1
|
Song C, Wang S, Zhang Q, Li M, Zhang B. Natural mackinawite-based elimination of vanadium and ammonium from wastewater in autotrophic biosystem. WATER RESEARCH 2025; 277:123333. [PMID: 39985994 DOI: 10.1016/j.watres.2025.123333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/11/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Vanadium (V) production results in significant amounts of wastewater, which often co-contains considerable ammonium (NH4+) after being used as precipitants. Both pentavalent V [V(V)] and NH4+ can be removed independently through biological process. However, internal interactive biotechnology for one-step elimination of V(V) and NH4+ remains an enigma. In this study, we proposed biologically removing V(V) and NH4+ simultaneously with natural mineral mackinawite as electron donor and its oxidation products as electron acceptors. Our bioreactor achieved a V(V) removal efficiency of 99.5 ± 0.22 % and an NH4+-N removal capacity of 49.5 ± 0.40 g/m3·d. V(V) was reduced to tetravalent V precipitates, while mackinawite was bio-oxidized to Fe(III) and sulfate. Metagenomic binning analysis indicated Sulfurivermis sp. mediated mackinawite oxidation and V(V) reduction. Putative Pseudomonas sp. conducted NH4+ assimilation, anaerobic ammonium oxidation coupled to Fe(III) reduction (Feammox), and denitrification, achieving complete NH4+-N removal. Real-time qPCR validated the upregulation of functional genes involved in V(V) reduction and nitrogen metabolisms, with improved functional enzyme activities. Cytochrome c, nicotinamide adenine dinucleotide, and extracellular polymeric substances promoted electron transfer, facilitating the elimination of both V(V) and NH4+-N from wastewater. This study offers a novel and sustainable biological strategy for one-step treating V industrial wastewater.
Collapse
Affiliation(s)
- Chenran Song
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Song Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Qinghao Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Min Li
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| |
Collapse
|
2
|
Sun Z, Li B, Liu J. Synchronous vanadium bio-reduction/detoxification/recovery and nitrogen attenuation in a membrane aerated biofilm reactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126095. [PMID: 40118365 DOI: 10.1016/j.envpol.2025.126095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
The presence of both pentavalent vanadium [V(Ⅴ)] and nitrogen in wastewaters from vanadium smelting poses significant environmental challenges. However, it remains little in the way of continuous flow biological reactor to concurrently eliminated V(Ⅴ) and nitrogen in wastewaters. Herein, membrane-aerated biofilm reactor (MABR) system was designed to achieve simultaneous nitrification and denitrification (SND) alongside biological reduction, detoxification, and recovery of vanadium. Vanadium and nitrogen removal performances, solid-state characterization, microbial compositions and functional genes, and the mechanism related to the metabolism of vanadium and nitrogen were illuminated. Notably, we identified a potential role for biofilm-derived "secretion" in the transformation of V(Ⅴ) and nitrogen. Our findings revealed that the system achieved SND efficiency of 98.00 ± 0.57 % and removed 91.10 ± 3.60 % of total vanadium (TV) even at high influent V(Ⅴ) concentrations in continuous flow stage. Batch experiments implied that the conversion of NH4+-N was the limiting process of nitrogen removal in MABR system, and the extracellular polymeric substances (EPS) might play an important role in the conversion of V(Ⅴ) and nitrogen. V(Ⅴ) was reduced to V(Ⅳ), which was immobilized to biofilm and "secretion" by microbial surface functional groups, including C-O, O-C=O and -OH. Acinetobacter, Dechlorobacter, Denitratisoma and Nitrospira were verified as microbes associated with V(Ⅴ) and nitrogen metabolism. The abundance of functional genes pertaining to electron donor, electron transport, and electron acceptor systems increased under high V(V) stimulation. Collectively, the cooperation of biofilm and "secretion" ensured the intensive removal of vanadium and nitrogen. This study provides new insights into the concurrent removal of heavy metal and environmental nutrient.
Collapse
Affiliation(s)
- Zhiye Sun
- School of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin, 150022, PR China
| | - Baoan Li
- Carbon Neutrality Interdisciplinary Science Centre, Tianjin Key Laboratory of Environmental Technology for Complex Trans-media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Jun Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou, Hainan, 570228, PR China.
| |
Collapse
|
3
|
Wang L, Zhang Y, Chen S, Jin Y, Zhang B. Remediation of vanadium(V)-contaminated groundwater by the Shewanella oneidensis MR-1, Fe 2O 3, and biochar composite. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70063. [PMID: 40152150 DOI: 10.1002/wer.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Vanadium, essential for steel production and energy storage, is increasingly found in groundwater due to extensive mining and industrial activities. Its high mobility and reactivity pose significant environmental risks. This study developed an Shewanella oneidensis MR-1- Fe2O3-biochar composite to enhance vanadium bioremediation. The composite exhibited strong vanadium resistance, achieving 92.5 ± 1.48% removal of pentavalent vanadium [V(V)] at 100 mg/l with an optimal biochar/Fe₂O₃ ratio of 10:1. Its efficiency was further assessed under varying pH, organic carbon levels, and V(V) concentrations. XPS analysis confirmed the presence of tetravalent vanadium [V (IV)] and divalent iron [Fe (II)], while FTIR spectroscopy identified functional groups (-OH, C=C, C=O) within the composite. These results suggest a synergistic removal mechanism involving complexation, dissimilatory iron reduction, and microbial V(V) reduction. This study provides a promising strategy for remediating V(V)-contaminated groundwater. PRACTITIONER POINTS: A novel composite consisted of Shewanella oneidensis MR-1, Fe2O3, and biochar was synthesized Complex promoted microbial life and increased resistance towards V(V) Complexation, Fe (II) oxidation, and bioreduction collectively contributed to V(V) removal.
Collapse
Affiliation(s)
- Luyao Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Yang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Yiming Jin
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, P. R. China
| |
Collapse
|
4
|
Hao L, Fu B, Shi J, Zhou H, Shi C, Hao X. Synchronous bioremediation of vanadium(V) and chromium(VI) using straw in a continuous-flow reactor. ENVIRONMENTAL RESEARCH 2025; 264:120312. [PMID: 39521263 DOI: 10.1016/j.envres.2024.120312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Vanadium (V) and chromium (Cr) are key resources widely used in industrial production. However, mining causes V(V) and Cr(VI) contamination in groundwater, posing health and environmental risks. Straw is an important byproduct and considered waste, however, it could be a solid carbon source. Therefore, the feasibility of V(V) and Cr(VI) bioremediation in groundwater was determined using straw as the carbon source in this study. A continuous-flow reactor able to resist fluctuations in pollutant concentrations in groundwater was constructed. V(V) and Cr(VI) were completely removed (100%, 10-34 d) in the reactor, and the maximum Cr(VI) removal rate from effluent was 1.19 mg/(L·h) (34-64 d). After long-term reactor operation (114 d), the V(V) and Cr(VI) removal rates reached almost 100%. Moreover, the formation of humus and tryptophan contributed to V(V) and Cr(VI) bioremediation. The extracellular polymeric substance content increased from 108.28 to 113.98 mg/g VSS, and combined with V(V) and Cr(VI) to reduce their concentrations. Moreover, functional microbes associated with heavy metal removal (Bacillus and Pseudobacteroides) and straw decomposition (Paludibacter) were found. The findings of this study offer empirical evidence that support the utilization of straw for mitigating composite heavy metal pollution, thereby laying a foundation for its practical engineering applications.
Collapse
Affiliation(s)
- Liting Hao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Bowei Fu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Jinkai Shi
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hongliang Zhou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chen Shi
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xiaodi Hao
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education/Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
5
|
Wu J, Xu Q, Zhang R, Bai X, Zhang C, Chen Q, Chen H, Wang N, Huang D. Methane oxidation coupling with heavy metal and microplastic transformations for biochar-mediated landfill cover soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135879. [PMID: 39298948 DOI: 10.1016/j.jhazmat.2024.135879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The impact of co-occurring heavy metal (HM) and microplastic (MP) pollution on methane (CH4) oxidation by methanotrophs (MOB) in landfill cover soil (LCS) and the role of biochar in mediating these collaborative transformations remains unclear. This study conducted batch-scale experiments using LCS treated with individual or combined HMs and MPs, with or without biochar amendment. Differentiation in methanotrophic activities, HM transformations, MP aging, soil properties, microbial communities, and functional genes across the groups were analyzed. Biochar proved essential in sustaining efficient CH4 oxidation under HM and MP stress, mainly by diversifying MOB, and enhancing polysaccharide secretion to mitigate environmental stress. While low levels of HMs slightly inhibited CH4 oxidation, high HM concentration enhanced methanotrophic activities by promoting electron transfer process. MPs consistently stimulated CH4 oxidation, exerting a stronger influence than HMs. Notably, the simultaneous presence of low levels of HMs and MPs synergistically boosted CH4 oxidation, linked to distinct microbial evolution and adaptation. Methanotrophic activities were demonstrated to affect the fate of HMs and MPs. Complete passivation of Cu was readily achieved, whereas Zn stabilization was negatively influenced by biochar and MPs. The aging of MPs was also partially suppressed by biochar and HM adsorption.
Collapse
Affiliation(s)
- Jiang Wu
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Rujie Zhang
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Chao Zhang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Qindong Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Huaihai Chen
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, China
| | - Dandan Huang
- Shenzhen Campus of Sun Yat-Sen University, No. 66, Gongchang Road, Guangming District, Shenzhen 518107, China.
| |
Collapse
|
6
|
Wang L, Zhou Y, Min Q, Si Y. Vanadium (V) reduction and the performance of electroactive biofilms in microbial fuel cells with Shewanella putrefaciens. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122592. [PMID: 39305862 DOI: 10.1016/j.jenvman.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The electron transfer ability of biofilms significantly influences the electrochemical activity of microbial fuel cells (MFCs). However, there is limited understanding of pentavalent vanadium (V(V)) bioreduction and microbial response characteristics in MFCs. In this study, the effect of gradient concentrations of V(V) on the performance of EABs with Shewanella putrefaciens in MFCs was investigated. The results showed that as V(V) concentration increased (0-100 mg/L), the voltage output, power densities, polarization, and electrode potential decreased. V(V) was found to act as an electron acceptor and was reduced during MFCs operation, with a yield of 83.16% being observed at 25 mg/L V(V). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) indicated declining electrochemical performance of the MFCs with escalating V(V) concentration. The content of protein and polysaccharide from extracellular polymeric substances (EPS) in anodic biofilms increased to 66.75 and 49.15 mg/L at 75 mg/L V(V), respectively. Three-dimensional fluorescence spectroscopy confirmed increased humic substances in EPS extraction with V(V) exposure. The functional genes narG, nirK, and gor involved in V(V) reduction were upregulated with rising V(V) concentration through quantitative polymerase chain reaction (qPCR) analysis. Additionally, riboflavin, cytochrome c, nicotinamide adenine dinucleotide (NADH), and electron transport system activity (ETSA), key indicators for assessing electron transfer behavior, exhibited a negative correlation with various V(V) concentrations, decreasing by 31.81%, 57.14%, 67.39%, and 51.41%, respectively, at a concentration of 100 mg/L V(V) compared to the blank control. These findings contribute valuable insights into the response of EABs to V(V) exposure, presenting potential strategies for enhancing their effectiveness in the treatment of vanadium-contaminated wastewater.
Collapse
Affiliation(s)
- Lili Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yue Zhou
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Min
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Zhao Y, Liu Y, Cao S, Hao Q, Liu C, Li Y. Anaerobic oxidation of methane driven by different electron acceptors: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174287. [PMID: 38945238 DOI: 10.1016/j.scitotenv.2024.174287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/31/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Methane, the most significant reduced form of carbon on Earth, acts as a crucial fuel and greenhouse gas. Globally, microbial methane sinks encompass both aerobic oxidation of methane (AeOM), conducted by oxygen-utilizing methanotrophs, and anaerobic oxidation of methane (AOM), performed by anaerobic methanotrophs employing various alternative electron acceptors. These electron acceptors involved in AOM include sulfate, nitrate/nitrite, humic substances, and diverse metal oxides. The known anaerobic methanotrophic pathways comprise the internal aerobic oxidation pathway found in NC10 bacteria and the reverse methanogenesis pathway utilized by anaerobic methanotrophic archaea (ANME). Diverse anaerobic methanotrophs can perform AOM independently or in cooperation with symbiotic partners through several extracellular electron transfer (EET) pathways. AOM has been documented in various environments, including seafloor methane seepages, coastal wetlands, freshwater lakes, soils, and even extreme environments like hydrothermal vents. The environmental activities of AOM processes, driven by different electron acceptors, primarily depend on the energy yields, availability of electron acceptors, and environmental adaptability of methanotrophs. It has been suggested that different electron acceptors driving AOM may occur across a wider range of habitats than previously recognized. Additionally, it is proposed that methanotrophs have evolved flexible metabolic strategies to adapt to complex environmental conditions. This review primarily focuses on AOM, driven by different electron acceptors, discussing the associated reaction mechanisms and the habitats where these processes are active. Furthermore, it emphasizes the pivotal role of AOM in mitigating methane emissions.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yaci Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| | - Shengwei Cao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Qichen Hao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Chunlei Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China.
| |
Collapse
|
8
|
Wu K, Ouyang S, Tao Z, Hu X, Zhou Q. Algal extracellular polymeric substance compositions drive the binding characteristics, affinity, and phytotoxicity of graphene oxide in water. WATER RESEARCH 2024; 260:121908. [PMID: 38878307 DOI: 10.1016/j.watres.2024.121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water. This study integrates fluorescence excitation-emission matrix-parallel factor, two-dimensional correlation spectroscopy, and biolayer interferometry studies on the binding characteristics and affinity between EPS fractions and GO. The results revealed the preferential binding of fluorescent aromatic protein-like component, fulvic-like component, and non-fluorescent polysaccharide in soluble EPS (S-EPS) and bound EPS (B-EPS) on GO via π-π stacking and electrostatic interaction that contributed to a higher adsorption capacity of S-EPS on GO and weaker affinity than of B-EPS. Moreover, the EPS fractions drive the morphological and structural alterations, and the attenuated colloid stability of GO in water. Notably, GO-EPS induced stronger phytotoxicity (e.g., photosynthetic damage, and membrane lipid remodeling) compared to pristine GO. Metabolic and functional lipid analysis further elucidated the regulation of amino acid, carbohydrate, and lipid metabolism contributed to the persistent phytotoxicity. This work provides insights into the roles and mechanisms of EPS fractions composition in regulating the environmental fate and risk of GO in natural water.
Collapse
Affiliation(s)
- Kangying Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
9
|
Zhang X, Zhao J, Erler DV, Rabiee H, Kong Z, Wang S, Wang Z, Virdis B, Yuan Z, Hu S. Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121523. [PMID: 38901321 DOI: 10.1016/j.jenvman.2024.121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Anaerobic oxidation of methane (AOM) is a microbial process of importance in the global carbon cycle. AOM is predominantly mediated by anaerobic methanotrophic archaea (ANME), the physiology of which is still poorly understood. Here we present a new addition to the current physiological understanding of ANME by examining, for the first time, the biochemical and redox-active properties of the extracellular polymeric substances (EPS) of an ANME enrichment culture. Using a 'Candidatus Methanoperedens nitroreducens'-dominated methanotrophic consortium as the representative, we found it can produce an EPS matrix featuring a high protein-to-polysaccharide ratio of ∼8. Characterization of EPS using FTIR revealed the dominance of protein-associated amide I and amide II bands in the EPS. XPS characterization revealed the functional group of C-(O/N) from proteins accounted for 63.7% of total carbon. Heme-reactive staining and spectroscopic characterization confirmed the distribution of c-type cytochromes in this protein-dominated EPS, which potentially enabled its electroactive characteristic. Redox-active c-type cytochromes in EPS mediated the EET of 'Ca. M. nitroreducens' for the reduction of Ag+ to metallic Ag, which was confirmed by both ex-situ experiments with extracted soluble EPS and in-situ experiments with pristine EPS matrix surrounding cells. The formation of nanoparticles in the EPS matrix during in-situ extracellular Ag + reduction resulted in a relatively lower intracellular Ag distribution fraction, beneficial for alleviating the Ag toxicity to cells. The results of this study provide the first biochemical information on EPS of anaerobic methanotrophic consortia and a new insight into its physiological role in AOM process.
Collapse
Affiliation(s)
- Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Jing Zhao
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; Ecological Engineering of Mine Wastes, Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Dirk V Erler
- Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Hesamoddin Rabiee
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Queensland, Australia
| | - Zheng Kong
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Suicao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiyao Wang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia; School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
10
|
Fei Y, Zhang B, Zhang Q, Chen D, Cao W, Borthwick AGL. Multiple pathways of vanadate reduction and denitrification mediated by denitrifying bacterium Acidovorax sp. strain BoFeN1. WATER RESEARCH 2024; 257:121747. [PMID: 38733964 DOI: 10.1016/j.watres.2024.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Contamination of aquifers by a combination of vanadate [V(V)] and nitrate (NO3-) is widespread nowadays. Although bioremediation of V(V)- and nitrate-contaminated environments is possible, only a limited number of functional species have been identified to date. The present study demonstrates the effectiveness of V(V) reduction and denitrification by a denitrifying bacterium Acidovorax sp. strain BoFeN1. The V(V) removal efficiency was 76.5 ± 5.41 % during 120 h incubation, with complete removal of NO3- within 48 h. Inhibitor experiments confirmed the involvement of electron transport substances and denitrifying enzymes in the bioreduction of V(V) and NO3-. Cyt c and riboflavin were important for extracellular V(V) reduction, with quinone and EPS more significant for NO3- removal. Intracellular reductive compounds including glutathione and NADH directly reduce V(V) and NO3-. Reverse transcription quantitative PCR confirmed the important roles of nirK and napA genes in regulating V(V) reduction and denitrification. Bioaugmentation by strain BoFeN1 increased V(V) and NO3- removal efficiency by 55.3 % ± 2.78 % and 42.1 % ± 1.04 % for samples from a contaminated aquifer. This study proposes new microbial resources for the bioremediation of V(V) and NO3-contaminated aquifers, and contributes to our understanding of coupled vanadium, nitrogen, and carbon biogeochemical processes.
Collapse
Affiliation(s)
- Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Qinghao Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Dandan Chen
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua 617000, PR China
| | - Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, PR China
| | - Alistair G L Borthwick
- St Edmund Hall, Queen's Lane, Oxford OX1 4AR, UK; School of Engineering, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, UK; School of Engineering, Computing and Mathematics, University of Plymouth, Drakes Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
11
|
Li R, Xi B, Wang X, Li Y, Yuan Y, Tan W. Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications. WATER RESEARCH 2024; 255:121498. [PMID: 38522398 DOI: 10.1016/j.watres.2024.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Landfills remain the predominant means of solid waste management worldwide. Widespread distribution and significant stockpiles of waste in landfills make them a significant source of methane emissions, exacerbating climate change. Anaerobic oxidation of methane (AOM) has been shown to play a critical role in mitigating methane emissions on a global scale. The rich methane and electron acceptor environment in landfills provide the necessary reaction conditions for AOM, making it a potentially low-cost and effective strategy for reducing methane emissions in landfills. However, compared to other anaerobic habitats, research on AOM in landfill environments is scarce, and there is a lack of analysis on the potential application of AOM in different zones of landfills. Therefore, this review summarizes the existing knowledge on AOM and its occurrence in landfills, analyzes the possibility of AOM occurrence in different zones of landfills, discusses its potential applications, and explores the challenges and future research directions for AOM in landfill management. The identification of research gaps and future directions outlined in this review encourages further investigation and advancement in the field of AOM, paving the way for more effective waste stabilization, greenhouse gas reduction, and pollutant mitigation strategies in landfills.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Xiaowei Wang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yanjiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
12
|
Yan Z, Han X, Wang H, Jin Y, Song X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121075. [PMID: 38723502 DOI: 10.1016/j.jenvman.2024.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.
Collapse
Affiliation(s)
- Zixuan Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haodi Wang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingfu Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
13
|
Li W, Feng Z, Zhu X, Gong W. Efficient removal of Cr (VI) from coal gangue by indigenous bacteria-YZ1 bacteria: Adsorption mechanism and reduction characteristics of extracellular polymer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116047. [PMID: 38301582 DOI: 10.1016/j.ecoenv.2024.116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
The existence of heavy metals (especially Cr (VI)) in coal gangue has brought great safety risks to the environment. The indigenous bacteria (YZ1 bacteria) were separated and applied for removing Cr (VI) from the coal gangue, in which its tolerance to Cr (VI) was explored. The removal mechanism of Cr (VI) was investigated with pyrite in coal gangue, metabolite organic acids and extracellular polymer of YZ1 bacteria. The concentration of Cr (VI) could be stabilized around 0.012 mg/L by the treatment with YZ1 bacteria. The Cr (VI) tolerance of YZ1 bacteria reached 60 mg/L, and the removal efficiency of Cr (VI) was more than 95% by using YZ1 bacteria combined with pyrite. The organic acids had a certain reducing ability to Cr (VI) (removal efficiency of less than 10%). The extracellular polymers (EPS) were protective for the YZ1 bacteria resisting to Cr (VI). The polysaccharides and Humic-like substances in the soluble extracellular polymers (S-EPS) had strong adsorption and reduction effect on Cr (VI), in which the tryptophan and tyrosine proteins in the bound extracellular polymers (LB-EPS and TB-EPS) could effectively promote the reduction of Cr (VI). YZ1 bacteria could obviously reduce the damage of Cr (VI) from coal gangue to the environment.
Collapse
Affiliation(s)
- Wang Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Zhaoxiang Feng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China
| | - Xiaobo Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China; Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, China.
| | - Wenhui Gong
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
| |
Collapse
|
14
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
15
|
Wang S, Zhang B, Fei Y, Liu H, Zhao Y, Guo H. Elucidating Multiple Electron-Transfer Pathways for Metavanadate Bioreduction by Actinomycetic Streptomyces microflavus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19921-19931. [PMID: 37934564 DOI: 10.1021/acs.est.3c07288] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
While microbial reduction has gained widespread recognition for efficiently remediating environments polluted by toxic metavanadate [V(V)], the pool of identified V(V)-reducing strains remains rather limited, with the vast majority belonging to bacteria and fungi. This study is among the first to confirm the V(V) reduction capability of Streptomyces microflavus, a representative member of ubiquitous actinomycetes in environment. A V(V) removal efficiency of 91.0 ± 4.35% was achieved during 12 days of operation, with a maximum specific growth rate of 0.073 d-1. V(V) was bioreduced to insoluble V(IV) precipitates. V(V) reduction took place both intracellularly and extracellularly. Electron transfer was enhanced during V(V) bioreduction with increased electron transporters. The electron-transfer pathways were revealed through transcriptomic, proteomic, and metabolomic analyses. Electrons might flow either through the respiratory chain to reduce intracellular V(V) or to cytochrome c on the outer membrane for extracellular V(V) reduction. Soluble riboflavin and quinone also possibly mediated extracellular V(V) reduction. Glutathione might deliver electrons for intracellular V(V) reduction. Bioaugmentation of the aquifer sediment with S. microflavus accelerated V(V) reduction. The strain could successfully colonize the sediment and foster positive correlations with indigenous microorganisms. This study offers new microbial resources for V(V) bioremediation and improve the understanding of the involved molecular mechanisms.
Collapse
Affiliation(s)
- Shixiang Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yangmei Fei
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huan Liu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Yi Zhao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Huaming Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
16
|
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, Ok YS. Vanadium in the Environment: Biogeochemistry and Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14770-14786. [PMID: 37695611 DOI: 10.1021/acs.est.3c04508] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.
Collapse
Affiliation(s)
- Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- International ESG Association (IESGA), Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Verma S, Kuila A, Jacob S. Role of Biofilms in Waste Water Treatment. Appl Biochem Biotechnol 2023; 195:5618-5642. [PMID: 36094648 DOI: 10.1007/s12010-022-04163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
Abstract
Biofilm cells have a different physiology than planktonic cells, which has been the focus of most research. Biofilms are complex biostructures that form on any surface that comes into contact with water on a regular basis. They are dynamic, structurally complex systems having characteristics of multicellular animals and multiple ecosystems. The three themes covered in this review are biofilm ecology, biofilm reactor technology and design, and biofilm modeling. Membrane-supported biofilm reactors, moving bed biofilm reactors, granular sludge, and integrated fixed-film activated sludge processes are all examples of biofilm reactors used for water treatment. Biofilm control and/or beneficial application in membrane processes are improving. Biofilm models have become critical tools for biofilm foundational research as well as biofilm reactor architecture and design. At the same time, the differences between biofilm modeling and biofilm reactor modeling methods are acknowledged.
Collapse
Affiliation(s)
- Samakshi Verma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India
| | - Arindam Kuila
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan, 304022, India.
| | - Samuel Jacob
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Chengalpattu Dist., Kattankulathur, 603203, Tamil Nadu, India.
| |
Collapse
|
18
|
Xue Y, Liu X, Dang Y, Shi T, Sun D. Enhancement of nitrogen removal in coupling Anammox and DAMO via Fe-modified granular activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:118001. [PMID: 37105103 DOI: 10.1016/j.jenvman.2023.118001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) coupled with Denitrifying anaerobic methane oxidation (DAMO) is an attractive technology to simultaneously remove nitrogen and mitigate methane emissions from wastewater. However, its nitrogen removal rate is usually limited due to the low methane mass transfer efficiency, low metabolic activity and slow growth rate of functional microorganisms. In this study, GAC and Fe-modified GAC (Fe-GAC) were added into Anammox-DAMO process to investigate their effects on nitrogen removal rates and then reveal the mechanism. The results showed that after 80-day experiments, the total nitrogen removal rate was slightly improved in the presence of GAC (3.94 mg L-1·d-1), while it reached high as 16.66 mg L-1·d-1 in the presence of Fe-GAC, which was ca.17 times that of non-amended control group (0.96 mg L-1·d-1). The addition of Fe-GAC stimulated the secretion of extracellular polymeric substance (EPS), improved the electron transfer capability and promoted the production of Cytochrome C. Besides, the key functional enzyme activities (HZS, HDH and NAR) were highest in the Fe-GAC group, which were approximately 1.06-1.56 times higher than those of GAC-amended and blank control groups. Microbial community analysis showed that the abundance of the DAMO archaea (Candidatus Methanoperedens) and Anammox bacteria (Candidatus Brocadia) were remarkably increased with the addition of Fe-GAC. Functional genes associated with nitrogen removal and methane oxidation in Fe-GAC system were up-regulated. This study provides a promising strategy for achieving high rate of nitrogen removal upon Anammox-DAMO process.
Collapse
Affiliation(s)
- Yiting Xue
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Environmental Monitoring Station, Ningdong Energy Chemical Industry Base, Yinchuan, 751400, China
| | - Xinying Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Yan Dang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Tianjing Shi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
19
|
Lu J, Geng R, Zhang H, Yu Z, Chen T, Zhang B. Concurrent reductive decontamination of chromium (VI) and uranium (VI) in groundwater by Fe(0)-based autotrophic bioprocess. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131222. [PMID: 36989793 DOI: 10.1016/j.jhazmat.2023.131222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
The co-presence of chromium (VI) [Cr(VI)] and uranium (VI) [U(VI)] is widely found in groundwater, imposing severe risks on human health. Although zerovalent iron [Fe(0)] supports superb performance for bioreduction of Cr(VI) and U(VI) individually, the biogeochemical process involving their concurrent removal with Fe(0) as electron donor remains unexplored. In the 6-d batch study, 86.1% ± 0.7% of Cr(VI) was preferentially eliminated, while 78.4% ± 0.5% of U(VI) removal was achieved simultaneously. Efficient removal of Cr(VI) (100%) and U(VI) (51.2% ∼ 100%) was also obtained in a continuous 160-d column experiment. As a result, Cr(VI) and U(VI) were reduced to less mobile Cr(III) and insoluble U(IV), respectively. 16 S rRNA sequencing was performed to investigate the dynamics of microbial community. Delftia, Acinetobacter, Pseudomonas and Desulfomicrobium were the major contributors mediating the bioreduction process. The initial Cr(VI) and hydraulic retention time (HRT) incurred pronounced effects on community diversity, which in turn altered the reactor's performance. The enrichment of Cr(VI) resistance (chrA), U(VI) reduction (dsrA) and Fe(II) oxidation (mtrA) genes were observed by reverse transcription qPCR. Cytochrome c, glutathione and NADH as well as VFAs and gas metabolites also involved in the bioprocess. This study demonstrated a promising approach for removing the combined contaminants of Cr(VI) and U(VI) in groundwater.
Collapse
Affiliation(s)
- Jianping Lu
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Rongyue Geng
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China.
| | - Zhen Yu
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Tao Chen
- School of Environment, South China Normal University, University Town, Guangzhou 510006, PR China.
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, PR China
| |
Collapse
|
20
|
Wu M, Lai CY, Wang Y, Yuan Z, Guo J. Microbial nitrate reduction in propane- or butane-based membrane biofilm reactors under oxygen-limiting conditions. WATER RESEARCH 2023; 235:119887. [PMID: 36947926 DOI: 10.1016/j.watres.2023.119887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Nitrate contamination has been commonly detected in water environments and poses serious hazards to human health. Previously methane was proposed as a promising electron donor to remove nitrate from contaminated water. Compared with pure methane, natural gas, which not only contains methane but also other short chain gaseous alkanes (SCGAs), is less expensive and more widely available, representing a more attractive electron source for removing oxidized contaminants. However, it remains unknown if these SCGAs can be utilized as electron donors for nitrate reduction. Here, two lab-scale membrane biofilm reactors (MBfRs) separately supplied with propane and butane were operated under oxygen-limiting conditions to test its feasibility of microbial nitrate reduction. Long-term performance suggested nitrate could be continuously removed at a rate of ∼40-50 mg N/L/d using propane/butane as electron donors. In the absence of propane/butane, nitrate removal rates significantly decreased both in the long-term operation (∼2-10 and ∼4-9 mg N/L/d for propane- and butane-based MBfRs, respectively) and batch tests, indicating nitrate bio-reduction was driven by propane/butane. The consumption rates of nitrate and propane/butane dramatically decreased under anaerobic conditions, but recovered after resupplying limited oxygen, suggesting oxygen was an essential triggering factor for propane/butane-based nitrate reduction. High-throughput sequencing targeting 16S rRNA, bmoX and narG genes indicated Mycobacterium/Rhodococcus/Thauera were the potential microorganisms oxidizing propane/butane, while various denitrifiers (e.g. Dechloromonas, Denitratisoma, Zoogloea, Acidovorax, Variovorax, Pseudogulbenkiania and Rhodanobacter) might perform nitrate reduction in the biofilms. Our findings provide evidence to link SCGA oxidation with nitrate reduction under oxygen-limiting conditions and may ultimately facilitate the design of cost-effective techniques for ex-situ groundwater remediation using natural gas.
Collapse
Affiliation(s)
- Mengxiong Wu
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Chun-Yu Lai
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Yulu Wang
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
21
|
Zhao Y, Gao J, Zhou X, Li Z, Zhao C, Jia X, Ji M. Bio-immobilization and recovery of chromium using a denitrifying biofilm system: Identification of reaction zone, binding forms and end products. J Environ Sci (China) 2023; 126:70-80. [PMID: 36503795 DOI: 10.1016/j.jes.2022.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 06/17/2023]
Abstract
Chromium is an important resource in strategic metals. Different from most studies focusing on the bio-reduction of hexavalent chromium [Cr(VI)], this study aims to achieve the immobilization and recovery of chromium using a sequencing batch biofilm reactor. Results showed that Cr(VI) removal efficiency remained more than 99%, and 97% of reduced Cr(III) was immobilized in the biofilm. Immobilization zone, chromium forms and extracellular polymeric substances composition changes were combined to reveal the mechanism of Cr(VI) reduction and immobilization. The chromium distribution in biofilm demonstrated that intercellular layer was the main active zone with an immobilization amount of 891.70±126.32 mg/g-VSS. The reduced products analysis confirmed that trivalent chromium [Cr(III)] chelated with carboxyl, amino and other functional groups and immobilized in the form of organic Cr(III). The digestion method realized a chromium recovery efficiency of 74.59%. This study provides an alternative method for the bioremediation and resources recovery in chromium polluted wastewater.
Collapse
Affiliation(s)
- Yingxin Zhao
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Junzhi Gao
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xu Zhou
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhouran Li
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Cailian Zhao
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xulong Jia
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of environment Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
22
|
Biofilm-based technology for industrial wastewater treatment: current technology, applications and future perspectives. World J Microbiol Biotechnol 2023; 39:112. [PMID: 36907929 DOI: 10.1007/s11274-023-03567-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
The microbial community in biofilm is safeguarded from the action of toxic chemicals, antimicrobial compounds, and harsh/stressful environmental circumstances. Therefore, biofilm-based technology has nowadays become a successful alternative for treating industrial wastewater as compared to suspended growth-based technologies. In biofilm reactors, microbial cells are attached to static or free-moving materials to form a biofilm which facilitates the process of liquid and solid separation in biofilm-mediated operations. This paper aims to review the state-of-the-art of recent research on bacterial biofilm in industrial wastewater treatment including biofilm fundamentals, possible applications and problems, and factors to regulate biofilm formation. We discussed in detail the treatment efficiencies of fluidized bed biofilm reactor (FBBR), trickling filter reactor (TFR), rotating biological contactor (RBC), membrane biofilm reactor (MBfR), and moving bed biofilm reactor (MBBR) for different types of industrial wastewater treatment. Besides, biofilms have many applications in food and agriculture, biofuel and bioenergy production, power generation, and plastic degradation. Furthermore, key factors for regulating biofilm formation were also emphasized. In conclusion, industrial applications make evident that biofilm-based treatment technology is impactful for pollutant removal. Future research to address and improve the limitations of biofilm-based technology in wastewater treatment is also discussed.
Collapse
|
23
|
Song X, Yang A, Hu X, Niu AP, Cao Y, Zhang Q. Exploring the role of extracellular polymeric substances in the antimony leaching of tailings by Acidithiobacillus ferrooxidans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17695-17708. [PMID: 36203043 DOI: 10.1007/s11356-022-23365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The concentration of Sb bearing tailings in water located in abandoned antimony mines was found to be a big problem, as they contaminate other water resources and entire food chain. Microorganisms were found to be key in tailing leaching and reaction speeding in the presence of extracellular polymeric substances (EPS) produced by bacteria. Herein, we investigated the pattern of the Sb leaching from Sb bearing tailings using Acidithiobacillus ferrooxidans, and analyzed the mechanism of EPS in the leaching process of Sb. To completely and deeply understand the functions of EPS in the bioleaching of antimony tailings, the generation behavior of EPS produced by Acidithiobacillus ferrooxidans (A. ferrooxidans) during bioleaching was characterized by three-dimensional excitation-emission matrix (3D-EEM). Meanwhile, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) were used to show the changes of EPS functional groups before and after leaching. Compared with the functional groups in EPS produced by A. ferrooxidans before leaching, the content of hydroxyl and amino groups that reduce high-valent metals to low-valent metals in EPS decreases after leaching, and the carbonyl content increases, corresponding to the ratio of trivalent antimony increased, indicating that EPS could reduce the risk of pentavalent antimony to trivalent one. At the same time, with biological scanning electron microscopy and energy spectrum scanning, the observation of EPS on the mineral surface showed that Sb was adsorbed in the EPS, and the XPS of Sb was fine. Spectral analysis showed that the Sb adsorbed in EPS contained both Sb(III) and Sb(V). Besides, for revealing the influence of EPS in the leaching process of Sb from tailings, this work provided an in-depth understanding of the mechanism of Sb released from tailings under the action of A. ferrooxidans and further provides a basis for the biogeochemical cycle of Sb.
Collapse
Affiliation(s)
- Xia Song
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Aijiang Yang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Xia Hu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - A-Ping Niu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Qingqing Zhang
- Guida Yuanheng Environmental Protection Technology Co., Ltd., of Guizhou, Guiyang, 550025, China
| |
Collapse
|
24
|
Liu HH, Yang L, Guo LK, Tu LX, Li XT, Wang J, Ren YX. The nutrient removal and tolerance mechanism of a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 under metal oxide nanoparticles stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28227-28237. [PMID: 36399297 DOI: 10.1007/s11356-022-24055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The occurrence of metal oxide nanoparticles (NPs) in wastewater treatment plants (WWTPs) has raised great concerns about their adverse impacts on nitrification performance. In this study, a heterotrophic nitrifying bacterium Pseudomonas putida strain NP5 showed strong resistance against TiO2 and NiO NPs. Under 5-50 mg/L NP stress, cell viability was still normal, and the final nutrient removal rates, always higher than 80%, were slightly inhibited. Correspondingly, the PO43--P removal rates were almost the same as those observed in the control test. Although the enzyme assay demonstrated ammonia monooxygenase and hydroxylamine oxidoreductase activities markedly decreased caused by increased reactive oxygen species (ROS) level under 50 mg/L NPs stress. The total antioxidant capability of NP5 could eliminate excess ROS to maintain a balance between oxidants and antioxidants. Besides, in response to the escalating burden of NPs, strain NP5 tended to secrete more extracellular polymeric substances (EPS), which could protect cell from being damaged by binding to ions and coating. Thus, the strong NP resistance of NP5 would help to overcome the vulnerability of the nitrification process in WWTPs.
Collapse
Affiliation(s)
- Huan-Huan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Lei Yang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Lin-Kai Guo
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Li-Xin Tu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiao-Tong Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jia Wang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yong-Xiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
25
|
He J, Zhang B, Wang Y, Chen S, Dong H. Vanadate Bio-Detoxification Driven by Pyrrhotite with Secondary Mineral Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1807-1818. [PMID: 36598371 DOI: 10.1021/acs.est.2c06184] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Vanadium(V) is a redox-sensitive heavy-metal contaminant whose environmental mobility is strongly influenced by pyrrhotite, a widely distributed iron sulfide mineral. However, relatively little is known about microbially mediated vanadate [V(V)] reduction characteristics driven by pyrrhotite and concomitant mineral dynamics in this process. This study demonstrated efficient V(V) bioreduction during 210 d of operation, with a lifespan about 10 times longer than abiotic control, especially in a stable period when the V(V) removal efficiency reached 44.1 ± 13.8%. Pyrrhotite oxidation coupled to V(V) reduction could be achieved by an enriched single autotroph (e.g., Thiobacillus and Thermomonas) independently. Autotrophs (e.g., Sulfurifustis) gained energy from pyrrhotite oxidation to synthesize organic intermediates, which were utilized by the heterotrophic V(V) reducing bacteria such as Anaerolinea, Bacillus, and Pseudomonas to sustain V(V) reduction. V(V) was reduced to insoluble tetravalent V, while pyrrhotite oxidation mainly produced Fe(III) and SO42-. Secondary minerals including mackinawite (FeS) and greigite (Fe3S4) were produced synchronously, resulting from further transformations of Fe(III) and SO42- by sulfate reducing bacteria (e.g., Desulfatiglans) and magnetotactic bacteria (e.g., Nitrospira). This study provides new insights into the biogeochemical behavior of V under pyrrhotite effects and reveals the previously overlooked mineralogical dynamics in V(V) reduction bioprocesses driven by Fe(II)-bearing minerals.
Collapse
Affiliation(s)
- Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Ya'nan Wang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, P. R. China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, School of Earth Science and Resources, China University of Geosciences Beijing, Beijing 100083, P. R. China
| |
Collapse
|
26
|
Huang Z, Chen T, Yang Z, Wang Y, Zhou Y, Ding X, Zhang L, Yan B. Risk assessment and microbial community structure in agricultural soils contaminated by vanadium from stone coal mining. CHEMOSPHERE 2023; 310:136916. [PMID: 36272620 DOI: 10.1016/j.chemosphere.2022.136916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
High health risks of vanadium (V) released by the mining of vanadium titanomagnetite (VTM) have been widely recognized, but little is known about the risks and microbial community responses of V pollution as a consequence of the stone coal mining (SCM), another important resource for V mining. In this study, the topsoils and the profile soils were collected from the agricultural soils around a typical SCM in Hunan Province, China, with the investigation of ecological, health risks and microbial community structures. The results showed that ∼97.6% of sampling sites had levels of total V exceeding the Chinese National standard (i.e., 130 mg/kg), and up to 41.1% of V speciation in the topsoils was pentavalent vanadium (V(V)). Meanwhile, the proportions of HQ > 1 and 0.6-1 in the topsoils were ∼8.3% and ∼31.0% respectively, indicating that V might pose a non-carcinogenic risk to children. In addition, the microbial community varied between the topsoils and the profile soils. Both sulfur-oxidizing bacteria (e.g. Thiobacillus, MND1, Ignavibacterium) and sulfate-reducing bacteria (e.g. Desulfatiglans, GOUTB8, GOUTA6) might have been involved in V(V) reductive detoxification. This study helps better understand the pollution and associated risks of V in the soils of SCM and provides a potential strategy for bioremediation of the V-contaminated environment.
Collapse
Affiliation(s)
- Zulv Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zhangwei Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yaqing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yang Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lijuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
27
|
Fei Y, Chen S, Wang Z, Chen T, Zhang B. Woodchip-sulfur based mixotrophic biotechnology for hexavalent chromium detoxification in the groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116298. [PMID: 36179473 DOI: 10.1016/j.jenvman.2022.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
This study investigated groundwater hexavalent chromium (Cr(VI)) decontamination by a biological permeable reactive barrier (bio-PRB), where a woodchip-elemental sulfur [S(0)] based mixotrophic process was established. 89.0 ± 0.27% of Cr(VI) was removed from the synthetic groundwater after 72 h at a concentration of 50 mg/L during the preliminary batch experiment. The impact of geochemical and hydrodynamic conditions Cr(VI) removal was investigated in the bio-PRB over 225 days. Although elevated Cr(VI) (i.e., 75 mg/L), addition of nitrate and short hydraulic retention time reduced the Cr(VI) removal, 87.2 ± 2.09% of Cr(VI) removal was accomplished. Characterization of the solids indicated that the soluble Cr(VI) was converted and immobilized as the insoluble trivalent chromium [Cr(III)]. 16S rRNA gene based sequencing results suggested that micromolecules produced by woodchip cellulose hydrolyzing- and sulfur oxidizing bacteria were further used by functional Cr(VI) removal bacteria (e.g., Geobacteraceae and Pseudomonas). The extracellular protein and humic-like substances in extracellular polymeric substances (EPS) can bind toxic Cr(VI) through carboxyl and hydroxyl groups, and reduce Cr(VI) in an enzymatic manner. The preliminary finding of this study provided a potential way to utilize agricultural waste for in-situ Cr(VI) contaminated-groundwater remediation.
Collapse
Affiliation(s)
- Yangmei Fei
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Siming Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Zhongli Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| | - Tao Chen
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China
| |
Collapse
|
28
|
Zhou D, Liang M, Xia Y, Li C, Huang M, Peng S, Huang Y. Reduction mechanisms of V 5+ by vanadium-reducing bacteria in aqueous environments: Role of different molecular weight fractionated extracellular polymeric substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158394. [PMID: 36058324 DOI: 10.1016/j.scitotenv.2022.158394] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Extracellular polymeric substances (EPS) are high-molecular polymers secreted by microbes and play essential roles in metallic biogeochemical cycling. Previous studies demonstrated the reducing capacity of the functional groups on EPS for metal reduction. However, the roles of different EPS components in vanadium speciation and their responsible reducing substances for vanadium reduction are still unknown. In this study, the EPS of Bacillus sp. PFYN01 was fractionated via ultrafiltration into six components with different kDa (EPS>100, EPS100-50, EPS50-30, EPS30-10, EPS10-3, and EPS<3). Batch reduction experiments of the intact cells, EPS-free cells, the pristine and fractionated EPS with V5+ were conducted and characterized. The results demonstrated that the extracellular reduction of V5+ into V4+ by EPS was the major reduction process. Among the functional groups in EPS, C=O/C-N of amide in protein/polypeptide and CO of carboxyl in fulvic acid-like substances might act as the reductants for V5+, while CO in polysaccharide molecules and PO in phosphodiester played a key role in the adsorption process. The intracellular reduction was via translocating V5+ into the cells and releasing V4+ by the intracellular reductases. The reducing capacity of the fractionated EPS followed a sequence of EPS<3 > EPS10-3 > EPS50-30 > EPS100-50 > EPS30-10 > EPS>100. The small molecules of fulvic acid-like substances and amino acids were responsible for the high reducing capacity of EPS<3. EPS>100 had the lowest reducing capacity due to its macromolecular structure decreasing the exposure of the reactive sites. In addition to reduction, those intermediate EPS components may also have supporting functions, such as connecting protein skeletons and increasing the specific surface area of EPS. Therefore, the diverse effects of the EPS components cannot be neglected in vanadium biogeochemical cycling.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Mengmeng Liang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yonglian Xia
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Chao Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Mingzheng Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Shuming Peng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Sichuan 610059, China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
29
|
Yan G, Sun X, Dong Y, Gao W, Gao P, Li B, Yan W, Zhang H, Soleimani M, Yan B, Häggblom MM, Sun W. Vanadate reducing bacteria and archaea may use different mechanisms to reduce vanadate in vanadium contaminated riverine ecosystems as revealed by the combination of DNA-SIP and metagenomic-binning. WATER RESEARCH 2022; 226:119247. [PMID: 36270146 DOI: 10.1016/j.watres.2022.119247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Vanadium (V) is a transitional metal that poses health risks to exposed humans. Microorganisms play an important role in remediating V contamination by reducing more toxic and mobile vanadate (V(V)) to less toxic and mobile V(IV). In this study, DNA-stable isotope probing (SIP) coupled with metagenomic-binning was used to identify microorganisms responsible for V(V) reduction and determine potential metabolic mechanisms in cultures inoculated with a V-contaminated river sediment. Anaeromyxobacter and Geobacter spp. were identified as putative V(V)-reducing bacteria, while Methanosarcina spp. were identified as putative V(V)-reducing archaea. The bacteria may use the two nitrate reductases NarG and NapA for respiratory V(V) reduction, as has been demonstrated previously for other species. It is proposed that Methanosarcina spp. may reduce V(V) via anaerobic methane oxidation pathways (AOM-V) rather than via respiratory V(V) reduction performed by their bacterial counterparts, as indicated by the presence of genes associated with anaerobic methane oxidation coupled with metal reduction in the metagenome assembled genome (MAG) of Methanosarcina. Briefly, methane may be oxidized through the "reverse methanogenesis" pathway to produce electrons, which may be further captured by V(V) to promote V(V) reduction. More specially, V(V) reduction by members of Methanosarcina may be driven by electron transport (CoMS-SCoB heterodisulfide reductase (HdrDE), F420H2 dehydrogenases (Fpo), and multi-heme c-type cytochrome (MHC)). The identification of putative V(V)-reducing bacteria and archaea and the prediction of their different pathways for V(V) reduction expand current knowledge regarding the potential fate of V(V) in contaminated sites.
Collapse
Affiliation(s)
- Geng Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China
| | - Wenlong Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Pin Gao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, 8415683111, Isfahan, Iran
| | - Bei Yan
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
30
|
Lu JJ, Zhang H, Li W, Yi JB, Sun FY, Zhao YW, Feng L, Li Z, Dong WY. Biofilm stratification in counter-diffused membrane biofilm bioreactors (MBfRs) for aerobic methane oxidation coupled to aerobic/anoxic denitrification: Effect of oxygen pressure. WATER RESEARCH 2022; 226:119243. [PMID: 36270147 DOI: 10.1016/j.watres.2022.119243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Aerobic methane oxidation coupled with denitrification (AME-D) executed in membrane biofilm bioreactors (MBfRs) provides a high promise for simultaneously mitigating methane (CH4) emissions and removing nitrate in wastewater. However, systematically experimental investigation on how oxygen partial pressure affects the development and characteristics of counter-diffusional biofilm, as well as its spatial stratification profiles, and the cooperative interaction of the biofilm microbes, is still absent. In this study, we combined Optical Coherence Tomography (OCT) with Confocal Laser Scanning Microscopy (CLSM) to in-situ characterize the development of counter-diffusion biofilm in the MBfR for the first time. It was revealed that oxygen partial pressure onto the MBfR was capable of manipulating biofilm thickness and spatial stratification, and then managing the distribution of functional microbes. With the optimized oxygen partial pressure of 5.5 psig (25% oxygen content), the manipulated counter-diffusional biofilm in the AME-D process obtained the highest denitrification efficiency, due mainly to that this biofilm had the proper dynamic balance between the aerobic-layer and anoxic-layer where suitable O2 gradient and sufficient aerobic methanotrophs were achieved in aerobic-layer to favor methane oxidation, and complete O2 depletion and accessible organic sources were kept to avoid constraining denitrification activity in anoxic-layer. By using metagenome analysis and Fluorescence in situ hybridization (FISH) staining, the spatial distribution of the functional microbes within counter-diffused biofilm was successfully evidenced, and Rhodocyclaceae, one typical aerobic denitrifier, was found to survive and gradually enriched in the aerobic layer and played a key role in denitrification aerobically. This in-situ biofilm visualization and characterization evidenced directly for the first time the cooperative path of denitrification for AME-D in the counter-diffused biofilm, which involved aerobic methanotrophs, heterotrophic aerobic denitrifiers, and heterotrophic anoxic denitrifiers.
Collapse
Affiliation(s)
- Jian-Jiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Weiyi Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Bo Yi
- Instrumental Analysis Center of Shenzhen University, Shenzhen University (Xili Campus), Shenzhen 518060, China
| | - Fei-Yun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Yi-Wei Zhao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Liang Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Zhuo Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Yi Dong
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| |
Collapse
|
31
|
Cai J, Yu N, Guan F, Cai X, Hou R, Yuan Y. Response of electroactive biofilms from real wastewater to metal ion shock in bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157158. [PMID: 35798101 DOI: 10.1016/j.scitotenv.2022.157158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The electrochemical activity of bioelectrochemical systems (BESs) was proven to be dependent on the stability of electroactive biofilms (EABs), but the response of EABs based on real wastewater to external disturbances is not fully known. Herein, we used real wastewater (beer brewery wastewater) as a substrate for culturing EABs and found that current generation, biomass, redox activity and extracellular polymeric substances (EPS) content in those EABs were lower as compared to EABs cultured with synthetic wastewaters (acetate and glucose). However, the EABs from the beer brewery wastewater showed moderate anti-shock resistance capability. The proteins and humic acid in loosely bound EPS (LB-EPS) exhibited a positive linear relationship with current recovery after Ag+ shock, indicating the importance of LB-EPS for protecting the EABs. Fluorescence and Fourier transform infrared spectroscopy integrated with two-dimensional correlation spectroscopy verified that the spectra of the protein-like region of LB-EPS changed considerably under the interference of Ag+ concentration and the CO group of humic acid or proteins was mainly responsible for binding with Ag+ to attenuate its toxicity to the EABs. This is the first study revealing the underlying molecular mechanism of EABs cultured with real wastewater against external heavy metal shock and provides useful insights into enhancing the application of BESs in future water treatment.
Collapse
Affiliation(s)
- Jiexuan Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Na Yu
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
32
|
Zheng P, Li Y, Chi Q, Cheng Y, Jiang X, Chen D, Mu Y, Shen J. Structural characteristics and microbial function of biofilm in membrane-aerated biofilm reactor for the biodegradation of volatile pyridine. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129370. [PMID: 35728312 DOI: 10.1016/j.jhazmat.2022.129370] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
In order to avoid the serious air pollution caused by the volatilization of high recalcitrant pyridine, membrane-aerated biofilm reactor (MABR) with bubble-free aeration was used in this study, with the structural characteristics and microbial function of biofilm emphasized. The results showed that as high as 0.6 kg·m-3·d-1 pyridine could be completely removed in MABR. High pyridine loading thickened the biofilm, but without obvious detachment observed. The distinct stratification of microbes and extracellular polymeric substances were shaped by elevated pyridine load, enhancing the structural heterogeneity of biofilm. The increased tryptophan-like substances as well as α-helix and β-sheet proportion in proteins stabilized the biofilm structure against high influent loading. Based on the identified intermediates, possible pyridine biodegradation pathways were proposed. Multi-omics analyses revealed that the metabolic pathways with initial hydroxylation and reduction reaction was enhanced at high pyridine loading. The functional genes were mainly associated with Pseudomonas and Delftia, might responsible for pyridine biodegradation. The results shed light on the effective treatment of wastewater containing recalcitrant pollutants such as pyridine via MABR.
Collapse
Affiliation(s)
- Peng Zheng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qiang Chi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Youpeng Cheng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
33
|
Zhou Y, Anwar MN, Guo B, Huang W, Liu Y. Response of antibiotic resistance genes and microbial niches to dissolved oxygen in an oxygen-based membrane biofilm reactor during greywater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155062. [PMID: 35395308 DOI: 10.1016/j.scitotenv.2022.155062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Linear alkylbenzene sulfonates (LAS) in greywater (GW) will simulate antibiotic resistance genes (ARGs) production in the biofilm-based system. Our study emphasizes the dissolved oxygen (DO)-dependent ARGs accumulation and microbial niches succession in an oxygen-based membrane biofilm reactor (O2-MBfR) treating GW, as well as revealing the key roles of EPS. Changing DO concentrations led to significant differences in ARGs production, EPS secretion and microbial communities, as well as the organics and nitrogen removal efficiency. Increasing DO concentration from 0.2 to 0.4 mg/L led to improved organics (> 90%) and nitrogen removal, as well as less EPS (especially for proteins and carbohydrates) and ARGs accumulation (e.g., intI-1, korB and sul-2) in the biofilm; the high-DO-concentration accumulated microbial niches, including Flavobacteriaceae and Cyanobacteria that revealed by LEfSe analysis, contributed to both nitrogen reduction and organics biodegradation. While, the inefficient electron acceptor at low DO conditions (0.2 mg/L) reduced the organics and nitrogen removal efficiency, as well as the improved accumulation of EPS in biofilm; high EPS enabled the capture of residual LAS from the liquid phase, which stimulated the production of ARGs by the distinct microbial community compositions. These findings suggested the DO-based ARGs reduction regulation strategy in the O2-MBfR treating GW.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Mian Nabeel Anwar
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada; Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom.
| | - Wendy Huang
- Department of Civil Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
34
|
Mei X, Gao H, Ding Y, Xue C, Xu L, Wang Y, Zhang L, Ma M, Zhang Z, Xiao Y, Yang X, Yin C, Wang Z, Yang M, Xia D, Wang C. Coupling of (methane + air)-membrane biofilms and air-membrane biofilms: Treatment of p-nitroaniline wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128946. [PMID: 35468395 DOI: 10.1016/j.jhazmat.2022.128946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Membrane biofilm (MBf) technology is a promising biological water treatment process that combines membrane aeration with biofilms. To expand its application in the treatment of toxic organic wastewater, methane/air gas mixture-MBfs ((CH4 + Air)-MBfs) and air-MBfs were coupled to enhance the treatment of p-nitroaniline (PNA) wastewater. Based on exploration of the membrane permeability of methane and oxygen, a hybrid MBf reactor was constructed, and the degradation characteristics of PNA and the coupling effects of (CH4 + Air)-MBfs and air-MBfs were studied. The permeation flux of methane was found to be 1.114 g/(m2 d) when using a methane/air gas mixture at an aeration pressure of 10 kPa, and this result was better than that when methane was used as the aeration gas alone. Aeration with a methane/air gas mixture provided conditions for realizing aerobic methane oxidation; the aerobic methane oxidation that occurred in the (CH4 + Air)-MBfs promoted the reduction of PNA, and the intermediates of PNA degradation were further degraded by the air-MBfs. At an influent PNA membrane area load of 1.67 g/(m2 d), the PNA removal load reached 187.30 g/(m3 d). The coupling of MBfs took advantage of different matrix-based MBfs and promoted the degradation of PNA by utilizing the synergistic effects of various functional microorganisms.
Collapse
Affiliation(s)
- Xiang Mei
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Han Gao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Ding
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lei Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mengyuan Ma
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zimiao Zhang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Xiao
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Xu Yang
- Nanjing Haiyi Environmental Protection Engineering Co., Ltd., Nanjing 211200, China
| | - Chengqi Yin
- Environmental Protection Design & Research Center, China Design Group Co., Ltd., Nanjing 210014, China
| | - Zhan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mengmeng Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Dongyu Xia
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Cai Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
35
|
Xie T, Xi Y, Liu Y, Liu H, Su Z, Huang Y, Xu W, Wang D, Zhang C, Li X. Long-term effects of Cu(II) on denitrification in hydrogen-based membrane biofilm reactor: Performance, extracellular polymeric substances and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154526. [PMID: 35288132 DOI: 10.1016/j.scitotenv.2022.154526] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Divalent copper (Cu(II)) frequently coexists with nitrate (NO3-) in industrial wastewater and the effect of Cu(II) on the autotrophic denitrification system using H2 as the electron donor remains unknown. In this study, the hydrogen-based membrane biofilm reactor (H2-MBfR) was operated continuously over 150 days to explore the effect of Cu(II) on the performance of autotrophic denitrification system and understand the key roles of EPS and microbial community. More than 95% of 20 mg-N/L NO3- was removed at 1-5 mg/L Cu(II), and the removal rate of NO3--N was stabilized to 82% at 10 mg/L Cu(II) after a short period, while NH4+ and NO2- in effluent were hardly detected, indicated that high concentration of Cu(II) did not permanently inhibit the denitrification performance in H2-MBfR. Colorimetric determination showed that Cu(II) stimulated the secretion of EPS, in which the protein (PN) content was much higher than polysaccharide (PS). The PN/PS ratios increased from 0.93 to 1.99, and the PN was more sensitive to copper invasion. The results of three-dimensional excitation-emission matrix illustrated that tryptophan was the main component of EPS chelating Cu(II) to reduce toxicity. The results of Fourier-transform infrared demonstrated that hydroxyl, carboxyl, and protein amide groups bound and reduced Cu(II). Furthermore, Cu(II) was effectively removed (>80%), and the results of distribution and morphology analysis of Cu(II) show that the electron-dense deposits of monovalent copper (Cu(I)) were found in EPS and biofilms and the reduction of Cu(II) to Cu(I) was an obvious self-defense reaction of biofilm to copper stress. The microbial richness and diversity decreased with the long-term exposure to Cu(II), while the relative abundance of denitrifiers Azospira and Dechloromonas increased. This study provides a scientific basis for the optimal design of treatment system for removal of nitrate and recovery of heavy metals simultaneously.
Collapse
Affiliation(s)
- Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
36
|
Luo X, Zhou X, Peng C, Shao P, Wei F, Li S, Liu T, Yang L, Ding L, Luo X. Bioreduction performance of Cr(VI) by microbial extracellular polymeric substances (EPS) and the overlooked role of tryptophan. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128822. [PMID: 35390619 DOI: 10.1016/j.jhazmat.2022.128822] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Extracellular polymeric substances (EPS) have exhibited promising advantages in mitigating heavy metal contamination, e.g., single-valent silver (Ag(I)), trivalent gold (Au(III)), and hexavalent chromium (Cr(VI)). However, knowledge of the specific substrate in EPSs that supports Cr(VI) reduction has remained elusive. Here, we isolated a novel Cr(VI)-reducing strain with self-mediating properties in an aquatic environment with various pH values to investigate the mechanisms. After analysis by a batch assay coupled with X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) spectroscopic techniques, it was found that Cr(VI) was reduced by the strain and soluble-EPS (S-EPS), and then, organo-trivalent chromium (organo-Cr(III)) was successfully formed. In addition, compared with other components of the strain, the strain and S-EPS completely removed Cr(VI), and the S-EPS exhibited a positive effect on Cr(VI) reduction with a strong monotonic correlation (R2 = 0.999, p = 9.03 × 10-5), indicating that the reduction is an EPS-dependent process. Specifically, the Cr(VI) reduction efficiency was enhanced to 48.85% and 99.4% after EPS and EPS plus tryptophan were added; their respective efficiencies were 3.94 and 8.02 times higher than that of the control assay in which the reductant was depleted. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis showed that the tryptophan concentration concomitantly decreased by 61.54%. These findings highlighted the importance of S-EPS and tryptophan and improved our understanding of EPS for Cr(VI) reduction, which might provide a novel strategy for decontaminating targeted heavy metals in future applications.
Collapse
Affiliation(s)
- Xianxin Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaoyu Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Chengyi Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Feng Wei
- Jiangxi Hongcheng Environment Co., Ltd, Nanchang 330038, PR China
| | - Shujing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ting Liu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| |
Collapse
|
37
|
Sun Z, Li Y, Li M, Wang N, Liu J, Guo H, Li B. Steel pickling rinse wastewater treatment by two-stage MABR system: Reactor performance, extracellular polymeric substances (EPS) and microbial community. CHEMOSPHERE 2022; 299:134402. [PMID: 35337819 DOI: 10.1016/j.chemosphere.2022.134402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/19/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
A bench-scale two-stage membrane-aerated biofilm reactor (MABR) system was applied to treat steel pickling rinse wastewater with high salinity and refractory organic. The effects of salinity and aeration pressure on the treatment efficiency, extracellular polymeric substances (EPS) characteristics and microbial community structure were studied. The optimal removal efficiencies of COD, NH+ 4-N and TN reached to 62.84%, 99.57% and 51.65%, respectively. Shortcut nitrification was achieved at low aeration, and the salinity less than 4% did not remarkable affect system performance. Colorimetric determination, three-dimensional exaction-emission matrix (3D-EEM) and Fourier transform infrared spectrum (FTIR) were employed to characterize the content and composition of proteins (PN) and polysaccharides (PS) in EPS of the biofilm. The results indicated that PN, not PS, response to changes of environmental conditions played a key role. Moreover, EPS might alleviate intracellular and extracellular osmotic pressure imbalance induced by high salinity, which imparted the biofilm in MABR with prominent salt-tolerant. High-throughput sequencing displayed that nitrifiers (Nitrosomonas, Nitrospira), denitrifiers (Dechloromonas, Hyphomicrobium, Denitromonas, Denitratisoma, Candidatus_Competibacter) and aerobic denitrifiers (Pseudomonas, Thauera) were predominant salt-tolerant bacteria.
Collapse
Affiliation(s)
- Zhiye Sun
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yi Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ming Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Ning Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jun Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Hong Guo
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Baoan Li
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
38
|
Activation of peroxymonosulfate by natural pyrite for efficient degradation of V(IV)-citrate complex in groundwater. J Colloid Interface Sci 2022; 617:683-693. [DOI: 10.1016/j.jcis.2022.03.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/21/2022]
|
39
|
Zhang X, Sun J, Zhao M. Enhanced metronidazole removal by binary-species photoelectrogenic biofilm of microaglae and anoxygenic phototrophic bacteria. J Environ Sci (China) 2022; 115:25-36. [PMID: 34969452 DOI: 10.1016/j.jes.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 06/14/2023]
Abstract
High efficient removal of antibiotics during nutriments recovery for biomass production poses a major technical challenge for photosynthetic microbial biofilm-based wastewater treatment since antibiotics are always co-exist with nutriments in wastewater and resist biodegradation due to their strong biotoxicity and recalcitrance. In this study, we make a first attempt to enhance metronidazole (MNZ) removal from wastewater using electrochemistry-activated binary-species photosynthetic biofilm of Rhodopseudomonas Palustris (R. Palustris) and Chlorella vulgaris (C. vulgaris) by cultivating them under different applied potentials. The results showed that application of external potentials of -0.3, 0 and 0.2 V led to 11, 33 and 26-fold acceleration in MNZ removal, respectively, as compared to that of potential free. The extent of enhancement in MNZ removal was positively correlated to the intensities of photosynthetic current produced under different externally applied potentials. The binary-species photoelectrogenic biofilm exhibited 18 and 6-fold higher MNZ removal rate than that of single-species of C. vulgaris and R. Palustris, respectively, due to the enhanced metabolic interaction between them. Application of an external potential of 0V significantly promoted the accumulation of tryptophan and tyrosine-like compounds as well as humic acid in extracellular polymeric substance, whose concentrations were 7.4, 7.1 and 2.0-fold higher than those produced at potential free, contributing to accelerated adsorption and reductive and photosensitive degradation of MNZ.
Collapse
Affiliation(s)
- Xubin Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Sun
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mengmeng Zhao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
40
|
Yu H, Yan X, Weng W, Xu S, Xu G, Gu T, Guan X, Liu S, Chen P, Wu Y, Xiao F, Wang C, Shu L, Wu B, Qiu D, He Z, Yan Q. Extracellular proteins of Desulfovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of antimony. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127795. [PMID: 34801311 DOI: 10.1016/j.jhazmat.2021.127795] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Biomineralization is the key process governing the biogeochemical cycling of multivalent metals in the environment. Although some sulfate-reducing bacteria (SRB) are recently recognized to respire metal ions, the role of their extracellular proteins in the immobilization and redox transformation of antimony (Sb) remains elusive. Here, a model strain Desulfovibrio vulgaris Hildenborough (DvH) was used to study microbial extracellular proteins of functions and possible mechanisms in Sb(V) biomineralization. We found that the functional groups (N-H, CO, O-CO, NH2-R and RCOH/RCNH2) of extracellular proteins could adsorb and fix Sb(V) through electrostatic attraction and chelation. DvH could rapidly reduce Sb(V) adsorbed on the cell surface and form amorphous nanometer-sized stibnite and/or antimony trioxide, respectively with sulfur and oxygen. Proteomic analysis indicated that some extracellular proteins involved in electron transfer increased significantly (p < 0.05) at 1.8 mM Sb(V). The upregulated flavoproteins could serve as a redox shuttle to transfer electrons from c-type cytochrome networks to reduce Sb(V). Also, the upregulated extracellular proteins involved in sulfur reduction, amino acid transport and protein synthesis processes, and the downregulated flagellar proteins would contribute to a better adaption under 1.8 mM Sb(V). This study advances our understanding of how microbial extracellular proteins promote Sb biomineralization in DvH.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Wanlin Weng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Sihan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Guizhi Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyuan Gu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Shengwei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Chattopadhyay I, J RB, Usman TMM, Varjani S. Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered 2022; 13:6420-6440. [PMID: 35227160 PMCID: PMC8974063 DOI: 10.1080/21655979.2022.2044250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Biofilm formation on biotic or abiotic surfaces is caused by microbial cells of a single or heterogeneous species. Biofilm protects microbes from stressful environmental conditions, toxic action of chemicals, and antimicrobial substances. Quorum sensing (QS) is the generation of autoinducers (AIs) by bacteria in a biofilm to communicate with one other. QS is responsible for the growth of biofilm, synthesis of exopolysaccharides (EPS), and bioremediation of environmental pollutants. EPS is used for wastewater treatment due to its three-dimensional matrix which is composed of proteins, polysaccharides, humic-like substances, and nucleic acids. Autoinducers mediate significantly the degradation of environmental pollutants. Acyl-homoserine lactone (AHL) producing bacteria as well as quorum quenching enzyme or bacteria can effectively improve the performance of wastewater treatment. Biofilms-based reactors due to their economic and ecofriendly nature are used for the treatment of industrial wastewaters. Electrodes coated with electro-active biofilm (EAB) which are obtained from sewage sludge, activated sludge, or industrial and domestic effluents are getting popularity in bioremediation. Microbial fuel cells are involved in wastewater treatment and production of energy from wastewater. Synthetic biological systems such as genome editing by CRISPR-Cas can be used for the advanced bioremediation process through modification of metabolic pathways in quorum sensing within microbial communities. This narrative review discusses the impacts of QS regulatory approaches on biofilm formation, extracellular polymeric substance synthesis, and role of microbial community in bioremediation of pollutants from industrial effluents.
Collapse
Affiliation(s)
| | - Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - T M Mohamed Usman
- Department of Civil Engineering, PET Engineering College, Vallioor, Tirunelveli, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| |
Collapse
|
42
|
Sun Y, Ali A, Zheng Z, Su J, Zhang S, Min Y, Liu Y. Denitrifying bacteria immobilized magnetic mycelium pellets bioreactor: A new technology for efficient removal of nitrate at a low carbon-to-nitrogen ratio. BIORESOURCE TECHNOLOGY 2022; 347:126369. [PMID: 34838633 DOI: 10.1016/j.biortech.2021.126369] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This study integrated spores and magnetite (Fe3O4) to form magnetic mycelium pellets (MMP) as bio-carriers immobilized with denitrifying bacteria in a bioreactor. Different carbon-to-nitrogen (C/N) ratios and hydraulic retention time (HRT) were established for investigating the performance of the bioreactor. The nitrate removal efficiency was 98.14% at C/N = 2.0 and HRT = 6 h. Gas chromatography (GC) results indicated that the main component of the produced gas was N2. Fe3O4 was well-integrated into MMP according to X-ray diffraction (XRD) results and infrared spectrometer (FTIR) analysis. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that bacteria were successfully immobilized on MMP. Fluorescence excitation-emission matrix (EEM) indicated that functional bacteria GF2 might enhance the metabolic activity of the microbial community in the bioreactor and microbial activity was highest at C/N = 2.0. Pseudomonas stutzeri sp. GF2 might be immobilized and had a major role in the bioreactor according to high throughput sequencing results.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
43
|
Glodowska M, Welte CU, Kurth JM. Metabolic potential of anaerobic methane oxidizing archaea for a broad spectrum of electron acceptors. Adv Microb Physiol 2022; 80:157-201. [PMID: 35489791 DOI: 10.1016/bs.ampbs.2022.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Methane (CH4) is a potent greenhouse gas significantly contributing to the climate warming we are currently facing. Microorganisms play an important role in the global CH4 cycle that is controlled by the balance between anaerobic production via methanogenesis and CH4 removal via methanotrophic oxidation. Research in recent decades advanced our understanding of CH4 oxidation, which until 1976 was believed to be a strictly aerobic process. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction is now known to be an important sink of CH4 in marine ecosystems. Furthermore, in 2006 it was discovered that anaerobic CH4 oxidation can also be coupled to nitrate reduction (N-DAMO), demonstrating that AOM may be much more versatile than previously thought and linked to other electron acceptors. In consequence, an increasing number of studies in recent years showed or suggested that alternative electron acceptors can be used in the AOM process including FeIII, MnIV, AsV, CrVI, SeVI, SbV, VV, and BrV. In addition, humic substances as well as biochar and perchlorate (ClO4-) were suggested to mediate AOM. Anaerobic methanotrophic archaea, the so-called ANME archaea, are key players in the AOM process, yet we are still lacking deeper understanding of their metabolism, electron acceptor preferences and their interaction with other microbial community members. It is still not clear whether ANME archaea can oxidize CH4 and reduce metallic electron acceptors independently or via electron transfer to syntrophic partners, interspecies electron transfer, nanowires or conductive pili. Therefore, the aim of this review is to summarize and discuss the current state of knowledge about ANME archaea, focusing on their physiology, metabolic flexibility and potential to use various electron acceptors.
Collapse
Affiliation(s)
- Martyna Glodowska
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands.
| | - Julia M Kurth
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
44
|
Fei Y, Zhang B, He J, Chen C, Liu H. Dynamics of vertical vanadium migration in soil and interactions with indigenous microorganisms adjacent to tailing reservoir. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127608. [PMID: 34749229 DOI: 10.1016/j.jhazmat.2021.127608] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/10/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Severe vanadium pollution in deep soil through surface infiltration during mining activities has been particularly concerned, but little is known about vanadium migration dynamics in vertical soil profile. Indigenous microorganisms widely exist in soil, however, their functions and suffered impacts during vertical vanadium migration have rarely been investigated. In this study, 100 cm height columns were constructed with undisturbed soil around vanadium tailing reservoir were constructed to describe vertical vanadium transport process and corresponding interactions between vanadium and indigenous microorganisms. 91 d continuous leaching with pentavalent vanadium [V(V)] showed that V(V) gradually downward migrated. Soil microorganisms slowed down vertical V(V) migration rate by transferring V(V) to insoluble tetravalent vanadium. Enriched Gemmatimonadaceae and Actinobacteria were identified to contribute to microbial V(V) transformation. Co-existing nitrate weakened the soil's ability to intercept V(V) via electron competition. Microbial communities were reshaped by vanadium during leaching, while enzyme activities increased slightly due to vanadium stimulation. This work advances the understanding of vertical vanadium migration characteristics in soil, which is essential to risk management and effective remediation of vanadium-polluted sites.
Collapse
Affiliation(s)
- Yangmei Fei
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Jinxi He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Cuibai Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hui Liu
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
45
|
Chen G, Bai R, Zhang Y, Zhao B, Xiao Y. Application of metagenomics to biological wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150737. [PMID: 34606860 DOI: 10.1016/j.scitotenv.2021.150737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Biological wastewater treatment is a process in which the microbial metabolism of complex communities transforms pollutants into low- or non-toxic products. Due to the absence of an in-depth understanding of the diversity and complexity of microbial communities, it is very likely to ignore the potential mechanisms of microbial community in wastewater treatment. Metagenomics is a technology based on molecular biology, in which massive gene sequences are obtained from environmental samples and analyzed by bioinformatics to determine the composition and function of a microbial community. Metagenomics can identify the state of microbes in their native environments more effectively than traditional molecular methods. This review summarizes the application of metagenomics to assess microbial communities in biological wastewater treatment, such as the biological removal of phosphorus and nitrogen by bacteria, the study of antibiotic resistance genes (ARGs), and the reduction of heavy metals by microbial communities, with an emphasis on the contribution of microbial diversity and metabolic diversity. Technical bottlenecks in the application of metagenomics to biological wastewater treatment are elucidated, and future research directions for metagenomics are proposed, among which the application of multi-omics will be an important research method for future biological wastewater treatment.
Collapse
Affiliation(s)
- Geng Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yiqing Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Biyi Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yong Xiao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
46
|
Zhao J, Tang J, Dang T. Influence of extracellular polymeric substances on the heteroaggregation between CeO 2 nanoparticles and soil mineral particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150358. [PMID: 34600214 DOI: 10.1016/j.scitotenv.2021.150358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Interaction with soil mineral particles (SMPs) and organic matters can significantly determine the fate of nanoparticles (NPs) in the environment such as waters, sediments, and soils. In this study, the heteroaggregation of CeO2 NPs with different soil minerals (kaolinite, montmorillonite, goethite and hematite) and the influence of extracellular polymeric substance (EPS) were studied. The obvious heteroaggregation between CeO2 NPs with different SMPs were demonstrated via co-settling and aggregation kinetics experiments. The variety in the heteroaggregation between CeO2 NPs with different SMPs is mainly induced by the difference in their surface properties, such as surface charge, specific surface areas and surface complexation. The presence of EPS can result in great inhibition on the heteroaggregation between CeO2 NPs with the positive charged goethite by enhancing the electrostatic repulsion between NPs and mineral colloids. However, the influence of EPS on the interaction between CeO2 NPs with negative charged SMPs is more dependent on the steric stabilization. The presence of EPS may promote the migration of CeO2 NPs in environment and then increase their risks to human health and ecosystems. These findings contribute to better understanding interactions between NPs and SMPs and have important implications on predicting the behaviors and risks of NPs in the natural environment.
Collapse
Affiliation(s)
- Jun Zhao
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of water Water Resources, Yangling 712100, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Tinghui Dang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of water Water Resources, Yangling 712100, China
| |
Collapse
|
47
|
Hu B, Gu X, Wang Y, Leng J, Zhang K, Zhao J, Wu P, Li X, Wan C, Xu J. Revealing the effects of static magnetic field on the anoxic/oxic sequencing batch reactor from the perspective of electron transport and microbial community shifts. BIORESOURCE TECHNOLOGY 2022; 345:126535. [PMID: 34896533 DOI: 10.1016/j.biortech.2021.126535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
The effects of static magnetic field (SMF) on an anoxic/oxic sequencing batch reactor were investigated from the perspective of electron transport via determining the variations of reduced/oxidized nicotinamide adenine dinucleotide (NADH/NAD+) ratio, NADH concentration, electron transport system activity (ETSA), poly-β-hydroxybutyrate (PHB), extracellular polymeric substances (EPS), as well as the gene expression under different conditions. Moreover, the shifts of microbial community were also analyzed. The application of SMF with an appropriate intensity significantly improved the performance of the process, the abundance of the anoxic denitrifiers, and the activity of the aerobic denitrifiers. The NADH content, as well as ETSA were also enhanced, therefore, the total nitrogen removal efficiency of the process was increased. However, the overhigh SMF intensity resulted in the change of microbial community, meanwhile, had negative effects on the metabolism of microorganisms. Selecting a proper intensity is crucial for the SMF-enhanced biological wastewater treatment process.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China.
| | - Xin Gu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Yilin Wang
- School of Civil Engineering, Chang' an University, Xi'an, China; Bureau of Housing and Urban-Rural Development of Chencang District, Baoji City, China
| | - Juntong Leng
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Kai Zhang
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China; School of Water and Environment, Chang' an University, Xi'an, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Xiaoling Li
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Chengjie Wan
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| | - Jingtong Xu
- School of Civil Engineering, Chang' an University, Xi'an, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'na, China
| |
Collapse
|
48
|
Zhou Y, Li R, Guo B, Xia S, Liu Y, Rittmann BE. The influent COD/N ratio controlled the linear alkylbenzene sulfonate biodegradation and extracellular polymeric substances accumulation in an oxygen-based membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126862. [PMID: 34416689 DOI: 10.1016/j.jhazmat.2021.126862] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
This work evaluated the fates of linear alkylbenzene sulfonate (LAS), chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and total nitrogen (TN) when treating greywater (GW) in an oxygen-based membrane biofilm reactor (O2-MBfR). An influent ratio of chemical oxygen demand to total nitrogen (COD/TN) of 20 g COD/g N gave the best removals of LAS, COD, NH4+-N and TN, and it also had the greatest EPS accumulation in the biofilm. Higher EPS and improved performance were linked to increases in the relative abundances of bacteria able to biodegrade LAS (Zoogloea, Pseudomonas, Parvibaculum, Magnetospirillum and Mycobacterium) and to nitrify (Nitrosomonas and Nitrospira), as well as to ammonia oxidation related enzyme (ammonia monooxygenase). The EPS was dominated by protein, which played a key role in adsorbing LAS, achieving short-time protection from LAS toxicity and allowed LAS biodegradation. Continuous high-efficiency removal of LAS alleviated LAS toxicity to microbial physiological functions, including nitrification, nitrate respiration, the tricarboxylic acid (TCA) cycle, and adenosine triphosphate (ATP) production, achieving the stable high-efficient simultaneous removal of organics and nitrogen in the O2-MBfR.
Collapse
Affiliation(s)
- Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9
| | - Ran Li
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Bing Guo
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9; Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Surrey GU2 7XH, United Kingdom
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Liu
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, Alberta, Canada T6G 1H9.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85287-5701, United States
| |
Collapse
|
49
|
Zhang L, Ye L, Yin Z, Xiao K, Jing C. Mechanistic study of antimonate reduction by Escherichia coli W3110. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118258. [PMID: 34606969 DOI: 10.1016/j.envpol.2021.118258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Microbial-assisted antimonate [Sb(V)] reduction immobilizes this redox-sensitive metalloid in the subsurface. Most indigenous aerobes in antimony (Sb)-contaminated areas do not contain Sb(V)-reducing genes but can resist high levels of Sb(V) threat. Herein, to unravel the mechanisms of Sb(V) resistance by aerobes, we used Escherichia coli W3110 as a model aerobe and incubated it with 10 μM Sb(V). We found that strain W3110, without known Sb(V)-reducing genes, was able to reduce Sb(V) to Sb(III). Our transcriptome analysis and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) results show that the Sb(V) threat at the 10 μM level had a negligible effect on the gene expression of strain W3110. In vitro incubation experiments further indicate that Sb(V) reduction was attributable to extracellular polymeric substances (EPS). Moreover, the three-dimensional excitation-emission matrix fluorescence spectroscopy reveals that the tryptophan-like components in EPS were involved in Sb(V) binding as evidenced by its weakened fluorescence intensity upon Sb(V) addition. The FTIR and XPS analyses indicate that hemiacetal and amide groups in EPS contributed to the reduction of Sb(V). Preculture with 10 μM Sb(V) did not exhibit a significant difference in Sb(V)-reducing capacity, suggesting that Sb(V) stress probably did not stimulate EPS secretion of W3110. Our results highlight the importance of EPS as the first line of defense against toxins, especially for those bacteria without such functional genes.
Collapse
Affiliation(s)
- Lixin Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Ye
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhipeng Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xiao
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
50
|
Wang H, Zheng Y, Zhu B, Zhao F. In situ role of extracellular polymeric substances in microbial electron transfer by Methylomonas sp. LW13. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|