1
|
Zhang J, Zhang Y, Xia X, Ma C, Zhang Q, Li Y, Zhang Q, Wen W, Yang Z. Promoting effects of lipophilic pollutants on the reproductive toxicity of proteinophilic pollutants to Daphnia magna under chronic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126013. [PMID: 40057168 DOI: 10.1016/j.envpol.2025.126013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Lipophilic and proteinophilic toxic organic pollutants often coexist in aquatic environments. However, the toxic effects of these two types of pollutants on aquatic organisms under chronic co-exposure are poorly understood. In this study, the effects of lipophilic pollutants (pyrene and PCB 28) on the reproductive toxicity of proteinophilic pollutants (cyromazine) to Daphnia magna over a 28-d exposure period were investigated by analyzing alterations in developmental and reproductive endpoints, bioaccumulation, and the transcriptome. The results revealed that the bioaccumulation of lipophilic pollutants was inhibited by each other and that their bioaccumulation was not affected by cyromazine. However, lipophilic pollutants promoted the bioaccumulation of cyromazine in D. magna by 48.1%-220.0% through increasing the protein content by 11.1%-71.9% due to the downregulated gene expression associated with the decomposition process of proteins. The higher concentrations of cyromazine in the combined group caused greater disruption of the transcriptome related to the energy metabolism progression, reproduction, and development of D. magna compared with the cyromazine single exposure group. Hence, lipophilic pollutants enhanced the adverse effects on the growth, reproductive time and capacity, and intrinsic growth rate of D. magna induced by proteinophilic pollutants, and a synergistic effect occurred between lipophilic and proteinophilic pollutants. This study provides new insights into the ecological risks of lipophilic and proteinophilic pollutant mixtures in aquatic environments.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yidi Zhang
- China Petrochemical Press Co., Ltd, Beijing, 100011, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Chuanxin Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qianru Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Yao Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qing Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai, 519087, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
2
|
Sun Y, Lu G, Zhang P, Zhang J, Yu Y, Li F, Liu J. Effects of colloids with different compositions on benzophenone-3 biotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125670. [PMID: 39798796 DOI: 10.1016/j.envpol.2025.125670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae. And in the co-exposure groups, the organic and black carbon mineral (BCM) colloids enhanced the organism's antioxidant system by regulating the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), reducing the lipid peroxidation damage in larvae. BCM colloids caused the thyroid system disorders in organisms, while organic colloids exacerbated the thyroid toxicity by transporting more BP3 into organisms, inducing severe abnormal heartbeats. The BCM and organic colloids regulated the acetylcholinesterase (AChE) activity and/or 5-hydroxytryptamine (5-ht) contents by affecting the neuroactive ligand receptor interaction pathway in zebrafish larvae, significantly increasing their swimming speed in co-exposure groups under the light condition. In addition, the effects of colloid-bound and freely dissolved BP3 absorbed by organisms on their physiological and biochemical activities were different. By analyzing the relative expression of the significant differential metabolites affected by BP3 in all experimental groups, it was found that colloid-bound and freely dissolved BP3 had a synergistic effect on most of these metabolites and pathways. However, the freely dissolved BP3 interfered with the purine metabolic pathway by mediating 2-(amidino)-n1-(5-phospho-d-ribosyl)acetamidine, and the tyrosine metabolic pathway by mediating choline and uranylacetic acid, while the colloid-bound BP3 has no or inverse regulatory effects on these three metabolites. This study provided a new perspective for the biotoxicity study of the pollutants in aquatic environment, necessitating a reconsideration of the real ecological risks of emerging pollutants in the presence of natural colloids.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China; Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yeting Yu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Fulin Li
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| | - Jian Liu
- Water Resources Research Institute of Shandong Province, Shandong Province Key Lab Water Resources & Environment, Jinan, 250000, China
| |
Collapse
|
3
|
Hu H, Ma P, Li H, You J. Determining buffering capacity of polydimethylsiloxane-based passive dosing for hydrophobic organic compounds in large-volume bioassays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169710. [PMID: 38184249 DOI: 10.1016/j.scitotenv.2023.169710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/08/2024]
Abstract
Polydimethylsiloxane (PDMS) is the most widely used material for passive dosing. However, the ability of PDMS to maintain constant water concentrations of chemicals in large-volume bioassays was insufficiently investigated. In this study, we proposed a kinetic-based method to determine the buffering capacity of PDMS for maintaining constant water concentrations of hydrophobic organic contaminants (HOCs) in large-volume bioassays. A good correlation between log Kow and PDMS-water partitioning coefficients (log KPW) was observed for HOCs with log Kow values ranging from 3.30 to 7.42. For low-molecular-weight HOCs, volatile loss was identified as the primary cause of unstable water concentrations in passive dosing systems. Slow desorption from PDMS resulted in a reduction of water concentrations for high-molecular-weight HOCs. The volume ratio of PDMS to water (RV) was the key factor controlling buffering capacity. As such, buffering capacity was defined as the minimum RV required to maintain 90% of the initial water concentration and was determined to be 0.0076-0.032 for six representative HOCs. Finally, passive dosing with an RV of 0.014 was validated to effectively maintain water concentrations of phenanthrene in 2-L and 96-h toxicity tests with adult mosquitofish. By determining buffering capacity of PDMS, this study recommended specific RV values for cost-efficient implementation of passive dosing approaches in aquatic toxicology, particularly in large-volume bioassays.
Collapse
Affiliation(s)
- Hao Hu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Ping Ma
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China; Department of Eco-engineering, Guangdong Eco-Engineering Polytechnic, Guangzhou 510520, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
4
|
Bai L, Ju Q, Wang C, Tian L, Wang C, Zhang H, Jiang H. Responses of steroid estrogen biodegradation to cyanobacterial organic matter biodegradability in the water column of a eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150058. [PMID: 34537690 DOI: 10.1016/j.scitotenv.2021.150058] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The co-occurrence of cyanobacterial harmful algal blooms and contaminants is an increasing environmental concern in freshwater worldwide. Our field investigations coupled with laboratory incubations demonstrated that the microbial degradation potential of 17β-estradiol (E2) with estrone as the intermediate was primarily driven by increased dissolved organic matter (DOM) in the water column of a cyanobacterial bloom. To explain the intrinsic contribution of cyanobacterial-derived DOM (C-DOM) to estrogen biodegradation, a combination of methods including bioassay, ultrahigh-resolution mass spectrometry, and microbial ecology were applied. The results showed that preferential assimilation of highly biodegradable structures, including protein-, carbohydrate-, and unsaturated hydrocarbon-like molecules sustained bacterial growth, selected for more diverse microbes, and resulted in greater estrogen biodegradation compared to less biodegradable molecules (lignin- and tannin-like molecules). The biodegradability of C-DOM decreased from 78% to 1%, whereas the E2 biodegradation rate decreased dramatically at first, then increased with the accumulation of recalcitrant, bio-produced lipid-like molecules in C-DOM. This change was linked to alternative substrate-induced selection of the bacterial community under highly refractory conditions, as suggested by the greater biomass-normalized E2 biodegradation rate after a 24-h lag phase. In addition to the increased frequency of potential degraders, such as Sphingobacterium, the network analysis revealed that C-DOM molecules distributed in high H/C (protein- and lipid-like molecules) were the main drivers structuring the bacterial community, inducing strong deterministic selection of the community assemblage and upregulating the metabolic capacity for contaminants. These findings provide strong evidence that estrogen biodegradation in eutrophic water may be facilitated by cyanobacterial blooms and provide a theoretical basis for ecological remediation of estrogen pollution.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qi Ju
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Chunliu Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
5
|
Mondal S, Panja A, Halder D, Bairi P, Nandi AK. Isomerization-Induced Excimer Formation of Pyrene-Based Acylhydrazone Controlled by Light- and Solvent-Sensing Aromatic Analytes. J Phys Chem B 2021; 125:13804-13816. [PMID: 34879652 DOI: 10.1021/acs.jpcb.1c07937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pyrene is a fluorescent polycyclic aromatic hydrocarbon, and it would be interesting to determine whether its C═N-based conjugate can be used for sensing of aromatic analytes at its supramolecular aggregated state. For this purpose, we have synthesized (E)-3,4,5-tris(dodecyloxy)-N'-(pyren-1-ylmethylene)benzohydrazide (Py@B) by alkylation, substitution, and the Schiff base reaction methodology. The E-isomer of Py@B (E-Py@B) exhibits a bright fluorescence due to excimer formation in nonaromatic solvents. Upon photoirradiation with λ = 254 nm, it exhibits E-Z isomerization across the C═N bond at a low concentration (10-4 M), resulting in a quenched fluorescence intensity, and interestingly, upon photoirradiation with λ = 365 nm, the Z-isomer of Py@B returns to the E-isomer again, indicating that E-Z isomerization of Py@B is reversible in nature. The thick supramolecular aggregated morphology of E-Py@B changes to a flowery needlelike morphology after photoirradiation with λ = 254 nm. The UV-vis absorption band at 370 nm for 10-4 M Py@B in methyl cyclohexane (MCH) is due to excimer formation for closer proximity of pyrene moieties present in E-Py@B and changes to the absorption peak at 344 nm for its Z-isomer formation. The fluorescence spectroscopy results also support the fact that the optimum concentration of the E-isomer of Py@B is 2 × 10-4 M in MCH for excimer formation. From spectral results, it may be concluded that nonaromatic solvents assist in constructing the excimer, but aromatic solvents resist forming an excimer complex of E-Py@B. The fluorescent emission of E-Py@B in MCH is quickly quenched on addition of different aromatic analytes through both static and dynamic pathways. In the solid state, E-Py@B also senses aromatic vapors efficiently via fluorescence quenching. Absorbance spectra of a model molecule obtained using time-dependent density functional theory (TDDFT) calculations on a DFT-optimized structure indicate complex adduct formation between E-Py@B and aromatic analytes from the well-matched theoretical and experimental UV-vis spectra on addition of different analytes with E-Py@B.
Collapse
Affiliation(s)
- Sanjoy Mondal
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Aditi Panja
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Debabrata Halder
- School of Chemical Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Partha Bairi
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Arun K Nandi
- Polymer Science Unit, School of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
6
|
Lin H, Yuan Y, Jiang X, Zou JP, Xia X, Luo S. Bioavailability quantification and uptake mechanisms of pyrene associated with different-sized microplastics to Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149201. [PMID: 34303978 DOI: 10.1016/j.scitotenv.2021.149201] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are the significant environmental factor for bioavailability of hydrophobic organic contaminants (HOCs) in aquatic environments. Nevertheless, the bioavailability of microplastic-associated HOCs remains unclear. In this research, the freely dissolved pyrene concentrations were kept stable with passive dosing devices, and the pyrene content in D. magna tissues as well as D. magna immobilization were analyzed to quantify bioavailability of pyrene (a representative HOC) associated with naturally-aged polystyrene (PS) MPs. Furthermore, the uptake mechanisms of pyrene associated with MPs of different sizes were explored by investigating the distribution of MPs in D. magna tissues with scanning electron microscopy. Especially, a new schematic model of bioavailability process was established. The results demonstrated that a part of pyrene associated with 0-1.5 μm MPs could directly cross cell membrane through endocytosis from intestine and exposure solutions to D. magna tissues except the 10-60 and 60-230 μm MPs. The bioavailability of microplastic-associated pyrene was ordered as 0-1.5 μm (20.0-21.6%) > 10-60 μm (10.7-13.8%) > 60-230 μm MPs (6.0-9.8%), which were essentially resulted from the difference in uptake mechanisms of pyrene associated with MPs of different sizes. This work suggests that the bioavailability of microplastic-associated HOCs should be considered when assessing water quality and environmental risk of HOCs in natural waters.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yinqiu Yuan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xiaoman Jiang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jian-Ping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shenglian Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
7
|
Hiki K, Fischer FC, Nishimori T, Watanabe H, Yamamoto H, Endo S. Spatiotemporal Distribution of Hydrophobic Organic Contaminants in Spiked-Sediment Toxicity Tests: Measuring Total and Freely Dissolved Concentrations in Porewater and Overlying Water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3148-3158. [PMID: 34432908 PMCID: PMC9293400 DOI: 10.1002/etc.5199] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 06/12/2023]
Abstract
The sediment-water interface of spiked-sediment toxicity tests is a complex exposure system, where multiple uptake pathways exist for benthic organisms. The freely dissolved concentration (Cfree ) in sediment porewater has been proposed as a relevant exposure metric to hydrophobic organic contaminants (HOCs) in this system. However, Cfree has rarely been measured in spiked-sediment toxicity tests. We first developed a direct immersion solid-phase microextraction method for measuring Cfree in overlying water and porewater in a sediment test using polydimethylsiloxane-coated glass fibers, resulting in sensitive and repeatable in situ measurements of HOCs. Then, we measured Cfree and total dissolved concentrations (Cdiss ) in the sediment test systems with the freshwater amphipod Hyalella azteca and thoroughly evaluated the temporal and spatial profiles of four HOCs (phenanthrene, pyrene, benzo[a]pyrene, and chlorpyrifos). Furthermore, we examined the relationship between the measured concentrations and the lethality of H. azteca. We found that the test system was far from an equilibrium state for all four chemicals tested, where Cdiss in overlying water changed over the test duration and a vertical Cfree gradient existed at the sediment-water interface. In porewater Cdiss was larger than Cfree by a factor of 170 to 220 for benzo[a]pyrene because of the strong binding to dissolved organic carbon. Comparison of the median lethal concentrations of chlorpyrifos in the sediment test and those in water-only tests indicates that Cfree in porewater was the most representative indicator for toxicity of this chemical. The method and findings presented in the present study warrant further research on the chemical transport mechanisms and the actual exposure in sediment tests using different chemicals, sediments, and test species. Environ Toxicol Chem 2021;40:3148-3158. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Health and Environmental Risk DivisionNational Institute for Environmental Studies, TsukubaIbarakiJapan
| | - Fabian Christoph Fischer
- Health and Environmental Risk DivisionNational Institute for Environmental Studies, TsukubaIbarakiJapan
| | - Takahiro Nishimori
- Health and Environmental Risk DivisionNational Institute for Environmental Studies, TsukubaIbarakiJapan
| | - Haruna Watanabe
- Health and Environmental Risk DivisionNational Institute for Environmental Studies, TsukubaIbarakiJapan
| | - Hiroshi Yamamoto
- Health and Environmental Risk DivisionNational Institute for Environmental Studies, TsukubaIbarakiJapan
| | - Satoshi Endo
- Health and Environmental Risk DivisionNational Institute for Environmental Studies, TsukubaIbarakiJapan
| |
Collapse
|
8
|
Hiki K, Watanabe H, Yamamoto H. Sources of variation in sediment toxicity of hydrophobic organic chemicals: Meta-analysis of 10-14-day spiked-sediment tests with Hyalella azteca and Chironomus dilutus. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2021; 17:1003-1013. [PMID: 33739609 DOI: 10.1002/ieam.4413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Spiked-sediment toxicity tests with benthic organisms are routinely used to assess the potential ecological impact of sediment-associated hydrophobic organic contaminants. Although several sediment tests have been standardized, experimental factors such as spiking methods still vary between laboratories. To identify the experimental factors that affect the bioavailability of contaminants and account for the highest percentage of the variability of toxicity values (i.e., 50% lethal concentration; LC50), we performed a meta-analysis of published 10-14-day spiked-sediment toxicity tests with the standard test species Hyalella azteca and Chironomus dilutus. Analysis of 172 test records revealed that the variability of sediment LC50s for a given combination of chemical and test species was large. The mean coefficient of variation (CV) was 65%, even after organic carbon normalization, and was slightly larger than the CV in water-only tests (49%). Regression analyses revealed that the most important factor contributing to the variability of the sediment LC50s was sediment type (i.e., environmental or formulated sediment) and that use of formulated sediment (i.e., composed of peat, cellulose, or leaves as organic carbon source) tended to cause higher toxicity than use of environmental sediment. This might be caused by the difference in partitioning the coefficient of organic contaminants and the resulting difference in the bioavailability between sediment types. The effects of other factors, including aging periods and spiking methods, were insignificant or specific to certain chemicals. These discoveries facilitate refinement of the methodologies used in sediment toxicity testing and the correct interpretation of test results. Integr Environ Assess Manag 2021;17:1003-1013. © 2021 SETAC.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | - Haruna Watanabe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | - Hiroshi Yamamoto
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| |
Collapse
|
9
|
Sun Y, Lu G, Li J, Dang T, Xue C, Liu J, Yan Z. Multimedia distribution and trophic transfer of PPCPs in the middle and lower reaches of the Yarlung Zangbo River. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116408. [PMID: 33418286 DOI: 10.1016/j.envpol.2020.116408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The increasing human presence is having an impact on plateau ecosystems, but the special environment and lack of data make it difficult to assess the real ecological risks of pharmaceutical and personal care products (PPCPs) in the river of plateau. The occurrence, distribution and trophic transfer of nineteen PPCPs were investigated in the middle and lower reaches of the Yarlung Zangbo River on the Tibetan Plateau. All the targeted PPCPs were detected in filtrated water, and seventeen PPCPs were detected in the colloid, sediment and suspended particulate matter (SPM). The distribution coefficients of colloid-infiltration water (IFW) were 1-2 orders of magnitude larger than those in the SPM-IFW, which were 1-2 orders of magnitude greater than those in the sediment-IFW. Colloids are sinks for PPCPs with up to 78.55% of the water being in the colloidal phase, in which important factors such as protein and protein-like substances are found. PPCPs in the rivers of the plateau showed high bioaccumulation ability. The fugacity-based bioaccumulation model was established and revealed that the fish in the Tibetan Plateau ingested PPCPs mainly through water instead of food and excreted them mainly through metabolism. In addition, the trophic dilution effect in the food web was observed with trophic magnification factors ranging from 0.06 to 0.22. The positive correlation between the Kd in the colloid-IFW and the bioaccumulation factors implied that natural colloids can not only regulate the behaviour of PPCPs in the environment, but also play an important role in bioaccumulation, which may affect the scientific nature of biological risk assessment.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| | - Jin Li
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Tianjian Dang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chenwang Xue
- Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
10
|
Lin H, Xia X, Zhang Q, Zhai Y, Wang H. Can the hydrophobic organic contaminants in the filtrate passing through 0.45 μm filter membranes reflect the water quality? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 752:141916. [PMID: 32892049 DOI: 10.1016/j.scitotenv.2020.141916] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
In the traditional water quality assessment, the concentration of total dissolved hydrophobic organic compounds (HOCs) passing through 0.45 μm filter membranes is usually used to evaluate the influence of HOCs on water quality. However, the bioavailability of dissolved organic matter (DOM)-associated and particle-associated HOCs is not considered. In the present work, pyrene, fulvic acid, and natural suspended particles (SPS) were used to simulate natural water (raw water). The immobilization and pyrene content in the tissues of D. magna caused by total pyrene in the raw water and those caused by freely dissolved pyrene with the concentration equal to the total dissolved pyrene in the filtrate of raw water were compared to determine whether the total dissolved pyrene concentration can reflect the water quality. The results indicated that when the DOM concentration was 5 mg C L-1 and the SPS concentration was higher than 0.2-0.4 g L-1, the bioavailability of pyrene was underestimated by the traditional water quality assessment because of the SPS-associated pyrene, and it was underestimated by 23.6-63.9% when SPS concentration was higher than 0.6 g L-1 due to the neglection of SPS-associated pyrene. Furthermore, the threshold value of SPS concentration was related to the SPS size and composition, and the effects of SPS and DOM on water quality were influenced by the concentration, size, and composition of SPS as well as the molecular weight of DOM. This study suggests that the traditional water quality assessment should be improved by comprehensively considering concentrations and characteristics of SPS and DOM.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yawei Zhai
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Zhang Q, Wang H, Xia X, Bi S, Lin H, Chen J. Elevated temperature enhances the bioavailability of pyrene to Daphnia magna in the presence of dissolved organic matter: Implications for the effect of climate warming. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115349. [PMID: 32791466 DOI: 10.1016/j.envpol.2020.115349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) is an essential factor in natural waters to affect the bioavailability of hydrophobic organic compounds (HOCs). Climate warming may influence the partition of HOCs between DOM and water as well as the physiology of organisms. Thus, we hypothesized that elevated temperature might affect the bioavailability of HOCs in the presence of DOM. To test this hypothesis, the effect of temperature on the bioavailability of pyrene to Daphnia magna (D. magna) in water-DOM (fulvic acid) system was investigated. The results showed that, although the concentration of freely dissolved pyrene increased slightly with temperature in the presence of DOM when the level of total dissolved pyrene was kept constant, D. magna immobilization (increased by 50.0-167%) and internal body burden of pyrene (increased by 18.4-41.5%) increased significantly with every 4 °C increase in temperature (16, 20, 24 °C). The main reasonable explanation for this result is that elevated temperature promoted pyrene uptake by D. magna. It was found that the increase percentage of 1-hydroxypyrene (main metabolite of pyrene) concentrations with temperature was higher than that of pyrene concentrations in the body except gut of D. magna. This result indicated that increased temperature might enhance the metabolic rates of D. magna, thus leading to increased uptake rate of freely dissolved and DOM-associated pyrene. This study suggests that elevated temperature might enhance the bioavailability of HOCs in natural waters through influencing both the bioavailable fraction of HOCs and their uptake rates in aquatic organisms, and this should be considered for evaluating their eco-environmental risks under the context of climate warming.
Collapse
Affiliation(s)
- Qianru Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Siqi Bi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Hui Lin
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
12
|
Martinez DST, Da Silva GH, de Medeiros AMZ, Khan LU, Papadiamantis AG, Lynch I. Effect of the Albumin Corona on the Toxicity of Combined Graphene Oxide and Cadmium to Daphnia magna and Integration of the Datasets into the NanoCommons Knowledge Base. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1936. [PMID: 33003330 PMCID: PMC7599915 DOI: 10.3390/nano10101936] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022]
Abstract
In this work, we evaluated the effect of protein corona formation on graphene oxide (GO) mixture toxicity testing (i.e., co-exposure) using the Daphnia magna model and assessing acute toxicity determined as immobilisation. Cadmium (Cd2+) and bovine serum albumin (BSA) were selected as co-pollutant and protein model system, respectively. Albumin corona formation on GO dramatically increased its colloidal stability (ca. 60%) and Cd2+ adsorption capacity (ca. 4.5 times) in reconstituted water (Daphnia medium). The acute toxicity values (48 h-EC50) observed were 0.18 mg L-1 for Cd2+-only and 0.29 and 0.61 mg L-1 following co-exposure of Cd2+ with GO and BSA@GO materials, respectively, at a fixed non-toxic concentration of 1.0 mg L-1. After coronation of GO with BSA, a reduction in cadmium toxicity of 110 % and 238% was achieved when compared to bare GO and Cd2+-only, respectively. Integration of datasets associated with graphene-based materials, heavy metals and mixture toxicity is essential to enable re-use of the data and facilitate nanoinformatics approaches for design of safer nanomaterials for water quality monitoring and remediation technologies. Hence, all data from this work were annotated and integrated into the NanoCommons Knowledge Base, connecting the experimental data to nanoinformatics platforms under the FAIR data principles and making them interoperable with similar datasets.
Collapse
Affiliation(s)
- Diego Stéfani T. Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba 13416-000, Sao Paulo, Brazil
| | - Gabriela H. Da Silva
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
| | - Aline Maria Z. de Medeiros
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Center of Nuclear Energy in Agriculture (CENA), University of Sao Paulo (USP), Piracicaba 13416-000, Sao Paulo, Brazil
| | - Latif U. Khan
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Sao Paulo, Brazil; (G.H.D.S.); (A.M.Z.d.M.); (L.U.K.)
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan
| | - Anastasios G. Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- NovaMechanics Ltd., Nicosia 1065, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| |
Collapse
|
13
|
Chen J, Xia X, Chu S, Wang H, Zhang Z, Xi N, Gan J. Cation-π Interactions with Coexisting Heavy Metals Enhanced the Uptake and Accumulation of Polycyclic Aromatic Hydrocarbons in Spinach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7261-7270. [PMID: 32434324 DOI: 10.1021/acs.est.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Few studies have considered the effect of co-occurring heavy metals on plant accumulation of hydrophobic organic compounds (HOCs), and less is known about the role of intermolecular interactions. This study investigated the molecular mechanisms of Cu/Zn effects on hydroponic uptake of four deuterated polycyclic aromatic hydrocarbons (PAHs-d10) by spinach (Spinacia oleracea L.). Both solubility enhancement experiment and quantum mechanical calculations demonstrated the existence of [PAH-Cu(H2O)0-4]2+ and [2·PAH-Cu(H2O)0-2]2+ via cation-π interactions when Cu2+ concentration was ≤100 μmol/L. Notably, PAH-d10 concentrations in both roots and shoots increased significantly with Cu2+ concentration. This was because the formation of phytoavailable PAH-Cu2+ complexes decreased PAH-d10 hydrophobicity and consequently decreased their sorption onto dissolved organic carbon (DOC, i.e., root exudates), thereby increasing phytoavailable concentrations and uptake of PAHs-d10. X-ray absorption near-edge structure analysis showed that PAH-Cu2+ complexes could enter defective spinach roots via apoplastic pathway. However, Zn2+ and PAHs-d10 cannot form the cation-π interactions because of the high desolvation penalty of Zn2+. Actually, Zn2+ decreased the spinach uptake of PAHs-d10 due to the increase of DOC induced by Zn. This work provides molecular insights into how metals could selectively affect the plant uptake of HOCs and highlights the importance of considering the HOC phytoavailability with coexisting metals.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haotian Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenrui Zhang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Nannan Xi
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
14
|
Ding W, Jin W, Zhou X, Li SF, Tu R, Han SF, Chen C, Feng X, Huang Y. Enhanced lipid extraction from the biodiesel-producing microalga Chlorella pyrenoidosa cultivated in municipal wastewater via Daphnia ingestion and digestion. BIORESOURCE TECHNOLOGY 2020; 306:123162. [PMID: 32197194 DOI: 10.1016/j.biortech.2020.123162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Herein, a novel innovative lipid co-extraction strategy using the biodiesel-producing microalga Chlorella pyrenoidosa and planktonic cladoceran Daphnia was proposed. Co-extraction occurred as Daphnia ingested and digested microalgal cells in a pre-treatment process; thereafter, lipids from these organisms were extracted. Composition of fatty acids from C. pyrenoidosa and Daphnia were appropriate as potential biodiesel feedstocks. Daphnia had different absorption and conversion capacities of various fatty acids from C. pyrenoidosa, which showed potential for improving biodiesel characteristics. Linoleic acid (LA, C18:2n-6) and alpha-linolenic acid (ALA, C18:3n-3) were absorbed significantly into the body of Daphnia. The optimal lipid extraction and fatty acid methyl esters (FAMEs) recovery rates were up to 41.08% and 12.35%, respectively, which were greater than that of the traditional lipid extraction method due to the rich oil content of Daphnia. Overall, this lipid co-extraction process serves a potential Daphnia utilization as an economical, green, low-energy way for microalgae biodiesel production.
Collapse
Affiliation(s)
- Wanqing Ding
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Shao-Feng Li
- Department of Building and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Renjie Tu
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Song-Fang Han
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaochi Feng
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Huang
- Shenzhen Engineering Laboratory of Microalgal Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
15
|
Sun Y, Liu J, Lu G. Influence of aquatic colloids on the bioaccumulation and biological effects of diclofenac in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110470. [PMID: 32199218 DOI: 10.1016/j.ecoenv.2020.110470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/22/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Natural aquatic colloids play an important role in the migration, transformation of pollutants in the environment, but their potential effects are often ignored in ecotoxicology research. In this study, diclofenac (DCF) was selected as a typical drug to study the effects of natural colloids on the bioaccumulation and biotoxicity in juvenile zebrafish (Danio rerio) exposed to an environmentally relevant concentration (1 μg/L) and a high concentration (100 μg/L) of DCF. The results showed that the presence of colloids accelerated and enhanced the accumulation of DCF in zebrafish muscle and viscera, and the effects are greater at the environmentally relevant concentration of DCF. However, the colloids enhanced the burden in the head in the environmentally relevant concentration group, but reduced it in the high concentration group. This observation may be related to the occurrence of variations in the contribution of the adsorption forms of DCF and the colloids depending on different DCF concentrations. At the same time, the presence of colloids can significantly induce AChE activity of DCF in the brain and alter swimming activity and shoaling behaviour of the individuals, however no significant effects on the attack and shock behaviour were observed. These findings indicate that the combination of natural colloids and pollutants may change with pollutant concentrations, thereby altering the bioaccumulation and biological effects in aquatic organisms.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi, 860000, China.
| |
Collapse
|
16
|
Chen J, Xia X, Wang H, Zhai Y, Xi N, Lin H, Wen W. Uptake pathway and accumulation of polycyclic aromatic hydrocarbons in spinach affected by warming in enclosed soil/water-air-plant microcosms. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120831. [PMID: 31271938 DOI: 10.1016/j.jhazmat.2019.120831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 05/13/2023]
Abstract
The partition of polycyclic aromatic hydrocarbons (PAHs) among water-soil-air is temperature-dependent. Thus, we hypothesized that climate warming will affect the accumulation and uptake pathway of PAHs in plants. To test this hypothesis, enclosed soil/water-air-plant microcosm experiments were conducted to investigate the impact of warming on the uptake and accumulation of four PAHs in spinach (Spinacia oleracea L.). The results showed that root uptake was the predominant pathway and its contribution increased with temperature due to the promoted acropetal translocation. Owing to the increase in freely dissolved concentrations of PAHs in soil pore water, the four PAH concentrations in roots increased by 60.8-111.5% when temperature elevated from 15/10 to 21/16 °C. A model was established to describe the relationship between bioconcentration factor of PAHs in root and temperature. Compared with 15/10 °C, the PAH concentrations in leaves at both 18/13 and 21/16 °C elevated due to the increase in PAH concentrations in air, while slightly decreased when temperature elevated from 18/13 to 21/16 °C because the PAH concentrations in air decreased, resulting from accelerated biodegradation of PAHs in topsoil. This study suggests that warming will generally enhance the PAH accumulation in plant, but the effect will differ among different plant tissues.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Haotian Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yawei Zhai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Nannan Xi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Hui Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Wu Wen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
17
|
Kovacevic V, Simpson AJ, Simpson MJ. Metabolic profiling of Daphnia magna exposure to a mixture of hydrophobic organic contaminants in the presence of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1252-1262. [PMID: 31726555 DOI: 10.1016/j.scitotenv.2019.06.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/10/2023]
Abstract
The hydrophobic organic contaminants triclosan, triphenyl phosphate (TPhP) and diazinon sorb to dissolved organic matter (DOM) and this may alter their bioavailability and toxicity. 1H nuclear magnetic resonance (NMR)-based metabolomics was used to investigate how DOM at 1 and 5 mg organic carbon/L may alter the metabolome of Daphnia magna from exposure to equitoxic mixtures of triclosan, TPhP and diazinon. These contaminants have different modes of action toward D. magna. The contaminant concentrations in each mixture were an equal percentage of their lethal concentration to 50% of the population (LC50) values, which equates to 1250 μg/L TPhP, 330 μg/L triclosan and 0.9 μg/L diazinon. The ternary mixture exposure at 1% LC50 values did not alter the D. magna metabolome. Contaminant mixture exposures at 5%, 10%, and 15% LC50 values decreased glucose, serine and glycine concentrations and increased asparagine and threonine concentrations, suggesting disruptions in energy metabolism. The contaminant mixture had a unique mode of action in D. magna and DOM at 1 and 5 mg organic carbon/L did not change this mode of action. The estimated sorption of triclosan, TPhP or diazinon to DOM at 1 or 5 mg organic carbon/L in this experimental design was calculated to be <50% for each contaminant. This suggests that the mode of action of the contaminant mixture was not altered by DOM because the two environmentally relevant concentrations of DOM may have not substantially altered contaminant bioavailability. Our results indicate that DOM may not inevitably mitigate or alter the sub-lethal toxicity of a mixture of hydrophobic organic contaminants. This indicates the complexity of predicting the molecular-level toxicity of environmental mixtures. For adequate risk assessment of freshwater ecosystems, it is vital to account for the combined sub-lethal toxicity of an environmental mixture of contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada; Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
18
|
Pang L, Yang PJ, Pang R, Gu WT, Zhou YF, Lv LN, Zhang MJ. Determination of freely dissolved polycyclic aromatic hydrocarbons in human serum using core-shell Fe3O4@polyacrylate magnetic microspheres by exclusive volume effect. J Chromatogr A 2019; 1602:100-106. [DOI: 10.1016/j.chroma.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
|
19
|
Wang H, Xia X, Liu R, Wang Z, Zhai Y, Lin H, Wen W, Li Y, Wang D, Yang Z, Muir DCG, Crittenden JC. Dietary Uptake Patterns Affect Bioaccumulation and Biomagnification of Hydrophobic Organic Compounds in Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4274-4284. [PMID: 30884228 DOI: 10.1021/acs.est.9b00106] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biomagnification of hydrophobic organic compounds (HOCs) increases the eco-environmental risks they pose. Here, we gained mechanistic insights into biomagnification of deuterated polycyclic aromatic hydrocarbons (PAHs- d10) in zebrafish with carefully controlled water (ng L-1) by a passive dosing method and dietary exposures using pre-exposed Daphnia magna and fish food. A new bioaccumulation kinetic model for fish was established to take into account discrete dietary uptake, while the frequently used model regards dietary uptake as a continuous process. We found that when freely dissolved concentrations of the PAHs- d10 were constant in water, the intake amount of the PAHs- d10 played an important role in affecting their steady-state concentrations in zebrafish, and there was a peak concentration in zebrafish after each dietary uptake. Moreover, considering the randomness of predation, the Monte Carlo simulation results showed that the probabilities of biomagnification of the PAHs- d10 in zebrafish increased with their dietary uptake amount and frequency. This study indicates that in addition to the well-known lipid-water partitioning, the bioaccumulation of HOCs in fish is also a discontinuous kinetic process caused by the fluctuation of HOC concentration in the gastrointestinal tract as a result of the discrete food ingestion. The discontinuity and randomness of dietary uptake can partly explain the differences among aquatic ecosystems with respect to biomagnification for species at similar trophic levels and provides new insight for future analysis of experimental and field bioaccumulation data for fish.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Derek C G Muir
- Aquatic Contaminants Research Division , Environment and Climate Change Canada , Burlington , Ontario L7S 1A1 Canada
- School of Environment , Jinan University , Guangzhou , 510632 , China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering , Georgia Institute of Technology , 828 West Peachtree Street , Atlanta , Georgia 30332 , United States
| |
Collapse
|
20
|
Kovacevic V, Simpson AJ, Simpson MJ. The concentration of dissolved organic matter impacts the metabolic response in Daphnia magna exposed to 17α-ethynylestradiol and perfluorooctane sulfonate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:468-478. [PMID: 30553925 DOI: 10.1016/j.ecoenv.2018.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
The pharmaceutical 17α-ethynylestradiol (EE2) and the industrial chemical perfluorooctane sulfonate (PFOS) are organic contaminants frequently detected in freshwater environments. It is hypothesized that hydrophobic organic contaminants can sorb to dissolved organic matter (DOM) and this may reduce the toxicity of these contaminants by reducing the contaminants' bioavailability. To investigate this hypothesis, 1H nuclear magnetic resonance (NMR)-based metabolomics was used to determine how the metabolome of Daphnia magna changes when a range of DOM concentrations are added during EE2 and PFOS exposure experiments. D. magna were exposed for 48 h to sub-lethal concentrations of 1 mg/L EE2 or 30 mg/L PFOS in the presence of 0, 1, 2, 3 and 4 mg dissolved organic carbon (DOC)/L. EE2 exposure resulted in increased amino acids and decreased glucose in D. magna. All DOM concentrations were able to lessen these metabolite disturbances from EE2 exposure, likely due to reductions in the bioavailability of EE2 through interactions with DOM. Exposure to PFOS resulted in decreased amino acids, and the presence of 1 mg DOC/L did not alter this metabolic response. However, PFOS exposure with the higher DOM concentrations resulted in a different pattern of metabolite changes which may be due to combined impacts of PFOS and DOM on the metabolome or due to an increase in PFOS bioavailability and uptake in D. magna. These results suggest that the concentration of DOM influences the sensitive biochemical changes in organisms that occur during acute sub-lethal exposure to organic contaminants.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, Canada M5S 3H6; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, Canada M1C 1A4.
| |
Collapse
|
21
|
Bai L, Zhang Q, Wang C, Yao X, Zhang H, Jiang H. Effects of natural dissolved organic matter on the complexation and biodegradation of 17α-ethinylestradiol in freshwater lakes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:782-789. [PMID: 30623834 DOI: 10.1016/j.envpol.2018.12.098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Natural dissolved organic matter (DOM) produced in algal blooms and overgrowths of macrophyte changes the elimination and ecotoxicity of estrogens in freshwater lakes. The complexation of 17α-ethinylestradiol (EE2) and various DOMs, including the water- and sediment-derived DOMs from the algal-dominant zone in Lake Taihu (TW and TS, respectively) and the macrophyte-dominant zone in Poyang Lake (PW and PS, respectively), and the humic acid (HA), was investigated along with the subsequent effects on EE2 biodegradation. Dialysis equilibrium experiments showed that binding to DOM significantly decreased the freely soluble concentrations of EE2. The binding capacity of the five DOMs followed the order of PW < TW < PS ≈ TS < HA. A negative correlation was found between the organic-carbon-normalized sorption coefficient (logKDOC) and the absorption ratio (E2/E3) of DOM, indicating that the large sized, aromatic molecules were involved in the complexation. The reduced freely soluble concentrations of EE2 did not inhibit its biodegradation by an EE2-degrading strain, Rhodobacter blasticus. Conversely, the autochthonous-dominated water-derived DOMs stimulated a more extensive biodegradation of EE2 than the sediment-derived DOMs, and the existence of HA resulted in the smallest increase in EE2 biodegradation. The promoting effect was associated with the increased concentration, activity, and transforming rate of R. blasticus by the bioavailable components in DOM. The present study suggests that the significant impact of natural DOM should be fully considered when assessing the fate and ecological risks of estrogens in eutrophic waters.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qi Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaolong Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Hui Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|