1
|
Wang C, Li Y, Wang Z, Lei J, Sun SP. High-valent ferryl intermediates generation, reactivity and kinetic characterization with contaminants of emerging concern via a facile photo-Fenton competition kinetic methodology. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138216. [PMID: 40215935 DOI: 10.1016/j.jhazmat.2025.138216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
High-valent ferryl (FeIV) intermediates are important reactive species in biological oxidation and Fe-catalyzed advanced oxidation processes (Fe-AOPs). Notwithstanding notable progress has been made on FeIV identification, the second-order reaction rate constants of FeIV with contaminants of emerging concern (CECs) were rarely reported in literature, severely hindering understanding its reactivity and kinetics toward various CECs. To this end, we discovered a novel system, i.e., photo-Fenton reaction of peracetic acid with Fe3+-nitrilotriacetate complex, which enabled stable generation of FeIV with steady-state concentrations at ∼10-8-10-7 M at neutral pH, as evidenced by electron spin resonance (ESR) trapping detection, quenching experiments and probe testing. Notably, a facile competition kinetic methodology was developed by using methyl phenyl sulfoxide (PMSO) as a probe, which enabled to characterize the reactivity and kinetics of FeIV with 12 target CECs (e.g., phenolic compounds, endocrine disruptor, herbicide, and pharmaceuticals). The measured second-order rate constants were in a range of 3.99 × 103-4.75 × 105 M-1 s-1, which were correlated to the ionization potential of the target CECs, owing to electrophilic attack by FeIV. This achievement can fill a critical gap in uncovering the reactivity and kinetics of FeIV toward CECs for promising environmental application.
Collapse
Affiliation(s)
- Chongjia Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yifan Li
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Zhenkai Wang
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jing Lei
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sheng-Peng Sun
- Particle Engineering Laboratory, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
2
|
Gong H, Zhao D, Liu H. Chlorine-functionalized black phosphorus quantum dots induced superoxide anion generation and depletion for efficient chemiluminescence detection. Anal Chim Acta 2025; 1354:343991. [PMID: 40253067 DOI: 10.1016/j.aca.2025.343991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Due to their unique optoelectronic properties, environmental friendliness, and excellent biocompatibility, metal-free quantum dots have been a new star in exploring novel chemiluminescence (CL) systems for analytical applications in recent years. However, unknown CL property, relatively weak emission and instability of some of them in water (eg. black phosphorus) often seriously hindered their further applications. Hence, developing a novel QDs-assist CL signal amplification to achieve efficient analyst detection is significant and currently hot topic for researchers. RESULTS In this work, we purposely synthesized chlorine-functionalized black phosphorus quantum dots (Cl-BPQDs) with improved stability and rich-hole property, which were demonstrated to exhibit the excellent capability for the activation of ferrate (VI) with large reactive oxygen species generation and leading to enhanced CL signal. The detail mechanism was demonstrated, the unique CL response to the presence of active sites (P-Cl) in Cl-BPQDs, which accelerated ferrate (VI) decomposition and produced a large amount of superoxide anion (•O2-). And then, the radiative recombination of the exogenous electron-donated and existing holes Cl-BPQDs accounting for the strong CL emission. Furthermore, based on the consumption capacity of ascorbic acid (AA) and glutathione (GSH) for •O2-, a direct CL sensing platform of Cl-BPQDs/ferrate (VI) quenching was fabricated to AA and GSH detection. This fabricated assay has broad detection linear ranges (2-200 μM) and low detection limit (GSH: 1.3 μM; AA: 1.7 μM). Compared with the reported CL technique, this new method displayed superior sensitivity and anti-interference capabilities toward transition-metal ions and inorganic anions. The potential analytical application of the new CL system was further demonstrated by the evaluation of total antioxidant capacity (TAC) in diabetic patients. SIGNIFICANCE This study proposes a new strategy for enhancing CL signal via Cl-BPQDs triggering •O2- generation and depletion, which provides an innovative tool for ascorbic acid and glutathione detection. This method not only enriches our understanding of the optical characteristics of BP, but also provides a new charge transfer-based path for CL amplification.
Collapse
Affiliation(s)
- Hui Gong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Dayang Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China
| | - Houjing Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Kang H, Chen Y, Cheng M, Guo H, Zhang G, Shi Q, Zhou W, Zhao C, Zou B, Lv X, Yuan Z, Zeng G. State-Of-The-Art Structural Regulation Methods and Quantum Chemistry for Carbon-Based Single-Atom Catalysts in Advanced Oxidation Process: Critical Perspectives into Molecular Level. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2505128. [PMID: 40401577 DOI: 10.1002/adma.202505128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advanced oxidation processes (AOPs) by carbon-based single-atom catalysts (SACs) are recognized as an attractive scientific frontier for water treatment, with the outstanding benefits of ultra-effective and anti-interference capability. However, most of the research has paid more attention to the performance of SACs, while the in-depth understanding of catalytic regulation by molecular interaction is relatively deficient. This critical review delves into deciphering the catalytic mechanism through a micro-level, which makes it more convenient to interpret apparent catalytic phenomena. It first summarizes basic theories of quantum chemistry, which provide mechanism interpretation and prediction for molecular-oxidation systems. Additionally, corresponding oxidation pathways of common oxidants are underscored. Following the oxidants, state-of-the-art regulation methods are discussed with special attention to involved molecular interactions and pollutants. Particularly, the preliminary insights into the "oxidant-catalyst-pollutants" internal relationships are provided to help construct the SAC-AOP system from a molecular standpoint. Meanwhile, some cutting-edge laboratory devices and pilot-scale engineering are presented to illustrate the ultimate purpose of scientific molecular exploration. Eventually, relative challenges of SACs-AOPs upon the design of catalytic systems and investigation methods are provided. This review aims to promote the large-scale potential of SACs-based AOPs in practical water treatment by emphasizing the pivotal role of micro-insights.
Collapse
Affiliation(s)
- Huayue Kang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Huiqin Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Gaoxia Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Qingkai Shi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wencheng Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Chen Zhao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Bin Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xinyue Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, China
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ziyue Yuan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| |
Collapse
|
4
|
Chen Y, Zhang H, Li Y, Li WW, Sheng GP, Wang Y. Coordination Anions Dimensionality-Engineered Dual-Atom Catalysts for Enhanced Fenton-Like Reactions: 3D Coordination Induced Spin-State Transition. ACS NANO 2025; 19:14187-14199. [PMID: 40183629 DOI: 10.1021/acsnano.5c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Dual-atom catalysts (DACs) have shown significant application potential in Fenton-like reactions. However, effectively modulating their electronic structure and fully understanding the mechanisms driving their high catalytic activity remain challenging. Herein, we propose a coordination anions dimensionality engineering strategy to synthesize biomass-derived dual-atom FeCo-N4O1C catalysts, in which Fe and Co atoms are bridged by two-dimensional planar N atoms and a three-dimensional (3D) axial O atom. Experimental data and theoretical calculations reveal that the 3D coordination structure of FeCo-N4O1C induces the spin state of Fe undergo a transition from a low spin state to an intermediate spin state compared with single-atom Fe-N4O1C, resulting in moderate adsorption and desorption of intermediates, thus reducing the energy barriers for generating more singlet oxygen and high-valent cobalt-oxo species during peroxymonosulfate activation. The electron transfer from Co atoms to neighboring Fe atoms through N atoms and 3D axial O atoms can effectively prevent the poisoning of active species. Benefiting from the 3D coordination structure and the synergistic effects of multiple active sites, the catalyst-dose normalized reaction rate constant reaches 14.5 L min-1 g-1 under low peroxymonosulfate concentrations─an improvement of 1 ∼ 2 orders of magnitude over most reported catalysts. The practical applicability of FeCo-N4O1C is demonstrated through nearly 100% pollutant removal during 7 days of continuous operation in a membrane filtration system. This study provides deep insights into the relationship between electronic structure and catalytic performance through spin-state regulation of DACs, and introduces a promising approach for large-scale synthesis of low-cost, highly efficient DACs for Fenton-like reactions.
Collapse
Affiliation(s)
- Yanling Chen
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hao Zhang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yao Li
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yunkun Wang
- State Key Laboratory of Advanced Environmental Technology, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Zhao XN, Huang ZS, Liu YL, Gu HT, Gao Z, Cui C, Ma J, Wang L. Roles of iron (V) and iron (IV) species in ferrate-triggered oxidation of phenolic pollutants and their transformation induced by phenoxyl radical. WATER RESEARCH 2025; 274:123133. [PMID: 39827516 DOI: 10.1016/j.watres.2025.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Ferrate is a promising oxidizing agent for water treatment. Understanding the reaction characteristics and transformation mechanism of high-valent intermediate irons [Fe(V) and Fe(IV)] remains challenging. Here, we systematically investigated the roles of Fe(VI), Fe(V), and Fe(IV) species for acetaminophen oxidation using reaction kinetics, products, and stoichiometries. Acetaminophen reacts with Fe(VI) via one-electron transfer mechanism, to initiate a sequential conversion process of "Fe(VI)-Fe(V)-Fe(IV)-Fe(III)", with a stoichiometry [Δacetaminophen/Δferrate] up to 2.20:1. The stoichiometry decreased to 1.23:1 after adding pyrophosphate to sequester Fe(V) oxidation, higher than the Fe(VI)-contributed stoichiometry of 0.58:1, indicating the involvement of Fe(IV) species, not inhibited by pyrophosphate. Dimer yields and theoretical calculations demonstrated that the generated phenoxyl radical could reduce Fe(V) into Fe(IV) even in the presence of pyrophosphate, to achieve the sequential one-electron transfer process. For other phenols containing electron-donating substituents, their phenoxyl radicals could also induce the transformation of Fe(V) into Fe(IV). This organic radical-induced conversion could occur in the reaction of ferrate with natural organic matter, and enhance the effective removal of pollutants. This study highlights the interaction of phenoxyl radical with high-valent iron species, and offers new insights to guide future identification of high-valent iron species in ferrate oxidation.
Collapse
Affiliation(s)
- Xiao-Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhuang-Song Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hai-Teng Gu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chongwei Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Liu S, Di F, Lian Z, Wang G, Yu Q, Han D. New insights into the Fe(III)-activated peroxyacetic acid: Oxidation properties and mechanism. ENVIRONMENTAL RESEARCH 2025; 270:120912. [PMID: 39848513 DOI: 10.1016/j.envres.2025.120912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/07/2025] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Iron-activated peroxyacetic acid (PAA) represents an innovative advanced oxidation process (AOP). However, the efficiency of PAA activation by Fe(III) is often underestimated due to the widespread assumption that Fe(III) exhibits much lower ability than Fe(II) to activate PAA. Herein, the oxidative degradation of Rhodamine B (RhB) by Fe(III)-activated PAA process was investigated, and some new insights into the performance and mechanism of the Fe(III)/PAA system were presented. Although the reaction rate of Fe(III) with PAA was slightly slower than that of Fe(II), Fe(III) was still able to activate PAA effectively, and the degradation efficiency of RhB was comparable to that of the Fe(II)/PAA system after 30 min of reaction. Notably, the Fe(III)/PAA system demonstrated superior oxidation capacity compared to conventional oxidant systems, including Fe(III)/H2O2, Fe(III)/PDS, Fe(III)/PMS. The degradation efficiency varied significantly across different water substrates. While Cl- exhibited a certain inhibitory effect on the degradation of RhB, H2PO4- exerted a pronounced inhibitory influence, whereas NO3-, SO42- and HCO3- had negligible effects. The increase of humic acid (HA) showed a facilitating effect in the initial stage, followed by an inhibitory effect. Furthermore, mechanistic studies indicated that H2O2 in PAA solution was not effectively activated. The degradation of RhB primarily occurred through a non-radical pathway generated by PAA activation, with the contribution of reactive species (RS) in the order of FeIVO2+ > •OH > R-O• (CH3COO• and CH3COOO•). RhB degradation was achieved not only by attacking the chromophore of RhB molecules, but also the effective destruction of the stable structures such as benzene rings. This study enhances the understanding of Fe(III)-activated PAA and broadens its potential for developing and applying PAA-based AOPs.
Collapse
Affiliation(s)
- Songyun Liu
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China; Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China
| | - Fei Di
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhan Lian
- Institute of Marine Science, Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Guang Wang
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qi Yu
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Donghui Han
- Ministry of Ecology and Environment South China Institute of Environmental Sciences, Guangzhou, 510655, China; Key Laboratory of Water Environmental Simulation and Pollution Control, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
7
|
Qiu L, Yuan R, Chen H, Zhang Z, Zhou B, Luo S. Insight into the enhanced removal of dimethoate by ferrate(Ⅵ)/biochar system: Contributions of adsorption and active oxidants. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136980. [PMID: 39731889 DOI: 10.1016/j.jhazmat.2024.136980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Dimethoate is a toxic organophosphorus insecticide and its contamination of water poses a threat to the surrounding ecosystem. In order to enhance the removal effect of ferrate (Fe(VI)) on dimethoate, modified graphene-like biochar (SIZBC) with reduction and adsorption properties was prepared in this study. Compared with Fe(VI) alone, the removal of dimethoate by Fe(VI)/SIZBC increased from 26 % to more than 97 %, and the reaction rate was accelerated by 34 times. The oxidizing property of Fe(VI) was enhanced by the reducing groups loaded on SIZBC, and more active species were produced with the contributions ranked as SO4•¯ > ∙OH > Fe(V). And the contributions of adsorption and active oxidants in the reaction process accounted for 25 % and 75 %, respectively. Enlarging the sulfite solution concentration of modified biochar, the transformation from ∙OH/Fe(V) to SO4•¯ was promoted in the system. As the concentration of Fe(Ⅵ) increased, the contributions of ∙OH and SO4•¯ gradually decreased and Fe(V) became the main active oxidant. Fe(VI)-induced core/shell nanoparticles exhibited in situ adsorption of phosphate which was a mineralization product of dimethoate, thus total phosphorus (TP) removal was increased by 27 %. Through the three degradation pathways, dimethoate and its toxic intermediates were further mineralized to inorganic substances. Finally, the Fe(VI)/SIZBC system was proven to be feasible for actual water treatment and was able to reduce water toxicity.
Collapse
Affiliation(s)
- Lijia Qiu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China; Beijing City University, Shunyi District, Beijing 101309, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China
| | - Zongyu Zhang
- Beijing City University, Shunyi District, Beijing 101309, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Haidian District, Beijing 100083, China
| |
Collapse
|
8
|
Xu J, Li C, He Z, Chen Z, Zhang K, Ren W, Zhang Y, Guan X. A green method on dipole solvent as "Activators": γ-valerolactone/H 2O system promoted degradation of ciprofloxacin by ferrate(Ⅵ). WATER RESEARCH 2025; 271:122991. [PMID: 39729748 DOI: 10.1016/j.watres.2024.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/22/2024] [Accepted: 12/14/2024] [Indexed: 12/29/2024]
Abstract
This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.7) × 10 M⁻¹ s⁻¹, significantly higher than the (6.8 ± 0.5) × 10 M⁻¹ s⁻¹ observed in pure H₂O. Furthermore, the self-decay rate decreases from (3.1 ± 0.4) × 10⁻² s⁻¹ in H₂O to (1.4 ± 0.2) × 10⁻² s⁻¹ in the GVL/H₂O system. The role of Fe(IV)/Fe(V) in the degradation process was confirmed using dimethyl sulfoxide (DMSO). Dynamic light scattering (DLS) results indicated that GVL could confine water clusters within the range of 1.69-3.68 nm. Density functional theory (DFT) and theoretical calculations demonstrated that the nucleophilic site of CIP in the GVL/H₂O system shifted to the carboxyl group. The toxicity analysis of the degradation products underscored the significance of CIP transfer treatment. This study highlights using the green water treatment agent Fe(VI) and the biodegradable solvent GVL to effectively reduce environmental impact, presenting significant potential for environmental pollution control.
Collapse
Affiliation(s)
- Jiani Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhengming He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zihe Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Weiwei Ren
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
9
|
Zheng J, Guo P, Wei W, Leng W, Wang J, Zhang J, Zhi L, Song Y. Degradation of 1,2,3-trichloropropane by ferrate(VI) oxidant: Mechanisms, influencing factors and oxidative iron species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177824. [PMID: 39642618 DOI: 10.1016/j.scitotenv.2024.177824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
The ferrate(VI) ion is a green, versatile oxidant employed eliminate organic contaminants. Research on the degradation of saturated chlorinated hydrocarbons such as 1,2,3-trichloropropane (1,2,3-TCP), by Fe(VI) is limited. In this study, we investigated the degradation of 1,2,3-TCP by Fe(VI). Four oxidants (Fe(VI), sodium persulfate, hydrogen peroxide and potassium permanganate) were also used, among which only Fe(VI) could degrade 96 % and 91 % of 1,2,3-TCP (0.33 mM) in pure- and polluted-water samples, respectively, within 4 days. During degradation, the intermediate product 2,3-dichloropropylene (2,3-DCP) was formed. The main mechanisms of 1,2,3-TCP and 2,3-DCP degradation by Fe(VI) were alkaline hydrolysis and oxidation, respectively. A higher 1,2,3-TCP degradation efficiency was achieved in an alkaline environment than in acidic or neutral environment. The reaction rate for 2,3-DCP was high at pH levels between 6.0 and 7.0, and the final degradation efficiency increased at pH 8.0-9.0. Electron paramagnetic resonance and radical quenching experiments confirmed that the dominant intermediate ferrate species (Fe(IV) and Fe(V)) were responsible for the 2,3-DCP oxidation. NH4+, Cu2+, CO32-, HCO3- and humic acid (HA) tended to inhibit the degradation of 2,3-DCP by Fe(VI). Meanwhile, the degradation of 1,2,3-TCP was slightly affected by HA, although it was considerably affected by Ca2+ and Mg2+. This study shows the great application potential of Fe(VI) in pump and treat systems for the ex-situ elimination of high-concentration chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Jiarui Zheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Peng Guo
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China.
| | - Wenxia Wei
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China.
| | - Wenpeng Leng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Jiajia Wang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Ji Zhang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Liqin Zhi
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100095, China
| |
Collapse
|
10
|
Zhang K, Zhang Y, Xu S, Rosado-García FM, Duarte NSP, Chen Y, Hou J, Feng M. Percarbonate-periodate system: A novel and efficient "oxidant-oxidant" strategy for selective oxidation of micropollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136079. [PMID: 39395395 DOI: 10.1016/j.jhazmat.2024.136079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/09/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
The development of effective and selective oxidation technology in complex water matrices is crucial for water ecological security. This study reports for the first time the synergistic use of "oxidant-oxidant" about sodium percarbonate (SPC) and periodate (PI) to selectively degrade organic micropollutants. The SPC/PI system showed degradation rates of 0.0946-0.2978 min-1 for various pollutants, which was 3.7-1787 times higher than those in the PI alone and SPC alone systems and can achieve the effect of H2O2/PI systems. Additionally, SPC/PI was a safe water treatment technology without generating reactive iodine species (e.g., HOI). The slightly reduced removal rate of bisphenol F under different ionic species and strengths is indicative of the good anti-interference of the SPC/PI system. Scavenging, probe, and electron spin resonance experiments showed that ▪OH and CO3▪- played a major role in this process, rather than O2▪- and 1O2. Finally, the oxidized products and the possible transformation pathways of three different micropollutants in the SPC/PI and H2O2/PI systems were characterized and clarified, and the toxicity of the degradation products was predicted. Generally, the study proposed a new selective oxidation strategy of SPC/PI that can effectively eliminate micropollutants in water treatment and clarified the interaction mechanisms between PI and SPC.
Collapse
Affiliation(s)
- Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yi Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shuyi Xu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | | | | | - Yiqun Chen
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - Jifei Hou
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Wu L, Wang L, Liu YL, Zhao XN, Ma J. VUV Activated Fe(VI) by Promoting the Generation of Intermediate Valent Iron and Hydroxyl Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20256-20266. [PMID: 39324836 DOI: 10.1021/acs.est.4c05343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In this study, vacuum ultraviolet (VUV) was first proposed to activate ferrate (Fe(VI)) for degrading micropollutants (e.g., carbamazepine (CBZ)). Results indicated that VUV/Fe(VI) could significantly facilitate the CBZ degradation, and the removal efficiencies of VUV/Fe(VI) were 30.9-83.4% higher than those of Fe(VI) at pH = 7.0-9.0. Correspondingly, the degradation rate constants of VUV/Fe(VI) were 2.3-36.0-fold faster than those of Fe(VI). Free radical quenching and probe experiments revealed that the dominant active species of VUV/Fe(VI) were •OH and Fe(V)/Fe(IV), whose contribution ratios were 43.3 to 48.6% and 48.2 to 46.6%, respectively, at pH = 7.0-9.0. VUV combined with Fe(VI) not only effectively mitigated the weak oxidizing ability of Fe(VI) under alkaline conditions (especially pH = 9.0) but also attenuated the deteriorating effect of background constituents on Fe(VI). In different real waters (tap water, river water, WWTPs effluent), VUV/Fe(VI) retained a remarkably enhanced effect on CBZ degradation compared to Fe(VI). Moreover, VUV/Fe(VI) exhibited outstanding performance in the debasement of CBZ and sulfamethoxazole (SMX), as well as six other micropollutants, displaying broad-spectrum capability in degrading micropollutants. Overall, this study developed a novel oxidation process that was efficient and energy-saving for the rapid removal of micropollutants.
Collapse
Affiliation(s)
- Lian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yu-Lei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao-Na Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Guo J, Wang S, Li T, Wang L, You H. A new perspective on contaminants as "activators": Aromatic amine groups promoted degradation of tetracycline by ferrate(VI). JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135740. [PMID: 39259990 DOI: 10.1016/j.jhazmat.2024.135740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Occasionally, our group found that the degradation of tetracycline by ferrate(VI) could be promoted by four co-exist contaminants, containing aromatic amines (ofloxacin, diatrizoic acid, sulfadiazine and alachlor). This study investigated the promotion of aromatic amine groups on tetracycline degradation by ferrate(VI) by using aniline as a model compound. The results implied that the presence of aniline increased the degradation rate of tetracycline by 2.76 times, and the enhancement was weakened gradually with the decrease of pH from 10 to 7.5. The generation of Fe(IV) and·OH by the reaction between ferrate(VI) and aniline was proposed to enhance the degradation of tetracycline, supported by quenching experiments, electron paramagnetic resonance (EPR) and theoretical calculations. A positive correlation was found between the rate constant of tetracycline degradation and the electron-donating ability of the substituted amines (quantified by the Hammett substituent constants). In addition, the degradation of tetracycline was remarkably inhibited by HA and some inorganic ions such as NO3-, SO42-, Cl-, Ca2+, and Mg2+, and the inhibition also happened in the Songhua River water and the secondary effluent. The present study provided an insight into the complex oxidation process for the degradation of micropollutants containing aromatic amine by ferrate in water treatment.
Collapse
Affiliation(s)
- Jinhu Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shutao Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Tiecheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
13
|
Lei J, Ding L, Li Y, Li X, Pan S, Wu D, Jiang K. Picolinic acid promotes organic pollutants removal in Fe(III)/periodate process: Mechanism and relationship between removal efficiency and pollutant structure. WATER RESEARCH 2024; 268:122631. [PMID: 39437573 DOI: 10.1016/j.watres.2024.122631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
The application of Fe-catalyzed periodate (PI) processes is often limited by both the narrow applicable pH range and weak reaction between Fe(III) and oxidant. Here, the biodegradable picolinic acid (PICA) was used as one kind of chelating ligands (CLs) to enhance the removal of organic pollutants (OPs) at initial pH 3.0-8.0, which displayed superior properties than the other CLs in Fe(III)/PI process. The dominant reactive species produced in the Fe(III)-PICA/PI process turned out to be high-valent iron-oxo (FeIV=O) species and hydroxyl radical (•OH) by quenching, sulfoxide probe transformation, and 18O isotope-labeling tests. The relative contribution of FeIV=O and •OH was dependent on OPs ionization potential (IP) and energy gap (ΔE). The degradation of OPs was also directly associated with their structure, the apparent rate constants correlated well with the highest occupied molecular orbital energy (EHOMO), IP, and ΔE, and among them ΔE had a greater effect. Furthermore, Fe(III)-PICA complexes displayed excellent long-term effectiveness for OPs removal in actual water matrixes, along with the non-toxic conversion of PI, indicating a broad application perspective of Fe(III)-PICA/PI process. This study provides an efficient method to improve the performance of Fe(III)/PI process and reveals the mechanism and relationship between removal efficiency and pollutant structure.
Collapse
Affiliation(s)
- Jiansen Lei
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Linjie Ding
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Yangju Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China.
| | - Xiang Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Siyuan Pan
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| | - Kai Jiang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, Xinxiang, Henan 453007, PR China
| |
Collapse
|
14
|
Zhang J, Zhang Y, Lv N, Li F, Li Y, Guo Z. Electrochemistry promotion of Fe(Ⅲ)/Fe(Ⅱ) cycle for continuous activation of PAA for sludge disintegration: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 256:119268. [PMID: 38815721 DOI: 10.1016/j.envres.2024.119268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
In this study, electrochemistry was used to enhance the advanced oxidation of Fe(Ⅱ)/PAA (EC/Fe(Ⅱ)/PAA) to disintegrate waste activated sludge, and its performance and mechanism was compared with those of EC, PAA, EC/PAA and Fe(Ⅱ)/PAA. Results showed that the EC/Fe(Ⅱ)/PAA process effectively improved sludge disintegration and the concentrations of soluble chemical oxygen demand, polysaccharides and nucleic acids increased by 62.85%, 41.15% and 12.21%, respectively, compared to the Fe(Ⅱ)/PAA process. Mechanism analysis showed that the main active species produced in the EC/Fe(Ⅱ)/PAA process were •OH, R-O• and FeIVO2+. During the reaction process, sludge flocs were disrupted and particle size was reduced by the combined effects of active species oxidation, electrochemical oxidation and PAA oxidation. Furthermore, extracellular polymeric substances (EPS) was degraded, the conversion of TB-EPS to LB-EPS and S-EPS was promoted and the total protein and polysaccharide contents of EPS were increased. After sludge cells were disrupted, intracellular substances were released, causing an increase in nucleic acids, humic acids and fulvic acids in the supernatant, and resulting in sludge reduction. EC effectively accelerated the conversion of Fe(Ⅲ) to Fe(Ⅱ), which was conducive to the activation of PAA, while also enhancing the disintegration of EPS and sludge cells. This study provided an effective approach for the release of organic matter, offering significant benefits in sludge resource utilization.
Collapse
Affiliation(s)
- Jing Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Ning Lv
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Fen Li
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, Heilongjiang, China
| | - Yibing Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Zhenjie Guo
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
15
|
Zhang YS, Chen XJ, Huang XT, Bai CW, Zhang ZQ, Duan PJ, Chen F. Buffer-free ozone-ferrate(VI) systems for enhanced oxidation of electron-deficient contaminants: Synergistic enhancement effects, systematic toxicity assessment, and practical applications. WATER RESEARCH 2024; 260:121907. [PMID: 38878318 DOI: 10.1016/j.watres.2024.121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/27/2024]
Abstract
The combination of ozone (O3) and ferrate (Fe(VI)) oxidation technology demonstrates substantial potential for practical applications, though it has been underreported, resulting in gaps in comprehensive activity assessments and thorough exploration of its mechanisms. This study reveals that the previous use of a borate buffer solution obscured certain synergistic reactions between O3 and Fe(VI), causing a reduction of activity by ∼40 % when oxidizing the electron-deficient pollutant atrazine. Consequently, we reassessed the activity and mechanisms using a buffer-salt-free O3/Fe(VI) system. Our findings showed that the hydroxyl radical (·OH) served as the predominant active species, responsible for an impressive 95.9 % of the oxidation activity against electron-deficient pollutants. Additional experiments demonstrated that the rapid production of neglected and really important superoxide radicals (·O2-) could facilitate the decomposition of O3 to generate ·OH and accelerate the reduction of Fe(VI) to Fe(V), reactivating O3 to produce ·OH anew. Intriguingly, as the reaction progressed, the initially depleted Fe(VI) was partially regenerated, stabilizing at over 50 %, highlighting the significant potential of this combined system. Moreover, this combined system could achieve a high mineralization efficiency of 80.4 % in treating actual coking wastewater, complemented by extensive toxicity assessments using Escherichia coli, wheat seeds, and zebrafish embryos, showcasing its robust application potential. This study revisits and amends previous research on the O3/Fe(VI) system, providing new insights into its activity and synergistic mechanisms. Such a combined technology has potential for the treatment of difficult-to-degrade industrial wastewater.
Collapse
Affiliation(s)
- Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
16
|
Wang D, Yu Y, He J, Zhang J, Yang C, Ma J. Homogeneous to heterogeneous redox mediator enhancing ferrate(VI) oxidation of sulfamethoxazole: Role of ferrate(VI) activation and electron shuttle. CHEMOSPHERE 2024; 362:142752. [PMID: 38960048 DOI: 10.1016/j.chemosphere.2024.142752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Ferrate (Fe(VI)) is a promising oxidant for water remediation, yet it has limited reactivity towards certain recalcitrant but important emerging contaminants, such as sulfamethoxazole. Here, this study demonstrates that nitroxide redox mediators, specifically 9-azabicyclo[3.3.1]nonasne N-oxyl (ABNO), can catalyze Fe(VI) reaction with sulfamethoxazole by functioning both as Fe(VI) activator and electron shuttle. The underlying mechanism is explained as: (i) Fe(VI) activation: a series of one-electron transfers between Fe(VI) and ABNO produces highly reactive Fe(V)/Fe(IV) and ABNO+; (ii) electron shuttle: the newly formed active ABNO+ reacts with the sulfamethoxazole, contributing to its removal. Concurrently, ABNOH is generated and subsequently converted back to ABNO by reactive species, thereby completing the redox cycle. The as-developed heterogeneous redox mediator, ABNO@SiO2, retained its catalytic properties and effectively catalyzed Fe(VI) to remove sulfamethoxazole at environmentally relevant pH levels.
Collapse
Affiliation(s)
- Dingxiang Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China; Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yongqiang Yu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiahao He
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Chun Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
17
|
Mamatali A, Wu D, Xie H, Xiao P. Mesoporous cobalt-manganese layered double hydroxides promote the activation of calcium sulfite for degradation and detoxification of metronidazole. J Colloid Interface Sci 2024; 666:512-528. [PMID: 38613974 DOI: 10.1016/j.jcis.2024.04.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Metronidazole (MNZ), a commonly used antibiotic, poses risks to water bodies and human health due to its potential carcinogenic, mutagenic, and genotoxic effects. In this study, mesoporous cobalt-manganese layered double hydroxides (CoxMny-LDH) with abundant oxygen vacancies (Ov) were successfully synthesized using the co-precipitation method and used to activate calcium sulfite (CaSO3) with slight soluble in water for MNZ degradation. The characterization results revealed that Co2Mn-LDH had higher specific areas and exhibited good crystallinity. Co2Mn-LDH/CaSO3 exhibited the best catalytic performance under optimal conditions, achieving a remarkable MNZ degradation efficiency of up to 98.1 % in only 8 min. Quenching experiments and electron paramagnetic resonance (EPR) tests showed that SO4•- and 1O2 played pivotal roles in the MNZ degradation process by activated CaSO3, while the redox cycles of Co2+/Co3+ and Mn3+/Mn4+ on the catalyst surface accelerated electron transfer, promoting radical generation. Three MNZ degradation routes were put forward based on the density functional theory (DFT) and liquid chromatography-mass spectrometer (LC-MS) analysis. Meanwhile, the toxicity analysis result demonstrated that the toxicity of intermediates post-catalytic reaction was decreased. Furthermore, the Co2Mn-LDH/CaSO3 system displayed excellent stability, reusability, and anti-interference capability, and achieved a comparably high removal efficiency across various organic pollutant water bodies. This study provides valuable insights into the development and optimization of effective heterogeneous catalysts for treating antibiotic-contaminated wastewater.
Collapse
Affiliation(s)
- Akbar Mamatali
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Dedong Wu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Pengfei Xiao
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
18
|
Xu T, Fan L, Xiong Z, Lai B. Insight into the Discriminative Efficiencies and Mechanisms of Peroxy Activation via Fe/Cu Bimetallic Catalysts for Wastewater Purification. Molecules 2024; 29:2868. [PMID: 38930932 PMCID: PMC11206741 DOI: 10.3390/molecules29122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Fe/Cu bimetallic catalysts have a synergistic effect that can effectively enhance catalytic activity, so Fe/Cu bimetallic catalysts have been extensively studied. However, the efficacy and mechanisms of Fe/Cu bimetallic catalysts' peroxidation activation have rarely been explored. In this study, Fe/Cu bimetallic materials were fabricated to catalyze different oxidizing agents, including peroxymonosulfate (PMS), peroxydisulfate (PDS), peroxyacetic acid (PAA), and hydrogen peroxide (H2O2), for the degradation of sulfamethoxazole (SMX). The Fe/Cu/oxidant systems exhibited an excellent degradation efficiency of sulfamethoxazole (SMX). In the Fe/Cu/PMS, Fe/Cu/PDS, and Fe/Cu/PAA systems, the main reactive oxygen species (ROS) responsible for SMX degradation were hydroxyl radical (•OH) and singlet oxygen (1O2), while the main ROS was only •OH in the H2O2 system. The differences in the surface structure of the materials before and after oxidation were examined, revealing the presence of a large amount of flocculent material on the surface of the oxidized PMS material. Anion experiments and actual body experiments also revealed that the PMS system had a strong anti-interference ability. Finally, a comprehensive comparison concluded that the PMS system was the optimal system among the four oxidation systems. Overall, this work revealed that the PMS oxidant has a better catalytic degradation of SMX compared to other oxidizers for Fe/Cu, that PMS generates more ROS, and that the PMS system has a stronger resistance to interference.
Collapse
Affiliation(s)
- Tingjin Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Lu Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu 610068, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China;
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
19
|
Liu C, Li J, He X, Yue J, Chen M, Chen JP. The "4 + 1" strategy fabrication of iron single-atom catalysts with selective high-valent iron-oxo species generation. Proc Natl Acad Sci U S A 2024; 121:e2322283121. [PMID: 38814873 PMCID: PMC11161760 DOI: 10.1073/pnas.2322283121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
Single-atom catalysts (SACs) with atomic dispersion active sites have exhibited huge potentials in peroxymonosulfate (PMS)-based Fenton-like chemistry in water purification. However, four-N coordination metal (MN4) moieties often suffer from such problems as low selectivity and narrow workable pH. How to construct SACs in a controllable strategy with optimized electronic structures is of great challenge. Herein, an innovative strategy (i.e., the "4 + 1" fabrication) was devised to precisely modulate the first-shell coordinated microenvironment of FeN4 SAC using an additional N (SA-FeN5). This leads to almost 100% selective formation of high-valent iron-oxo [Fe(IV)═O] (steady-state concentration: 2.00 × 10-8 M) in the SA-FeN5/PMS system. In-depth theoretical calculations unveil that FeN5 configuration optimizes the electron distribution of monatomic Fe sites, which thus fosters PMS adsorption and reduces the energy barrier for Fe(IV)═O generation. SA-FeN5 was then attached to polyvinylidene difluoride membrane for a continuous flow device, showing long-term abatement of the microcontaminant. This work furnishes a general strategy for effective PMS activation and selective high-valent metal-oxo species generation by high N-coordination number regulation in SACs, which would provide guidance in the rational design of superior environmental catalysts for water purification.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Jinglu Li
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Xinxia He
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - Junpeng Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing210098, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing400714, China
| | - J. Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore117576, Singapore
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
20
|
Gong H, Zhou Y, Ma P, Xiao X, Liu H. Cobalt-Modified Black Phosphorus Nanosheets-Enabled Ferrate (VI) Activation for Efficient Chemiluminescence Detection of Thiabendazole. ACS Sens 2024; 9:2465-2475. [PMID: 38682311 DOI: 10.1021/acssensors.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The development of chemiluminescence-based innovation sensing systems and the construction of a sensing mechanism to improve the analytical performance of compounds remain a great challenge. Herein, we fabricated an advanced oxidation processes pretreated chemiluminescence (AOP-CL) sensing system via the introduction of cobalt-modified black phosphorus nanosheets (Co@BPNs) to achieve higher efficient thiabendazole (TBZ) detection. Co@BPNs, enriched with lattice oxygen, exhibited a superior catalytic performance for accelerating the decomposition of ferrate (VI). This Co@BPNs-based ferrate (VI) AOP system demonstrated a unique ability to selectively decompose TBZ, resulting in a strong CL emission. On this basis, a highly selective and sensitive CL sensing platform for TBZ was established, which exhibited strong resistance to common ions and pesticides interference. This was successfully applied to detecting TBZ in environmental samples such as tea and kiwi fruits. Besides, the TBZ detection mechanism was explored, Co@BPNs-based ferrate (VI) AOP system produced a high yield of ROS (mainly 1O2), which oxidized the thiazole-based structure of TBZ, generating chemical energy that was transferred to Co@BPNs via a chemical electron exchange luminescence (CIEEL) mechanism, leading to intense CL emission. Notably, this study not only proposed an innovative approach to enhance the chemical activity and CL properties of nanomaterials but also offered a new pathway for designing efficient CL probes for pollutant monitoring in complex samples.
Collapse
Affiliation(s)
- Hui Gong
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yuxian Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Peihua Ma
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Houjing Liu
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
21
|
Fu X, Gao J, Wang Q, Chen H, Liu Y, Zeng L, Yuan Y, Xu H. Mechanisms on the removal of gram-negative/positive antibiotic resistant bacteria and inhibition of horizontal gene transfer by ferrate coupled with peroxydisulfate or peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134254. [PMID: 38615644 DOI: 10.1016/j.jhazmat.2024.134254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
The existence of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) has been a global public environment and health issue. Due to the different cell structures, gram-positive/negative ARB exhibit various inactivation mechanisms in water disinfection. In this study, a gram-negative ARB Escherichia coli DH5α (E. coli DH5α) was used as a horizontal gene transfer (HGT) donor, while a gram-positive ARB Bacillus as a recipient. To develop an efficient and engineering applicable method in water disinfection, ARB and ARGs removal efficiency of Fe(VI) coupled peroxydisulfate (PDS) or peroxymonosulfate (PMS) was compared, wherein hydroxylamine (HA) was added as a reducing agent. The results indicated that Fe(VI)/PMS/HA showed higher disinfection efficiency than Fe(VI)/PDS/HA. When the concentration of each Fe(VI), PMS, HA was 0.48 mM, 5.15 log E. coli DH5α and 3.57 log Bacillus lost cultivability, while the proportion of recovered cells was 0.0017 % and 0.0566 %, respectively, and HGT was blocked. Intracellular tetA was reduced by 2.49 log. Fe(IV) and/or Fe(V) were proved to be the decisive reactive species. Due to the superiority of low cost as well as high efficiency and practicality, Fe(VI)/PMS/HA has significant application potential in ARB, ARGs removal and HGT inhibition, offering a new insight for wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Qian Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hao Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Ying Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
22
|
Liu Y, Yuan Y, Wang Y, Ngo HH, Wang J. Research and application of active species based on high-valent iron for the degradation of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171430. [PMID: 38458457 DOI: 10.1016/j.scitotenv.2024.171430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Fe(VI), as a new green treatment agent, has two indispensable processes in water treatment: coagulation and oxidation. Fe(VI) has a strong oxidation ability. The intermediate iron species (Fe(V) and Fe(IV)) and reactive radical species (H2O2, •OH, and O2•-) produced by decomposition and reduction reaction have strong oxidation ability, in addition, the hydrolyzed product formed in situ with core (γ-Fe2O3)-shell (γ-FeOOH) structure also has good coagulation effect. Because Fe(VI) is easy to decompose and challenging to preserve, it limits the application and sometimes significantly reduces the subsequent processing effect. How to make Fe(VI) more efficient use is a hot spot in current research. This article summarizes the distribution of active substances during the hydrolysis of Fe(VI), distinguish the differences mechanisms in the similar regulation methods, reviews the current preparation methods of Fe(VI), and finally reviews the applications of Fe(VI) in the field of environmental remediation.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yue Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
23
|
Li J, Cao J, Jiang M, An L, Zeng G, Mai J, Su P, Jing B, Feng M, Ao Z, Ma J, Yang T. Role of bipyridyl in enhancing ferrate oxidation toward micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133982. [PMID: 38460256 DOI: 10.1016/j.jhazmat.2024.133982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Enhancing Fe(VI) oxidation ability by generating high-valent iron-oxo species (Fe(IV)/Fe(V)) has attracted continuous interest. This work for the first time reports the efficient activation of Fe(VI) by a well-known aza-aromatic chelating agent 2,2'-bipyridyl (BPY) for micropollutant degradation. The presence of BPY increased the degradation constants of six model compounds (i.e., sulfamethoxazole (SMX), diclofenac (DCF), atenolol (ATL), flumequine (FLU), 4-chlorophenol (4-CP), carbamazepine (CBZ)) with Fe(VI) by 2 - 6 folds compared to those by Fe(VI) alone at pH 8.0. Lines of evidence indicated the dominant role of Fe(IV)/Fe(V) intermediates. Density functional theory calculations suggested that the binding of Fe(III) to one or two BPY molecules initiated the oxidation of Fe(III) to Fe(IV) by Fe(VI), while Fe(VI) was reduced to Fe(V). The increased exposures of Fe(IV)/Fe(V) were experimentally verified by the pre-generated Fe(III) complex with BPY and using methyl phenyl sulfoxide as the probe compound. The presence of chloride and bicarbonate slightly affected model compound degradation by Fe(VI) in the presence of BPY, while a negative effect of humic acid was obtained under the same conditions. This work demonstrates the potential of N-donor heterocyclic ligand to activate Fe(VI) for micropollutant degradation, which is instructive for the Fe(VI)-based oxidation processes.
Collapse
Affiliation(s)
- Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China
| | - Jiachun Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China; Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, PR China
| | - Maoju Jiang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Linqian An
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Ge Zeng
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Jiamin Mai
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Peng Su
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China
| | - Binghua Jing
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen 361100, PR China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhu Hai 519087, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Tao Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production,School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, Guangdong Province, China; Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, Guangdong Province, PR China.
| |
Collapse
|
24
|
Li J, Fu C, Zhu M, Huang X, Song S, Dong F. Mechanical energy triggered piezo-catalyzation of Bi 2WO 6 nanoplates on ferrate (Fe(VI)) oxidation in alkaline media: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123862. [PMID: 38537799 DOI: 10.1016/j.envpol.2024.123862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Piezo-electricity, as a unique physical phenomenon, demonstrates high effectiveness in capturing the environmental mechanical energy into polarization charges, offering the possibility to activate the advanced oxidation processes via the electron pathway. However, information regarding the intensification of Fe(VI) through piezo-catalysis is limited. Therefore, our study is the first to apply Bi2WO6 nanoplates for piezo-catalyzation of Fe(VI) to enhance bisphenol A (BPA) degradation. Compared to Fe(VI) alone, the Fe(VI)/piezo/Bi2WO6 system exhibited excellent BPA removal ability, with the degradation rate increased by 32.6% at pH 9.0. Based on the experimental and theoretical results, Fe(VI), Fe(V), Fe(IV) and •OH were confirmed as reaction active species in the reaction, and the increased BPA removal mainly resulted from the enhanced formation of Fe(IV)/Fe(V) species. Additionally, effects of coexisting anions (e.g., Cl-, NO3-, SO42- and HCO3-), humic acid and different water matrixes (e.g., deionized water, tap water and lake water) on BPA degradation were studied. Results showed the Fe(VI)/piezo/Bi2WO6 system still maintained satisfactory BPA degradation efficiencies under these conditions, guaranteeing future practical applications in surface water treatment. Furthermore, the results of intermediates identification, ECOSAR calculation and cytotoxicity demonstrated that BPA degradation by Fe(VI)/piezo/Bi2WO6 posed a diminishing ecological risk. Overall, these findings provide a novel mechanical energy-driven piezo-catalytic approach for Fe(VI) activation, enabling highly efficient pollutant removal under alkaline condition.
Collapse
Affiliation(s)
- Jinzhe Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chuyun Fu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meng Zhu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Feilong Dong
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, 312085, China.
| |
Collapse
|
25
|
Du Y, Liu T, Yang LL, Song ZM, Dai X, Wang WL, Lai B, Wu QY. Ferrate(VI) assists in reducing cytotoxicity and genotoxicity to mammalian cells and organic bromine formation in ozonated wastewater. WATER RESEARCH 2024; 253:121353. [PMID: 38401473 DOI: 10.1016/j.watres.2024.121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.
Collapse
Affiliation(s)
- Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Tong Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Lu-Lin Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Min Song
- Michigan Technological University, 1400 Townsend Drive Houghton, MI 49931, United States
| | - Xin Dai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
26
|
Dai Y, Yang S, Wu L, Cao H, Chen L, Zhong Q, Xu C, He H, Qi C. Converting peracetic acid activation by Fe 3O 4 from nonradical to radical pathway via the incorporation of L-cysteine. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133303. [PMID: 38141297 DOI: 10.1016/j.jhazmat.2023.133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Recently, peracetic acid (PAA) based Fenton (-like) processes have received much attention in water treatment. However, these processes are limited by the sluggish Fe(III)/Fe(II) redox circulation efficiency. In this study, L-cysteine (L-Cys), an environmentally friendly electron donor, was applied to enhance the Fe3O4/PAA process for the sulfamethoxazole (SMX) abatement. Surprisingly, the L-Cys incorporation was found not only to enhance the SMX degradation rate constant by 3.2 times but also to switch the Fe(IV) dominated nonradical pathway into the •OH dominated radical pathway. Experiment and theoretical calculation result elucidated -NH2, -SH, and -COOH of L-Cys can increase Fe solubilization by binding to the Fe sites of Fe3O4, while -SH of L-Cys can promote the reduction of bounded/dissolved Fe(III). Similar SMX conversion pathways driven by the Fe3O4/PAA process with or without L-Cys were revealed. Excessive L-Cys or PAA, high pH and the coexisting HCO3-/H2PO4- exhibit inhibitory effects on SMX degradation, while Cl- and humic acid barely affect the SMX removal. This work advances the knowledge of the enhanced mechanism insights of L-Cys toward heterogeneous Fenton (-like) processes and provides experimental data for the efficient treatment of sulfonamide antibiotics in the water treatment.
Collapse
Affiliation(s)
- Yinhao Dai
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Shaogui Yang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China; Suzhou Furong Environmental Engineering Co., Ltd, Suzhou 215500, PR China
| | - Leliang Wu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Hui Cao
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Longjiong Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Qiang Zhong
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chenmin Xu
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Huan He
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengdu Qi
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
27
|
Zhang Y, Swaren L, Wang W. Water decontamination by reactive high-valent iron species. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:55-58. [PMID: 38261953 PMCID: PMC10797547 DOI: 10.1016/j.eehl.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Yunhui Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Logan Swaren
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Wenbing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
28
|
Chu Y, Xu M, Li X, Lu J, Yang Z, Lv R, Liu J, Lv L, Zhang W. Oxidation of emerging contaminants by S(IV) activated ferrate: Identification of reactive species. WATER RESEARCH 2024; 251:121100. [PMID: 38198974 DOI: 10.1016/j.watres.2024.121100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Studies on the Fe(VI)/S(IV) process have focused on improving the efficiency of emerging contaminants (ECs) degradation under alkaline conditions. However, the performance and mechanisms under varying pH levels remain insufficiently investigated. This tudy delved into the efficiency and mechanism of Fe(VI)/S(IV) process using sulfamethoxazole (SMX) and ibuprofen (IBU) as model contaminants. We found that pH was crucial in governing the generation of reactive species, and both Fe(V/IV) and SO4•- were identified in the reaction system. Specifically, an increase in pH favored the formation of SO4•-, while the formation of Fe(VI) to Fe(V/IV) became more significant at lower pH. At pH 3.2, Fe(III) resulting from the Fe(VI) self-decay reactedwith HSO3-to produce SO4•-and •OH. Under near-neutral conditions, the coexistance of Fe(V/IV) and SO4•- in abundance contributed to the optimal oxidation of both pollutants in the Fe(VI)/S(IV) process, with the removal exceeding 74% in 5 min. Competitive quenching experiments showed that the contributions of Fe(V/IV) to SMX and IBU destruction dimished, while the contributions of radicals increased with an increase in pH. However, this evolution was slower during SMX degradation compared to IBU degradation. A comprehensive understnding of pH as the key factor is essential for the optimization of the sulfite-activated Fe(VI) oxidation process in water treatment.
Collapse
Affiliation(s)
- Yingying Chu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mujian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaoyang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ruolin Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiahang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Zheng R, Xu Z, Qiu Q, Sun S, Li J, Qiu L. Iron-doped carbon nanotubes with magnetic enhanced Fe(VI) degradation of arsanilic acid and inorganic arsenic: Role of intermediate iron species and electron transfer. ENVIRONMENTAL RESEARCH 2024; 244:117849. [PMID: 38061591 DOI: 10.1016/j.envres.2023.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Arsanilic acid (p-AsA), a prevalently used feed additive, is frequently detected in environment posing a great threat to humans. Potassium ferrate (Fe(VI)) was an efficient way to tackle arsenic contamination under acid and neutral conditions. However, Fe(VI) showed a noneffective removal of p-AsA under alkaline conditions due to its oxidation capacity attenuation. Herein, a magnetic iron-doped carbon nanotubes (F-CNT) was successfully prepared and further catalyzed Fe(VI) to remove p-AsA and total As species. The Fe(VI)/F-CNT system showed an excellent capability to oxidize p-AsA and adsorb total As species over an environment-related pH range of 6-9. The high-valent iron intermediates Fe(V)/Fe(IV) and the mediated electron-transfer played a significant part in the degradation of p-AsA according to the probes/scavengers experiments and galvanic oxidation process. Moreover, the situ formed iron hydroxide oxide and F-CNT significantly improved the adsorption capacity for total As species. The electron-donating groups (semiquinone and hydroquinone) and high graphitization of F-CNT were responsible for activating Fe(VI) based on the analysis of X-ray photoelectron spectroscopy (XPS). Density functional theory calculations and the detected degradation products both indicated that the amino group and the C-As bond of p-AsA were main reactive sites. Notably, Fe(VI)/F-CNT system was resistant to the interference from Cl-, SO42-, and HCO3-, and could effectively remove p-AsA and total As species even in the presence of complex water matrix. In summary, this work proposed an efficient method to use Fe(VI) for degrading pollutants under alkaline conditions and explore a new technology for livestock wastewater advanced treatment.
Collapse
Affiliation(s)
- Ruibin Zheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zujun Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jialong Li
- School of Rehabilitation Medicine, Weifang Medical University, Jinan, 261053, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
30
|
Liu B, Zhang S, Liu M, Cao S, Qu R, Wang Z. Insights into enhanced oxidation of benzophenone-type UV filters (BPs) by ferrate(VI)/ferrihydrite: Increased conversion of Fe(VI) to Fe(V)/Fe(IV). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168860. [PMID: 38040358 DOI: 10.1016/j.scitotenv.2023.168860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
In this work, the oxidation performance of a new ferrate(VI)/ferrihydrite (Fe(VI)/Fh) system was systematically explored to degrade efficiently six kinds of benzophenone-type UV filters (BPs). Fe(VI)/Fh system not only had a superior degradation capacity towards different BPs, but also exhibited higher reactivity over a pH range of 6.0-9.0. The second-order kinetic model successfully described the process of BP-4 degradation by heterogeneous Fh catalyzed Fe(VI) system (R2 = 0.93), and the presence of Fh could increase the BP-4 degradation rate by Fe(VI) by an order of magnitude (198 M-1·s-1 v.s. 14.2 M-1·s-1). Remarkably, there are higher utilization efficiency and potential of Fe(VI) in Fe(VI)/Fh system than in Fe(VI) alone system. Moreover, characterization and recycling experiments demonstrated that Fh achieved certain long-term running performance, and the residual Fe content of solution after clarifying process meet World Health Organization (WHO) guidelines for drinking water. The contributions of reactive species could be ranked as Fe(V)/Fe(IV) > Fe(VI) > •OH. Fe(IV)/Fe(V) were the dominant species for the enhanced removal in the Fe(VI)/Fh system, whose percentage contribution (72 %-36 %) were much higher than those in Fe(VI) alone system (5 %-17 %). However, the contribution of Fe(VI) in oxidizing BP-4 should not be underestimated (20 %-56 %). These findings reasonably exploit available Fh resources to reduce the relatively high cost of Fe(VI), which offers a proper strategies for efficient utilization of high-valent iron species and may be used as a highly-efficient and cost-effective BPs purification method.
Collapse
Affiliation(s)
- Boying Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Siyu Cao
- School of Resources and Environmental Engineering, Anhui University, Anhui, Hefei 230601, China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
31
|
Deng Y, Guan X. Unlocking the potential of ferrate(VI) in water treatment: Toward one-step multifunctional solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132920. [PMID: 37988863 DOI: 10.1016/j.jhazmat.2023.132920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Ferrate(VI), though well-acknowledged for its multiple treatment functions, has traditionally found application in an auxiliary treatment of conventional water treatment trains, primarily targeting specific contaminants. However, the reactor configurations and system operations developed from this traditional approach are not optimally suited for harnessing its full multifunctionality. In contrast, an alternative process integration approach, such as process intensification, can allow for the tailored development of modular, multifunctional ferrate(VI) reactors capable of achieving various treatment objectives within a single unit. This perspective article critically analyzes and compares the two distinct development approaches for ferrate(VI) technology in water treatment. We argue that the process integration pathway represents a promising approach, given that it facilitates the reactor design to accommodate different ferrate(VI)-driven treatment processes and their interactions, while potentially accomplishing enhanced treatment efficiency, reduced costs and energy consumption, and a smaller physical footprint. The resulting system intensification and adaptability have the potential to drive technological innovation and revolution in water treatment for achieving water security.
Collapse
Affiliation(s)
- Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, United States.
| | - Xiaohong Guan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| |
Collapse
|
32
|
Zhang K, Xie Y, Niu L, Huang X, Yu X, Feng M. Fe(IV)/Fe(V)-mediated polyferric sulfate/periodate system: A novel coagulant/oxidant strategy in promoting micropollutant abatement. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133614. [PMID: 38290329 DOI: 10.1016/j.jhazmat.2024.133614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024]
Abstract
Strategic modulation of the advanced oxidation processes for the selective oxidation of micropollutants has attracted accumulating attention in water decontamination. This study first reported the combination of the coagulant polyferric sulfate (PFS) and oxidant periodate (PI) to accomplish synergistic abatement of the antibiotic sulfamethoxazole (SMX). The oxidizing performance of SMX by this system was almost unaffected by coexisting water constituents, indicating the great promise of selective oxidation. Different from the current hydroxyl radicals (•OH)-mediated coagulant/oxidant systems (e.g., PFS/H2O2 and PFS/ozone), the dominance of high-valent Fe(IV)/Fe(V) intermediates was unambiguously verified in the PFS/PI treatment. The PFS colloids before and after the oxidation were characterized and the iron speciation was analyzed. The transformation of monomeric iron configurations (Fe(a)) to oligomeric iron configurations (Fe(b)) could maintain the homeostasis of surface-bound Fe(III) and Fe(II). The interaction mechanisms included the production of reactive species and dynamic reaction equilibrium for micropollutant degradation. Finally, the transformation pathways of SMX and carbamazepine (CMZ) in the PFS/PI system were postulated. Overall, this study provided a novel coagulant/oxidant strategy to achieve selective and sustainable water purification.
Collapse
Affiliation(s)
- Kaiting Zhang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuwei Xie
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lijun Niu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xiangbin Huang
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Fujian Key Laboratory of Coastal Pollution Prevention and Control, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
33
|
Yao Y, Yang J, Zhu C, Lu L, Fang Q, Xu C, He Z, Song S, Shen Y. Unveiling the metallic size effect on O2 adsorption and activation for enhanced electro-Fenton degradation of aromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132739. [PMID: 37856960 DOI: 10.1016/j.jhazmat.2023.132739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Metal-atom-modified nitrogen-doped carbon materials (M-N-C) have emerged as promising candidates for electro-Fenton degradation of pollutants. Nonetheless, a comprehensive exploration of size-dependent M-N-C catalysts in the electro-Fenton process remains limited, posing challenges in designing surface-anchored metal species with precise sizes. Herein, a heterogeneous-homogeneous coupled electro-Fenton (HHC-EF) system was designed and various M-N-C catalysts anchored with Co single atoms (CoSA-N-C), Co clusters (CoAC-N-C), and Co nanoparticles (CoNP-N-C) were successfully synthesized and employed in an HHC-EF system. Intriguingly, CoAC-N-C achieved outstanding removal efficiencies of 99.9% for BPA and RhB within 10 and 15 min, respectively, with the fastest reaction kinetics (0.70 min-1 for BPA and 0.34 min-1 for RhB). Electron spin resonance and trapping experiments revealed that·OH played a crucial role in the HHC-EF process. Moreover, experiments and theoretical calculations revealed that the unique metallic size effect facilitate the in-situ electro-generation of H2O2. Specifically, the atomic interaction between neighboring Co atoms in clusters enhanced O2 adsorption and activation by strengthening the Co-N bond and transforming O2 adsorption configuration to the Yeager-type. This study provides valuable insights that could inspire the size-oriented metal-based catalyst design from the perspective of the potential atomic distance effect.
Collapse
Affiliation(s)
- Yanchi Yao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jingyi Yang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Chao Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, PR China
| | - Qile Fang
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, PR China
| | - Chao Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhiqiao He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
34
|
Li X, Liu M, Wu N, Sharma VK, Qu R. Enhanced removal of phenolic compounds by ferrate(VI): Unveiling the Bi(III)-Bi(V) valence cycle with in situ formed bismuth hydroxide as catalyst. WATER RESEARCH 2024; 248:120827. [PMID: 37956606 DOI: 10.1016/j.watres.2023.120827] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
The use of 2-hydroxybenzophenone (2-HBP) in personal care products is of great concern due to its potential negative effects on the ecosystem and public health. This paper presents the degradation of 2-HBP by bismuth(III) (Bi3+)-ferrate(VI) (FeVIO42-, Fe(VI)) (Bi3+-Fe(VI) system). Experimental studies at different pH and dosages of Bi3+ and Fe(VI) showed that the Bi3+-Fe(VI) system increased the degradation rate and removal efficiency of 2-HBP compared to Fe(VI) alone. The in situ formed flake-like white flocculent precipitate of Bi(OH)3 showed catalytic performance through the Bi(III)-Bi(V)-Bi(III) valence cycle which was demonstrated through spectroscopic measurements. The hydrogen transfer-mediated reactions between Fe(VI) and Bi(OH)3 as well as subsequent formation of Bi(V) were supported by performing density functional theoretical (DFT) calculations. Seventeen identified transformation products of 2-HBP by Fe(VI) with and without Bi3+ revealed hydroxylation, bond breaking, carboxylation, and polymerization reaction pathways. Significantly, Bi3+ facilitated the polymerization reaction and the dioxygen transfer-mediated hydroxylation reaction pathways. The ions (anions and cations) and humic acids (HA) present in the Bi3+-Fe(VI) system had minimal influence on the removal efficiency of 2-HBP. Reusability tests and use of real water samples as well as toxicity assessments of transformation products unveiled the practical application aspect of the Bi3+-Fe(VI) system. Finally, the results showed that the system exhibits good removal efficiency for all 12 phenolic compounds, indicating theuniversality. The Bi3+-Fe(VI) system may be an easy-to-implement cost-effective method for the catalytic degradation of benzophenones by Fe(VI).
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Mingzhu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Nannan Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Virender K Sharma
- Program of Environment and Sustainability, Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China.
| |
Collapse
|
35
|
Chen XJ, Bai CW, Sun YJ, Huang XT, Zhang BB, Zhang YS, Yang Q, Wu JH, Chen F. pH-Driven Efficacy of the Ferrate(VI)-Peracetic Acid System in Swift Sulfonamide Antibiotic Degradation: A Deep Dive into Active Species Evolution and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20206-20218. [PMID: 37965750 DOI: 10.1021/acs.est.3c06370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In the realm of wastewater treatment, the power of ferrate (Fe(VI)) and peracetic acid (PAA) as oxidants stands out. But their combined might is where the enhancement truly lies. Their collaborative effect intensifies, but the underlying mechanics, especially across varying pH levels and pollutant types, still lurks in obscurity. Our study delved into the sophisticated oxidation interplay among Fe(VI)-PAA, Fe(VI)-H2O2, and standalone Fe(VI) systems. Notably, at a pH of 9.0, boasting a kinetic constant of ∼0.127 M-1·s-1, the Fe(VI)-PAA system annihilated the pollutant sulfamethoxazole, outpacing its counterparts by a staggering 48.73-fold when compared to the Fe(VI)-H2O2 system and 105.58-fold when using Fe(VI) individually. The behavior of active species─such as the dynamic •OH radicals and high-valent iron species (Fe(IV)/Fe(V))─shifted with pH variations, leading to distinct degradation pathways. Our detailed exploration pinpoints the behaviors of certain species across pH levels from 3.0 to 9.0. In more acidic environments, the •OH species proved indispensable for the system's reactivity. Conversely, as the pH inclined, degradation was increasingly steered by high-valent iron species. This intensive probe demystifies Fe(VI) interactions, deepening our understanding of the capabilities of the Fe(VI)-centered system and guiding us toward cleaner water solutions. Importantly, pH value, often underappreciated, holds the reins in organic wastewater decontamination. Embracing this key player is vital as we strategize for more expansive systems in upcoming ventures.
Collapse
Affiliation(s)
- Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Tong Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Bin-Bin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yi-Shuo Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
36
|
Guo B, Wang J, Sathiyan K, Ma X, Lichtfouse E, Huang CH, Sharma VK. Enhanced Oxidation of Antibiotics by Ferrate Mediated with Natural Organic Matter: Role of Phenolic Moieties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19033-19042. [PMID: 37384585 PMCID: PMC10862540 DOI: 10.1021/acs.est.3c03165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
The increasing presence of antibiotics in water sources threatens public health and ecosystems. Various treatments have been previously applied to degrade antibiotics, yet their efficiency is commonly hindered by the presence of natural organic matter (NOM) in water. On the contrary, we show here that nine types of NOM and NOM model compounds improved the removal of trimethoprim and sulfamethoxazole by ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. This is probably associated with the presence of phenolic moieties in NOMs, as suggested by first-order kinetics using NOM, phenol, and hydroquinone. Electron paramagnetic resonance reveals that NOM radicals are generated within milliseconds in the Fe(VI)-NOM system via single-electron transfer from NOM to Fe(VI) with the formation of Fe(V). The dominance of the Fe(V) reaction with antibiotics resulted in their enhanced removal despite concurrent reactions between Fe(V) and NOM moieties, the radicals, and water. Kinetic modeling considering Fe(V) explains the enhanced kinetics of antibiotics abatement at low phenol concentrations. Experiments with humic and fulvic acids of lake and river waters show similar results, thus supporting the enhanced abatement of antibiotics in real water situations.
Collapse
Affiliation(s)
- Binglin Guo
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, USA
- Department
of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Junyue Wang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Krishnamoorthy Sathiyan
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, USA
| | - Xingmao Ma
- Department
of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843, USA
| | - Eric Lichtfouse
- Aix-Marseille
Université, CNRS, IRD, INRAE, College de France, CEREGE, Aix-en-Provence 13100, France
| | - Ching-Hua Huang
- School
of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Virender K. Sharma
- Department
of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
37
|
Li G, Jiang J, He M, Rao D, Zhang J, Sun B. Enhancing Ferrate Oxidation of Micropollutants via Inducing Fe(V)/Fe(IV) Formation Needs Caution: Increased Conversion of Bromide to Bromate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18991-18999. [PMID: 37243626 DOI: 10.1021/acs.est.3c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This study explores the formation of bromate (BrO3-) in the copresence of Fe(VI) and bromide (Br-). It challenges previous beliefs about the role of Fe(VI) as a green oxidant and highlights the crucial role of intermediates Fe(V) and Fe(IV) in the conversion of Br- to BrO3-. The results show that the maximum concentration of BrO3- of 48.3 μg/L was obtained at 16 mg/L Br- and that the contribution of Fe(V)/Fe(IV) to the conversion was positively related to pH. The study suggests that a single-electron transfer from Br- to Fe(V)/Fe(IV) along with the generation of reactive bromine radicals is the first step of Br- conversion, followed by the formation of OBr- which was then oxidized to BrO3- by Fe(VI) and Fe(V)/Fe(IV). Some common background water constituents (e.g., DOM, HCO3-, and Cl-) significantly inhibited BrO3- formation by consuming Fe(V)/Fe(IV) and/or scavenging the reactive bromine species. While investigations proposing to promote Fe(V)/Fe(IV) formation in Fe(VI)-based oxidation to enhance its oxidation capacity have been rapidly accumulated recently, this work called attention to the considerable formation of BrO3- in this process.
Collapse
Affiliation(s)
- Guang Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Dandan Rao
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Bo Sun
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
38
|
Sharma VK, Ma X, Zboril R. Single atom catalyst-mediated generation of reactive species in water treatment. Chem Soc Rev 2023; 52:7673-7686. [PMID: 37855667 DOI: 10.1039/d3cs00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Water is one of the most essential components in the sustainable development goals (SDGs) of the United Nations. With worsening global water scarcity, especially in some developing countries, water reuse is gaining increasing acceptance. A key challenge in water treatment by conventional treatment processes is the difficulty of treating low concentrations of pollutants (micromolar to nanomolar) in the presence of much higher levels of inorganic ions and natural organic matter (NOM) in water (or real water matrices). Advanced oxidation processes (AOPs) have emerged as an attractive treatment technology that generates reactive species with high redox potentials (E0) (e.g., hydroxyl radical (HO˙), singlet oxygen (1O2), sulfate radical (SO4˙-), and high-valent metals like iron(IV) (Fe(IV)), copper(III) (Cu(III)), and cobalt(IV) (Co(IV))). The use of single atom catalysts (SACs) in AOPs and water treatment technologies has appeared only recently. This review introduces the application of SACs in the activation of hydrogen peroxide and persulfate to produce reactive species in treatment processes. A significant part of the review is devoted to the mechanistic aspects of traditional AOPs and their comparison with those triggered by SACs. The radical species, SO4˙- and HO˙, which are produced in both traditional and SACs-activated AOPs, have higher redox potentials than non-radical species, 1O2 and high-valent metal species. However, SO4˙- and HO˙ radicals are non-selective and easily affected by components of water while non-radicals resist the impact of such constituents in water. Significantly, SACs with varying coordination environments and structures can be tuned to exclusively generate non-radical species to treat water with a complex matrix. Almost no influence of chloride, carbonate, phosphate, and NOM was observed on the performance of SACs in treating pollutants in water when nonradical species dominate. Therefore, the appropriately designed SACs represent game-changers in purifying water vs. AOPs with high efficiency and minimal interference from constituents of polluted water to meet the goals of water sustainability.
Collapse
Affiliation(s)
- Virender K Sharma
- Program for the Environment and Sustainability, Department of Environmental and Occupational Health, Texas A&M University, College Station, Texas 77843, USA.
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, 77843, USA
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Šlechtitelů 241/27, Olomouc, 783 71, Czech Republic.
- Nanotechnology Centre, for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
39
|
Shao B, Deng J, Dong H, Wang S, Li E, Guan X. Iron(III)-(1,10-Phenanthroline) Complex Can Enhance Ferrate(VI) and Ferrate(V) Oxidation of Organic Contaminants via Mediating Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17144-17153. [PMID: 37877900 DOI: 10.1021/acs.est.3c04589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Recent research has primarily focused on the utilization of reductants as activators for Fe(VI) to generate high-valent iron species (Fe(IV)/Fe(V)) for the degradation of emerging organic contaminants (EOCs). However, a significant drawback of this approach arises from the reaction between reductants and ferrates, leading to a decrease in oxidation capacity. This study introduces a novel discovery that highlights the potential of the iron(III)-(1,10-phenanthroline) (Fe(III)-Phen) complex as an activator, effectively enhancing the degradation of EOCs by Fe(VI) and augmenting the overall oxidation capacity of Fe(VI). The degradation of EOCs in the Fe(VI)/Fe(III)-Phen system is facilitated through two mechanisms: a direct electron transfer (DET) process and electron shuttle action. The DET process involves the formation of a Phen-Fe(III)-Fe(VI)* complex, which exhibits a stronger oxidation ability than Fe(VI) alone and can accept electrons directly from EOCs. On the other hand, the electron shuttle process utilizes Fe(III)-Phen as a redox mediator to transfer electrons from EOCs to Fe(VI) through the Fe(IV)/Fe(III) or Fe(IV)/Fe(II)/Fe(III) cycle. Moreover, the Fe(III)-Phen complex can improve the utilization efficiency of Fe(V) by preventing its self-decay. This study's findings may present a viable option for utilizing an effective catalyst to enhance the oxidation of EOCs by Fe(VI) and Fe(V).
Collapse
Affiliation(s)
- Binbin Shao
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hongyu Dong
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Shuchang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Enchao Li
- Baowu Water Technology Co., Ltd., Shanghai 201999, China
| | - Xiaohong Guan
- Department of Environmental Science, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
40
|
Zhao L, Cheng X, Wang Z, Zhang E, Liu Z, Zhou H, He L, Guan Q. Generating high-valent iron-oxo ≡Fe IV=O complexes by calcium sulfite activation in neutral microenvironments for enhanced degradation of CIP. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122449. [PMID: 37633439 DOI: 10.1016/j.envpol.2023.122449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Although alkaline sulfite activation of ferrate (Fe(VI)) has advantages of fast response and high activity for degradation of organic contaminants, the specific production pathways of active species and the pH conditions still hinder its widespread application. Based on this, our study constructed a novel advanced oxidation process of calcium sulfite (CaSO3) could activated Fe(VI) continuously by Ca2+ buffering and investigated the mechanism under different pH values and CaSO3 dosages with ciprofloxacin as a target organic pollutant. The results showed that Ca2+ stabilized the process at a neutral/weakly alkaline microenvironment of pH 7-8, which could alleviate the hydrolysis of ≡FeIV=O by protons and iron hydroxyl groups. Besides, the removal of pollutants occurred efficiently when sulfate (SO32-) was excessive and had a 3:1 ratio of SO32- to Fe(VI), achieving more than 99% removal of electron-rich phenolic organic pollutants within 2 min. By adding different radical scavengers and combining electrochemical analysis methods and electron paramagnetic resonance spectroscopy techniques to revealed that the main active species in Fe(VI)/CaSO3 process were ≡FeIV=O/≡FeV=O. Furthermore, the reactivity of various sulfate species (such as SO32-, SO3•-, SO4•-, SO5•-) with Fe(VI) was calculated using density functional theory (DFT), and it was found that Fe(VI)-SO32- reaction has a much lower energy barrier (-36.08 kcal/mol), indicating that SO32- can readily activate Fe(VI) and generate ≡FeIV=O to attack the atoms with high Fukui index (f -) in organic pollutants. The above results confirm the feasibility of Fe(VI)/CaSO3 process. Thus, this study can theoretically and practically prove that the main active species is ≡FeIV=O, rather than SO4•- or •OH in Fe(VI)/CaSO3 process.
Collapse
Affiliation(s)
- Lingxiang Zhao
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Xinyue Cheng
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Zhaoxian Wang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Enzhe Zhang
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Zilian Liu
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China.
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Qingqing Guan
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China; School of Chemical Engineering and Technology, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
41
|
Qiu Z, Chu C, Wang K, Shen J, Zhu X, Kamran MA, Chen B. Sequential anodic oxidation and cathodic electro-Fenton in the Janus electrified membrane for reagent-free degradation of pollutants. WATER RESEARCH 2023; 246:120674. [PMID: 37857008 DOI: 10.1016/j.watres.2023.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Electrified membrane technologies have recently demonstrated high potential in tackling water pollution, yet their practical applications are challenged by relying on large precursor doses. Here, we developed a Janus porous membrane (JPEM) with synergic direct oxidation by Magnéli phase Ti4O7 anode and electro-Fenton reactions by CuFe2O4 cathode. Organic pollutants were first directly oxidized on the Ti4O7 anode, where the extracted electrons from pollutants were transported to the cathode for electro-Fenton production of hydroxyl radical (·OH). The cathodic ·OH further enhanced the mineralization of organic pollutant degradation intermediates. With the sequential anodic and cathodic oxidation processes, the reagent-free JPEM showed competitive performance in rapid degradation (removal rate of 0.417 mg L-1 s-1) and mineralization (68.7 % decrease in TOC) of sulfamethoxazole. The JPEM system displayed general performance to remove phenol, carbamazepine, and perfluorooctanoic acid. The JPEM runs solely on electricity and oxygen that is comparable to that of PEM relies on large precursor doses and, therefore, operation friendly and environmental sustainability. The high pollutant removal and mineralization achieved by rational design of the reaction processes sheds light on a new approach for constructing an efficient electrified membrane.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianjian Shen
- Dqchance. Science and Technology co Ltd, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China.
| |
Collapse
|
42
|
Wu Y, Wang H, Du J, Si Q, Zhao Q, Jia W, Wu Q, Guo WQ. Enhanced Oxidation of Organic Compounds by the Ferrihydrite-Ferrate System: The Role of Intramolecular Electron Transfer and Intermediate Iron Species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16662-16672. [PMID: 37782530 DOI: 10.1021/acs.est.3c05798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Previous studies mostly held that the oxidation capacity of ferrate depends on the involvement of intermediate iron species (i.e., FeIV/FeV), however, the potential role of the metastable complex was disregarded in ferrate-based heterogeneous catalytic oxidation processes. Herein, we reported a complexation-mediated electron transfer mechanism in the ferrihydrite-ferrate system toward sulfamethoxazole (SMX) degradation. A synergy between intermediate FeIV/FeV oxidation and the intramolecular electron transfer step was proposed. Specifically, the conversion of phenyl methyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) suggested that FeIV/FeV was involved in the oxidation of SMX. Moreover, based on the in situ Raman test and chronopotentiometry analysis, the formation of the metastable complex of ferrihydrite/ferrate was found, which possesses higher oxidation potential than free ferrate and could achieve the preliminary oxidation of organics via the electron transfer step. In addition, the amino group of SMX could complex with ferrate, and the resulting metastable complex of ferrihydrite/ferrate would combine further with SMX molecules, leading to intramolecular electron transfer and SMX degradation. The ferrate loss experiments suggested that ferrihydrite could accelerate the decomposition of ferrate. Finally, the effects of pH value, anions, humic acid, and actual water on the degradation of SMX by ferrihydrite-ferrate were also revealed. Overall, ferrihydrite demonstrated high catalytic capacity, good reusability, and nontoxic performance for ferrate activation. The ferrihydrite-ferrate process may be a green and promising method for organic removal in wastewater treatment.
Collapse
Affiliation(s)
- Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- KENTECH Institute for Environmental & Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Qishi Si
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qi Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenrui Jia
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
43
|
Huang B, Wu Z, Wang X, Song X, Zhou H, Zhang H, Zhou P, Liu W, Xiong Z, Lai B. Coupled Surface-Confinement Effect and Pore Engineering in a Single-Fe-Atom Catalyst for Ultrafast Fenton-like Reaction with High-Valent Iron-Oxo Complex Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15667-15679. [PMID: 37801403 DOI: 10.1021/acs.est.3c05509] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The nanoconfinement effect in Fenton-like reactions shows great potential in environmental remediation, but the construction of confinement structure and the corresponding mechanism are rarely elucidated systematically. Herein, we proposed a novel peroxymonosulfate (PMS) activation system employing the single Fe atom supported on mesoporous N-doped carbon (FeSA-MNC, specific surface area = 1520.9 m2/g), which could accelerate the catalytic oxidation process via the surface-confinement effect. The degradation activity of the confined system was remarkably increased by 34.6 times compared to its analogue unconfined system. The generation of almost 100% high-valent iron-oxo species was identified via 18O isotope-labeled experiments, quenching tests, and probe methods. The density functional theory illustrated that the surface-confinement effect narrows the gap between the d-band center and Fermi level of the single Fe atom, which strengthens the charge transfer rate at the reaction interface and reduces the free energy barrier for PMS activation. The surface-confinement system exhibited excellent pollutant degradation efficiency, robust resistance to coexisting matter, and adaptation of a wide pH range (3.0-11.0) and various temperature environments (5-40 °C). Finally, the FeSA-MNC/PMS system could achieve 100% sulfamethoxazole removal without significant performance decline after 10,000-bed volumes. This work provides novel and significant insights into the surface-confinement effect in Fenton-like chemistry and guides the design of superior oxidation systems for environmental remediation.
Collapse
Affiliation(s)
- Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zelin Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinhao Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Xinyu Song
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
44
|
Pan B, Liao M, Zhao Y, Lv Y, Qin J, Sharma VK, Wang C. Visible light activation of ferrate(VI) by oxygen doped ZnIn 2S 4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132413. [PMID: 37666167 DOI: 10.1016/j.jhazmat.2023.132413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Miao Liao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yanli Zhao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuzhu Lv
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX 77843, USA.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
45
|
Zhao H, Ren Y, Liu C, Li L, Li N, Lai B, Li J. In-depth insights into Fe(III)-doped g-C 3N 4 activated peracetic acid: Intrinsic reactive species, catalytic mechanism and environmental application. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132117. [PMID: 37531769 DOI: 10.1016/j.jhazmat.2023.132117] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
In this study, we demonstrate that Fe(III)-doped g-C3N4 can efficiently activate peracetic acid (PAA) to degrade electron-rich pollutants (e.g., sulfamethoxazole, SMX) over a wide pH range (3-7). Almost ∼100% high-valent iron-oxo species (Fe(V)) was generated and acted as the dominant reactive species responsible for the micropollutants oxidation based on the analysis result of quenching experiments, 18O isotope-labeling examination and methyl phenyl sulfoxide (PMSO) probe method. Electrochemical testing (e.g., amperometric i-t and linear sweep voltammetry (LSV)) and density functional theory (DFT) calculations illustrated that the main active site Fe atom and PAA underwent electron transfer to form Fe(V) for attacking SMX. Linear free energy relationship (LFER) between the pseudo-first-order rates of different substituted phenols (SPs) and the Hammett constant σ+ depicted the electrophilic oxidation properties. The selective oxidation of Fe(V) endows the established system remarkable anti-interference capacity against water matrices, while the Fe(V) lead to the formation of iodinated disinfection by-products (I-DBPs) in the presence of I-. Fe(III)-doped g-C3N4/PAA system showed excellent degradation efficiency of aquaculture antibiotics. This study enriches the knowledge and research of high-valent iron-oxo species and provides a novel perspective for the activation of PAA via heterogeneous iron-based catalysts and practical environmental applications.
Collapse
Affiliation(s)
- Hailing Zhao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Naiwen Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- Department of Environmental Science and Engineering, School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jun Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
46
|
Wang Y, Xiao Z, Liu Y, Tian W, Huang Z, Zhao X, Wang L, Wang S, Ma J. Enhanced ferrate(VI) oxidation of organic pollutants through direct electron transfer. WATER RESEARCH 2023; 244:120506. [PMID: 37651863 DOI: 10.1016/j.watres.2023.120506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Fe(VI) is a versatile agent for water purification, and various strategies have been developed to improve its pollutant removal efficiency. Herein, it was found that in addition to intermediate iron species [Fe(IV)/Fe(V)], direct electron transfer (DET) played a significant role in the abatement of organic pollutants in Fe(VI)/carbon quantum dots (CQDs) system. Around 86, 83, 73, 64, 52, 45 and 17% of BPA, DCF, SMX, 4-CP, phenol, p-HBA, and IBP (6 μM) could be oxidized by 30 μM of Fe(VI), whereas with the addition of CQDs (4 mg/L), the oxidation ratio of these pollutants increased to 98, 99, 80, 88, 87, 66 and 57%, respectively. The negative impact induced by solution pH and background constituents on Fe(VI) abatement of pollutants could be alleviated by CQDs, and CQDs acted as catalysts for mediating DET from organic pollutants to Fe(VI). Theoretical calculation revealed that iron species [Fe(VI)/Fe(V)/Fe(IV)] was responsible for the oxidation of 36% of phenol, while DET contributed to the oxidation of 64% of phenol in the Fe(VI)/CQDs system. Compared with iron species oxidation, the CQDs mediated DET from pollutants to Fe(VI) was more efficient for utilizing the oxidation capacity of Fe(VI). The DET mechanism presented in the study provides a prospective strategy for improving the pollution control potential of Fe(VI).
Collapse
Affiliation(s)
- Yunpeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zijun Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yulei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Zhuangsong Huang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaona Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
47
|
Zhou Z, Huang J, Zeng G, Yang R, Xu Z, Habib M, Sui Q, Lyu S. Comparative studies of organic contaminant removal in different calcium sulfite-enhanced oxidant/Fe(II) systems: Kinetics, mechanisms, and differentiated degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131955. [PMID: 37390688 DOI: 10.1016/j.jhazmat.2023.131955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
The application of S(IV) for the regeneration of Fe(II) has been widely investigated. As the common S(IV) sources, sodium sulfite (Na2SO3) and sodium bisulfite (NaHSO3) are soluble in the solution, resulting in excessive SO32- concentration and redundant radical scavenging problems. In this research, calcium sulfite (CaSO3) was applied as the substitution for the enhancement of different oxidant/Fe(II) systems. The advantages of CaSO3 could be summarized as follows: (1) it could sustainedly supplement SO32- for Fe(II) regeneration, preventing radical scavenging and unnecessary reagent waste; (2) the cost and toxicity of CaSO3 were extremely lower than that of other S(IV) sources; (3) the concentration of reactive species increased in the presence of CaSO3; and (4) after the reaction, SO42- would form CaSO4 precipitate, which would not increase the burden of SO42- in the solution. In the participation of CaSO3, the removal of trichloroethylene (TCE) and other organic contaminants were significantly promoted and different enhanced systems had high tolerance on complex solution conditions. The major reactive species in different systems were determined through qualitative and quantitative analyses. Eventually, the dechlorination and mineralization of TCE were measured and the differentiated degradation pathways in different CaSO3-enhanced oxidants/Fe(II) systems were elucidated.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Jingyao Huang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Guilu Zeng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Rumin Yang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Mudassir Habib
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
48
|
Meng S, Sun M, Zhang P, Zhou C, He C, Zhang H, Liu Y, Xiong Z, Zhou P, Lai B. Metal Borides as Excellent Co-Catalysts for Boosted and Long-Lasting Fenton-like Reaction: Dual Co-Catalytic Centers of Metal and Boron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12534-12545. [PMID: 37555746 DOI: 10.1021/acs.est.3c03212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The continuous electron supply for oxidant decomposition-induced reactive oxygen species (ROS) generation is the main contributor for the long-standing micropollutant oxidation in the iron-based advanced oxidation processes (AOPs). Herein, as a new class of co-catalysts, metal borides with dual active sites and preeminent conductive performance can effectively overcome the inherent drawback of Fenton-like reactions by steadily donating electrons to inactive Fe(III). Among the metal borides, tungsten boride (WB) exhibits a significant co-catalytic performance run ahead of common heterogeneous co-catalysts and exceptionally high stability. Based on qualitative and semi-quantitative tests, the hydroxyl radical, sulfate radical, and iron(IV)-oxo complex are all produced in the WB/Fe(III)/PDS system and Fe(IV)-induced methyl phenyl sulfoxide decomposition is up to 72%. Moreover, the production efficiency of ROS and relative proportions of radical and nonradical pathways change with various experimental conditions (dosages of PDS, WB, and solution pH) and water matrices. The rate-determining step of Fe(II) regeneration is greatly accelerated resulting from the synergetic effect between exposed metallic reactive sites and nonmetallic boron with reductive properties of WB. In addition, the self-dissolution of surface tungsten oxide and boron oxide leads to a renovated surface for sustainable Fe(III) reduction in long-term operations. Our discovery provides an efficient and sustainable strategy in the field of enhanced AOPs for water remediation.
Collapse
Affiliation(s)
- Shuang Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Minglu Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chenying Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
49
|
Zhang Y, Chen P, Lv W, Xiao Z, Zhang J, Wu J, Lin Z, Zhang G, Yu Z, Liu H, Liu G. Key role of Fe(VI)-activated Bi 2WO 6 in the photocatalytic oxidation of sulfonamides: Mediated electron transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132009. [PMID: 37429189 DOI: 10.1016/j.jhazmat.2023.132009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
The widespread use of sulfonamides (SAs) in animals and human infections has raised significant concerns regarding their presence in ambient waterways and potential for inducing antimicrobial resistance. Herein, we report on the capacity of ferrate (VI) (FeVIO42-, Fe(VI)) to facilitate the photocatalytic degradation of sulfamethazine (SMT) via bismuth tungstate (Bi2WO6, BWO) under blue LED light (Vis/BWO/Fe(VI)) exposure, at rates that were 45-fold faster than BWO photocatalysis. Both the stepwise and time-series addition of Fe(VI) contributed to the degradation. Multiple lines of evidence confirmed that the common reactive species (RSs) in BWO-based photocatalytic systems and Fe(VI)-involved systems (e.g., •OH/h+, O2•-, 1O2 and Fe(V)/Fe(IV)) played subtle roles in our study system. Herein, for the first time, it was discovered that the precursor complex (BWO-Fe(V)/Fe(IV)* )) was the main contributor to induce electron transfer of SAs through the "conductive bridge" effect of BWO. The studied system was able to effectively degrade SMT in synthetic hydrolyzed urine (SHU) with low interference from background substances in water. This work not only offers a novel facilitation strategy for BWO, but also holds a great application prospect for contamination remediation in urine.
Collapse
Affiliation(s)
- Yudan Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhenjun Xiao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinfan Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianqing Wu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhi Zhang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongshun Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
50
|
Yang B, Ma Q, Hao J, Huang J, Wang Q, Wang D, Zhang J. Periodate-based advanced oxidation processes: A review focusing on the overlooked role of high-valent iron and manganese species. CHEMOSPHERE 2023:139442. [PMID: 37422211 DOI: 10.1016/j.chemosphere.2023.139442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Periodate-based advanced oxidation processes (AOPs) have received mounting attention in scientific research in the past two decades due to their fair oxidizing capability for satisfactory decontamination performance. Unlike iodyl (IO3•) and hydroxyl (•OH) radicals are widely recognized as the predominant species generated from periodate activation, the role of high-valent metal as a dominant reactive oxidant has been proposed recently. Although several excellent reviews concerning periodate-based AOPs have been reported, there are still prevalent knowledge roadblocks to high-valent metals' formation and reaction mechanisms. Therefore, this work aims to provide a comprehensive overview of high-valent metals, especially concerning the identification methods (e.g., direct and indirect strategies), formation mechanisms (e.g., formation pathways and interpretation based on density functional theory calculation), reaction mechanisms (e.g., nucleophilic attack, electron transfer, oxygen-atom transfer, electrophilic addition, and hydride and hydrogen-atom transfer), and reactivity performance (e.g., chemical properties, influencing factors, and practical applications). Furthermore, points for critical thinking and further prospects for high-valent metal-mediated oxidation processes are suggested, emphasizing the need for parallel efforts to enhance the stability and reproducibility of high-valent metal-mediated oxidation processes in real world applications.
Collapse
Affiliation(s)
- Bowen Yang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Qingyuan Wang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Dunqiu Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|