1
|
Blair M, Garner E, Ji P, Pruden A. What is the Difference between Conventional Drinking Water, Potable Reuse Water, and Nonpotable Reuse Water? A Microbiome Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39258328 PMCID: PMC11428167 DOI: 10.1021/acs.est.4c04679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024]
Abstract
As water reuse applications expand, there is a need for more comprehensive means to assess water quality. Microbiome analysis could provide the ability to supplement fecal indicators and pathogen profiling toward defining a "healthy" drinking water microbiota while also providing insight into the impact of treatment and distribution. Here, we utilized 16S rRNA gene amplicon sequencing to identify signature features in the composition of microbiota across a wide spectrum of water types (potable conventional, potable reuse, and nonpotable reuse). A clear distinction was found in the composition of microbiota as a function of intended water use (e.g., potable vs nonpotable) across a very broad range of U.S. water systems at both the point of compliance (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.71) and point of use (Betadisper p > 0.01; ANOSIM p < 0.01, r-stat = 0.41). Core and discriminatory analysis further served in identifying distinct differences between potable and nonpotable water microbiomes. Taxa were identified at both the phylum (Desulfobacterota, Patescibacteria, and Myxococcota) and genus (Aeromonas and NS11.12_marine_group) levels that effectively discriminated between potable and nonpotable waters, with the most discriminatory taxa being core/abundant in nonpotable waters (with few exceptions, such as Ralstonia being abundant in potable conventional waters). The approach and findings open the door to the possibility of microbial community signature profiling as a water quality monitoring approach for assessing efficacy of treatments and suitability of water for intended use/reuse application.
Collapse
Affiliation(s)
- Matthew
F. Blair
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Emily Garner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Pan Ji
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Via
Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Zhou Q, Huang J, Wen S, Lou Y, Qiu S, Li H, Zhou R, Tang J. Occurrence of pathogenic Mycobacteria avium and Pseudomonas aeruginosa in outdoor decorative fountain water and the associated microbial community. JOURNAL OF WATER AND HEALTH 2024; 22:1663-1676. [PMID: 39340379 DOI: 10.2166/wh.2024.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/31/2024] [Indexed: 09/30/2024]
Abstract
Outdoor decorative fountains usually attract residents to visit. However, opportunistic pathogens (OPs) can proliferate and grow in the stagnant fountain water, posing potential health risks to visitors due to the inhalation of spaying aerosols. In this study, the abundance of selected OPs and associated microbial communities in three large outdoor decorative fountain waters were investigated using quantitative PCR and 16S rRNA sequencing. The results indicated that Mycobacteria avium and Pseudomonas aeruginosa were consistently detected in all decorative fountain waters throughout the year. Redundancy analysis showed that OPs abundance was negatively correlated with water temperature but positively correlated with nutrient concentrations. The gene copy numbers of M. avium varied between 2.4 and 3.9 log10 (gene copies/mL), which were significantly lower than P. aeruginosa by several orders of magnitude, reaching 6.5-7.1 log10 (gene copies/mL) during winter. The analysis of taxonomic composition and prediction of functional potential also revealed pathogenic microorganisms and infectious disease metabolic pathways associated with microbial communities in different decorative fountain waters. This study provided a deeper understanding of the pathogenic conditions of the outdoor decorative fountain water, and future works should focus on accurately assessing the health risks posed by OPs in aerosols.
Collapse
Affiliation(s)
- Qiaomei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou 310018, China E-mail:
| | - Shilin Wen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yucheng Lou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shanshan Qiu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Rongbing Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
3
|
Furst KE, Graham KE, Weisman RJ, Adusei KB. It's getting hot in here: Effects of heat on temperature, disinfection, and opportunistic pathogens in drinking water distribution systems. WATER RESEARCH 2024; 260:121913. [PMID: 38901309 DOI: 10.1016/j.watres.2024.121913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
As global temperatures rise with climate change, the negative effects of heat on drinking water distribution systems (DWDS) are of increasing concern. High DWDS temperatures are associated with degradation of water quality through physical, chemical and microbial mechanisms. Perhaps the most pressing concern is proliferation of thermotolerant opportunistic pathogens (OPs) like Legionella pneumophila and Naegleria Fowleri. Many OPs can be controlled in DWDS by residual disinfectants such as chlorine or chloramine, but maintaining protective residuals can be challenging at high temperatures. This critical review evaluates the literature on DWDS temperature, residual disinfectant decay, and OP survival and growth with respect to high temperatures. The findings are synthesized to determine the state of knowledge and future research priorities regarding OP proliferation and control at high DWDS temperatures. Temperatures above 40 °C were reported from multiple DWDS, with a maximum of 52 °C. Substantial diurnal temperature swings from ∼30-50 °C occurred in one DWDS. Many OPs can survive or even replicate at these temperatures. However, most studies focused on just a few OP species, and substantial knowledge gaps remain regarding persistence, infectivity, and shifts in microbial community structure at high temperatures relative to lower water temperatures. Chlorine decay rates substantially increase with temperature in some waters but not in others, for reasons that are not well understood. Decay rates within real DWDS are difficult to accurately characterize, presenting practical limitations for application of temperature-dependent decay models at full scale. Chloramine decay is slower than chlorine except in the presence of nitrifiers, which are especially known to grow in DWDS in warmer seasons and climates, though the high temperature range for nitrification is unknown. Lack of knowledge about DWDS nitrifier communities may hinder development of solutions. Fundamental knowledge gaps remain which prevent understanding even the occurrence of high temperatures in DWDS, much less the overall effect on exposure risk. Potential solutions to minimize DWDS temperatures or mitigate the impacts of heat were identified, many which could be aided by proven models for predicting DWDS temperature. Industry leadership and collaboration is needed to generate practical knowledge for protecting DWDS water quality as temperatures rise.
Collapse
Affiliation(s)
- Kirin E Furst
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States.
| | - Katherine E Graham
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Richard J Weisman
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
| | - Kadmiel B Adusei
- Department of Civil, Environmental, & Infrastructure Engineering, George Mason University, 4400 University Drive, Fairfax, VA 22030, United States
| |
Collapse
|
4
|
Liu Y, Zhou H, Wang J, Liu S, Xie GJ, Liu BF, Xing D. Regulatory Mechanisms of Quorum Sensing System of Bacteria in Response to Chlorine and Ozone Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38937254 DOI: 10.1021/acs.est.3c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Waterborne pathogens invariably present considerable threats to public health. The quorum sensing (QS) system is instrumental in coordinating bacterial growth and metabolisms. However, the responses and regulatory mechanisms of bacteria to various disinfection technologies through quorum sensing are still unclear. This study examines the inactivation effect of chlorination and ozonation on biofilms and planktonic cells of QS signaling-deficient mutants of Pseudomonas aeruginosa. Cell counting and viability assessment revealed that the combined disinfection of chlorine and ozone was the most effective for inactivating planktonic P. aeruginosa within 10 min of exposure. Additionally, microfluidic chip culture demonstrated that the secretion of quinolone signals escalated biofilms' disinfection resistance. Disinfection exposure significantly altered the gene expression of wild-type strains and QS signaling-deficient mutants. Moreover, the QS system triggered multilayered gene expression programs as a responsive protection to disinfectant exposure, including oxidative stress, ribosome synthesis, and the nutrient absorption of bacteria. These insights broaden our understanding of bacterial QS in response to disinfection, promising potential strategies toward efficient disinfection processes.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Huihui Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Sitong Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| |
Collapse
|
5
|
Mohsin MS, Avdic M, Fitzpatrick K, Lanzarini-Lopes M. UV-C side-emitting optical fiber-based disinfection: a promising approach for infection control in tight channels. Microbiol Spectr 2024; 12:e0004024. [PMID: 38687120 PMCID: PMC11237523 DOI: 10.1128/spectrum.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/18/2024] [Indexed: 05/02/2024] Open
Abstract
The growth of pathogenic bacteria in moist and wet surfaces and tubing of medically relevant devices results in serious infections in immunocompromised patients. In this study, we investigated and demonstrated the successful implementation of a UV-C side-emitting optical fiber in disinfecting medically relevant pathogenic bacteria (Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus [MRSA]) within tight channels of polytetrafluoroethylene (PTFE). PTFE is a commonly used material both in point-of-use (POU) water treatment technologies and medical devices (dental unit water line [DUWL], endoscope). For a 1-m-long PTFE channel, up to ≥6 log inactivation was achieved using a 1-m-long UV side-emitting optical fiber (SEOF) with continuous 16-h exposure of low UV-C radiation ranging from ~0.23 to ~29.30 μW/cm2. Furthermore, a linear model was used to calculate the inhibition zone constant (k`), which enables us to establish a correlation between UV dosage and the extent of inactivated surface area (cm2) for surface-bound Escherichia coli on a nutrient-rich medium. The k` value for an irradiance ranging from ~150 to ~271.50 μW/cm2 was calculated to be 0.564 ± 0.6 cm·cm2/mJ. This study demonstrated the efficacy of SEOFs for disinfection of medically relevant microorganisms present in medically and domestically relevant tight channels. The impact of the results in this study extends to the optimization of operational efficiency in pre-existing UV surface disinfection setups that currently operate at UV dosages exceeding the optimal levels.IMPORTANCEGermicidal UV radiation has gained global recognition for its effectiveness in water and surface disinfection. Recently, various works have illustrated the benefit of using UV-C side-emitting optical fibers (SEOFs) for the disinfection of tight polytetrafluoroethylene (PTFE) channels. This study now demonstrates its impact for disinfection of medically relevant organisms and introduces critical design calculations needed for its implementation. The flexible geometry and controlled emission of light in these UV-SEOFs make them ideal for light distribution in tight channels. Moreover, the results presented in this manuscript provide a novel framework that can be employed in various applications, addressing microbial contamination and the disinfection of tight channels.
Collapse
Affiliation(s)
- Muhammad Salman Mohsin
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Melisa Avdic
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Katrina Fitzpatrick
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Mariana Lanzarini-Lopes
- Environmental and Water Resources Engineering, Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
da Silva TCB, Chaúque BJM, Benitez GB, Rott MB. Global prevalence of potentially pathogenic free-living amoebae in sewage and sewage-related environments-systematic review with meta-analysis. Parasitol Res 2024; 123:148. [PMID: 38433138 DOI: 10.1007/s00436-024-08164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Free-living amoebae (FLA) include amphizoic microorganisms important in public health, widely isolated from air, water, and soil. However, its occurrence in sewage-related environments still needs to be systematically documented. This study summarizes the occurrence of FLA in sewage-related environments through a systematic review with meta-analysis. A total of 1983 scientific article were retrieved from different databases, of which 35 were selected and analyzed using a random effects forest plot model with a 95% confidence interval (IC). The pooled overall prevalence of FLA in sewage across 12 countries was 68.96% (95% IC = 58.5-79.42). Subgroup analysis indicates high prevalence in all environments analyzed, including sewage water from the sewage treatment plant (81.19%), treated sewage water (75.57%), sewage-contaminated water (67.70%), sediment contaminated by sewage (48.91%), and sewage water (47.84%). Prevalence values of Acanthamoeba spp., Hartmanella/Vermamoeba spp., and Naegleria spp. are 47.48%, 28.24%, and 16.69%, respectively. Analyzing the species level, the distribution is as follows: Acanthamoeba palestinensis (88%), A. castellanii (23.74%), A. astronyxis (19.18%), A. polyphaga (13.59%), A. culbertsoni (12.5%), A. stevensoni (8.33%), A. tubiashi (4.35%) and A. hatchetti (1.1%), Naegleria fowleri (28.4%), N. gruberi (25%), N. clarki (8.33%), N. australiensis (4.89%) and N. italica (4.29%), Hartmannella/Vermamoeba exundans (40%) and H.V. vermiform (32.61%). Overall, our findings indicate a high risk associated with sewage-related environments, as the prevalence of FLA, including pathogenic strains, is high, even in treated sewage water. The findings of this study may be valuable both for risk remediation actions against amoebic infections and for future research endeavors.
Collapse
Affiliation(s)
- Thaisla Cristiane Borella da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Beni Jequicene Mussengue Chaúque
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, UFRGS, Porto Alegre, Rio Grande Do Sul, Brazil
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Guilherme Brittes Benitez
- Industrial and Systems Engineering Graduate Program, Polytechnic School, Pontifical Catholic University of Parana (PUCPR), Curitiba, Paraná, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
- Laboratory 520, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Department of Parasitology, Universidade Federal Do Rio Grande Do Sul, Ramiro Barcelos Street, Porto Alegre, Rio Grande Do Sul, N 2600, Brazil.
| |
Collapse
|
7
|
Modra H, Ulmann V, Gersl M, Babak V, Konecny O, Hubelova D, Caha J, Kudelka J, Falkinham JO, Pavlik I. River Sediments Downstream of Villages in a Karstic Watershed Exhibited Increased Numbers and Higher Diversity of Nontuberculous Mycobacteria. MICROBIAL ECOLOGY 2023; 87:15. [PMID: 38102317 PMCID: PMC10724323 DOI: 10.1007/s00248-023-02326-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
The impact of residential villages on the nontuberculous mycobacteria (NTM) in streams flowing through them has not been studied in detail. Water and sediments of streams are highly susceptible to anthropogenic inputs such as surface water flows. This study investigated the impact of seven residential villages in a karst watershed on the prevalence and species spectrum of NTM in water and sediments. Higher NTM species diversity (i.e., 19 out of 28 detected) was recorded downstream of the villages and wastewater treatment plants (WWTPs) compared to sampling sites upstream (i.e., 5). Significantly, higher Zn and lower silicon concentrations were detected in sediments inside the village and downstream of the WWTP's effluents. Higher phosphorus concentration in sediment was downstream of WWTPs compared to other sampling sites. The effluent from the WWTPs had a substantial impact on water quality parameters with significant increases in total phosphorus, anions (Cl-and N-NH3-), and cations (Na+ and K+). The results provide insights into NTM numbers and species diversity distribution in a karst watershed and the impact of urban areas. Although in this report the focus is on the NTM, it is likely that other water and sediment microbes will be influenced as well.
Collapse
Affiliation(s)
- Helena Modra
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vit Ulmann
- Public Health Institute Ostrava, Partyzanske Nam. 7, 702 00, Ostrava, Czech Republic
| | - Milan Gersl
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vladimir Babak
- Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Ondrej Konecny
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dana Hubelova
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Caha
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Jan Kudelka
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | | | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Spencer-Williams I, Meyer M, DePas W, Elliott E, Haig SJ. Assessing the Impacts of Lead Corrosion Control on the Microbial Ecology and Abundance of Drinking-Water-Associated Pathogens in a Full-Scale Drinking Water Distribution System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20360-20369. [PMID: 37970641 DOI: 10.1021/acs.est.3c05272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Increases in phosphate availability in drinking water distribution systems (DWDSs) from the use of phosphate-based corrosion control strategies may result in nutrient and microbial community composition shifts in the DWDS. This study assessed the year-long impacts of full-scale DWDS orthophosphate addition on both the microbial ecology and density of drinking-water-associated pathogens that infect the immunocompromised (DWPIs). Using 16S rRNA gene amplicon sequencing and droplet digital PCR, drinking water microbial community composition and DWPI density were examined. Microbial community composition analysis suggested significant compositional changes after the orthophosphate addition. Significant increases in total bacterial density were observed after orthophosphate addition, likely driven by a 2 log 10 increase in nontuberculous mycobacteria (NTM). Linear effect models confirmed the importance of phosphate addition with phosphorus concentration explaining 17% and 12% of the variance in NTM and L. pneumophila density, respectively. To elucidate the impact of phosphate on NTM aggregation, a comparison of planktonic and aggregate fractions of NTM cultures grown at varying phosphate concentrations was conducted. Aggregation assay results suggested that higher phosphate concentrations cause more disaggregation, and the interaction between phosphate and NTM is species specific. This work reveals new insight into the consequences of orthophosphate application on the DWDS microbiome and highlights the importance of proactively monitoring the DWDS for DWPIs.
Collapse
Affiliation(s)
- Isaiah Spencer-Williams
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mitchell Meyer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - William DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | - Emily Elliott
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sarah-Jane Haig
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
9
|
Borella da Silva TC, Dos Santos DL, Rott MB. First report of free-living amoebae in sewage treatment plants in Porto Alegre, southern Brazil. JOURNAL OF WATER AND HEALTH 2023; 21:1611-1624. [PMID: 37902214 PMCID: wh_2023_261 DOI: 10.2166/wh.2023.261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Free-living amoebae (FLA) are amphizoic protozoans with a cosmopolitan distribution. Some strains of species are associated with infections in humans. They feed on microorganisms by phagocytosis; however, some of these can become endocytobionts by resisting this process and taking shelter inside the amoeba. The whole world is experiencing increasing shortage of water, and sewage is being reused, so the study of this environment is important in public health context. The objective of this work was to identify FLA present in sewage treatment plants in Porto Alegre, Brazil. About 1 L samples were collected from eight stations (raw and treated sewage) in January, February, July, and August 2022. The samples were sown in monoxenic culture, and the isolated amoebae were subjected to morphological and molecular identification. Polymerase chain reaction results indicated the presence of the genus Acanthamoeba in 100% of the samples. Gene sequencing showed the presence of Acanthamoeba lenticulata and Acanthamoeba polyphaga - T5 and T4 genotypes - respectively, which are related to pathogenicity. The environment where the sewage is released can be used in recreational activities, exposing individuals to potential interactions with these amoebae and their potential endocytobionts, which may pose risks to public health.
Collapse
Affiliation(s)
- Thaisla Cristiane Borella da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil E-mail:
| | - Daniel Leal Dos Santos
- Faculty of Geography, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, N 6681, Porto Alegre, Rio Grande do Sul 90619-900, Brazil
| | - Marilise Brittes Rott
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
10
|
Song JJX, Oguma K. Mycobacterial contamination in tap and shower waters in Thailand. Lett Appl Microbiol 2023; 76:ovad090. [PMID: 37528059 DOI: 10.1093/lambio/ovad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/03/2023]
Abstract
Waterborne disease is increasingly becoming associated with opportunistic premise plumbing pathogens (OPPPs), which can resist residual chlorination, regrow throughout drinking water distribution systems, and colonize premise plumbing. Nontuberculous mycobacteria (NTM) include clinically important species and exert a high burden on healthcare systems. We briefly report a qPCR-based survey of Mycobacterium spp. numbers in tap, POU-treated, and shower waters from Bangkok, Thailand. Non-stagnant tap waters and non-stagnant shower waters had mean numbers of 1.3 × 103 and 2.4 × 103 copies/mL, respectively. Water stagnation resulted in mean numbers higher by up to 1.0 log. The lowest number, 25 copies/mL, was obtained from a POU-treated sample, while the highest number, 2.0 × 104 copies/mL, came from a stagnant tap. Comparing with international data, mean numbers in this study were greater than those in nine out of 11 (82%) comparable studies, and the maximum numbers in this study were also high. Our samples of Bangkok waters exhibited relatively high Mycobacterium spp. numbers, suggesting the need for appropriate POU treatment systems where NTM infection is a health concern. This survey data can be used to set inactivation performance targets in POU water disinfection system design and may also lead to quantitative microbial risk assessment (QMRA) studies.
Collapse
Affiliation(s)
- Jack Jia Xin Song
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kumiko Oguma
- Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| |
Collapse
|
11
|
Jia S, Tian Y, Song Y, Zhang H, Kang M, Guo H, Chen H. Effect of NaClO and ClO 2 on the bacterial properties in a reclaimed water distribution system: efficiency and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27456-6. [PMID: 37178295 DOI: 10.1007/s11356-023-27456-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Extensive application of reclaimed water alleviated water scarcity obviously. Bacterial proliferation in reclaimed water distribution systems (RWDSs) poses a threat to water safety. Disinfection is the most common method to control microbial growth. The present study investigated the efficiency and mechanisms of two widely used disinfectants: sodium hypochlorite (NaClO) and chlorine dioxide (ClO2) on the bacterial community and cell integrity in effluents of RWDSs through high-throughput sequencing (Hiseq) and flow cytometry, respectively. Results showed that a low disinfectant dose (1 mg/L) did not change the bacterial community basically, while an intermediate disinfectant dose (2 mg/L) reduced the biodiversity significantly. However, some tolerant species survived and multiplied in high disinfectant environments (4 mg/L). Additionally, the effect of disinfection on bacterial properties varied between effluents and biofilm, with changes in the abundance, bacterial community, and biodiversity. Results of flow cytometry showed that NaClO disturbed live bacterial cells rapidly, while ClO2 caused greater damage, stripping the bacterial membrane and exposing the cytoplasm. This research will provide valuable information for assessing the disinfection efficiency, biological stability control, and microbial risk management of reclaimed water supply systems.
Collapse
Affiliation(s)
- Shichao Jia
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Yimei Tian
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Yarong Song
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Haiya Zhang
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China.
- Institute of Water Ecology and Environment|, Chinese Research Academy of Environmental Science, Beijing, 100012, China.
| | - Mengxin Kang
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| | - Hao Guo
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
- The Institute of Seawater Desalination and Multipurpose Utilization, MNR (Tianjin), Tianjin, 300192, China
| | - Haolin Chen
- Environmental Science and Engineering, School of Tianjin University, Tianjin, 300072, China
| |
Collapse
|
12
|
Jahne MA, Schoen ME, Kaufmann A, Pecson BM, Olivieri A, Sharvelle S, Anderson A, Ashbolt NJ, Garland JL. Enteric pathogen reduction targets for onsite non-potable water systems: A critical evaluation. WATER RESEARCH 2023; 233:119742. [PMID: 36848851 PMCID: PMC10084472 DOI: 10.1016/j.watres.2023.119742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Onsite non-potable water systems (ONWS) collect and treat local source waters for non-potable end uses such as toilet flushing and irrigation. Quantitative microbial risk assessment (QMRA) has been used to set pathogen log10-reduction targets (LRTs) for ONWS to achieve the risk benchmark of 10-4 infections per person per year (ppy) in a series of two efforts completed in 2017 and 2021. In this work, we compare and synthesize the ONWS LRT efforts to inform the selection of pathogen LRTs. For onsite wastewater, greywater, and stormwater, LRTs for human enteric viruses and parasitic protozoa were within 1.5-log10 units between 2017 and 2021 efforts, despite differences in approaches used to characterize pathogens in these waters. For onsite wastewater and greywater, the 2017 effort used an epidemiology-based model to simulate pathogen concentrations contributed exclusively from onsite waste and selected Norovirus as the viral reference pathogen; the 2021 effort used municipal wastewater pathogen data and cultivable adenoviruses as the reference viral pathogen. Across source waters, the greatest differences occurred for viruses in stormwater, given the newly available municipal wastewater characterizations used for modeling sewage contributions in 2021 and the different selection of reference pathogens (Norovirus vs. adenoviruses). The roof runoff LRTs support the need for protozoa treatment, but these remain difficult to characterize due to the pathogen variability in roof runoff across space and time. The comparison highlights adaptability of the risk-based approach, allowing for updated LRTs as site specific or improved information becomes available. Future research efforts should focus on data collection of onsite water sources.
Collapse
Affiliation(s)
- Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA.
| | - Mary E Schoen
- Soller Environmental, LLC, 3022 King St., Berkeley, CA 94703, USA
| | - Anya Kaufmann
- Trussell Technologies, Inc., 1939 Harrison St., Oakland, CA 94612, USA
| | - Brian M Pecson
- Trussell Technologies, Inc., 1939 Harrison St., Oakland, CA 94612, USA
| | | | - Sybil Sharvelle
- Colorado State University, Department of Civil and Environmental Engineering, 1372 Campus Delivery, Fort Collins, CO 80523, USA
| | - Anita Anderson
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, USA
| | | | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| |
Collapse
|
13
|
Chen Z, Shi Q, Xu M, Yan H, Cao K, Mao Y, Wu Y, Hu HY. Quantitative models and potential surrogates for rapid evaluation and surveillance of chlorine disinfection efficacy in reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161372. [PMID: 36621502 DOI: 10.1016/j.scitotenv.2022.161372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/29/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Chlorine disinfection has become the most widely applied and indispensable technology in wastewater treatment and reuse to mitigate microbial risk and guarantee water safety. However, owing to complexities and high concentrations of contaminants in reclaimed water, rapid evaluation of chlorine disinfection efficacy is a crucial but challenging issue. Based on intensive experimental and statistical analyses, this study has established kinetic models and potential surrogates for rapid indication of the inactivation of microbial indicators and opportunistic pathogens during chlorine disinfection in different reclaimed waters. Overall, the constructed Selleck models performed very well to simulate log removal values (LRVs) of fecal coliforms, Pseudomonas aeruginosa and heterotrophic plate counts in all reclaimed water samples (R2 = 0.877-0.990). Moreover, total and Peak A fluorescence intensity as well as fluorescence integral intensities in Regions II and IV were found to have high response sensitivities during the chlorination process. Nevertheless, their effectiveness to act as potential surrogates of LRVs of microbial indicators needs to be further validated. The results from this study can provide valuable information on microbial safety surveillance of disinfection toward sustainable and long-term water reuse.
Collapse
Affiliation(s)
- Zhuo Chen
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Qi Shi
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Han Yan
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Kefan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Jiangsu, Suzhou, 215163, PR China
| |
Collapse
|
14
|
Mapili K, Rhoads WJ, Coughter M, Pieper KJ, Edwards MA, Pruden A. Occurrence of opportunistic pathogens in private wells after major flooding events: A four state molecular survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:153901. [PMID: 35182640 DOI: 10.1016/j.scitotenv.2022.153901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Private wells can become contaminated with waterborne pathogens during flooding events; however, testing efforts focus almost exclusively on fecal indicator bacteria. Opportunistic pathogens (OPs), which are the leading cause of identified waterborne disease in the United States, are understudied in private wells. We conducted a quantitative polymerase chain reaction survey of Legionella spp., L. pneumophila, Mycobacterium spp., M. avium, Naegleria fowleri, and shiga toxin-producing Escherichia coli gene markers and total coliform and E. coli in drinking water supplied by private wells following the Louisiana Floods (2016), Hurricane Harvey (2017), Hurricane Irma (2017), and Hurricane Florence (2018). Self-reported well characteristics and recovery status were collected via questionnaires. Of the 211 water samples collected, 40.3% and 5.2% were positive for total coliform and E. coli, which were slightly elevated positivity rates compared to prior work in coastal aquifers. DNA markers for Legionella and Mycobacterium were detected in 54.5% and 36.5% of samples, with L. pneumophila and M. avium detected in 15.6% and 17.1%, which was a similar positivity rate relative to municipal system surveys. Total bacterial 16S rRNA gene copies were positively associated with Legionella and Mycobacterium, indicating that conditions that favor occurrence of general bacteria can also favor OPs. N. fowleri DNA was detected in 6.6% of samples and was the only OP that was more prevalent in submerged wells compared to non-submerged wells. Self-reported well characteristics were not associated with OP occurrence. This study exposes the value of routine baseline monitoring and timely sampling after flooding events in order to effectively assess well water contamination risks.
Collapse
Affiliation(s)
- Kris Mapili
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| | - William J Rhoads
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America; Eawag - Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Microbiology, Überlandstrasse 133, 8600 Dübendorf, Switzerland.
| | - Mary Coughter
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| | - Kelsey J Pieper
- Northeastern University, Civil and Environmental Engineering, 360 Huntington Ave., Boston, MA 02115, United States of America.
| | - Marc A Edwards
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| | - Amy Pruden
- Virginia Tech, Civil and Environmental Engineering, 418 Durham Hall, Blacksburg, VA 24061, United States of America
| |
Collapse
|
15
|
Webster TM, McFarland A, Gebert MJ, Oliverio AM, Nichols LM, Dunn RR, Hartmann EM, Fierer N. Structure and Functional Attributes of Bacterial Communities in Premise Plumbing Across the United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14105-14114. [PMID: 34606240 DOI: 10.1021/acs.est.1c03309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.
Collapse
Affiliation(s)
- Tara M Webster
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Alexander McFarland
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Matthew J Gebert
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Angela M Oliverio
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina 27607, United States
- Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen 1050, Denmark
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Noah Fierer
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
16
|
Zhang X, Xia S, Ye Y, Wang H. Opportunistic pathogens exhibit distinct growth dynamics in rainwater and tap water storage systems. WATER RESEARCH 2021; 204:117581. [PMID: 34461496 DOI: 10.1016/j.watres.2021.117581] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Opportunistic pathogens (OPs) are emerging microbial contaminants in engineered water systems, yet their growth potential in rainwater systems has not been evaluated. The purpose of this study was to compare the growth dynamics of bacterial OPs and related genera (Pseudomonas aeruginosa, Legionella spp., L. pneumophila, Mycobacterium spp., and M. avium), two amoebal hosts (Acanthamoeba spp. and Vermamoeba vermiformis), and the fecal indicator Escherichia coli in simulated rainwater and tap water storage systems (SWSSs). Quantitative polymerase chain reaction (q-PCR) analysis of target microorganisms in SWSS influents and effluents demonstrated that P. aeruginosa and Legionella thrived in rainwater, but not in tap water. V. vermiformis proliferated in both rainwater and tap water polyvinyl chloride (PVC) SWSSs, while mycobacteria were largely absent in rainwater SWSSs. Tank materials exerted stronger influence on target microorganisms in rainwater SWSSs relative to tap water SWSSs, with species-specific responses noted in bulk water and biofilm. For instance, P. aeruginosa and V. vermiformis had the highest gene copy numbers in PVC rainwater SWSS effluents and biofilm, while Legionella peaked in stainless steel rainwater SWSS effluents and PVC rainwater SWSS biofilm. These results highlighted the OP contamination risks in rainwater storage systems and provided insights into rainwater system design and operation in terms of OP control.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Chengtou Water Group Corporation, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yinyin Ye
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, New York 14260, USA
| | - Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Wang HB, Wu YH, Luo LW, Yu T, Xu A, Xue S, Chen GQ, Ni XY, Peng L, Chen Z, Wang YH, Tong X, Bai Y, Xu YQ, Hu HY. Risks, characteristics, and control strategies of disinfection-residual-bacteria (DRB) from the perspective of microbial community structure. WATER RESEARCH 2021; 204:117606. [PMID: 34500181 PMCID: PMC8390064 DOI: 10.1016/j.watres.2021.117606] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 05/19/2023]
Abstract
The epidemic of COVID-19 has aroused people's particular attention to biosafety. A growing number of disinfection products have been consumed during this period. However, the flaw of disinfection has not received enough attention, especially in water treatment processes. While cutting down the quantity of microorganisms, disinfection processes exert a considerable selection effect on bacteria and thus reshape the microbial community structure to a great extent, causing the problem of disinfection-residual-bacteria (DRB). These systematic and profound changes could lead to the shift in regrowth potential, bio fouling potential, as well as antibiotic resistance level and might cause a series of potential risks. In this review, we collected and summarized the data from the literature in recent 10 years about the microbial community structure shifting of natural water or wastewater in full-scale treatment plants caused by disinfection. Based on these data, typical DRB with the most reporting frequency after disinfection by chlorine-containing disinfectants, ozone disinfection, and ultraviolet disinfection were identified and summarized, which were the bacteria with a relative abundance of over 5% in the residual bacteria community and the bacteria with an increasing rate of relative abundance over 100% after disinfection. Furthermore, the phylogenic relationship and potential risks of these typical DRB were also analyzed. Twelve out of fifteen typical DRB genera contain pathogenic strains, and many were reported of great secretion ability. Pseudomonas and Acinetobacter possess multiple disinfection resistance and could be considered as model bacteria in future studies of disinfection. We also discussed the growth, secretion, and antibiotic resistance characteristics of DRB, as well as possible control strategies. The DRB phenomenon is not limited to water treatment but also exists in the air and solid disinfection processes, which need more attention and more profound research, especially in the period of COVID-19.
Collapse
Affiliation(s)
- Hao-Bin Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China.
| | - Li-Wei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Tong Yu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266000, PR China
| | - Ao Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou Jiangsu 215163, PR China
| | - Song Xue
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Gen-Qiang Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Lu Peng
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yun-Hong Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Xin Tong
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yuan Bai
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Yu-Qing Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Room 524, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, PR China.
| |
Collapse
|
18
|
Ghosh S, Zhu NJ, Milligan E, Falkinham JO, Pruden A, Edwards MA. Mapping the Terrain for Pathogen Persistence and Proliferation in Non-potable Reuse Distribution Systems: Interactive Effects of Biofiltration, Disinfection, and Water Age. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12561-12573. [PMID: 34448580 DOI: 10.1021/acs.est.1c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diverse pathogens can potentially persist and proliferate in reclaimed water distribution systems (RWDSs). The goal of this study was to evaluate interactive effects of reclaimed water treatments and water age on persistence and proliferation of multiple fecal (e.g., Klebsiella, Enterobacter) and non-fecal (e.g., Legionella, mycobacteria) gene markers in RWDSs. Six laboratory-scale RWDSs were operated in parallel receiving the influent with or without biologically active carbon (BAC) filtration + chlorination, chloramination, or no disinfectant residual. After 3 years of operation, the RWDSs were subject to sacrificial sampling and shotgun metagenomic sequencing. We developed an in-house metagenome-derived pathogen quantification pipeline, validated by quantitative polymerase chain reaction and mock community analysis, to estimate changes in abundance of ∼30 genera containing waterborne pathogens. Microbial community composition in the RWDS bulk water, biofilm, and sediments was clearly shaped by BAC filtration, disinfectant conditions, and water age. Key commonalities were noted in the ecological niches occupied by fecal pathogen markers in the RWDSs, while non-fecal pathogen markers were more varied in their distribution. BAC-filtration + chlorine was found to most effectively control the widest range of target genera. However, filtration alone or chlorine secondary disinfection alone resulted in proliferation of some of these genera containing waterborne pathogens.
Collapse
Affiliation(s)
- Sudeshna Ghosh
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ni Joyce Zhu
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Erin Milligan
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marc A Edwards
- Department of Civil & Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
19
|
Pereira A, Silva AR, Melo LF. Legionella and Biofilms-Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021; 9:microorganisms9061212. [PMID: 34205095 PMCID: PMC8228026 DOI: 10.3390/microorganisms9061212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Legionella is responsible for the life-threatening pneumonia commonly known as Legionnaires’ disease or legionellosis. Legionellosis is known to be preventable if proper measures are put into practice. Despite the efforts to improve preventive approaches, Legionella control remains one of the most challenging issues in the water treatment industry. Legionellosis incidence is on the rise and is expected to keep increasing as global challenges become a reality. This puts great emphasis on prevention, which must be grounded in strengthened Legionella management practices. Herein, an overview of field-based studies (the system as a test rig) is provided to unravel the common roots of research and the main contributions to Legionella’s understanding. The perpetuation of a water-focused monitoring approach and the importance of protozoa and biofilms will then be discussed as bottom-line questions for reliable Legionella real-field surveillance. Finally, an integrated monitoring model is proposed to study and control Legionella in water systems by combining discrete and continuous information about water and biofilm. Although the successful implementation of such a model requires a broader discussion across the scientific community and practitioners, this might be a starting point to build more consistent Legionella management strategies that can effectively mitigate legionellosis risks by reinforcing a pro-active Legionella prevention philosophy.
Collapse
|
20
|
Li N, Li X, Zhang HJ, Fan XY, Liu YK. Microbial community and antibiotic resistance genes of biofilm on pipes and their interactions in domestic hot water system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144364. [PMID: 33429277 DOI: 10.1016/j.scitotenv.2020.144364] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to explore the dynamics of microbial communities and antibiotic resistance genes (ARGs) during biofilm formation on polypropylene random (PPR), polyvinyl chloride and stainless steel pipes in domestic hot water system (DHWS), as well as their interactions. Full-scale classification was used to divide abundant and rare genera with 0.1% and 1% as the thresholds. The biofilm community structure presented a temporal pattern, which was mainly determined by conditionally rare or abundant taxa (CRAT) and conditionally rare taxa (CRT). The dynamics of microbial community during biofilm formation were observed, and the effect of pipe material on conditionally abundant taxa (CAT) and CRAT was greater than CRT and rare taxa (RT). CRAT showed the most complex internal associations and were identified as the core taxa. Notably, CRT and RT with low relative abundance, also played an important role in the network. For potential pathogens, 17 genera were identified in this study, and their total relative abundance was the highest (3.6-28.9%) in PPR samples. Enterococcus of CRAT was the dominant potential pathogen in young biofilms. There were 36 more co-exclusion patterns (140) observed between potential pathogens and nonpathogenic bacteria than co-occurrence (104). A total of 38 ARGs were predicted, and 109 negative and 165 positive correlations were detected between them. Some potential pathogens (Escherichia/Shigella and Burkholderia) and nonpathogenic bacteria (Meiothermus and Sphingopyxis) were identified as the possible hosts of ARGs. This study is helpful for a comprehensive understanding of the biofilm microbial community and ARGs, and provides a reference for the management and biosafety guarantee of newly-built DHWS.
Collapse
Affiliation(s)
- Na Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Hui-Jin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiao-Yan Fan
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuan-Kun Liu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
21
|
Xie E, Zhao X, Li K, Zhang P, Zhou X, Zhao X. Microbial community structure in the river sediments from upstream of Guanting Reservoir: Potential impacts of reclaimed water recharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142609. [PMID: 33069478 DOI: 10.1016/j.scitotenv.2020.142609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
This work systematically investigated the microbial community structure in the river sediments from upstream of Guanting Reservoir, Beijing, China. A total of 6 wastewater treatment plants (WWTPs) locate along the main rivers connected to the reservoir. Water and sediment samples were collected at sites near the effluents of WWTPs (regarded as W groups) or at the upstream/downstream rivers (R groups) to reveal the roles of the reclaimed water recharge. Multivariate techniques including typical statistical analysis, redundancy analysis (RDA), nonmetric multidimensional scaling analysis, and molecular ecological network analysis were used to evaluate the results and their relationships. The representative C/N/P water parameters and concentrations of target organic contaminants kept stable for W and R sites, while the microbial community parameters varied greatly for two groups. The microbial population at W sites were higher but with a lower biological diversity (with a lower Shannon index) than that at R sites, indicating WWTPs greatly altered the microbial community structure at the local reach. RDA results revealed that total organic carbon (TOC) and organophosphorus pesticides (OPPs) were two dominant factors affecting the function and composition of microbial communities at the phylum level. The network analysis revealed that the microbes with the most interactions mainly from R sites and they had closer relationships with each other.
Collapse
Affiliation(s)
- En Xie
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
| | - Xiaohui Zhao
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Kun Li
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Panwei Zhang
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiuhua Zhou
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiao Zhao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
22
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
23
|
Fu Y, Peng H, Liu J, Nguyen TH, Hashmi MZ, Shen C. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142851. [PMID: 33097267 DOI: 10.1016/j.scitotenv.2020.142851] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Waterborne pathogens have been found in biofilms grown in drinking water distribution system (DWDS). However, there is a lack of quantitative study on the culturability of pathogens in biofilms from metropolitan DWDS. In this study, we quantified culturable and viable but non-culturable (VBNC) Escherichia coli, Salmonella enterica, Pseudomonas aeruginosa and Vibrio cholerae in biofilms collected from five kinds of pipes (galvanized steel pipe, steel pipe, stainless steel clad pipe, ductile cast iron pipe and polyethylene pipe) and associated drinking water at an actual chlorinated DWDS in use from China. The results of these comprehensive analyses revealed that pipe material is a significant factor influencing the culturability of pathogen and microbial communities. Network analysis of the culturable pathogens and 16S rRNA gene inferred potential interactions between microbiome and culturability of pathogens. Although the water quality met the Chinese national standard of drinking water, however, VBNC pathogens were detected in both biofilms and water from the DWDS. This investigation suggests that stainless steel clad pipe (SSCP) was a better choice for pathogen control compared with other metal pipes. To our knowledge, this is the first study on culturable and VBNC pathogens in biofilms of different pipe materials in metropolitan DWDS.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongxi Peng
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jingqing Liu
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | | | - Chaofeng Shen
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol 2021; 37:36. [PMID: 33507414 DOI: 10.1007/s11274-021-03008-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
A variety of pathogenic microorganisms can survive in the drinking water distribution systems (DWDS) by forming stable biofilms and, thus, continually disseminating their population through the system's dynamic water bodies. The ingestion of the pathogen-contaminated water could trigger a broad spectrum of illnesses and well-being-related obstacles. These waterborne diseases are a significant concern for babies, pregnant women, and significantly low-immune individuals. This review highlights the recent advances in understanding the microbiological aspects of drinking water quality, biofilm formation and its dynamics, health issues caused by the emerging microbes in biofilm, and approaches for biofilm investigation its prevention and suppression in DWDS.
Collapse
|
25
|
Zhang W, Suyamud B, Lohwacharin J, Yang Y. Large-scale pattern of resistance genes and bacterial community in the tap water along the middle and low reaches of the Yangtze River. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111517. [PMID: 33120256 DOI: 10.1016/j.ecoenv.2020.111517] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic and metal resistance genes (ARGs and MRGs) in tap water are of great public health concern. However, very fewer studies focused on the relationship between resistance genes and opportunistic pathogens in tap water. In this study, the diversity and abundance of resistance genes and bacterial community from tap water at a large-scale along the middle and lower reaches of the Yangtze River were investigated. The total relative abundances of ARGs and MRGs were 2.95 × 10-3-1.22 × 10-1 and 1.93 × 10-3-1.20 × 10-1 copies/16S rRNA, respectively. The blaTEM and merP detected were major ARG and MRG subtypes, respectively. Mobile genetic elements (Intl1 and tnpA) showed significant correlations with the abundance of ARGs. Heavy metals also played a vital role in the co-selection of ARGs. Surprisingly, there were still eight opportunistic pathogens in tap water, among which Escherichia coli, Helicobacter pylori, Mycoplasma pneumoniae, and Porphyromonas gingivalis were the potential host of ARGs and MRGs. Escherichia coli had the highest abundance, while Bacillus anthracis had the highest detected frequency (100%), a widespread opportunistic pathogen in tap water.
Collapse
Affiliation(s)
- Weihong Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bongkotrat Suyamud
- Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of the Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
26
|
Genome-Resolved Metagenomics and Antibiotic Resistance Genes Analysis in Reclaimed Water Distribution Systems. WATER 2020. [DOI: 10.3390/w12123477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Water reuse is increasingly pursued to alleviate global water scarcity. However, the wastewater treatment process does not achieve full removal of biological contaminants from wastewater, hence microorganisms and their genetic elements can be disseminated into the reclaimed water distribution systems (RWDS). In this study, reclaimed water samples are investigated via metagenomics to assess their bacterial diversity, metagenome-assembled genomes (MAGs) and antibiotic resistance genes (ARGs) at both point of entry (POE) and point of use (POU) in 3 RWDS. The number of shared bacterial orders identified by metagenome was higher at the POE than POU among the three sites, indicating that specific conditions in RWDS can cause further differentiation in the microbial communities at the end of the distribution system. Two bacterial orders, namely Rhizobiales and Sphingomonadales, had high replication rates in two of the examined RWDS (i.e., site A and B), and were present in higher relative abundance in POU than at POE. In addition, MAG and ARG relative abundance exhibited a strong correlation (R2 = 0.58) in POU, indicating that bacteria present in POU may have a high incidence of ARG. Specifically, resistance genes associated with efflux pump mechanisms (e.g., adeF and qacH) increased in its relative abundance from POU to POE at two of the RWDS (i.e., site A and B). When correlated with the water quality data that suggests a significantly lower dissolved organic carbon (DOC) concentration at site D than the other two RWDS, the metagenomic data suggest that low DOC is needed to maintain the biological stability of reclaimed water along the distribution network.
Collapse
|
27
|
Zhang G, Guan Y, Zhao R, Feng J, Huang J, Ma L, Li B. Metagenomic and network analyses decipher profiles and co-occurrence patterns of antibiotic resistome and bacterial taxa in the reclaimed wastewater distribution system. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123170. [PMID: 32590136 DOI: 10.1016/j.jhazmat.2020.123170] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 05/08/2023]
Abstract
Metagenomic and network analyses were applied to decipher the profiles and co-occurrence of resistome and microbial taxa in the reclaimed wastewater distribution system, including reclaimed wastewater and two types of biofilms, i.e., surface layer biofilms and inner layer biofilms. The effects of chlorination, UV irradiation and no disinfection treatment on ARG relative abundance and composition were systemically investigated. The reclaimed wastewater possesses more diverse and abundant ARGs than biofilms and total ARG relative abundance followed the order of reclaimed wastewater samples > surface layer biofilms > inner layer biofilms. Multidrug, bacitracin, sulfonamide, aminoglycoside, beta-lactam, and macrolide-lincosamide-streptogramin resistance genes were the six most dominant ARG types and their sum accounted for 90.1 %-96.0 % of the total ARG relative abundance in different samples. Beta-lactam resistance gene was the discriminative ARG type for reclaimed wastewater. Bacitracin resistance gene and bacA were the discriminative ARG type and subtype for biofilms. Chlorination significantly reduced ARG relative abundance in the reclaimed wastewater. Nevertheless, it could not reduce ARG relative abundance in biofilms. Regarding to the total ARG profiles, there were no obvious increasing or decreasing trends over time during one year period. Co-occurrence results revealed twenty-six genera were deduced as the potential hosts of twenty-two ARG subtypes.
Collapse
Affiliation(s)
- Guijuan Zhang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, School of Environment, Tsinghua University, Beijing, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Liping Ma
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
28
|
Cullom AC, Martin RL, Song Y, Williams K, Williams A, Pruden A, Edwards MA. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020; 9:E957. [PMID: 33212943 PMCID: PMC7698398 DOI: 10.3390/pathogens9110957] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper's interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.
Collapse
Affiliation(s)
- Abraham C. Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Rebekah L. Martin
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
- Civil and Environmental Engineering, Virginia Military Institute, Lexington, VA 24450, USA
| | - Yang Song
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | | | - Amanda Williams
- c/o Marc Edwards, Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA;
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| | - Marc A. Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, VA 24061, USA; (A.C.C.); (R.L.M.); (Y.S.); (A.P.)
| |
Collapse
|
29
|
An XL, Wang JY, Pu Q, Li H, Pan T, Li HQ, Pan FX, Su JQ. High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water. ENVIRONMENTAL RESEARCH 2020; 190:109982. [PMID: 32745749 DOI: 10.1016/j.envres.2020.109982] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Waterborne pathogens and their associated diseases are major threats to public health, and surveillance of pathogens and identification of the sources of pollution are imperative for preventing infections. However, simultaneously quantitative detection of multiple pathogens and pollution sources in water environments is the major challenge. In this study, we developed and validated a highly sensitive (mostly >80%) and highly specific (>99%) high-throughput quantitative PCR (HT-qPCR) approach, which could simultaneously quantify 68 marker genes of 33 human pathogens and 23 fecal markers of 10 hosts. The HT-qPCR approach was then successfully used to investigate pathogens and fecal pollution in marine recreational water samples of Xiamen, China. Totally, seven pathogenic marker genes were found in 13 beach bathing waters, which targeted Acanthamoeba spp., Clostridium perfringens, enteropathogenic Escherichia coli, Klebsiella pneumoniae, Vibrio cholera/V. parahaemolyticus and Legionella spp.. Fecal markers from human and dog were the most frequently detected, indicating human and dog feces were the main contamination in the recreational waters. Nanopore sequencing of full-length 16S rRNA gene revealed that 28 potential human pathogens were detected and electrical conductivity, salinity, oxidation-reduction potential and dissolved oxygen were significantly correlated with the variation in bacterial community. Our results demonstrated that HT-qPCR approach had the potential rapid quantification of microbial contamination, providing useful data for assessment of microbial pathogen associated health risk and development of management practices to protect human health.
Collapse
Affiliation(s)
- Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jia-Ying Wang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Pu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Ting Pan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan-Qin Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of the Environmental & Ecology, Xiamen University, 361102, China
| | - Fu-Xia Pan
- Jinan Environmental Research Institute, Jinan, 250100, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
30
|
Lanzarini-Lopes M, Zhao Z, Perreault F, Garcia-Segura S, Westerhoff P. Germicidal glowsticks: Side-emitting optical fibers inhibit Pseudomonas aeruginosa and Escherichia coli on surfaces. WATER RESEARCH 2020; 184:116191. [PMID: 32721764 DOI: 10.1016/j.watres.2020.116191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
This paper investigates using UV-C side-emitting optical fibers (SEOFs) to prevent growth of pathogenic bacteria (Pseudomonas aeruginosa and Escherichia coli) on nutrient-rich surfaces. Attaching a SEOF to a single 265 nm light emitting diode (LED) increases irradiation area by >1000x and provides continuous low-irradiance of UV-C light to a large surface area. A zone-of-inhibition protocol was developed to quantify bacterial growth prevention on an agar plate around one SEOF. The inhibition zone increased linearly with irradiance time until achieving a maximum inhibition zone of 2.5 to 3 cm, which received ~ 4.3 mJ/cm2 of 265 nm light in 2 hours. The surviving lawn edge bacterial colonies did not develop UV resistance after two generations of exposure. The agar plate remained bio-available after UV exposure, and bacteria could be grown on pre-illuminated area in the absence of UV-C light. Whereas we previously demonstrated SEOFs can inactivate planktonic bacteria, herein we show the ability of SEOFs to prevent bacteria growth on surfaces. This is the first step towards developing technologies with multiple SEOFs to inhibit biofilm growth on surfaces, which is a ubiquitous challenge across multiple applications from membrane surfaces to surfaces in pipes or water storage systems.
Collapse
Affiliation(s)
- Mariana Lanzarini-Lopes
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Zhe Zhao
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Sergi Garcia-Segura
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-5306, USA.
| |
Collapse
|
31
|
Liu G, Lu Y, Shi L, Ren Y, Kong J, Zhang M, Chen M, Liu W. TLR4-MyD88 signaling pathway is responsible for acute lung inflammation induced by reclaimed water. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122586. [PMID: 32315938 DOI: 10.1016/j.jhazmat.2020.122586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Previous research found that inhalation exposure of reclaimed water could cause severe pulmonary inflammation, and the endotoxin was proposed to be the key risk factor. To further support this view, the toxic effects of different reclaimed water induced by acute inhalation exposure were compared between wildtype C57BL/6J and TLR4 signaling pathway defect mice. It was found that reclaimed water with high levels of endotoxin could induce strong inflammation in wildtype mice, but not in Tlr4-/- and MyD88-/- mutants. The mixed bacterial culture from the reclaimed water showed very weak response in wildtype mice and no response in TLR4-signaling pathway deficient mice, which further suggested that the cell-bound endotoxins contribute little in the inflammation induced by reclaimed water. In addition, conditional knockout of the Tlr4 gene in myeloid cells resulted in a significant reduction of sensitivity to the reclaimed water in mutants, which indicates that myeloid cells play the most important role in the defensive immune system against the pollutants in the water. In general, this study demonstrated that the TLR4-MyD88 signaling pathway is responsible for the acute lung inflammation induced by reclaimed water, which excludes the possibility of other signaling pathway dependent inflammation inducers in reclaimed water.
Collapse
Affiliation(s)
- Gang Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Liangliang Shi
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yunru Ren
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiayang Kong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Mengyu Zhang
- School of Life Science, Tsinghua University, Beijing, 100084, China
| | - Menghao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- School of Life Science, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Zhang C, Xu P, Wang XC, Xu L. Bacterial viability and diversity in a landscape lake replenished with reclaimed water: a case study in Xi'an, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32796-32808. [PMID: 32519106 DOI: 10.1007/s11356-020-08910-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
To understand the characteristics of bacterial viability and diversity in landscape waters replenished with reclaimed water, the typical landscape lake using reclaimed water was investigated in this study. Samples were collected from a reclaimed water inlet (P1), a reclaimed water distribution outlet (P2), and a landscape lake replenished by reclaimed water (P3). By means of measuring adenosine triphosphate (ATP), flow cytometry (FCM), and 16S rRNA gene high-throughput sequencing, the bacterial viability and diversity in reclaimed water distribution system and landscape lake were illustrated. The bacterial ATP contents at P1, P2, and P3 were 3.55 ± 1.79 ng/L, 3.31 ± 1.43 ng/L, and 18.97 ± 6.39 μg/L, and the intact bacterial cell concentrations were 5.91 ± 0.52 × 104 cells/mL, 7.95 ± 2.58 × 104 cells/mL, and 5.65 ± 2.10 × 106 cells/mL, respectively. These results indicated a significant increase of bacterial viability in the landscape lake. The Shannon diversity index of 6.535, 7.05, and 6.886 at P1, P2, and P3, respectively, demonstrated no notable change of bacterial diversity from reclaimed water distribution system to landscape lake. However, the relative abundance of Pseudomonas sp. at P3 was significantly higher than that at P1. These findings indicated that viable but non-culturable (VBNC) bacteria could be revived in the landscape lake. The bacterial viability during reclaimed water reuse should deserve special attention.
Collapse
Affiliation(s)
- Chongmiao Zhang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Pengcheng Xu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Limei Xu
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
33
|
The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Appl Microbiol Biotechnol 2020; 104:7673-7688. [DOI: 10.1007/s00253-020-10777-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 02/07/2023]
|
34
|
Pan S, Zhang X, Wang Y, Liu J, Pan B. Mesoporous polyacrylonitrile membrane with ultrahigh loading of well-dispersed Fe2O3 nanoparticles: A powerful phosphate scavenger Enabling inhibition of microbial regrowth in Treated Water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Dai Z, Sevillano-Rivera MC, Calus ST, Bautista-de Los Santos QM, Eren AM, van der Wielen PWJJ, Ijaz UZ, Pinto AJ. Disinfection exhibits systematic impacts on the drinking water microbiome. MICROBIOME 2020; 8:42. [PMID: 32197656 PMCID: PMC7085177 DOI: 10.1186/s40168-020-00813-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/25/2020] [Indexed: 05/06/2023]
Abstract
Limiting microbial growth during drinking water distribution is achieved either by maintaining a disinfectant residual or through nutrient limitation without using a disinfectant. The impact of these contrasting approaches on the drinking water microbiome is not systematically understood. We use genome-resolved metagenomics to compare the structure, metabolic traits, and population genomes of drinking water microbiome samples from bulk drinking water across multiple full-scale disinfected and non-disinfected drinking water systems. Microbial communities cluster at the structural- and functional potential-level based on the presence/absence of a disinfectant residual. Disinfectant residual alone explained 17 and 6.5% of the variance in structure and functional potential of the drinking water microbiome, respectively, despite including multiple drinking water systems with variable source waters and source water communities and treatment strategies. The drinking water microbiome is structurally and functionally less diverse and variable across disinfected compared to non-disinfected systems. While bacteria were the most abundant domain, archaea and eukaryota were more abundant in non-disinfected and disinfected systems, respectively. Community-level differences in functional potential were driven by enrichment of genes associated with carbon and nitrogen fixation in non-disinfected systems and γ-aminobutyrate metabolism in disinfected systems likely associated with the recycling of amino acids. Genome-level analyses for a subset of phylogenetically-related microorganisms suggests that disinfection selects for microorganisms capable of using fatty acids, presumably from microbial decay products, via the glyoxylate cycle. Overall, we find that disinfection exhibits systematic selective pressures on the drinking water microbiome and may select for microorganisms able to utilize microbial decay products originating from disinfection-inactivated microorganisms. Video abstract.
Collapse
Affiliation(s)
- Zihan Dai
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | | | - Szymon T Calus
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | | | - A Murat Eren
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Paul W J J van der Wielen
- KWR Watercycle Research Institute, Nieuwegein, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Umer Z Ijaz
- Infrastructure and Environment Research Division, School of Engineering, University of Glasgow, G12 8LT, Glasgow, UK
| | - Ameet J Pinto
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
36
|
Isaac TS, Sherchan SP. Molecular detection of opportunistic premise plumbing pathogens in rural Louisiana's drinking water distribution system. ENVIRONMENTAL RESEARCH 2020; 181:108847. [PMID: 31740037 DOI: 10.1016/j.envres.2019.108847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 05/21/2023]
Abstract
Opportunistic premise plumbing pathogens (OPPPs) in drinking water distribution systems are responsible for causing numerous infections such as Legionnaires' disease and pneumonia through the consumption of contaminated drinking water. The incidence of opportunistic pathogens and the number of individuals at risk of contracting infections caused by these OPPPs in drinking water has risen drastically in the past decade. Preflush and postflush water samples were collected from 64 houses in a rural town in northeast Louisiana to determine drinking water quality in terms of understanding abiotic and biotic factors on potential proliferation of OPPPs. Physical and chemical water quality parameters, such as pH, temperature, dissolved oxygen, salinity, and specific conductance were also measured. The quantitative polymerase chain reaction (qPCR) results indicated that Legionella spp. had the highest prevalence and was found in 46/64 samples (72%), followed by Mycobacterium spp. which was found in 43/64 samples (67%), E. coli in 31/64 samples (48%) and, Naegleria fowleri in 4/64 samples (6%) respectively. The results indicate the persistence of Legionella spp. DNA marker in these water samples.
Collapse
Affiliation(s)
- Tanya S Isaac
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Samendra P Sherchan
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
37
|
Motlagh AM, Yang Z. Detection and occurrence of indicator organisms and pathogens. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1402-1408. [PMID: 31505073 PMCID: PMC7169830 DOI: 10.1002/wer.1238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
This review paper focuses on detection and quantification techniques of indicator organisms that can be used for water quality assessment. The environmental pathogens that are critical to understand and better evaluate water quality are also discussed in this paper. Several recent studies using culture-independent methods such as microbial source tracking, pulsed field gel electrophoresis, mitochondrial DNA, and next generation sequencing to assess various environmental samples and water bodies have been reviewed. PRACTITIONER POINTS: Various waterborne pathogens and cases of outbreak occurances due to presence of pathogens are studied in this review paper. Recent studies for detecting major indicator organisms to evaluate the presence of pathogens in water bodies are reviewed. Culture-independent techniques as robust tools to detect and quantify waterborne pathogens are discussed in this review paper.
Collapse
Affiliation(s)
- Amir M. Motlagh
- Department of Civil EngineeringCalifornia State UniversitySacramentoCalifornia
| | - Zhengjian Yang
- Department of Civil EngineeringCalifornia State UniversitySacramentoCalifornia
| |
Collapse
|
38
|
Samba-Louaka A, Delafont V, Rodier MH, Cateau E, Héchard Y. Free-living amoebae and squatters in the wild: ecological and molecular features. FEMS Microbiol Rev 2019; 43:415-434. [DOI: 10.1093/femsre/fuz011] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Free-living amoebae are protists frequently found in water and soils. They feed on other microorganisms, mainly bacteria, and digest them through phagocytosis. It is accepted that these amoebae play an important role in the microbial ecology of these environments. There is a renewed interest for the free-living amoebae since the discovery of pathogenic bacteria that can resist phagocytosis and of giant viruses, underlying that amoebae might play a role in the evolution of other microorganisms, including several human pathogens. Recent advances, using molecular methods, allow to bring together new information about free-living amoebae. This review aims to provide a comprehensive overview of the newly gathered insights into (1) the free-living amoeba diversity, assessed with molecular tools, (2) the gene functions described to decipher the biology of the amoebae and (3) their interactions with other microorganisms in the environment.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Vincent Delafont
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| | - Marie-Hélène Rodier
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Estelle Cateau
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
- Laboratoire de Parasitologie et Mycologie, CHU La Milétrie, 2 rue de la Milétrie, 86021 Poitiers Cedex, France
| | - Yann Héchard
- Laboratoire Ecologie et Biologie des Interactions (EBI), Equipe Microbiologie de l'Eau, Université de Poitiers, UMR CNRS 7267, 1 rue Georges Bonnet, TSA51106, 86073 POITIERS Cedex 9, France
| |
Collapse
|
39
|
Ishii S. Ecology of Pathogens and Antibiotic-resistant Bacteria in Environments: Challenges and Opportunities. Microbes Environ 2019; 34:1-4. [PMID: 30930405 PMCID: PMC6440737 DOI: 10.1264/jsme2.me3401rh] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Satoshi Ishii
- Department of Soil, Water, and Climate, University of Minnesota.,BioTechnology Institute, University of Minnesota
| |
Collapse
|
40
|
Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Dickenson E, Sutherland J, Salveson A, Edwards MA, Pruden A. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. WATER RESEARCH 2019; 151:75-86. [PMID: 30594092 DOI: 10.1016/j.watres.2018.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Little is known about how introducing recycled water intended for direct potable reuse (DPR) into distribution systems and premise plumbing will affect water quality at the point of use, particularly with respect to effects on microbial communities and regrowth. The examination of potential growth of opportunistic pathogens (OPs) and spread of antibiotic resistance genes (ARGs), each representing serious and growing public health concerns, by introducing DPR water has not previously been evaluated. In this study, the impact of blending purified DPR water with traditional drinking water sources was investigated with respect to treatment techniques, blending location, and blending ratio. Water from four U.S. utility partners was treated in bench- and pilot-scale treatment trains to simulate DPR with blending. Water was incubated in simulated premise plumbing rigs made of PVC pipe containing brass coupons to measure regrowth of total bacteria (16S rRNA genes, heterotrophic plate count), OPs (Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa), ARGs (qnrA, vanA), and an indicator of horizontal gene transfer and multi-drug resistance (intI1). The microbial community composition was profiled and the resistome (i.e., all ARGs present) was characterized in select samples using next generation sequencing. While regrowth of total bacteria (16S rRNA genes) from the start of the incubation through week eight consistently occurred across tested scenarios (Wilcoxon, p ≤ 0.0001), total bacteria were not more abundant in the water or biofilm of any DPR scenario than in the corresponding conventional potable condition (p ≥ 0.0748). Regrowth of OP marker genes, qnrA, vanA, and intI1 were not significantly greater in water or biofilm for any DPR blends treated with advanced oxidation compared to corresponding potable water (p ≥ 0.1047). This study of initial bacteria colonizing pipes after introduction of blended DPR water revealed little evidence (i.e., one target in one water type) of exacerbated regrowth of total bacteria, OPs, or ARGs in premise plumbing.
Collapse
Affiliation(s)
- Emily Garner
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Mandu Inyang
- Southern Nevada Water Authority, Henderson, NV, 89015, United States; Massachusetts Water Resources Authority, Southborough, MA, 01772, United States
| | - Elisa Garvey
- Carollo Engineers, Inc, Walnut Creek, CA, 94598, United States
| | - Jeffrey Parks
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Caitlin Glover
- Southern Nevada Water Authority, Henderson, NV, 89015, United States
| | | | - Eric Dickenson
- Southern Nevada Water Authority, Henderson, NV, 89015, United States
| | | | - Andrew Salveson
- Carollo Engineers, Inc, Walnut Creek, CA, 94598, United States
| | - Marc A Edwards
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, United States.
| |
Collapse
|
41
|
Caicedo C, Rosenwinkel KH, Exner M, Verstraete W, Suchenwirth R, Hartemann P, Nogueira R. Legionella occurrence in municipal and industrial wastewater treatment plants and risks of reclaimed wastewater reuse: Review. WATER RESEARCH 2019; 149:21-34. [PMID: 30445393 DOI: 10.1016/j.watres.2018.10.080] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plants (WWTPs) have been identified as confirmed but until today underestimated sources of Legionella, playing an important role in local and community cases and outbreaks of Legionnaires' disease. In general, aerobic biological systems provide an optimum environment for the growth of Legionella due to high organic nitrogen and oxygen concentrations, ideal temperatures and the presence of protozoa. However, few studies have investigated the occurrence of Legionella in WWTPs, and many questions in regards to the interacting factors that promote the proliferation and persistence of Legionella in these treatment systems are still unanswered. This critical review summarizes the current knowledge about Legionella in municipal and industrial WWTPs, the conditions that might support their growth, as well as control strategies that have been applied. Furthermore, an overview of current quantification methods, guidelines and health risks associated with Legionella in reclaimed wastewater is also discussed in depth. A better understanding of the conditions promoting the occurrence of Legionella in WWTPs will contribute to the development of improved wastewater treatment technologies and/or innovative mitigation approaches to minimize future Legionella outbreaks.
Collapse
Affiliation(s)
- C Caicedo
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| | - K-H Rosenwinkel
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany
| | - M Exner
- University of Bonn, Institute for Hygiene and Public Health, Bonn, Germany
| | - W Verstraete
- Ghent University, CMET, Ghent, and Avecom, Wondelgem, Belgium
| | - R Suchenwirth
- Public Health Office of Lower Saxony, Hannover, Germany
| | - P Hartemann
- Faculty of Medicine, Department of Environment and Public Health, Nancy University-CHU Nancy, Vandoeuvre Les Nancy, France
| | - R Nogueira
- Leibniz University Hannover, Institute for Sanitary Engineering and Waste Management, Hannover, 30167, Germany.
| |
Collapse
|