1
|
Padhi SK, Tripathy SC, Pandi SR. Cross-frontal variability of phytoplankton productivity in the Indian sector of the Southern Ocean during austral summer of 2010-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176401. [PMID: 39304144 DOI: 10.1016/j.scitotenv.2024.176401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Oceanic phytoplankton productivity, which regulates atmospheric CO2, is crucial for unraveling the complexities of the global carbon cycle. Despite its substantial contribution to the global carbon budget and its critical role in anthropogenic carbon sink, the Southern Ocean (SO) remains under-sampled due to logistical challenges. The present study attempts to elucidate the variability of water column primary production (PP) in the Indian Sector of the Southern Ocean (ISSO) by examining associated physicochemical parameters and physiological conditions of phytoplankton that drive this variability. The study revealed the nutrient limitation in the region north of the Subantarctic Front (SAF) and light limitation coupled with intense zooplankton grazing in the region south of the SAF. Coastal waters exhibit higher PP, characterized by the prevalence of large phytoplankton. The SAF displayed maximum productivity among the fronts, while the Polar Front 2 (PF-2) recorded the lowest. The water column PP varies from 27.01 to 960.69 mg C m-2 d-1 in the frontal region, while the coastal waters recorded productivity up to 1083.56 mg C m-2 d-1. Phytoplankton in the frontal regions indicated a stable surface abundance, except north of the Subtropical Front (STF), where the oligotrophic condition fosters the growth of picoplankton, subjected to high grazing by microzooplankton. Conversely, in the colder coastal waters, the phytoplankton experienced physiological acclimation. Model-based estimates of PP highlighted the efficacy of the Carbon-based Production Model (CbPM) in estimating net PP (NPP) in these polar waters, surpassing the Vertically Generalized Production Model (VGPM) and Eppley-VGPM. Notably, all model-based PP estimates significantly improved with in situ chlorophyll as input instead of satellite-retrieved chlorophyll. While the models performed well in the coastal water, their performance was suboptimal in the frontal region. This study advances our understanding of the intricate dynamics of phytoplankton productivity in the SO, offering valuable insights for future research endeavors.
Collapse
Affiliation(s)
- Sunil Kumar Padhi
- ESSO-National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences, Headland Sada, Vasco-Da-Gama, Goa 403804, India; School of Earth, Ocean and Atmospheric Sciences (SEOAS), Goa University, Taleigao Plateau, Goa 403206, India
| | - Sarat Chandra Tripathy
- ESSO-National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences, Headland Sada, Vasco-Da-Gama, Goa 403804, India.
| | - Sudarsana Rao Pandi
- ESSO-National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences, Headland Sada, Vasco-Da-Gama, Goa 403804, India
| |
Collapse
|
2
|
Goodbody-Gringley G, Martinez S, Bellworthy J, Chequer A, Nativ H, Mass T. Irradiance driven trophic plasticity in the coral Madracis pharensis from the Eastern Mediterranean. Sci Rep 2024; 14:3646. [PMID: 38351312 PMCID: PMC10864392 DOI: 10.1038/s41598-024-54217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
The distribution of symbiotic scleractinian corals is driven, in part, by light availability, as host energy demands are partially met through translocation of photosynthate. Physiological plasticity in response to environmental conditions, such as light, enables the expansion of resilient phenotypes in the face of changing environmental conditions. Here we compared the physiology, morphology, and taxonomy of the host and endosymbionts of individual Madracis pharensis corals exposed to dramatically different light conditions based on colony orientation on the surface of a shipwreck at 30 m depth in the Bay of Haifa, Israel. We found significant differences in symbiont species consortia, photophysiology, and stable isotopes, suggesting that these corals can adjust multiple aspects of host and symbiont physiology in response to light availability. These results highlight the potential of corals to switch to a predominantly heterotrophic diet when light availability and/or symbiont densities are too low to sustain sufficient photosynthesis, which may provide resilience for corals in the face of climate change.
Collapse
Affiliation(s)
| | - Stephane Martinez
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Jessica Bellworthy
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Alex Chequer
- Reef Ecology and Evolution, Central Caribbean Marine Institute, Little Cayman, Cayman Islands
| | - Hagai Nativ
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| | - Tali Mass
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
- Leon H. Charney School of Marine Sciences, Morris Kahn Marine Research Station, University of Haifa, Haifa, Israel
| |
Collapse
|
3
|
Lysenko V, D. Rajput V, Kumar Singh R, Guo Y, Kosolapov A, Usova E, Varduny T, Chalenko E, Yadronova O, Dmitriev P, Zaruba T. Chlorophyll fluorometry in evaluating photosynthetic performance: key limitations, possibilities, perspectives and alternatives. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:2041-2056. [PMID: 36573148 PMCID: PMC9789293 DOI: 10.1007/s12298-022-01263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Non-destructive methods for the assessment of photosynthetic parameters of plants are widely applied to evaluate rapidly the photosynthetic performance, plant health, and shifts in plant productivity induced by environmental and cultivation conditions. Most of these methods are based on measurements of chlorophyll fluorescence kinetics, particularly on pulse modulation (PAM) fluorometry. In this paper, fluorescence methods are critically discussed in regard to some their possibilities and limitations inherent to vascular plants and microalgae. Attention is paid to the potential errors related to the underestimation of thylakoidal cyclic electron transport and anoxygenic photosynthesis. PAM-methods are also observed considering the color-addressed measurements. Photoacoustic methods are discussed as an alternative and supplement to fluorometry. Novel Fourier modifications of PAM-fluorometry and photoacoustics are noted as tools allowing simultaneous application of a dual or multi frequency measuring light for one sample.
Collapse
Affiliation(s)
- Vladimir Lysenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Rupesh Kumar Singh
- Centre of Molecular and Environmental Biology, Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| | - Ya Guo
- School of IoT Engineering, Jiangnan University, Wuxi, China
| | - Alexey Kosolapov
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, Russia
| | - Elena Usova
- Russian Research Institute for the Integrated Use and Protection of Water Resources, Rostov-on-Don, Russia
| | - Tatyana Varduny
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Elizaveta Chalenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Olga Yadronova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Pavel Dmitriev
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatyana Zaruba
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
4
|
Spies I, Tarpey C, Kristiansen T, Fisher M, Rohan S, Hauser L. Genomic differentiation in Pacific cod using Pool-Seq. Evol Appl 2022; 15:1907-1924. [PMID: 36426128 PMCID: PMC9679252 DOI: 10.1111/eva.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/05/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022] Open
Abstract
Patterns of genetic differentiation across the genome can provide insight into selective forces driving adaptation. We used pooled whole genome sequencing, gene annotation, and environmental covariates to evaluate patterns of genomic differentiation and to investigate mechanisms responsible for divergence among proximate Pacific cod (Gadus macrocephalus) populations from the Bering Sea and Aleutian Islands and more distant Washington Coast cod. Samples were taken from eight spawning locations, three of which were replicated to estimate consistency in allele frequency estimation. A kernel smoothing moving weighted average of relative divergence (F ST) identified 11 genomic islands of differentiation between the Aleutian Islands and Bering Sea samples. In some islands of differentiation, there was also elevated absolute divergence (d XY) and evidence for selection, despite proximity and potential for gene flow. Similar levels of absolute divergence (d XY) but roughly double the relative divergence (F ST) were observed between the distant Bering Sea and Washington Coast samples. Islands of differentiation were much smaller than the four large inversions among Atlantic cod ecotypes. Islands of differentiation between the Bering Sea and Aleutian Island were associated with SNPs from five vision system genes, which can be associated with feeding, predator avoidance, orientation, and socialization. We hypothesize that islands of differentiation between Pacific cod from the Bering Sea and Aleutian Islands provide evidence for adaptive differentiation despite gene flow in this commercially important marine species.
Collapse
Affiliation(s)
- Ingrid Spies
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Carolyn Tarpey
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | | | - Mary Fisher
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Sean Rohan
- Resource Assessment and Conservation Engineering DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| | - Lorenz Hauser
- Resource Ecology and Fisheries Management DivisionAlaska Fisheries Science CenterSeattleWashingtonUSA
| |
Collapse
|
5
|
Zhu Y, Feng Y, Browning TJ, Wen Z, Hughes DJ, Hao Q, Zhang R, Meng Q, Wells ML, Jiang Z, Dissanayake PAKN, Priyadarshani WNC, Shou L, Zeng J, Chai F. Exploring Variability of Trichodesmium Photophysiology Using Multi-Excitation Wavelength Fast Repetition Rate Fluorometry. Front Microbiol 2022; 13:813573. [PMID: 35464918 PMCID: PMC9026164 DOI: 10.3389/fmicb.2022.813573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Fast repetition rate fluorometry (FRRf) allows for rapid non-destructive assessment of phytoplankton photophysiology in situ yet has rarely been applied to Trichodesmium. This gap reflects long-standing concerns that Trichodesmium (and other cyanobacteria) contain pigments that are less effective at absorbing blue light which is often used as the sole excitation source in FRR fluorometers-potentially leading to underestimation of key fluorescence parameters. In this study, we use a multi-excitation FRR fluorometer (equipped with blue, green, and orange LEDs) to investigate photophysiological variability in Trichodesmium assemblages from two sites. Using a multi-LED measurement protocol (447+519+634 nm combined), we assessed maximum photochemical efficiency (F v /F m ), functional absorption cross section of PSII (σ PSII ), and electron transport rates (ETRs) for Trichodesmium assemblages in both the Northwest Pacific (NWP) and North Indian Ocean in the vicinity of Sri Lanka (NIO-SL). Evaluating fluorometer performance, we showed that use of a multi-LED measuring protocol yields a significant increase of F v /F m for Trichodesmium compared to blue-only excitation. We found distinct photophysiological differences for Trichodesmium at both locations with higher average F v /F m as well as lower σ PSII and non-photochemical quenching (NPQ NSV ) observed in the NWP compared to the NIO-SL (Kruskal-Wallis t-test df = 1, p < 0.05). Fluorescence light response curves (FLCs) further revealed differences in ETR response with a lower initial slope (α ETR ) and higher maximum electron turnover rate ( E T R P S I I m a x ) observed for Trichodesmium in the NWP compared to the NIO-SL, translating to a higher averaged light saturation E K (= E T R P S I I m a x /α ETR ) for cells at this location. Spatial variations in physiological parameters were both observed between and within regions, likely linked to nutrient supply and physiological stress. Finally, we applied an algorithm to estimate primary productivity of Trichodesmium using FRRf-derived fluorescence parameters, yielding an estimated carbon-fixation rate ranging from 7.8 to 21.1 mgC mg Chl-a-1 h-1 across this dataset. Overall, our findings demonstrate that capacity of multi-excitation FRRf to advance the application of Chl-a fluorescence techniques in phytoplankton assemblages dominated by cyanobacteria and reveals novel insight into environmental regulation of photoacclimation in natural Trichodesmium populations.
Collapse
Affiliation(s)
- Yuanli Zhu
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Yuanyuan Feng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Thomas J. Browning
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Zuozhu Wen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - David J. Hughes
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Qiang Hao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Ruifeng Zhang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Qicheng Meng
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Mark L. Wells
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
- Darling Marine Center, University of Maine, Walpole, ME, United States
| | - Zhibing Jiang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - P. A. K. N. Dissanayake
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka
| | - W. N. C. Priyadarshani
- National Institute of Oceanography and Marine Sciences, National Aquatic Resources Research and Development Agency, Colombo, Sri Lanka
| | - Lu Shou
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Fei Chai
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| |
Collapse
|
6
|
Gorbunov MY, Falkowski PG. Using Chlorophyll Fluorescence to Determine the Fate of Photons Absorbed by Phytoplankton in the World's Oceans. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:213-238. [PMID: 34460315 DOI: 10.1146/annurev-marine-032621-122346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 45% of the photosynthetically fixed carbon on Earth occurs in the oceans in phytoplankton, which account for less than 1% of the world's photosynthetic biomass. This amazing empirical observation implies a very high photosynthetic energy conversion efficiency, but how efficiently is the solar energy actually used? The photon energy budget of photosynthesis can be divided into three terms: the quantum yields of photochemistry, fluorescence, and heat. Measuring two of these three processes closes the energy budget. The development of ultrasensitive, seagoing chlorophyll variable fluorescence and picosecond fluorescence lifetime instruments has allowed independent closure on the first two terms. With this closure, we can understand how phytoplankton respond to nutrient supplies on timescales of hours to months and, over longer timescales, to changes in climate.
Collapse
Affiliation(s)
- Maxim Y Gorbunov
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| |
Collapse
|
7
|
Kazama T, Hayakawa K, Kuwahara VS, Shimotori K, Imai A, Komatsu K. Development of photosynthetic carbon fixation model using multi-excitation wavelength fast repetition rate fluorometry in Lake Biwa. PLoS One 2021; 16:e0238013. [PMID: 33529253 PMCID: PMC7853527 DOI: 10.1371/journal.pone.0238013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/19/2021] [Indexed: 12/04/2022] Open
Abstract
Direct measurements of gross primary productivity (GPP) in the water column are essential, but can be spatially and temporally restrictive. Fast repetition rate fluorometry (FRRf) is a bio-optical technique based on chlorophyll a (Chl-a) fluorescence that can estimate the electron transport rate (ETRPSII) at photosystem II (PSII) of phytoplankton in real time. However, the derivation of phytoplankton GPP in carbon units from ETRPSII remains challenging because the electron requirement for carbon fixation (Фe,C), which is mechanistically 4 mol e− mol C−1 or above, can vary depending on multiple factors. In addition, FRRf studies are limited in freshwater lakes where phosphorus limitation and cyanobacterial blooms are common. The goal of the present study is to construct a robust Фe,C model for freshwater ecosystems using simultaneous measurements of ETRPSII by FRRf with multi-excitation wavelengths coupled with a traditional carbon fixation rate by the 13C method. The study was conducted in oligotrophic and mesotrophic parts of Lake Biwa from July 2018 to May 2019. The combination of excitation light at 444, 512 and 633 nm correctly estimated ETRPSII of cyanobacteria. The apparent range of Фe,C in the phytoplankton community was 1.1–31.0 mol e− mol C−1 during the study period. A generalised linear model showed that the best fit including 12 physicochemical and biological factors explained 67% of the variance in Фe,C. Among all factors, water temperature was the most significant, while photosynthetically active radiation intensity was not. This study quantifies the in situ FRRf method in a freshwater ecosystem, discusses core issues in the methodology to calculate Фe,C, and assesses the applicability of the method for lake GPP prediction.
Collapse
Affiliation(s)
- Takehiro Kazama
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- * E-mail:
| | | | - Victor S. Kuwahara
- Graduate School of Science & Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Koichi Shimotori
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | - Akio Imai
- Lake Biwa Branch Office, National Institute for Environmental Studies, Otsu, Shiga, Japan
| | - Kazuhiro Komatsu
- Center for Regional Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Hughes DJ, Giannini FC, Ciotti AM, Doblin MA, Ralph PJ, Varkey D, Verma A, Suggett DJ. Taxonomic Variability in the Electron Requirement for Carbon Fixation Across Marine Phytoplankton. JOURNAL OF PHYCOLOGY 2021; 57:111-127. [PMID: 32885422 DOI: 10.1111/jpy.13068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global ocean. As FRRf measures electron transport rates through photosystem II (ETRPSII ), a critical, but difficult to predict conversion factor termed the "electron requirement for carbon fixation" (Φe,C ) is needed to scale ETRPSII to C-fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C , while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n = 17 strains) spanning multiple taxonomic and size classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4-10 mol e- · [mol C]-1 ) and was negatively correlated with growth rate (R2 = 0.7, P < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady-state, nutrient-replete growth. Inclusion of meta-analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in situ, facilitate up-scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C-cycling.
Collapse
Affiliation(s)
- David J Hughes
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Fernanda C Giannini
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Laboratorio Aquarela, Centro de Biologia Marinha (CEBIMar/USP) - Universidade de Sao Paulo, Rodovia Manoel Hypolito Rego, km 131.5, Sao Sebastiao, SP, Brazil
| | - Aurea M Ciotti
- Laboratorio Aquarela, Centro de Biologia Marinha (CEBIMar/USP) - Universidade de Sao Paulo, Rodovia Manoel Hypolito Rego, km 131.5, Sao Sebastiao, SP, Brazil
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Deepa Varkey
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| |
Collapse
|
9
|
Divergence of photosynthetic strategies amongst marine diatoms. PLoS One 2020; 15:e0244252. [PMID: 33370327 PMCID: PMC7769462 DOI: 10.1371/journal.pone.0244252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
Marine phytoplankton, and in particular diatoms, are responsible for almost half of all primary production on Earth. Diatom species thrive from polar to tropical waters and across light environments that are highly complex to relatively benign, and so have evolved highly divergent strategies for regulating light capture and utilization. It is increasingly well established that diatoms have achieved such successful ecosystem dominance by regulating excitation energy available for generating photosynthetic energy via highly flexible light harvesting strategies. However, how different light harvesting strategies and downstream pathways for oxygen production and consumption interact to balance excitation pressure remains unknown. We therefore examined the responses of three diatom taxa adapted to inherently different light climates (estuarine Thalassioisira weissflogii, coastal Thalassiosira pseudonana and oceanic Thalassiosira oceanica) during transient shifts from a moderate to high growth irradiance (85 to 1200 μmol photons m-2 s-1). Transient high light exposure caused T. weissflogii to rapidly downregulate PSII with substantial nonphotochemical quenching, protecting PSII from inactivation or damage, and obviating the need for induction of O2 consuming (light-dependent respiration, LDR) pathways. In contrast, T. oceanica retained high excitation pressure on PSII, but with little change in RCII photochemical turnover, thereby requiring moderate repair activity and greater reliance on LDR. T. pseudonana exhibited an intermediate response compared to the other two diatom species, exhibiting some downregulation and inactivation of PSII, but high repair of PSII and induction of reversible PSII nonphotochemical quenching, with some LDR. Together, these data demonstrate a range of strategies for balancing light harvesting and utilization across diatom species, which reflect their adaptation to sustain photosynthesis under environments with inherently different light regimes.
Collapse
|
10
|
Variability in primary productivity and bio-optical properties in the Indian sector of the Southern Ocean during an austral summer. Polar Biol 2020. [DOI: 10.1007/s00300-020-02722-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Verma A, Hughes DJ, Harwood DT, Suggett DJ, Ralph PJ, Murray SA. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol Evol 2020; 10:6257-6273. [PMID: 32724512 PMCID: PMC7381561 DOI: 10.1002/ece3.6358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 01/04/2023] Open
Abstract
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south-eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north-south gradient in southeastern Australia. Sixty-eight strains were established from eight sampling sites. The study revealed long-standing genetic diversity among strains established from the northern-most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin-like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate-driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - David J. Hughes
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | | | - David J. Suggett
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Peter J. Ralph
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| | - Shauna A. Murray
- Climate Change ClusterUniversity of Technology SydneyUltimoNSWAustralia
| |
Collapse
|
12
|
Kvernvik AC, Rokitta SD, Leu E, Harms L, Gabrielsen TM, Rost B, Hoppe CJM. Higher sensitivity towards light stress and ocean acidification in an Arctic sea-ice-associated diatom compared to a pelagic diatom. THE NEW PHYTOLOGIST 2020; 226:1708-1724. [PMID: 32086953 DOI: 10.1111/nph.16501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Thalassiosira hyalina and Nitzschia frigida are important members of Arctic pelagic and sympagic (sea-ice-associated) diatom communities. We investigated the effects of light stress (shift from 20 to 380 µmol photons m-2 s-1 , resembling upwelling or ice break-up) under contemporary and future pCO2 (400 vs 1000 µatm). The responses in growth, elemental composition, pigmentation and photophysiology were followed over 120 h and are discussed together with underlying gene expression patterns. Stress response and subsequent re-acclimation were efficiently facilitated by T. hyalina, which showed only moderate changes in photophysiology and elemental composition, and thrived under high light after 120 h. In N. frigida, photochemical damage and oxidative stress appeared to outweigh cellular defenses, causing dysfunctional photophysiology and reduced growth. pCO2 alone did not specifically influence gene expression, but amplified the transcriptomic reactions to light stress, indicating that pCO2 affects metabolic equilibria rather than sensitive genes. Large differences in acclimation capacities towards high light and high pCO2 between T. hyalina and N. frigida indicate species-specific mechanisms in coping with the two stressors, which may reflect their respective ecological niches. This could potentially alter the balance between sympagic and pelagic primary production in a future Arctic.
Collapse
Affiliation(s)
- Ane C Kvernvik
- The Department of Arctic Biology, Svalbard Science Centre, University Centre in Svalbard, PO Box 156, N-9171, Longyearbyen, Norway
| | - Sebastian D Rokitta
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Eva Leu
- Arctic R&D, Akvaplan-Niva AS, CIENS, Gaustadalleen 21, 0349, Oslo, Norway
| | - Lars Harms
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - Tove M Gabrielsen
- The Department of Arctic Biology, Svalbard Science Centre, University Centre in Svalbard, PO Box 156, N-9171, Longyearbyen, Norway
- Faculty of Engineering and Science, University of Agder, PO Box 422, N-4604, Kristiansand, Norway
| | - Björn Rost
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- FB2, University of Bremen, Leobener Strasse, 28359, Bremen, Germany
| | - Clara J M Hoppe
- Marine Biogeosciences, Alfred-Wegener-Institut - Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| |
Collapse
|
13
|
Raven JA, Beardall J, Quigg A. Light-Driven Oxygen Consumption in the Water-Water Cycles and Photorespiration, and Light Stimulated Mitochondrial Respiration. PHOTOSYNTHESIS IN ALGAE: BIOCHEMICAL AND PHYSIOLOGICAL MECHANISMS 2020. [DOI: 10.1007/978-3-030-33397-3_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Bonnanfant M, Jesus B, Pruvost J, Mouget JL, Campbell DA. Photosynthetic electron transport transients in Chlorella vulgaris under fluctuating light. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Wilken S, Yung CCM, Hamilton M, Hoadley K, Nzongo J, Eckmann C, Corrochano-Luque M, Poirier C, Worden AZ. The need to account for cell biology in characterizing predatory mixotrophs in aquatic environments. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190090. [PMID: 31587652 PMCID: PMC6792458 DOI: 10.1098/rstb.2019.0090] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Photosynthesis in eukaryotes first arose through phagocytotic processes wherein an engulfed cyanobacterium was not digested, but instead became a permanent organelle. Other photosynthetic lineages then arose when eukaryotic cells engulfed other already photosynthetic eukaryotic cells. Some of the resulting lineages subsequently lost their ability for phagocytosis, while many others maintained the ability to do both processes. These mixotrophic taxa have more complicated ecological roles, in that they are both primary producers and consumers that can shift more towards producing the organic matter that forms the base of aquatic food chains, or towards respiring and releasing CO2. We still have much to learn about which taxa are predatory mixotrophs as well as about the physiological consequences of this lifestyle, in part, because much of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncultured. Here, we discuss existing methods for studying predatory mixotrophs, their individual biases, and how single-cell approaches can enhance knowledge of these important taxa. The question remains what the gold standard should be for assigning a mixotrophic status to ill-characterized or uncultured taxa-a status that dictates how organisms are incorporated into carbon cycle models and how their ecosystem roles may shift in future lakes and oceans. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Susanne Wilken
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090GE Amsterdam, Noord-Holland, The Netherlands
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM)-CSIC, 08003 Barcelona, Catalunya, Spain
| | - Charmaine C. M. Yung
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
| | - Maria Hamilton
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kenneth Hoadley
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
| | - Juliana Nzongo
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | - Charlotte Eckmann
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Camille Poirier
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Schleswig-Holstein, Germany
- Division of Physical and Biological Sciences, UC Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
16
|
Decoupling light harvesting, electron transport and carbon fixation during prolonged darkness supports rapid recovery upon re-illumination in the Arctic diatom Chaetoceros neogracilis. Polar Biol 2019. [DOI: 10.1007/s00300-019-02507-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|