Key Laboratory of Environmental Health (Incubating),
School of Public Health, Tongji Medical
College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
18
|
Neufcourt L, Castagné R, Mabile L, Khalatbari-Soltani S, Delpierre C, Kelly-Irving M. Assessing How Social Exposures Are Integrated in Exposome Research: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:116001. [PMID: 36350665 PMCID: PMC9645433 DOI: 10.1289/ehp11015] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Exposome research aims to describe and understand the extent to which all the exposures in human environments may affect our health over the lifetime. However, the way in which humans interact with their environment is socially patterned. Failing to account for social factors in research exploring the exposome may underestimate the magnitude of the effect of exposures or mask inequalities in the distribution of both exposures and outcomes. OBJECTIVES We aimed to describe the extent to which social factors appear in the exposome literature, the manner in which they are used in empirical analyses and statistical modeling, and the way in which they are considered in the overall scientific approach. METHODS We conducted a scoping review of the literature using three databases (PubMed, Embase, and Web of Science) up to January 2022. We grouped studies based on the way in which the social variables were used in the analyses and quantified the type and frequency of social variables mentioned in the articles. We also qualitatively described the scientific approach used by authors to integrate social variables. RESULTS We screened 1,001 records, and 73 studies were included in the analysis. Fifty-five (∼ 75 % ) used social variables as exposures or confounders or both, and a wide array of social variables were represented in the articles. Individual-level social variables were more often found, especially education and race/ethnicity, as well as neighborhood-level deprivation indices. Half of the studies used a hypothesis-free approach and the other half, a hypothesis-driven approach. However, in the latter group, of 35 studies, only 8 reported and discussed at least one possible social mechanism underlying the relationship observed between the social variable and the outcome. DISCUSSION Social factors in exposome research should be considered in a more systematic way, considering their role in structuring both the specific external and the internal exposome. Doing so could help to understand the mechanisms of construction and, potentially, alleviate social inequalities in health and mitigate the emergence of new ones. https://doi.org/10.1289/EHP11015.
Collapse
Affiliation(s)
- Lola Neufcourt
- Equity Research Team, Centre d’Epidémiologie et de Recherche en santé des POPulations CERPOP-UMR1295, Inserm–Université Toulouse III Paul Sabatier, Toulouse, France
| | - Raphaële Castagné
- Equity Research Team, Centre d’Epidémiologie et de Recherche en santé des POPulations CERPOP-UMR1295, Inserm–Université Toulouse III Paul Sabatier, Toulouse, France
| | - Laurence Mabile
- Equity Research Team, Centre d’Epidémiologie et de Recherche en santé des POPulations CERPOP-UMR1295, Inserm–Université Toulouse III Paul Sabatier, Toulouse, France
| | - Saman Khalatbari-Soltani
- Faculty of Medicine and Health, University of Sydney School of Public Health, Sydney, New South Wales, Australia
- ARC Centre of Excellence in Population Aging Research, University of Sydney, Sydney, New South Wales, Australia
| | - Cyrille Delpierre
- Equity Research Team, Centre d’Epidémiologie et de Recherche en santé des POPulations CERPOP-UMR1295, Inserm–Université Toulouse III Paul Sabatier, Toulouse, France
| | - Michelle Kelly-Irving
- Equity Research Team, Centre d’Epidémiologie et de Recherche en santé des POPulations CERPOP-UMR1295, Inserm–Université Toulouse III Paul Sabatier, Toulouse, France
- Interdisciplinary Federal Research Institute on Health and Society (IFERISS-Fed 4241), Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Li H, Zeng L, Wang C, Shi C, Li Y, Peng Y, Chen H, Zhang J, Cheng B, Chen C, Xiang M, Huang Y. Review of the toxicity and potential molecular mechanisms of parental or successive exposure to environmental pollutants in the model organism Caenorhabditis elegans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119927. [PMID: 35970344 DOI: 10.1016/j.envpol.2022.119927] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yeyong Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yi Peng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jin Zhang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Biao Cheng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minghui Xiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yuan Huang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
20
|
Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs. TOXICS 2022; 10:toxics10070380. [PMID: 35878286 PMCID: PMC9320281 DOI: 10.3390/toxics10070380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/10/2022]
Abstract
Human beings and wild organisms are exposed daily to a broad range of environmental stressors. Among them are the persistent organic pollutants that can trigger adverse effects on these organisms due to their toxicity properties. There is evidence that metabolomics can be used to identify biomarkers of effect by altering the profiles of endogenous metabolites in biological fluids or tissues. This approach is relatively new and has been used in vitro studies mainly. Therefore, this review addresses those that have used metabolomics as a key tool to identify metabolites associated with environmental exposure to POPs in wildlife and human populations and that can be used as biomarkers of effect. The published results suggest that the metabolic pathways that produce energy, fatty acids, and amino acids are commonly affected by POPs. Furthermore, these pathways can be promoters of additional effects. In the future, metabolomics combined with other omics will improve understanding of the origin, development, and progression of the effects caused by environmental exposure.
Collapse
|
21
|
Ma D, Lu Y, Liang Y, Ruan T, Li J, Zhao C, Wang Y, Jiang G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6014-6026. [PMID: 34142548 DOI: 10.1021/acs.est.1c01057] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) has aroused public concerns as it can pose multiple health threats to pregnant women and cause adverse birth outcomes for fetuses. In previous studies, the prenatal exposure levels and transplacental transfer efficiencies (TTE) of PFASs have been reported and discussed. Specifically, the binding affinities between PFASs and some transporters were determined, demonstrating that the TTE values of PFASs are highly dependent on their binding behaviors. To summarize primary findings of previous studies and propose potential guidance for future research, this article provides a systematic overview on levels and characteristics of prenatal exposure to PFASs worldwide, summarizes relationships between TTE values and structures of PFASs, and discusses possible transplacental transfer mechanisms, especially for the combination between PFASs and transporters. Given the critical roles of transporters in the transplacental transfer of PFASs, we conducted molecular docking to further clarify the binding behaviors between PFASs and the selected transporters. We proposed that the machine learning can be a superior method to predict and reveal behaviors and mechanisms of the transplacental transfer of PFASs. In total, this is the first review providing a comprehensive overview on the prenatal exposure levels and transplacental transfer mechanisms of PFASs.
Collapse
Affiliation(s)
- Donghui Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Guo P, Furnary T, Vasiliou V, Yan Q, Nyhan K, Jones DP, Johnson CH, Liew Z. Non-targeted metabolomics and associations with per- and polyfluoroalkyl substances (PFAS) exposure in humans: A scoping review. ENVIRONMENT INTERNATIONAL 2022; 162:107159. [PMID: 35231839 PMCID: PMC8969205 DOI: 10.1016/j.envint.2022.107159] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/29/2022] [Accepted: 02/21/2022] [Indexed: 05/13/2023]
Abstract
OBJECTIVE To summarize the application of non-targeted metabolomics in epidemiological studies that assessed metabolite and metabolic pathway alterations associated with per- and polyfluoroalkyl substances (PFAS) exposure. RECENT FINDINGS Eleven human studies published before April 1st, 2021 were identified through database searches (PubMed, Dimensions, Web of Science Core Collection, Embase, Scopus), and citation chaining (Citationchaser). The sample sizes of these studies ranged from 40 to 965, involving children and adolescents (n = 3), non-pregnant adults (n = 5), or pregnant women (n = 3). High-resolution liquid chromatography-mass spectrometry was the primary analytical platform to measure both PFAS and metabolome. PFAS were measured in either plasma (n = 6) or serum (n = 5), while metabolomic profiles were assessed using plasma (n = 6), serum (n = 4), or urine (n = 1). Four types of PFAS (perfluorooctane sulfonate(n = 11), perfluorooctanoic acid (n = 10), perfluorohexane sulfonate (n = 9), perfluorononanoic acid (n = 5)) and PFAS mixtures (n = 7) were the most studied. We found that alterations to tryptophan metabolism and the urea cycle were most reported PFAS-associated metabolomic signatures. Numerous lipid metabolites were also suggested to be associated with PFAS exposure, especially key metabolites in glycerophospholipid metabolism which is critical for biological membrane functions, and fatty acids and carnitines which are relevant to the energy supply pathway of fatty acid oxidation. Other important metabolome changes reported included the tricarboxylic acid (TCA) cycle regarding energy generation, and purine and pyrimidine metabolism in cellular energy systems. CONCLUSIONS There is growing interest in using non-targeted metabolomics to study the human physiological changes associated with PFAS exposure. Multiple PFAS were reported to be associated with alterations in amino acid and lipid metabolism, but these results are driven by one predominant type of pathway analysis thus require further confirmation. Standardizing research methods and reporting are recommended to facilitate result comparison. Future studies should consider potential differences in study methodology, use of prospective design, and influence from confounding bias and measurement errors.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Qi Yan
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles (UCLA), Los Angeles, USA
| | - Kate Nyhan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Harvey Cushing / John Hay Whitney Medical Library, Yale University, New Haven, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, USA; Department of Biochemistry, Emory University School of Medicine, Atlanta, USA
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, USA; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, USA.
| |
Collapse
|
23
|
Doherty BT, McRitchie SL, Pathmasiri WW, Stewart DA, Kirchner D, Anderson KA, Gui J, Madan JC, Hoen AG, Sumner SJ, Karagas MR, Romano ME. Chemical exposures assessed via silicone wristbands and endogenous plasma metabolomics during pregnancy. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:259-267. [PMID: 34702988 PMCID: PMC8930423 DOI: 10.1038/s41370-021-00394-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Metabolomics is a promising method to investigate physiological effects of chemical exposures during pregnancy, with the potential to clarify toxicological mechanisms, suggest sensitive endpoints, and identify novel biomarkers of exposures. OBJECTIVE Investigate the influence of chemical exposures on the maternal plasma metabolome during pregnancy. METHODS Data were obtained from participants (n = 177) in the New Hampshire Birth Cohort Study, a prospective pregnancy cohort. Chemical exposures were assessed via silicone wristbands worn for one week at ~13 gestational weeks. Metabolomic features were assessed in plasma samples obtained at ~24-28 gestational weeks via the Biocrates AbsoluteIDQ® p180 kit and nuclear magnetic resonance (NMR) spectroscopy. Associations between chemical exposures and plasma metabolomics were investigated using multivariate modeling. RESULTS Chemical exposures predicted 11 (of 226) and 23 (of 125) metabolomic features in Biocrates and NMR, respectively. The joint chemical exposures did not significantly predict pathway enrichment, though some individual chemicals were associated with certain amino acids and related metabolic pathways. For example, N,N-diethyl-m-toluamide was associated with the amino acids glycine, L-glutamic acid, L-asparagine, and L-aspartic acid and enrichment of the ammonia recycling pathway. SIGNIFICANCE This study contributes evidence to the potential effects of chemical exposures during pregnancy upon the endogenous maternal plasma metabolome.
Collapse
Affiliation(s)
- Brett T Doherty
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Susan L McRitchie
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wimal W Pathmasiri
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Delisha A Stewart
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David Kirchner
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon Status University, Corvallis, OR, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA
| | - Juliette C Madan
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Pediatrics and Psychiatry, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Anne G Hoen
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Lebanon, NH, USA
| | - Susan J Sumner
- Nutrition Research Institute, Department of Nutrition, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Margaret R Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Megan E Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
24
|
Zhang C, Wu J, Chen Q, Tan H, Huang F, Guo J, Zhang X, Yu H, Shi W. Allosteric binding on nuclear receptors: Insights on screening of non-competitive endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2022; 159:107009. [PMID: 34883459 DOI: 10.1016/j.envint.2021.107009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) can compete with endogenous hormones and bind to the orthosteric site of nuclear receptors (NRs), affecting normal endocrine system function and causing severe symptoms. Recently, a series of pharmaceuticals and personal care products (PPCPs) have been discovered to bind to the allosteric sites of NRs and induce similar effects. However, it remains unclear how diverse EDCs work in this new way. Therefore, we have systematically summarized the allosteric sites and underlying mechanisms based on existing studies, mainly regarding drugs belonging to the PPCP class. Advanced methods, classified as structural biology, biochemistry and computational simulation, together with their advantages and hurdles for allosteric site recognition and mechanism insight have also been described. Furthermore, we have highlighted two available strategies for virtual screening of numerous EDCs, relying on the structural features of allosteric sites and lead compounds, respectively. We aim to provide reliable theoretical and technical support for a broader view of various allosteric interactions between EDCs and NRs, and to drive high-throughput and accurate screening of potential EDCs with non-competitive effects.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jinqiu Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Qinchang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Haoyue Tan
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Fuyan Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Jing Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China; Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
25
|
Huang Z, Li H, Xiong J, You J. Target and Suspect Screening of Urinary Biomarkers for Current-use Pesticides: Application of a Simple Extraction Method. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:73-80. [PMID: 34674301 DOI: 10.1002/etc.5234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Pesticide residues pose a great threat to human health. Biomonitoring with urine samples has often been used to assess pesticide exposure to humans, and identifying appropriate biomarkers is a premise of success. Current-use pesticides (CUPs) including neonicotinoids tend to be transformed in an organism, and thus the biomonitoring studies focusing on parent compounds alone may underestimate their risk. It is imperative to develop effective methods to analyze CUPs and their metabolites simultaneously and to identify viable metabolites as urinary biomarkers. For analyzing xenobiotics in urine, we optimized CH3 COCH3 -MgSO4 extraction coupled with a high-performance liquid chromatography-tandem mass spectrometry detection method. The method had sensitive method detection limits (0.11-1.39 ng/ml), low matrix effects, and satisfactory recovery and precision (49.4% ± 7.2%-99.8% ± 17.8%) for neonicotinoids and their metabolites. Application of the method for real samples showed that children living in rural areas in South China were ubiquitously exposed to CUPs, including neonicotinoids, fipronil, and chlorpyrifos, and urinary residues were mainly in the form of metabolites. Suitable biomarkers were identified for individual neonicotinoids, including imidacloprid-olefin and imidacloprid-guanidine for imidacloprid, acetamiprid-N-desmethyl for acetamiprid, thiacloprid-amide for thiacloprid, and N-desmethyl-thiamethoxam and thiamethoxam for thiamethoxam. Three metabolites were mainly reported in urine samples, including imidacloprid-urea, thiacloprid-amide, and N-desmethyl-thiamethoxam. In addition, the method was also applied for suspect screening, and an additional metabolite (clothianidin-desmethyl-nitrosoguanidine) was identified, showing its potential application in suspect analysis. Environ Toxicol Chem 2022;41:73-80. © 2021 SETAC.
Collapse
Affiliation(s)
- Zhoubing Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
| | - Jingjing Xiong
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Guangzhou, Jinan University, China
| |
Collapse
|
26
|
Konstantinou C, Gaengler S, Oikonomou S, Delplancke T, Charisiadis P, Makris KC. Use of metabolomics in refining the effect of an organic food intervention on biomarkers of exposure to pesticides and biomarkers of oxidative damage in primary school children in Cyprus: A cluster-randomized cross-over trial. ENVIRONMENT INTERNATIONAL 2022; 158:107008. [PMID: 34991267 DOI: 10.1016/j.envint.2021.107008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to pesticides has been associated with oxidative stress in animals and humans. Previously, we showed that an organic food intervention reduced pesticide exposure and oxidative damage (OD) biomarkers over time; however associated metabolic changes are not fully understood yet. OBJECTIVES We assessed perturbations of the urine metabolome in response to an organic food intervention for children and its association with pesticides biomarkers [3-phenoxybenzoic acid (3-PBA) and 6-chloronicotinic acid (6-CN)]. We also evaluated the molecular signatures of metabolites associated with biomarkers of OD (8-iso-PGF2a and 8-OHdG) and related biological pathways. METHODS We used data from the ORGANIKO LIFE + trial (NCT02998203), a cluster-randomized cross-over trial conducted among primary school children in Cyprus. Participants (n = 149) were asked to follow an organic food intervention for 40 days and their usual food habits for another 40 days, providing up to six first morning urine samples (>850 samples in total). Untargeted GC-MS metabolomics analysis was performed. Metabolites with RSD ≤ 20% and D-ratio ≤ 50% were retained for analysis. Associations were examined using mixed-effect regression models and corrected for false-discovery rate of 0.05. Pathway analysis followed. RESULTS Following strict quality checks, 156 features remained out of a total of 610. D-glucose was associated with the organic food intervention (β = -0.23, 95% CI: -0.37,-0.10), aminomalonic acid showed a time-dependent increase during the intervention period (βint = 0.012; 95% CI:0.002, 0.022) and was associated with the two OD biomarkers (β = -0.27, 95% CI:-0.34,-0.20 for 8-iso-PGF2a and β = 0.19, 95% CI:0.11,0.28 for 8-OHdG) and uric acid with 8-OHdG (β = 0.19, 95% CI:0.11,0.26). Metabolites were involved in pathways such as the starch and sucrose metabolism and pentose and glucuronate interconversions. DISCUSSION This is the first metabolomics study providing evidence of differential expression of metabolites by an organic food intervention, corroborating the reduction in biomarkers of OD. Further mechanistic evidence is warranted to better understand the biological plausibility of an organic food treatment on children's health outcomes.
Collapse
Affiliation(s)
- Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Cyprus
| | - Stephanie Gaengler
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Cyprus
| | - Stavros Oikonomou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Cyprus
| | - Thibaut Delplancke
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Cyprus
| | - Pantelis Charisiadis
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Cyprus
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Cyprus.
| |
Collapse
|
27
|
Scholz S, Nichols JW, Escher BI, Ankley GT, Altenburger R, Blackwell B, Brack W, Burkhard L, Collette TW, Doering JA, Ekman D, Fay K, Fischer F, Hackermüller J, Hoffman JC, Lai C, Leuthold D, Martinovic-Weigelt D, Reemtsma T, Pollesch N, Schroeder A, Schüürmann G, von Bergen M. The Eco-Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:30-45. [PMID: 34714945 PMCID: PMC9104394 DOI: 10.1002/etc.5242] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
Organisms are exposed to ever-changing complex mixtures of chemicals over the course of their lifetime. The need to more comprehensively describe this exposure and relate it to adverse health effects has led to formulation of the exposome concept in human toxicology. Whether this concept has utility in the context of environmental hazard and risk assessment has not been discussed in detail. In this Critical Perspective, we propose-by analogy to the human exposome-to define the eco-exposome as the totality of the internal exposure (anthropogenic and natural chemicals, their biotransformation products or adducts, and endogenous signaling molecules that may be sensitive to an anthropogenic chemical exposure) over the lifetime of an ecologically relevant organism. We describe how targeted and nontargeted chemical analyses and bioassays can be employed to characterize this exposure and discuss how the adverse outcome pathway concept could be used to link this exposure to adverse effects. Available methods, their limitations, and/or requirement for improvements for practical application of the eco-exposome concept are discussed. Even though analysis of the eco-exposome can be resource-intensive and challenging, new approaches and technologies make this assessment increasingly feasible. Furthermore, an improved understanding of mechanistic relationships between external chemical exposure(s), internal chemical exposure(s), and biological effects could result in the development of proxies, that is, relatively simple chemical and biological measurements that could be used to complement internal exposure assessment or infer the internal exposure when it is difficult to measure. Environ Toxicol Chem 2022;41:30-45. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Stefan Scholz
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Address correspondence to
| | - John W. Nichols
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Beate I. Escher
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Toxicology, Center for Applied Geoscience, Eberhard Karls University Tubingen, Tubingen, Germany
| | - Gerald T. Ankley
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute for Environmental Research, Biologie V, RWTH Aachen University, Aachen, Germany
| | - Brett Blackwell
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Werner Brack
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lawrence Burkhard
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Timothy W. Collette
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Jon A. Doering
- National Research Council, US Environmental Protection Agency, Duluth, Minnesota
| | - Drew Ekman
- Office of Research and Development, Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Kellie Fay
- Office of Pollution Prevention and Toxics, Risk Assessment Division, US Environmental Protection Agency, Washington, DC
| | - Fabian Fischer
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | - Joel C. Hoffman
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Chih Lai
- College of Arts and Sciences, University of Saint Thomas, St. Paul, Minnesota, USA
| | - David Leuthold
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | | | | | - Nathan Pollesch
- Office of Research and Development, Great Lakes Ecology and Toxicology Division, US Environmental Protection Agency, Duluth, Minnesota
| | | | - Gerrit Schüürmann
- Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Institute of Organic Chemistry, Technische Universitat Bergakademie Freiberg, Freiberg, Germany
| | | |
Collapse
|
28
|
Zaikin VG, Borisov RS. Mass Spectrometry as a Crucial Analytical Basis for Omics Sciences. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [PMCID: PMC8693159 DOI: 10.1134/s1061934821140094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review is devoted to the consideration of mass spectrometric platforms as applied to omics sciences. The most significant attention is paid to omics related to life sciences (genomics, proteomics, meta-bolomics, lipidomics, glycomics, plantomics, etc.). Mass spectrometric approaches to solving the problems of petroleomics, polymeromics, foodomics, humeomics, and exosomics, related to inorganic sciences, are also discussed. The review comparatively presents the advantages of various principles of separation and mass spectral techniques, complementary derivatization, used to obtain large arrays of various structural and quantitative information in the mentioned omics sciences.
Collapse
Affiliation(s)
- V. G. Zaikin
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - R. S. Borisov
- Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
- RUDN University, 117198 Moscow, Russia
- Core Facility Center “Arktika,” Northern (Arctic) Federal University, 163002 Arkhangelsk, Russia
| |
Collapse
|
29
|
Vrijheid M, Basagaña X, Gonzalez JR, Jaddoe VWV, Jensen G, Keun HC, McEachan RRC, Porcel J, Siroux V, Swertz MA, Thomsen C, Aasvang GM, Andrušaitytė S, Angeli K, Avraam D, Ballester F, Burton P, Bustamante M, Casas M, Chatzi L, Chevrier C, Cingotti N, Conti D, Crépet A, Dadvand P, Duijts L, van Enckevort E, Esplugues A, Fossati S, Garlantezec R, Gómez Roig MD, Grazuleviciene R, Gützkow KB, Guxens M, Haakma S, Hessel EVS, Hoyles L, Hyde E, Klanova J, van Klaveren JD, Kortenkamp A, Le Brusquet L, Leenen I, Lertxundi A, Lertxundi N, Lionis C, Llop S, Lopez-Espinosa MJ, Lyon-Caen S, Maitre L, Mason D, Mathy S, Mazarico E, Nawrot T, Nieuwenhuijsen M, Ortiz R, Pedersen M, Perelló J, Pérez-Cruz M, Philippat C, Piler P, Pizzi C, Quentin J, Richiardi L, Rodriguez A, Roumeliotaki T, Sabin Capote JM, Santiago L, Santos S, Siskos AP, Strandberg-Larsen K, Stratakis N, Sunyer J, Tenenhaus A, Vafeiadi M, Wilson RC, Wright J, Yang T, Slama R. Advancing tools for human early lifecourse exposome research and translation (ATHLETE): Project overview. Environ Epidemiol 2021; 5:e166. [PMID: 34934888 PMCID: PMC8683140 DOI: 10.1097/ee9.0000000000000166] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/28/2021] [Indexed: 11/26/2022] Open
Abstract
Early life stages are vulnerable to environmental hazards and present important windows of opportunity for lifelong disease prevention. This makes early life a relevant starting point for exposome studies. The Advancing Tools for Human Early Lifecourse Exposome Research and Translation (ATHLETE) project aims to develop a toolbox of exposome tools and a Europe-wide exposome cohort that will be used to systematically quantify the effects of a wide range of community- and individual-level environmental risk factors on mental, cardiometabolic, and respiratory health outcomes and associated biological pathways, longitudinally from early pregnancy through to adolescence. Exposome tool and data development include as follows: (1) a findable, accessible, interoperable, reusable (FAIR) data infrastructure for early life exposome cohort data, including 16 prospective birth cohorts in 11 European countries; (2) targeted and nontargeted approaches to measure a wide range of environmental exposures (urban, chemical, physical, behavioral, social); (3) advanced statistical and toxicological strategies to analyze complex multidimensional exposome data; (4) estimation of associations between the exposome and early organ development, health trajectories, and biological (metagenomic, metabolomic, epigenetic, aging, and stress) pathways; (5) intervention strategies to improve early life urban and chemical exposomes, co-produced with local communities; and (6) child health impacts and associated costs related to the exposome. Data, tools, and results will be assembled in an openly accessible toolbox, which will provide great opportunities for researchers, policymakers, and other stakeholders, beyond the duration of the project. ATHLETE's results will help to better understand and prevent health damage from environmental exposures and their mixtures from the earliest parts of the life course onward.
Collapse
Affiliation(s)
- Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Corresponding Author. Address: ISGlobal, Institute for Global Health, C. Doctor Aiguader 88, 08003 Barcelona, Spain. E-mail: (M. Vrijheid)
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan R. Gonzalez
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Vincent W. V. Jaddoe
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Genon Jensen
- Health & Environment Alliance (HEAL), Brussels, Belgium
| | - Hector C. Keun
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | - Rosemary R. C. McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Joana Porcel
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Valerie Siroux
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Morris A. Swertz
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Cathrine Thomsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrušaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Karine Angeli
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Maisons-Alfort, France
| | - Demetris Avraam
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Ferran Ballester
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Paul Burton
- Population Health Sciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Cécile Chevrier
- University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | | | - David Conti
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Amélie Crépet
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Risk Assessment Department, Maisons-Alfort, France
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Esther van Enckevort
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ana Esplugues
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Ronan Garlantezec
- CHU de Rennes, University Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)—UMR_S 1085, Rennes, France
| | - María Dolores Gómez Roig
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | | | - Kristine B. Gützkow
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescence Psychiatry, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sido Haakma
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Ellen V. S. Hessel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom
| | - Eleanor Hyde
- University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Jana Klanova
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jacob D. van Klaveren
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andreas Kortenkamp
- Brunel University London, College of Health, Medicine and Life Sciences, Uxbridge, United Kingdom
| | - Laurent Le Brusquet
- University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
| | - Ivonne Leenen
- Health & Environment Alliance (HEAL), Brussels, Belgium
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of Basque Country UPV/EHU, Basque Country, Bilbao, Spain
- Biodonostia, Research Health Institute, Donostia-San Sebastian, Spain
| | - Nerea Lertxundi
- University of Basque Country UPV/EHU, Basque Country, Bilbao, Spain
- Biodonostia, Research Health Institute, Donostia-San Sebastian, Spain
| | - Christos Lionis
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, València, Spain
- Faculty of Nursing and Chiropody, Universitat de València, Valencia, Spain
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Lea Maitre
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Sandrine Mathy
- University Grenoble Alpes, CNRS, INRAE, Grenoble INP, GAEL, Grenoble, France
| | - Edurne Mazarico
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Centre for Health and Environment, Leuven University, Leuven, Belgium
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Rodney Ortiz
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Míriam Pérez-Cruz
- Institut de Recerca Sant Joan de Déu (IR-SJD), Barcelona, Spain
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- BCNatal—Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Pavel Piler
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Costanza Pizzi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joane Quentin
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Theano Roumeliotaki
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | | | - Susana Santos
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alexandros P. Siskos
- Department of Surgery & Cancer and Department of Metabolism, Digestion & Reproduction, Imperial College London, London, United Kingdom
| | | | - Nikos Stratakis
- ISGlobal, Barcelona, Spain
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jordi Sunyer
- ISGlobal, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Arthur Tenenhaus
- University Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Rebecca C. Wilson
- Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Tiffany Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford,United Kingdom
| | - Remy Slama
- University Grenoble Alpes, Inserm, CNRS, IAB (Institute for Advanced Biosciences) Joint Research Center, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Grenoble, France
| |
Collapse
|
30
|
Abstract
Human health is regulated by complex interactions among the genome, the microbiome, and the environment. While extensive research has been conducted on the human genome and microbiome, little is known about the human exposome. The exposome comprises the totality of chemical, biological, and physical exposures that individuals encounter over their lifetimes. Traditional environmental and biological monitoring only targets specific substances, whereas exposomic approaches identify and quantify thousands of substances simultaneously using nontargeted high-throughput and high-resolution analyses. The quantified self (QS) aims at enhancing our understanding of human health and disease through self-tracking. QS measurements are critical in exposome research, as external exposures impact an individual's health, behavior, and biology. This review discusses both the achievements and the shortcomings of current research and methodologies on the QS and the exposome and proposes future research directions.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Peng Gao
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA;
| |
Collapse
|
31
|
Ma X, Pan W, Zhu Z, Ye X, Li C, Zhou J, Liu J. A case-control study of thallium exposure with the risk of premature ovarian insufficiency in women. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2021; 77:468-477. [PMID: 34078236 DOI: 10.1080/19338244.2021.1931797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thallium exposure has been associated with female reproductive health, but little is known about its potential association with premature ovarian insufficiency (POI). In this study, a total of 169 patients with POI and 209 healthy women were recruited from Zhejiang province, China. Urinary thallium concentrations were significantly positively associated with the risk of POI [adjusted odds ratio (OR) = 1.63, 95% CI: 1.25-2.13, p < 0.001], geometric mean values of which were significantly higher in POI cases (0.213 μg/L, 0.302 μg/g for creatinine adjustment) than those of controls (0.153 μg/L, 0.233 μg/g for creatinine adjustment). Furthermore, the serum levels of follicle-stimulating hormone and luteinizing hormone were positively associated with urinary thallium concentrations, whereas anti-Mullerian hormone and estradiol were negatively correlated with thallium. To the best of our knowledge, this is the first study to provide evidence that thallium exposure at currently environmental levels is the potential risk factor for POI in women.
Collapse
Affiliation(s)
- Xiaochen Ma
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zheying Zhu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women'sHospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women'sHospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Yan Q, Paul KC, Walker DI, Furlong MA, Del Rosario I, Yu Y, Zhang K, Cockburn MG, Jones DP, Ritz BR. High-Resolution Metabolomic Assessment of Pesticide Exposure in Central Valley, California. Chem Res Toxicol 2021; 34:1337-1347. [PMID: 33913694 DOI: 10.1021/acs.chemrestox.0c00523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pesticides are widely used in the agricultural Central Valley region of California. Historically, this has included organophosphates (OPs), organochlorines (OCs), and pyrethroids (PYRs). This study aimed to identify perturbations of the serum metabolome in response to each class of pesticide and mutual associations between groups of metabolites and multiple pesticides. We conducted high-resolution metabolomic profiling of serum samples from 176 older adults living in the California Central Valley using liquid chromatography with high-resolution mass spectrometry. We estimated chronic pesticide exposure (from 1974 to year of blood draw) to OPs, OCs, and PYRs from ambient sources at homes and workplaces with a geographic information system (GIS)-based model. Based on partial least-squares regression and pathway enrichment analysis, we identified metabolites and metabolic pathways associated with one or multiple pesticide classes, including mitochondrial energy metabolism, fatty acid and lipid metabolism, and amino acid metabolism. Utilizing an integrative network approach, we found that the fatty acid β-oxidation pathway is a common pathway shared across all three pesticide classes. The disruptions of the serum metabolome suggested that chronic pesticide exposure might result in oxidative stress, inflammatory reactions, and mitochondrial dysfunction, all of which have been previously implicated in a wide variety of diseases. Overall, our findings provided a comprehensive view of the molecular mechanisms of chronic pesticide toxicity, and, for the first time, our approach informs exposome research by moving from macrolevel population exposures to microlevel biologic responses.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Douglas I Walker
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10019, United States
| | - Melissa A Furlong
- Department of Community, Environment, and Policy, University of Arizona Mel and Enid Zuckerman College of Public Health, Tucson, Arizona 85724, United States
| | - Irish Del Rosario
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Yu Yu
- Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Keren Zhang
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States
| | - Myles G Cockburn
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, United States
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia 30322, United States.,Department of Medicine, Emory University, Atlanta, Georgia 30322, United States
| | - Beate R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California 90095, United States.,Department of Neurology, UCLA School of Medicine, Los Angeles, California 90095, United States
| |
Collapse
|
33
|
Bessonneau V, Gerona RR, Trowbridge J, Grashow R, Lin T, Buren H, Morello-Frosch R, Rudel RA. Gaussian graphical modeling of the serum exposome and metabolome reveals interactions between environmental chemicals and endogenous metabolites. Sci Rep 2021; 11:7607. [PMID: 33828161 PMCID: PMC8027000 DOI: 10.1038/s41598-021-87070-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Given the complex exposures from both exogenous and endogenous sources that an individual experiences during life, exposome-wide association studies that interrogate levels of small molecules in biospecimens have been proposed for discovering causes of chronic diseases. We conducted a study to explore associations between environmental chemicals and endogenous molecules using Gaussian graphical models (GGMs) of non-targeted metabolomics data measured in a cohort of California women firefighters and office workers. GGMs revealed many exposure-metabolite associations, including that exposures to mono-hydroxyisononyl phthalate, ethyl paraben and 4-ethylbenzoic acid were associated with metabolites involved in steroid hormone biosynthesis, and perfluoroalkyl substances were linked to bile acids-hormones that regulate cholesterol and glucose metabolism-and inflammatory signaling molecules. Some hypotheses generated from these findings were confirmed by analysis of data from the National Health and Nutrition Examination Survey. Taken together, our findings demonstrate a novel approach to discovering associations between chemical exposures and biological processes of potential relevance for disease causation.
Collapse
Affiliation(s)
- Vincent Bessonneau
- Silent Spring Institute, 320 Nevada Street, Newton, MA, 02460, USA
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement Et Travail) - UMR_S 1085, Univ. Rennes, 35000, Rennes, France
| | - Roy R Gerona
- Clinical Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Jessica Trowbridge
- School of Public Health, University of California, 130 Mulford, Hall #3144, Berkeley, CA, 94720, USA
| | - Rachel Grashow
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas Lin
- Clinical Toxicology and Environmental Biomonitoring Lab, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | | | - Rachel Morello-Frosch
- School of Public Health, University of California, 130 Mulford, Hall #3144, Berkeley, CA, 94720, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Newton, MA, 02460, USA.
| |
Collapse
|
34
|
Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis – A review. Anal Chim Acta 2021; 1154:338298. [DOI: 10.1016/j.aca.2021.338298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
|
35
|
Hyötyläinen T. Analytical challenges in human exposome analysis with focus on environmental analysis combined with metabolomics. J Sep Sci 2021; 44:1769-1787. [PMID: 33650238 DOI: 10.1002/jssc.202001263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022]
Abstract
Environmental factors, such as chemical exposures, are likely to play a crucial role in the development of several human chronic diseases. However, how the specific exposures contribute to the onset and progress of various diseases is still poorly understood. In part, this is because comprehensive characterization of the chemical exposome is a highly challenging task, both due to its complex dynamic nature as well as due to the analytical challenges. Herein, the analytical challenges in the field of exposome research are reviewed, with specific emphasis on the sampling, sample preparation, and analysis, as well as challenges in the compound identification. The primary focus is on the human chemical exposome, that is, exposures to mixtures of environmental chemicals and its impact on human metabolome. In order to highlight the recent progress in the exposome research in relation to human health and disease, selected examples of human exposome studies are presented.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| |
Collapse
|
36
|
Use of Exposomic Methods Incorporating Sensors in Environmental Epidemiology. Curr Environ Health Rep 2021; 8:34-41. [PMID: 33569731 DOI: 10.1007/s40572-021-00306-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW The exposome is a recently coined concept that comprises the totality of nongenetic factors that affect human health. It is recognized as a major conceptual advancement in environmental epidemiology, and there is increased demand for technologies that capture the spatial, temporal, and chemical variability of exposures across individuals (i.e., "exposomic sensors"). We review a selection of these tools, highlighting their strengths and limitations with regard to epidemiological research. RECENT FINDINGS Wearable passive samplers are emerging as promising exposomic sensors for individuals. In conjunction with targeted and untargeted assays, these sensors enable the measurement of complex multipollutant mixtures, which can include both known and previously unknown environmental contaminants. Because of their minimally burdensome and noninvasive nature, they are deployable among sensitive populations, such as seniors, pregnant women, and children. The integration of exposomic data captured by these sensors with other omic data (e.g., transcriptomic and metabolomic) presents exciting opportunities for investigating disease risk factors. For example, the linkage of exposomic sensor data with other omic data may indicate perturbation by multipollutant mixtures at multiple physiological levels, which would strengthen evidence of their effects and potentially indicate targets for interventions. However, there remain considerable theoretical and methodological challenges that must be overcome to realize the potential promise of omic integration. Through continued investment and improvement in exposomic sensor technologies, it may be possible to refine their application and reduce their outstanding limitations to advance the fields of exposure science and epidemiology.
Collapse
|
37
|
A rapid GC method coupled with quadrupole or time of flight mass spectrometry for metabolomics analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122355. [PMID: 32920480 DOI: 10.1016/j.jchromb.2020.122355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/01/2023]
Abstract
Gas chromatography-mass spectrometry (GC-MS) is an ideal tool for analyzing the intermediates of tricarboxylic acid cycle and glycolysis, sugars, organic acids and amino acids, etc. High-throughput metabolomics methods are required by large-scale clinical researches, and time of flight mass spectrometry (TOF MS) having fast scanning rate is preferable for rapid GC. Quadrupole MS (qMS) instruments have 95% market share, and their potential in rapid metabolomics is worth being studied. In this work, a within 15-min GC program was established and matched by qMS scanning for plasma metabolome analysis after N-methyl-N-(trimethylsilyl)-trifluoroacetamide derivatization. Compared to the longer-time program GC-qMS method, the rapid GC-qMS method had nearly no metabolome information loss, and it had excellent profile performance in repeatability, intra-day and inter-day precision, sampling range, linearity and extraction recovery. Compared to TOF MS, qMS achieved similar results in investigating lung cancer serum metabolic disruptions. Partial least squares-discriminant analysis revealed that the two datasets acquired by qMS and TOF MS had very similar model parameters, and most of top ranked differential metabolites were the same. This study provides a rapid and economical GC-qMS metabolomics method for researchers. Still, MS having faster scanning rate and higher sensitivity are recommended, if possible, to detect more small peaks and some co-eluted peaks.
Collapse
|
38
|
Orešič M, McGlinchey A, Wheelock CE, Hyötyläinen T. Metabolic Signatures of the Exposome-Quantifying the Impact of Exposure to Environmental Chemicals on Human Health. Metabolites 2020; 10:metabo10110454. [PMID: 33182712 PMCID: PMC7698239 DOI: 10.3390/metabo10110454] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
Human health and well-being are intricately linked to environmental quality. Environmental exposures can have lifelong consequences. In particular, exposures during the vulnerable fetal or early development period can affect structure, physiology and metabolism, causing potential adverse, often permanent, health effects at any point in life. External exposures, such as the “chemical exposome” (exposures to environmental chemicals), affect the host’s metabolism and immune system, which, in turn, mediate the risk of various diseases. Linking such exposures to adverse outcomes, via intermediate phenotypes such as the metabolome, is one of the central themes of exposome research. Much progress has been made in this line of research, including addressing some key challenges such as analytical coverage of the exposome and metabolome, as well as the integration of heterogeneous, multi-omics data. There is strong evidence that chemical exposures have a marked impact on the metabolome, associating with specific disease risks. Herein, we review recent progress in the field of exposome research as related to human health as well as selected metabolic and autoimmune diseases, with specific emphasis on the impacts of chemical exposures on the host metabolome.
Collapse
Affiliation(s)
- Matej Orešič
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Aidan McGlinchey
- School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden; (M.O.); (A.M.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden;
| | - Tuulia Hyötyläinen
- MTM Research Centre, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
- Correspondence:
| |
Collapse
|
39
|
Dai Y, Huo X, Cheng Z, Faas MM, Xu X. Early-life exposure to widespread environmental toxicants and maternal-fetal health risk: A focus on metabolomic biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139626. [PMID: 32535459 DOI: 10.1016/j.scitotenv.2020.139626] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
Prenatal exposure to widespread environmental toxicants is detrimental to maternal health and fetal development. The effects of environmental toxicants on maternal and fetal metabolic profile changes have not yet been summarized. This systematic review aims to summarize the current studies exploring the association between prenatal exposure to environmental toxicants and metabolic profile alterations in mother and fetus. We searched the MEDLINE (PubMed) electronic database for relevant literature conducted up to September 18, 2019 with some key terms. From the initial 155 articles, 15 articles met the inclusion and exclusion criteria, and consist of highly heterogeneous research methods. Seven studies assessed the effects of multiple environmental pollutants (metals, organic pollutants, nicotine, air pollutants) on the maternal urine and blood metabolomic profile; five studies evaluated the effects of arsenic, polychlorinated biphenyls (PCBs), nicotine, and ambient fine particulate matter (PM2.5) on the cord blood metabolomic profile; and one study assessed the effects of smoking exposure on the amniotic fluid metabolomic profile. The alteration of metabolic pathways in these studies mainly involve energy metabolism, hormone metabolism, oxidative stress and inflammation. No population study investigated the association between environmental toxicants and placental metabolomics. This systematic review provides evidence that prenatal exposure to a variety of environmental pollutants can affect maternal and fetal metabolomic characteristics. Integration of environmental toxicant exposure and metabolomics data in maternal-fetal samples is helpful to understand the interaction between toxicants and metabolites, so as to reveal the pathogenesis of fetal disease or diseases of fetal origin.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, Guangdong, China
| | - Zhiheng Cheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands; Department of Obstetrics and Gynecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
40
|
Vineis P, Robinson O, Chadeau-Hyam M, Dehghan A, Mudway I, Dagnino S. What is new in the exposome? ENVIRONMENT INTERNATIONAL 2020; 143:105887. [PMID: 32619912 DOI: 10.1016/j.envint.2020.105887] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 05/02/2023]
Abstract
The exposome concept refers to the totality of exposures from a variety of external and internal sources including chemical agents, biological agents, or radiation, from conception onward, over a complete lifetime. It encompasses also "psychosocial components" including the impact of social relations and socio-economic position on health. In this review we provide examples of recent contributions from exposome research, where we believe their application will be of the greatest value for moving forward. So far, environmental epidemiology has mainly focused on hard outcomes, such as mortality, disease exacerbation and hospitalizations. However, there are many subtle outcomes that can be related to environmental exposures, and investigations can be facilitated by an improved understanding of internal biomarkers of exposure and response, through the application of omic technologies. Second, though we have a wealth of studies on environmental pollutants, the assessment of causality is often difficult because of confounding, reverse causation and other uncertainties. Biomarkers and omic technologies may allow better causal attribution, for example using instrumental variables in triangulation, as we discuss here. Even more complex is the understanding of how social relationships (in particular socio-economic differences) influence health and imprint on the fundamental biology of the individual. The identification of molecular changes that are intermediate between social determinants and disease status is a way to fill the gap. Another field in which biomarkers and omics are relevant is the study of mixtures. Epidemiology often deals with complex mixtures (e.g. ambient air pollution, food, smoking) without fully disentangling the compositional complexity of the mixture, or with rudimentary approaches to reflect the overall effect of multiple exposures or components. From the point of view of disease mechanisms, most models hypothesize that several stages need to be transitioned through health to the induction of disease, but very little is known about the characteristics and temporal sequence of such stages. Exposome models reinforce the idea of a biography-to-biology transition, in that everyone's disease is the product of the individual history of exposures, superimposed on their underlying genetic susceptibilities. Finally, exposome research is facilitated by technological developments that complement traditional epidemiological study designs. We describe in depth one such new tools, adductomics. In general, the development of high-resolution and high-throughput technologies interrogating multiple -omics (such as epigenomics, transcriptomics, proteomics, adductomics and metabolomics) yields an unprecedented perspective into the impact of the environment in its widest sense on disease. The world of the exposome is rapidly evolving, though a huge gap still needs to be filled between the original expectations and the concrete achievements. Perhaps the most urgent need is for the establishment of a new generation of cohort studies with appropriately specified biosample collection, improved questionnaire data (including social variables), and the deployment of novel technologies that allow better characterization of individual environmental exposures, ranging from personal monitoring to satellite based observations.
Collapse
Affiliation(s)
- Paolo Vineis
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; Italian Institute of Technology, Genova, Italy.
| | - Oliver Robinson
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| | - Marc Chadeau-Hyam
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| | - Abbas Dehghan
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; UK Dementia Research Institute, Imperial College London, London, UK
| | - Ian Mudway
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK; MRC Centre for Environment and Health, King's College London, London, UK
| | - Sonia Dagnino
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, W2 1PG London, UK
| |
Collapse
|
41
|
Huang JY, Luu HN, Butler LM, Midttun Ø, Ulvik A, Wang R, Jin A, Gao YT, Tan Y, Ueland PM, Koh WP, Yuan JM. A prospective evaluation of serum methionine-related metabolites in relation to pancreatic cancer risk in two prospective cohort studies. Int J Cancer 2020; 147:1917-1927. [PMID: 32222976 PMCID: PMC11537248 DOI: 10.1002/ijc.32994] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022]
Abstract
Deficiencies in methyl donor status may render DNA methylation changes and DNA damage, leading to carcinogenesis. Epidemiological studies reported that higher dietary intake of choline is associated with lower risk of pancreatic cancer, but no study has examined the association of serum choline and its metabolites with risk of pancreatic cancer. Two parallel case-control studies, one nested within the Shanghai Cohort Study (129 cases and 258 controls) and the other within the Singapore Chinese Health Study (58 cases and 104 controls), were conducted to evaluate the associations of baseline serum concentrations of choline, betaine, methionine, total methyl donors (i.e., sum of choline, betaine and methionine), dimethylglycine and trimethylamine N-oxide (TMAO) with pancreatic cancer risk. In the Shanghai cohort, odds ratios and 95% confidence intervals of pancreatic cancer for the highest quartile of choline, betaine, methionine, total methyl donors and TMAO were 0.27 (0.11-0.69), 0.57 (0.31-1.05), 0.50 (0.26-0.96), 0.37 (0.19-0.73) and 2.81 (1.37-5.76), respectively, compared to the lowest quartile. The corresponding figures in the Singapore cohort were 0.85 (0.23-3.17), 0.50 (0.17-1.45), 0.17 (0.04-0.68), 0.33 (0.10-1.16) and 1.42 (0.50-4.04). The inverse associations of methionine and total methyl donors including choline, betaine and methionine with pancreatic cancer risk in both cohorts support that DNA repair and methylation play an important role against the development of pancreatic cancer. In the Shanghai cohort, TMAO, a gut microbiota-derived metabolite of dietary phosphatidylcholine, may contribute to higher risk of pancreatic cancer, suggesting a modifying role of gut microbiota in the dietary choline-pancreatic cancer risk association.
Collapse
Affiliation(s)
- Joyce Y. Huang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Hung N. Luu
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Lesley M. Butler
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | | - Arve Ulvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Renwei Wang
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Aizhen Jin
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Yuting Tan
- Department of Epidemiology, Shanghai Cancer Institute/Shanghai Jiaotong University, Shanghai, China
| | - Per M. Ueland
- Bevital A/S, Bergen, Norway
- Laboratory of Clinical Biochemistry, Haukeland University Hospital, Bergen, Norway
| | - Woon-Puay Koh
- Health Service and Systems Research, Duke-NUS Medical School Singapore, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Science, UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
42
|
Applying the exposome concept in birth cohort research: a review of statistical approaches. Eur J Epidemiol 2020; 35:193-204. [PMID: 32221742 PMCID: PMC7154018 DOI: 10.1007/s10654-020-00625-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/17/2020] [Indexed: 12/30/2022]
Abstract
The exposome represents the totality of life course environmental exposures (including lifestyle and other non-genetic factors), from the prenatal period onwards. This holistic concept of exposure provides a new framework to advance the understanding of complex and multifactorial diseases. Prospective pregnancy and birth cohort studies provide a unique opportunity for exposome research as they are able to capture, from prenatal life onwards, both the external (including lifestyle, chemical, social and wider community-level exposures) and the internal (including inflammation, metabolism, epigenetics, and gut microbiota) domains of the exposome. In this paper, we describe the steps required for applying an exposome approach, describe the main strengths and limitations of different statistical approaches and discuss their challenges, with the aim to provide guidance for methodological choices in the analysis of exposome data in birth cohort studies. An exposome approach implies selecting, pre-processing, describing and analyzing a large set of exposures. Several statistical methods are currently available to assess exposome-health associations, which differ in terms of research question that can be answered, of balance between sensitivity and false discovery proportion, and between computational complexity and simplicity (parsimony). Assessing the association between many exposures and health still raises many exposure assessment issues and statistical challenges. The exposome favors a holistic approach of environmental influences on health, which is likely to allow a more complete understanding of disease etiology.
Collapse
|
43
|
Oestrogenic Endocrine Disruptors in the Placenta and the Fetus. Int J Mol Sci 2020; 21:ijms21041519. [PMID: 32102189 PMCID: PMC7073155 DOI: 10.3390/ijms21041519] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the stability and regulation of the endocrine system of the body or its offspring. These substances are generally stable in chemical properties, not easy to be biodegraded, and can be enriched in organisms. In the past half century, EDCs have gradually entered the food chain, and these substances have been frequently found in maternal blood. Perinatal maternal hormone levels are unstable and vulnerable to EDCs. Some EDCs can affect embryonic development through the blood-fetal barrier and cause damage to the neuroendocrine system, liver function, and genital development. Some also effect cross-generational inheritance through epigenetic mechanisms. This article mainly elaborates the mechanism and detection methods of estrogenic endocrine disruptors, such as bisphenol A (BPA), organochlorine pesticides (OCPs), diethylstilbestrol (DES) and phthalates (PAEs), and their effects on placenta and fetal health in order to raise concerns about the proper use of products containing EDCs during pregnancy and provide a reference for human health.
Collapse
|
44
|
Affiliation(s)
- Lei Li
- The Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, People’s Republic of China
| | - Mingcui Zhang
- The Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, People’s Republic of China
| |
Collapse
|
45
|
Wheelock CE, Rappaport SM. The role of gene-environment interactions in lung disease: the urgent need for the exposome. Eur Respir J 2020; 55:55/2/1902064. [PMID: 32029645 DOI: 10.1183/13993003.02064-2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Craig E Wheelock
- Division of Physiological Chemistry 2, Dept of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Stephen M Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
46
|
Campanella B, Colombaioni L, Benedetti E, Di Ciaula A, Ghezzi L, Onor M, D’Orazio M, Giannecchini R, Petrini R, Bramanti E. Toxicity of Thallium at Low Doses: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:4732. [PMID: 31783498 PMCID: PMC6926957 DOI: 10.3390/ijerph16234732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 02/07/2023]
Abstract
A mini review of the toxicity of Thallium (Tl) at low doses is herein presented. Thallium has severe toxicity. Although its acute biological effects have been widely investigated and are well known, its biological effects on human health and in cell cultures at low doses (<100 μg/L) due, for example, to Tl chronic exposure via consumption of contaminated water or foods, have often been overlooked or underestimated. Relatively few papers have been published on this topic and are herein reviewed to provide a focused scientific opinion in the light of current worldwide regulatory issues.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organo Metallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.)
| | - Laura Colombaioni
- CNR Neuroscience Institute, Area della Ricerca CNR, 56124 Pisa, Italy;
| | - Edoardo Benedetti
- Hematology Unit, Department of Oncology, University of Pisa, 56126 Pisa, Italy;
| | - Agostino Di Ciaula
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy;
| | - Lisa Ghezzi
- Department of Earth Sciences, University of Pisa, 56126 Pisa, Italy; (L.G.); (M.D.); (R.G.); (R.P.)
| | - Massimo Onor
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organo Metallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.)
| | - Massimo D’Orazio
- Department of Earth Sciences, University of Pisa, 56126 Pisa, Italy; (L.G.); (M.D.); (R.G.); (R.P.)
| | - Roberto Giannecchini
- Department of Earth Sciences, University of Pisa, 56126 Pisa, Italy; (L.G.); (M.D.); (R.G.); (R.P.)
| | - Riccardo Petrini
- Department of Earth Sciences, University of Pisa, 56126 Pisa, Italy; (L.G.); (M.D.); (R.G.); (R.P.)
| | - Emilia Bramanti
- National Research Council of Italy, C.N.R., Institute of Chemistry of Organo Metallic Compounds-ICCOM, 56124 Pisa, Italy; (B.C.); (M.O.)
| |
Collapse
|
47
|
|