1
|
Wormington AM, Gabrielli DJ, Nouri MZ, Lin AM, Robinson SE, Bowden JA, Denslow ND, Sabo-Attwood T, Bisesi JH. Effects of the organochlorine pesticide metabolite p,p'-DDE on the gastrointestinal lipidome in fish: A novel toxicity pathway for a legacy pollutant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125191. [PMID: 39454813 DOI: 10.1016/j.envpol.2024.125191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 10/28/2024]
Abstract
Though phased out from use in the United States, environmental contamination by organochlorine pesticides (OCPs) remains a widespread issue, especially around intensive agricultural regions. OCPs, such as dichlorodiphenyltrichloroethane (DDT) and its primary metabolite, dichlorodiphenyldichloroethylene (DDE), have been detected in soils, sediments, surface waters, and biota decades after their discontinued use. As OCPs are persistent and can bioaccumulate in fats, these compounds can transfer and magnify across food webs. Freshwater predatory fish and birds can accumulate high OCP concentrations, leading to a myriad of deleterious impacts on organismal health. Studies have found evidence of reproductive disruption in predatory fish, such as the largemouth bass (LMB; Micropterus salmoides), associated with DDT and DDE exposure. DDE can act through estrogenic pathways and induce the expression of estrogenic signals in male animals; however, the molecular mechanism of disruption is unclear. Recently, metabolomics research has revealed corollary relationships between lipid signals and organic pollutant toxicity. Here, a two-month feeding experiment on LMB was conducted to assess the interactions of DDE (as p,p'-DDE) in food with gut and liver lipid signaling. Targeted lipidomic analysis revealed global alterations in the abundance of tissue lipids, especially cholesteryl esters and phospholipids, in LMB exposed to low levels of p,p'-DDE. Results from these studies indicate that p,p'-DDE may act through disruption of normal lipid homeostasis to cause toxicity in freshwater fish.
Collapse
Affiliation(s)
- Alexis M Wormington
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - David J Gabrielli
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Mohammad-Zaman Nouri
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Ashley M Lin
- Department of Environmental Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - John A Bowden
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, 32611, USA; Department of Environmental Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Nancy D Denslow
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA; Department of Physiological Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32611, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
Vu PH, Nguyen DH, Vu TS, Le AH, Tran TQT, Nguyen YT, Nguyen TTT, Mai LDT, Bui HVT, Tran HM, Nguyen HQ, Nguyen TKN, Truong BG, Tran HTT, Pham HT. Biodegradation of DDT using multi-species mixtures: From genome-mining prediction to practical assessment. Microb Biotechnol 2024; 17:e70021. [PMID: 39316024 PMCID: PMC11421292 DOI: 10.1111/1751-7915.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
DDT (dichlorodiphenyltrichloroethane) is a commonly used insecticide that is recalcitrant and highly stable in the environment. Currently, DDT residue contamination, especially in agricultural soil, is still a concern in many countries, threatening human health and the environment. Among the approaches to resolve such an issue, novel biodegradation-based methods are now preferred to physicochemical methods, due to the sustainability and the effectiveness of the former. In this study, we explored the possibility of building mixed microbial cultures that can offer improved DDT-degrading efficiencies and be more environmentally transilient, based on genome annotation using the KEGG database and prediction of interactions between single strains using the obtained metabolic maps. We then proposed 10 potential DDT-degrading mixed cultures of different strain combinations and evaluated their DDT degradation performances in liquid, semi-solid and solid media. The results demonstrated the superiority of the mixtures over the single strains in terms of degrading DDT, particularly in a semi-solid medium, with up to 40-50% more efficiency. Not only did the mixed cultures degrade DDT more efficiently, but they also adapted to broader spectra of environmental conditions. The three best DDT-degrading and transilient mixtures were selected, and it turned out that their component strains seemed to have more metabolic interactions than those in the other mixtures. Thus, our study demonstrates the effectiveness of exploiting genome-mining techniques and the use of constructed mixed cultures in improving biodegradation.
Collapse
Affiliation(s)
- Phuong Ha Vu
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Dang Huy Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Tung Son Vu
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Anh Hien Le
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Trang Quynh Thi Tran
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Yen Thi Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Thuy Thu Thi Nguyen
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Linh Dam Thi Mai
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Ha Viet Thi Bui
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Hanh My Tran
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Huy Quang Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Key Laboratory of Enzyme and Protein TechnologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Thao Kim Nu Nguyen
- Department of Cell Biology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Bao Gia Truong
- High School for Gifted StudentsVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Huyen Thanh Thi Tran
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| | - Hai The Pham
- Research group for Physiology and Applications of Microorganisms (PHAM group), GREENLAB, Center for Life Science Research (CELIFE), Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
- Department of Microbiology, Faculty of BiologyVNU University of Science – Vietnam National UniversityHanoiVietnam
| |
Collapse
|
3
|
Ding Y, Qin S, Huang H, Tang X, Li X, Zhang Y, Chen W, Nguyen LP, Qi S. Selected pesticidal POPs and metabolites in the soil of five Vietnamese cities: Sources, fate, and health risk implications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123043. [PMID: 38036093 DOI: 10.1016/j.envpol.2023.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Large quantities of organochlorine pesticides (OCPs) have been used in tropical regions. The fate processes and risks of these legacy contaminants in the tropics are poorly understood. Herein, we investigated the occurrence of three classes of widely used OCPs and their metabolites in surface and core soil from five cities across Vietnam with a prevalent tropical monsoon climate and a long history of OCP application. We aimed to elucidate migration potentials, degradation conditions, and transformation pathways and assess current health risks of these contaminants. Generally, the concentrations of OCPs and metabolites in the soil core were slightly lower than those in surface soil except for hexachlorocyclohexane (HCH) isomers. 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT), 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE), the sum of dicofol and 4,4'-dichlorobenzophenone (p,p'-DBP), and 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (p,p'-DDD) were the most abundant compounds in both surface and core soils. A uniform distribution of HCHs (the sum of α-, β-, γ-, and δ-HCH) at trace levels was found in almost all soils, serving as evidence of the lack of recent use of HCH pesticides. Higher concentrations of DDTs (the sum of DDT, DDD, and DDE) were observed in north-central Vietnamese soil, whereas appreciable concentrations of ENDs (the sum of α- and β-endosulfan and endosulfan sulfate) were only found in southern Vietnamese soils. Empirical diagnostic ratios indicated residuals of DDTs were mainly from technical DDT rather than dicofol, whereas aged HCHs could be explained by the mixture of lindane and technical HCH. Both historical applications and recent input explain DDTs and ENDs in Vietnamese soil. Total organic carbon performs well in preventing vertical migration of more hydrophobic DDTs and ENDs. The dominant transformation pathway of DDT in surface soil followed p,p'-DDE→2,2-bis(4-chlorophenyl)-1-chloroethylene or p,p'-DDMU→1,1-bis(4-chlorophenyl)ethylene or p,p'-DDNU→p,p'-DBP, whereas the amount of p,p'-DDMU converted from p,p'-DDD and p,p'-DDE is similar in soil core. Non-cancer risks of OCPs and metabolites in all soils and cancer risks of those chemicals in core soils were below the safety threshold, whereas a small proportion of surface soil exhibited potential cancer risk after considering the exposure pathway of vegetable intake. This study implied that organic matter in non-rainforest tropical deep soils still could hinder the leaching of hydrophobic organic contaminants as in subtropical and temperate soils. When lands with a history of OCP application are used for agricultural purposes, dietary-related risks need to be carefully assessed.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China.
| | - Shibin Qin
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Institute of Eco-Environment Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510530, China
| | - Xiaoyan Tang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China
| | - Xiushuang Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Wenwen Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Lan-Phuong Nguyen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
4
|
Li J, Chang R, Ban X, Yuan GL, Wang J. Primary emissions or environmental persistence contribute to the present DDTs: Evidence from sediment records in Tibetan lakes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132342. [PMID: 37598514 DOI: 10.1016/j.jhazmat.2023.132342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) compounds are still circulating the global environment even though the technical DDT has been restricted in agriculture since the last century. The persistent presence of DDTs worldwide remains uncertain, as it is unclear whether their existence is primarily due to ongoing use or the prolonged persistence in soils and sediments that result in continuous reemission into the atmosphere. The present study applied a sequential extraction procedure to determine the DDT concentrations in rapid desorption, slow desorption, and bound residue fractions in the dated sediment cores from distinct regions of Tibet. The temporal variation of total DDTs (sum of three fractions) in sediments from southern and eastern Tibet respectively revealed the different DDT usage histories in India and China mainland. Nevertheless, the current application volumes of DDT-containing products in these regions were found to decrease significantly. The reversible transformations among three fractions of DDTs with aging time was observed along sediment profile, including the back conversion from bound residue. This process may be the key driver to prolong the half-life of sediment p,p'-DDT, resulting in the persistence of secondary sources of this persistent organic pollutant in the global environment for a longer duration than previously expected.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiyu Ban
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jie Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Wang L, Zhou L, Liu L, Yang Y, Zhao Q. Comparative in vitro and in silico study on the estrogenic effects of 2,2-bis(4-chlorophenyl)ethanol, 4,4'-dichlorobenzophenone and DDT analogs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162734. [PMID: 36907399 DOI: 10.1016/j.scitotenv.2023.162734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/25/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
DDT and its transformation products (DDTs) are frequently detected in environmental and biological media. Research suggests that DDT and its primary metabolites (DDD and DDE) could induce estrogenic effects by disturbing estrogen receptor (ER) pathways. However, the estrogenic effects of DDT high-order transformation products, and the exact mechanisms underlying the differences of responses in DDT and its metabolites (or transformation products) still remain unknown. Here, besides DDT, DDD and DDE, we selected two DDT high-order transformation products, 2,2-bis(4-chlorophenyl) ethanol (p,p'-DDOH) and 4,4'-dichlorobenzophenone (p,p'-DCBP). We aim to explore and reveal the relation between DDTs activity and their estrogenic effects by receptor binding, transcriptional activity, and ER-mediated pathways. Fluorescence assays showed that the tested 8 DDTs bound to the two isoforms (ERα and ERβ) of ER directly. Among them, p,p'-DDOH exhibited the highest binding affinity, with IC50 values of 0.43 μM and 0.97 μM to ERα and ERβ, respectively. Eight DDTs showed different agonistic activity toward ER pathways, with p,p'-DDOH exhibiting the strongest potency. In silico studies revealed that the eight DDTs bound to either ERα or ERβ in a similar manner to 17β-estradiol, in which specific polar and non-polar interactions and water-mediated hydrogen bonds were involved. Furthermore, we found that 8 DDTs (0.0008-5 μM) showed distinct pro-proliferative effects on MCF-7 cells in an ER-dependent manner. Overall, our results revealed not only for the first time the estrogenic effects of two DDT high-order transformation products by acting on ER-mediated pathways, but also the molecular basis for differential activity of 8 DDTs.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lantian Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Liu M, Yuan J, Shi J, Xu J, He Y. Chlorinated organic pollutants in global flooded soil and sediments: Pollution status and potential risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121270. [PMID: 36780978 DOI: 10.1016/j.envpol.2023.121270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated organic pollutants (COPs) were widely detected in anaerobic environments while there is limited understanding of their pollution status and potential environmental risks. Here, we applied meta-analysis to identify the occurrence status, pollution sources, and environmental risk of COPs from 246 peer-published literature, including 25 kinds of COPs from 977 sites. The results showed that the median concentrations of COPs were at the ng g-1 level. By the combination of principal component analysis (PCA) and positive matrix factorization (PMF), we established 7 pollution sources for COPs. Environmental risk assessment found 73.3% of selected sites were at a security level but the rest were not, especially for the wetlands. The environmental risk of COPs was usually underestimated by the existing evaluation methods, such as without the consideration of the non-extractable residues (NER) and the multi-process coupling effect. Especially, the synergetic coupling associations between dechlorination and methanogenesis might increase the risk of methane emission that has barely been previously considered in previous risk assessment approaches. Our results expanded the knowledge for the pollution control and remediation of COPs in anaerobic environments.
Collapse
Affiliation(s)
- Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Yuan
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80524, USA
| | - Jiachun Shi
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
7
|
Zhou Y, Sun F, Wu X, Cao S, Guo X, Wang Q, Wang Y, Ji R. Formation and nature of non-extractable residues of emerging organic contaminants in humic acids catalyzed by laccase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154300. [PMID: 35271924 DOI: 10.1016/j.scitotenv.2022.154300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Formation of non-extractable residues (NERs) is the major fate of most environmental organic contaminants in soil, however, there is no direct evidence yet to support the assumed physical entrapment of NERs (i.e., type I NERs) inside soil humic substances. Here, we used 14C-radiotracer and silylation techniques to analyze NERs of six emerging and traditional organic contaminants formed in a suspension of humic acids (HA) under catalysis of the oxidative enzyme laccase. Laccase induced formation of both type I and covalently bound NERs (i.e., type II NERs) of bisphenol A, bisphenol F, and tetrabromobisphenol A to a large extent, and of bisphenol S (BPS) and sulfamethoxazole (SMX) to a less extent, while no induction for phenanthrene. The type I NERs were formed supposedly owing to laccase-induced alteration of primary (active groups) and secondary (conformation) structure of humic supramolecules, contributing surprisingly to large extents (23.5%-65.7%) to the total NERs, particularly for BPS and SMX, which both were otherwise not transformed by laccase catalysis. Electron-withdrawing sulfonyl group and bromine substitution significantly decreased amount and kinetics of NER formation, respectively. This study provides the first direct evidence for the formation of type I NERs in humic substances and implies a "Trojan horse" effect of such NERs in the environment.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Feifei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Xuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Siqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Xiaoran Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Qilin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Yongfeng Wang
- Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Beifeng Road, 362000 Quanzhou, China.
| |
Collapse
|
8
|
Feng WL, Wu JP, Li X, Nie YT, Xu YC, Tao L, Zeng YH, Luo XJ, Mai BX. Bioaccumulation and maternal transfer of two understudied DDT metabolites in wild fish species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151814. [PMID: 34813814 DOI: 10.1016/j.scitotenv.2021.151814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
While the secondary metabolites of DDT such as 2,2-bis(chlorophenyl)-1-chloroethylene (DDMU) and 2,2-bis(chlorophenyl)methane (DDM) have been detected in the environment for several decades, knowledge is extremely limited on their bioaccumulation characteristics. Here, we reported the bioaccumulation and maternal transfer of p,p'-DDMU and p,p'-DDM in two wild fishes, i.e., the northern snakehead (Channa argus) and crucian carp (Carassius auratus), from a DDT contaminated site in South China. The hepatic concentrations of p,p'-DDMU and p,p'-DDM in the fish were up to 549 and 893 ng/g lipid weight, contributing 5.3% and 3.2% in average to ΣDDXs (the sum concentrations of DDT and its 6 metabolites), respectively. The residues of p,p'-DDMU and p,p'-DDM in the fish exhibited interspecific and intraspecific variations, resulting from the differences in lipid content, sex, and body sizes (length and mass) between or within species. Both p,p'-DDMU and p,p'-DDM were consistently detected in the fish eggs, demonstrating their maternal transfer in female fish. The mean eggs to liver lipid-normalized concentration (E/L) ratios of p,p'-DDMU and p,p'-DDM were 0.98 and 1.77 in the northern snakehead, 0.35 and 0.01 in crucian carp, respectively; which were comparable to or even exceeded those of DDT and its major metabolites calculated in the same individual. Statistical analyses of the data showed that the E/L ratios were positively correlated with body sizes of the fish, but negatively correlated with the hepatic concentrations of p,p'-DDMU and p,p'-DDM in females; suggesting the influences of fish sizes and the mother body residues on their maternal transfer efficiencies.
Collapse
Affiliation(s)
- Wen-Lu Feng
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiang-Ping Wu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu 241000, China.
| | - Xiao Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - You-Tian Nie
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Ya-Chun Xu
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Lin Tao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Wang R, Qu C, Li M, Shi C, Li W, Zhang J, Qi S. Health risks of exposure to soil-borne dichlorodiphenyltrichloroethanes (DDTs): A preliminary probabilistic assessment and spatial visualization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144949. [PMID: 33571769 DOI: 10.1016/j.scitotenv.2021.144949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Residues of dichlorodiphenyltrichloroethane and its metabolites (DDTs) in soils continue to severely threaten and endanger human health. This present study comprehensively interprets the health risks associated with exposure to soil-borne DDTs and also identifies the spatial visualization of risks at a large regional scale in Fujian, China. There was significant spatial variability of human risk across the region, while levels of health risk displayed a significant positive correlation with population density (p < 0.05). High risk levels occurred mostly in the coastal areas in northeastern Fujian, with additional hotspots in inland areas. The highest total incremental lifetime cancer risks (ILCRs) occurred in Sanming, reaching up to 9.52 × 10-5, 3.27 × 10-5, and 1.76 × 10-4 for children, teens, and adults, respectively. Further, the highest hazard index (HI) value was observed in Fuzhou, reaching up to 6.09, 3.84, and 2.37, respectively. The 95% confidence interval of data regarding ILCRs exceeded the recognized safe threshold, whereas the HI has been deemed accepted. Adults were identified as the most susceptible population in terms of cancer risks, with o,p'-DDT being the primary contributor of ILCRs. Moreover, children were showed to be the most vulnerable in terms of non-cancer risks, with p,p'-DDD being the main contributor of HI. Food ingestion appeared to be the dominant exposure pathway, for both cancer and non-cancer risks. The concentration of DDTs (Csoil) and exposure duration (ED) also greatly influenced the risk, together contributing to over 99% of the ILCRs and HI.
Collapse
Affiliation(s)
- Ruiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Chengkai Qu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| | - Min Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Changhe Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wenping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi 435003, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
10
|
Ding Y, Li L, Wania F, Huang H, Zhang Y, Peng B, Chen Y, Qi S. Do dissipation and transformation of γ-HCH and p,p'-DDT in soil respond to a proxy for climate change? Insights from a field study on the eastern Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116824. [PMID: 33689948 DOI: 10.1016/j.envpol.2021.116824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
While the influence of climate change on the fate of persistent organic pollutants (POPs) is becoming a topic of global concern, it has yet to be demonstrated how POPs and their transformation products in soil respond to a changing climate at the local scale. We conducted a year-long field experiment with spiked soils to investigate the impact of climate on the dissipation of γ-hexachlorocyclohexane (γ-HCH) and p,p'-dichlorodiphenyltrichloroethane (p,p'-DDT) as well as the formation of their products. Four sites along an elevational gradient on the eastern Tibetan Plateau were selected to represent four scenarios ranging from a dry and cold to a warm and humid climate. Based on the measured concentrations of the two pesticides and their transformation products, we calculated the dissipation rates of γ-HCH and p,p'-DDT in soil using two biphasic kinetic models, and the formation rates of transformation products using a mid-point rectangular approximation method. The spiked γ-HCH generally showed the expected decrease in dissipation from soils with increasing altitudes, and therefore decreasing temperature and precipitation, whereas dissipation of p,p'-DDT was influenced more by photolysis and sequestration in soil. The formation rates of the primary products of γ-HCH (i.e. γ-HCH→PeCCH and γ-HCH→TeCCH) and p,p'-DDT (i.e. p,p'-DDT→p,p'-DDE and p,p'-DDT→p,p'-DDD) indicate that a warmer and wetter climate favors dechloroelimination (anaerobic biodegradation) over dehydrochlorination (aerobic biodegradation). The significantly longer dissipation half-lives of γ-HCH at the coldest site suggests that the fate of POPs in frozen regions (e.g. polar regions) needs more attention. Overall, the fate of more volatile chemicals (e.g. γ-HCH) might be more responsive to the climate change.
Collapse
Affiliation(s)
- Yang Ding
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada.
| | - Li Li
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; School of Community Health Sciences, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Huanfang Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Bo Peng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Yingjie Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
11
|
Zhu X, Song X, Schwarzbauer J. First insights into the formation and long-term dynamic behaviors of nonextractable perfluorooctanesulfonate and its alternative 6:2 chlorinated polyfluorinated ether sulfonate residues in a silty clay soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143230. [PMID: 33158517 DOI: 10.1016/j.scitotenv.2020.143230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent and toxic contaminants that are ubiquitous in the environment. They can incorporate into soil as nonextractable residues (NER) which are not detectable with conventional analytical protocols but are still possible to remobilize with changes of surrounding conditions, and thus will be bioavailable again. Therefore, there is a need to investigate thoroughly the long-term fate of NER-PFAS. In this study, a 240-day incubation of perfluorooctanesulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (F-53B) in a silty clay topsoil was carried out. Solvent extraction, alkaline hydrolysis and sequential chemical degradation were applied on periodically sampled soil to obtain extractable, moderately bound and deeply bound PFAS, respectively. The results confirmed the formation of NER of both compounds but with different preferences of incorporating mechanisms. NER-PFOS was formed predominantly by covalent binding (via head group) and strong adsorption (via tail group). The formation of NER-F-53B was mainly driven by physical entrapment. Both bound compounds within the incubation period showed three-stage behaviors including an initial period with slight release followed by a (re) incorporating stage and a subsequent remobilizing stage. This work provides some first insights on the long-term dynamic behaviors of nonextractable PFAS and will be conducive to their risk assessment and remediation (e.g. estimating potential NER-PFAS level based on their free extractable level, and selecting remediation methods according to their prevailing binding mechanisms).
Collapse
Affiliation(s)
- Xiaojing Zhu
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr, 4-20, 52064 Aachen, Germany.
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China.
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr, 4-20, 52064 Aachen, Germany.
| |
Collapse
|
12
|
Jho EH, Yun SH, Thapa P, Nam JW. Changes in the aquatic ecotoxicological effects of Triton X-100 after UV photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11224-11232. [PMID: 33113057 DOI: 10.1007/s11356-020-11362-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Various spray adjuvants including surfactants are widely used in agricultural pesticide formulations, and some of them may remain in soils and waters and impose more adverse effects than active pesticide ingredients on organisms. However, previous studies are more focused on the active pesticide ingredients than the adjuvants. Thus, this study investigates the changes in toxic effects of surfactants during photodegradation, which is one way of naturally degrading contaminants in natural waters. Triton X-100, a water-soluble non-ionic surfactant, was degraded using different types of UV radiation (UVA, UVB, and UVC), and the changes in the toxic effects were determined using bioluminescent bacteria and water flea. The Triton X-100 removals were negligible with UVA within 24 h, while its removal was 81% with UVB and almost complete with UVC. The NMR spectra indicated possible molecule rearrangement after photolysis. On the other hand, the toxic effects based on the mortality of Daphnia magna and the bioluminescence of Aliivibrio fischeri increased (i.e., lower EC50 values) after photodegradation, suggesting the generation of photoproducts that are likely to have higher toxic effects or higher bioavailability. Furthermore, the sensitivities of D. magna and A. fischeri for Triton X-100 and the photodegraded Triton X-100 were different. This study suggests that the changes in the chemical composition of the Triton X-100 containing water with photodegradation can lead to changes in the relative toxic effects on different aquatic organisms. Therefore, not only the management of parent compound (i.e., Triton X-100) but also the photoproducts generated from the parent compound need to be considered when managing water environment subject to photodegradation.
Collapse
Affiliation(s)
- Eun Hea Jho
- Department of Agricultural and Biological Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea.
| | - Seong Ho Yun
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-eup, Cheoin-gu, Youngin-si, Gyeonggi-do, 17035, South Korea
| | - Punam Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, South Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbukdo, 38541, South Korea
| |
Collapse
|
13
|
Peng S, Kong D, Li L, Zou C, Chen F, Li M, Cao T, Yu C, Song J, Jia W, Peng P. Distribution and sources of DDT and its metabolites in porewater and sediment from a typical tropical bay in the South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115492. [PMID: 33254672 DOI: 10.1016/j.envpol.2020.115492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 06/12/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) is well known for its harmful effects and has been banned around the world. However, DDT is still frequently detected in natural environments, particularly in aquaculture and harbor sediments. In this study, 15 surface sediment samples were collected from a typical tropical bay (Zhanjiang Bay) in the South China Sea, and the levels of DDT and its metabolites in sediment and porewater samples were investigated. The results showed that concentrations of DDXs (i.e., DDT and its metabolites) in bulk sediments were 1.58-51.0 ng g-1 (mean, 11.5 ng g-1). DDTs (DDT and its primary metabolites, dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE)) were the most prominent, accounting for 73.2%-98.3% (86.1% ± 12.8%) of the DDXs. Additionally, high-order metabolites (i.e., 1-chloro-2,2-bis(4'-chlorophenyl)ethylene (p,p'-DDMU), 2,2-bis(p-chlorophenyl)ethylene (p,p'-DDNU), 2,2-bis(p-chlorophenyl)ethanol (p,p'-DDOH), 2,2-bis(p-chlorophenyl)methane (p,p'-DDM), and 4,4'-dichlorobenzophenone (p,p'-DBP)) were also detected in most of the sediment and porewater samples, with DDMU and DBP being predominant. The DDTs concentration differed among the sampling sites, with relatively high DDTs concentrations in the samples from the aquaculture zone and an area near the shipping channel and the Haibin shipyard. The DDD/DDE ratios indicated a reductive dichlorination of DDT to DDD under anaerobic conditions at most of the sampling sites of Zhanjiang Bay. The possible DDT degradation pathway in the surface sediments of Zhanjiang Bay was p,p'-DDT/p,p'-DDD(p,p'-DDE)/p,p'-DDMU/p,p'-DDNU/ … /p,p'-DBP. The DDXs in the sediments of Zhanjiang Bay were mainly introduced via mixed sources of industrial DDT and dicofol, including fresh input and historical residue. The concentrations of DDXs in porewater samples varied from 66.3 to 250 ng L-1, exhibiting a distribution similar to that in the accompanying sediments. However, the content of high-order metabolites was relatively lower in porewater than in sediment, indicating that high-order degradation mainly occurs in particles. Overall, this study helps in understanding the distribution, source, and degradation of DDT in a typical tropical bay.
Collapse
Affiliation(s)
- Shiyun Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Deming Kong
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liting Li
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chunlin Zou
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Meiju Li
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chiling Yu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jianzhong Song
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Wanglu Jia
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Cao S, Wang S, Zhao Y, Wang L, Ma Y, Schäffer A, Ji R. Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS. ENVIRONMENT INTERNATIONAL 2020; 143:105908. [PMID: 32615349 DOI: 10.1016/j.envint.2020.105908] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The environmental fate and persistence of bisphenol S (BPS), a substitute for bisphenol A (BPA), are unclear. This study used 14C-labeled BPS to examine the fate, biodegradation, and residue properties of BPS incubated in an oxic soil for 28 days. BPS dissipated quickly, with a half-life of 2.8 days. Most of the BPS was mineralized (53.6 ± 0.2% of initial amount by day 28) or transformed into non-extractable residues (NERs) (45.1 ± 0.3%), with generation of minor extractable residues (3.7 ± 0.2%) containing two metabolites. NERs were formed mainly via physico-chemical entrapment (51.1 ± 2.4% of the total NERs, consisting almost exclusively of BPS) and ester-linkages (31.5 ± 3.0% of the total NERs, consisting of both BPS and polar metabolites). When mixed with fresh soil, BPS-derived NERs became unstable and bioavailable. Subsequent mineralization was determined for 19.5 ± 1.1% of the total NERs and 35.5 ± 2.6% of the physico-chemically entrapped BPS. A fate model was used to describe the kinetics of NER formation, which indicated that microbial activity in soil could have strongly reduced the kinetic rate of the release of physico-chemically entrapped NERs into free form and therefore increased the stability of this type of NERs in soil. Our results provide unique insights into the fate of BPS in soil and suggest that while BPS is biodegradable, it includes the formation of large amounts of reversibly physico-chemically entrapped and covalently bound ester-linked NERs. The instability of these NERs should be considered in assessments on environmental persistence and risks of BPS. Our study also points out the environmental importance of NERs of agrochemicals.
Collapse
Affiliation(s)
- Siqi Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Songfeng Wang
- Institue of Botany, Jiangsu Province and Chinese Academy of Sciences, Zhongshanmenwai Qianhuhoucun 1, 210014 Nanjing, China
| | - Yingying Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Lianhong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Yini Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China
| | - Andreas Schäffer
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China; Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, China.
| |
Collapse
|
15
|
Aryal N, Wood J, Rijal I, Deng D, Jha MK, Ofori-Boadu A. Fate of environmental pollutants: A review. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1587-1594. [PMID: 32671926 DOI: 10.1002/wer.1404] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
A review of the literature published in 2019 on topics associated with the fate of environmental pollutants is presented. Environmental pollutants covered include pharmaceuticals, antibiotic-resistant bacteria and genes, pesticides and veterinary medicines, personal care products and emerging pollutants, PFAS, microplastics, nanomaterials, heavy metals and radionuclides, nutrients, pathogens and indicator organisms, and oil and hydrocarbons. For each pollutant, the occurrence in the environment and/or their fate in engineered as well as natural systems in matrices including water, soil, wastewater, stormwater, runoff, and/or manure is presented based on the published literature. The review includes current developments in understanding pollutants in natural and engineered systems, and relevant physico-chemical processes, as well as biological processes.
Collapse
Affiliation(s)
- Niroj Aryal
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Jonae Wood
- Department of Natural Resources and Environmental Design, North Carolina A&T State University, Greensboro, North Carolina
| | - Ishara Rijal
- Agricultural Research Program, College of Agriculture and Environmental Sciences, North Carolina A&T State University, Greensboro, North Carolina
| | - Dongyang Deng
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| | - Manoj K Jha
- Department of Civil, Architectural and Environmental Engineering, North Carolina A&T State University, Greensboro, North Carolina
| | - Andrea Ofori-Boadu
- Department of Built Environment, North Carolina A&T State University, Greensboro, North Carolina
| |
Collapse
|
16
|
Truong KM, Feng W, Pessah IN. Ryanodine Receptor Type 2: A Molecular Target for Dichlorodiphenyltrichloroethane- and Dichlorodiphenyldichloroethylene-Mediated Cardiotoxicity. Toxicol Sci 2020; 178:159-172. [PMID: 32894766 PMCID: PMC7850024 DOI: 10.1093/toxsci/kfaa139] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dichlorodiphenyltrichloroethane (DDT) and its metabolite dichlorodiphenyl-dichloroethylene (DDE) are ubiquitously found in the environment and linked to cardiovascular diseases-with a majority of the work focused on hypertension. Studies investigating whether DDx can interact with molecular targets on cardiac tissue to directly affect cardiac function are lacking. Therefore, we investigated whether o,p'-DDT, p,p'-DDT, o,p'-DDE, or p,p'-DDE (DDx, collectively) can directly alter the function of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) by assessing their effect(s) on hiPSC-CMs Ca2+ dynamics. DDx (0.1-10 µM) affected hiPSC-CMs synchronous Ca2+ oscillation frequency in a concentration-dependent manner, with p,p'-DDT and p,p'-DDE also decreasing Ca2+ stores. HEK-RyR2 cells cultured under antibiotic selection to induce expression of wild-type mouse ryanodine receptor type 2 (RyR2) are used to further investigate whether DDx alters hiPSC-CMs Ca2+ dynamics through engagement with RyR2, a protein critical for cardiac muscle excitation-contraction coupling (ECC). Acute treatment with 10 µM DDx failed to induce Ca2+ release in HEK293-RyR2, whereas pretreatment with DDx (0.1-10 µM) for 12- or 24-h significantly decreased sarcoplasmic reticulum Ca2+ stores in HEK-RyR2 cells challenged with caffeine (1 mM), an RyR agonist. [3H]ryanodine-binding analysis using murine cardiac RyR2 homogenates further confirmed that all DDx isomers (10 µM) can directly engage with RyR2 to favor an open (leaky) confirmation, whereas only the DDT isomers (10 µM) modestly (≤10%) inhibited SERCA2a activity. The data demonstrate that DDx increases heart rate and depletes Ca2+ stores in human cardiomyocytes through a mechanism that impairs RyR2 function and Ca2+ dynamics. IMPACT STATEMENT DDT/DDE interactions with RyR2 alter cardiomyocyte Ca2+ dynamics that may contribute to adverse cardiovascular outcomes associated with exposures.
Collapse
Affiliation(s)
- Kim M Truong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616-5270
| | - Isaac N Pessah
- To whom correspondence should be addressed at Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 1089 Veterinary Medicine Drive, Davis, CA 95616. E-mail:
| |
Collapse
|
17
|
Zhu X, Dsikowitzky L, Ricking M, Schwarzbauer J. Molecular insights into the formation and remobilization potential of nonextractable anthropogenic organohalogens in heterogeneous environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120959. [PMID: 31401459 DOI: 10.1016/j.jhazmat.2019.120959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Anthropogenic organohalogens (AOHs) are toxic and persistent pollutants that occur ubiquitously in the environment. An unneglectable portion of them can convert into nonextractable residues (NER) in the natural solid substances. NER-AOHs are not detectable by conventional solvent-extraction, and will get remobilized through changes of surrounding environment. Consequently, the formation and fate of NER-AOHs should be investigated comprehensively. In this study, solvent extraction, sequential chemical degradation and thermochemolysis were applied on different sample matrices (sediments, soils and groundwater sludge, collected from industrial areas) to release extractable and nonextractable AOHs. Covalent linkages were observed most favorable for the hydrophilic-group-containing monocyclic aromatic AOHs (HiMcAr-AOHs) (e.g. halogenated phenols, benzoic acids and anilines) incorporating into the natural organic matter (NOM) as NER. Physical entrapment mainly contributed to the NER formation of hydrophobic monocyclic aromatic AOHs (HoMcAr-AOHs) and polycyclic aromatic AOHs (PcAr-AOHs). The hypothesized remobilization potential of these NER-AOHs follow the order HiMcAr-AOHs > HoMcAr-AOHs/ aliphatic AOHs > PcAr-AOHs. In addition, the NOM macromolecular structures of the studied samples were analyzed. Based on the derived results, a conceptual model of the formation mechanisms of NER-AOHs is proposed. This model provides basic molecular insights that are of high value for risk assessment and remediation of AOHs.
Collapse
Affiliation(s)
- Xiaojing Zhu
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
| | - Larissa Dsikowitzky
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany
| | - Mathias Ricking
- Dpt Wastewater Technology Research, German Environment Agency, Corrensplatz 1, 14195 Berlin, Germany
| | - Jan Schwarzbauer
- Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Lochnerstr. 4-20, 52064 Aachen, Germany.
| |
Collapse
|
18
|
Jin X, Kengara FO, Yue X, Wang F, Schroll R, Munch JC, Gu C, Jiang X. Shorter interval and multiple flooding-drying cycling enhanced the mineralization of 14C-DDT in a paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:420-428. [PMID: 31048172 DOI: 10.1016/j.scitotenv.2019.04.284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
DDT and its main metabolites (DDTs) are still the residual contaminants in soil. Sequential anaerobic-aerobic cycling has long been approved for enhancing the degradation of DDTs in soil. However, there is a lack of study investigating whether anaerobic-aerobic cycling would enhance the mineralization of DDT, and what a kind of anaerobic-aerobic management regimes would be optimal. To fill these gaps, the fate of 14C-DDT under different flooding-drying cycles was examined in a paddy soil by monitoring its mineralization and bioavailability. The results show the total mineralization of 14C-DDT in 314 days accounted for 1.01%, 1.30%, and 1.41%, individually for the treatments subjected to one, two, and three flooding-drying cycles. By comparison, the treatment subjected to the permanently aerobic phase had only 0.12% cumulative mineralization. Shorter intervals and multiple flooding-drying cycles enhanced the mineralization of 14C-DDT, however, reduced its bioavailability. Therefore, the enhanced mineralization was explained from an abiotic pathway as predicted by the one-electron reduction potential (E1), the Fukui function for nucleophilic attack (f+) and the steps for anaerobic decarboxylation. From a practical view, it is important to investigate how the anaerobic-aerobic interval and frequency would affect the degradation and mineralization of DDT, which is very essential in developing remediation strategies.
Collapse
Affiliation(s)
- Xin Jin
- School of the Environment Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210008, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Microbe-Plant Interactions, Neuherberg 85764, Germany.
| | - Fredrick O Kengara
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Microbe-Plant Interactions, Neuherberg 85764, Germany; Department of Chemistry, Maseno University, Maseno 40105, Kenya
| | - Xianhui Yue
- School of the Environment Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210008, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Reiner Schroll
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Microbe-Plant Interactions, Neuherberg 85764, Germany
| | - Jean C Munch
- Lehrstuhl für Grünlandlehre, Technische Universität München, Fresing D-85350, Germany
| | - Cheng Gu
- School of the Environment Nanjing University, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing 210008, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Addition of Carbonaceous Material to Aquatic Sediments for Sorption of Lindane and p,p’-Dichlorodiphenyldichloroethylene. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Isomers of hexachlorocyclohexanes (HCHs) and metabolites of dichlorodiphenyltrichloroethanes (DDTs) are still frequently detected worldwide in considerable amounts, even decades after their prohibition. Carbonaceous materials (CMs) have been shown to significantly reduce risks of propagation to humans by binding the hydrophobic organochlorine pesticides (OCPs) present in aquatic sediments. In the present study, black carbons extracted from natural sediments, and artificially produced black carbons, including black carbons by burning rice straw at 450 and 850 °C, and a commercial activated carbon were compared to investigate the factors affecting the sorption of γ-HCH (lindane) and p,p’-dichlorodiphenyldichloroethylene (p,p’-DDE) on CMs. The results indicated that when the proportion of CMs to total organic carbon (ƒCM/ƒOC) was greater than 0.35, CMs played a leading role in the sorption of lindane and p,p’-DDE by the sediments. The sorption contribution rate of CMs could reach up to 64.7%. When the ratio of ƒCM/ƒOC was less than 0.10, CMs played a minor role in the sorption. In addition, the nonlinearity of the sorption isotherms was strengthened with the increasing the proportion of CMs to total organic carbon. Our findings show that ƒCM/ƒOC value is a principal parameter for assessing the sorption capacity of sediments added by CMs for OCPs.
Collapse
|