1
|
Jiang Y, Jin L, Wei D, Alhassan SI, Wang H, Chai L. Energy Consumption in Capacitive Deionization for Desalination: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10599. [PMID: 36078322 PMCID: PMC9517846 DOI: 10.3390/ijerph191710599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Capacitive deionization (CDI) is an emerging eco-friendly desalination technology with mild operation conditions. However, the energy consumption of CDI has not yet been comprehensively summarized, which is closely related to the economic cost. Hence, this study aims to review the energy consumption performances and mechanisms in the literature of CDI, and to reveal a future direction for optimizing the consumed energy. The energy consumption of CDI could be influenced by a variety of internal and external factors. Ion-exchange membrane incorporation, flow-by configuration, constant current charging mode, lower electric field intensity and flowrate, electrode material with a semi-selective surface or high wettability, and redox electrolyte are the preferred elements for low energy consumption. In addition, the consumed energy in CDI could be reduced to be even lower by energy regeneration. By combining the favorable factors, the optimization of energy consumption (down to 0.0089 Wh·gNaCl-1) could be achieved. As redox flow desalination has the benefits of a high energy efficiency and long lifespan (~20,000 cycles), together with the incorporation of energy recovery (over 80%), a robust future tendency of energy-efficient CDI desalination is expected.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linfeng Jin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Dun Wei
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sikpaam Issaka Alhassan
- Chemical and Environmental Engineering Department, College of Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Changsha 410083, China
- Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| |
Collapse
|
2
|
Xu L, Peng S, Mao Y, Zong Y, Zhang X, Wu D. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization. WATER RESEARCH 2022; 216:118290. [PMID: 35306460 DOI: 10.1016/j.watres.2022.118290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Flow-electrode capacitive deionization (FCDI) is viewed as a potential alternative to the current state-of-the-art electrodriven technology for the desalination of brackish water. However, the key shortcoming of the FCDI is still the discontinuous nature of the electrode conductive network, resulting in low electron transport efficiency and ion adsorption capacity. Here, a novel magnetic field-assisted FCDI system (termed magnetic FCDI) is proposed to enhance brackish water desalination, simply by using magnetic activated carbon (MAC) as flow electrodes. The results show that the assistance from the magnetic field enables a 78.9% - 205% enhancement in the average salt removal rate (ASRR) compared with that in the absence of a magnetic field, which benefits from the artificial manipulation of the flow electrode transport behavior. In long-term tests, the stable desalination performance of magnetic FCDI was also demonstrated with a stable ASRR of 0.70 μmol cm-2 min-1 and energy-normalized removed salt (ENRS) of 8.77 μmol J-1. In addition, magnetic field also enables the regeneration of the electrode particles from the concentrated electrolyte. In summary, the findings indicate that the magnetic FCDI is an energy-efficient and operation convenient technology for brackish water desalination.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China.
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Wei W, Ge Z, Geng Y, Jiang M, Chen Z, Wu W. Toward carbon neutrality: Uncovering constraints on critical minerals in the Chinese power system. FUNDAMENTAL RESEARCH 2022; 2:367-374. [PMID: 38933393 PMCID: PMC11197575 DOI: 10.1016/j.fmre.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
China has set up its ambitious carbon neutrality target, which mainly relies on significant energy-related carbon emissions reduction. As the largest important contributing sector, power sector must achieve energy transition, in which critical minerals will play an essential role. However, the potential supply and demand for these minerals are uncertain. This study aims to predict the cumulative demand for critical minerals in the power sector under different scenarios via dynamic material flow analysis (DMFA), including total demands, supplies and production capacities of different minerals. Then, these critical minerals are categorized into superior and scarce resources for further analysis so that more detailed results can be obtained. Results present that the total minerals supply will not meet the total minerals demand (74260 kt) in 2060. Serious resource shortages will occur for several key minerals, such as Cr, Cu, Mn, Ag, Te, Ga, and Co. In addition, the demand for renewable energy will be nearly fifty times higher than that of fossil fuels energy, implying more diversified demands for various minerals. Finally, several policy recommendations are proposed to help improve the overall resource efficiency, such as strategic reserves, material substitutions, and circular economy.
Collapse
Affiliation(s)
- Wendong Wei
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200030, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200030, China
- China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zewen Ge
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yong Geng
- School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai 200030, China
- SJTU-UNIDO Joint Institute of Inclusive and Sustainable Industrial Development, Shanghai Jiao Tong University, Shanghai 200030, China
- China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingkun Jiang
- Key Laboratory of Pressure Systems and Safety (MOE), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhujun Chen
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Wu
- Shanghai Climate Center, Shanghai 200030, China
| |
Collapse
|
4
|
Wang Q, Fang K, He C, Wang K. Ammonia removal from municipal wastewater via membrane capacitive deionization (MCDI) in pilot-scale. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Xu L, Mao Y, Zong Y, Peng S, Zhang X, Wu D. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13286-13296. [PMID: 34529405 DOI: 10.1021/acs.est.1c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The stack configuration in flow-electrode capacitive deionization (FCDI) has been verified to be an attractive and feasible strategy for scaling up the desalination process. However, challenges still exist when attempting to simultaneously improve the desalination scale and the cell configuration. Here, we describe a novel stack FCDI configuration (termed a gradient FCDI system) based on a membrane-current collector assembly, in which the charge neutralization enables the in situ regeneration of the flow electrodes in the single cycle operation, thereby realizing a considerable increase in the desalinating performance. By evaluating standardized metrics such as the salt rejection, productivity (P), average salt removal rate (ASRR), energy-normalized removed salt (ENRS), and TEE, the results indicated that the gradient FCDI system could be a performance-stable and energy-efficient alternative for scale-up desalination. Under optimal operating conditions (carbon content = 10 wt %, feed salinity = 3000 mg L-1, cell voltage = 1.2 V, and productivity = 56.7 L m-2 h-1), the robust desalination performance (ASRR = 1.07 μmol cm-2 min-1) and energy consumption (ENRS = 7.8 μmol J-1) of the FCDI system with a desalination unit number of four were verified at long-term operation. In summary, the stacked gradient FCDI system and its operation mode described here may be an innovative and promising strategy capable of enlarging the scale of desalination while realizing performance improvement and device simplification.
Collapse
Affiliation(s)
- Longqian Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yunfeng Mao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Shuai Peng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
6
|
Mao M, Yan T, Shen J, Zhang J, Zhang D. Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes via an Electro-Adsorption Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7665-7673. [PMID: 33983021 DOI: 10.1021/acs.est.1c01483] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pollution of toxic heavy metals is becoming an increasingly important issue in environmental remediation because these metals are harmful to the ecological environment and human health. Highly efficient selective removal of heavy metal ions is a huge challenge for wastewater purification. Here, highly efficient selective capacitive removal (SCR) of heavy metal ions from complex wastewater over Lewis base sites of S-doped Fe-N-C cathodes was originally performed via an electro-adsorption process. The SCR efficiency of heavy metal ions can reach 99% in a binary mixed solution [NaCl (100 ppm) and metal nitrate (10 ppm)]. Even the SCR efficiency of heavy metal ions in a mixed solution containing NaCl (100 ppm) and multicomponent metal nitrates (10 ppm for each) can approach 99%. Meanwhile, the electrode also demonstrated excellent cycle performance. It has been demonstrated that the doping of S can not only enhance the activity of Fe-N sites and improve the removal ability of heavy metal ions but also combine with heavy metal ions by forming covalent bonds of S- clusters on Lewis bases. This work demonstrates a prospective way for the selective removal of heavy metal ions in wastewater.
Collapse
Affiliation(s)
- Minlin Mao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Junjie Shen
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
7
|
Xu L, Xie Y, Zong Y, Mao Y, Zhang B, Chu H, Wu D. Formic acid recovery from EDTA wastewater using coupled ozonation and flow-electrode capacitive deionization (Ozo/FCDI): Performance assessment at high cell voltage. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Liu X, Shanbhag S, Natesakhawat S, Whitacre JF, Mauter MS. Performance Loss of Activated Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property Predictors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15516-15526. [PMID: 33205957 DOI: 10.1021/acs.est.0c06549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the material property origins of performance decay in carbon electrodes is critical to maximizing the longevity of capacitive deionization (CDI) systems. This study investigates the cycling stability of electrodes fabricated from six commercial and two post-processed activated carbons. We find that the capacity decay rate of electrodes in half cells is positively correlated with the specific surface area and total surface acidity of the activated carbons. We also demonstrate that half-cell cycling stability is consistent with full cell desalination performance durability. Additionally, our results suggest that increase in internal resistance and physical pore blockage resulting from extensive cycling may be important mechanisms for the specific capacitance decay of activated carbon electrodes in this study. Our findings provide crucial guidelines for selecting activated carbon electrodes for stable CDI performance over long-term operation and insight into appropriate parameters for electrode performance and longevity in models assessing the techno-economic viability of CDI. Finally, our half-cell cycling protocol also offers a method for evaluating the stability of new electrode materials without preparing large, freestanding electrodes.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Civil & Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Sneha Shanbhag
- Department of Civil & Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sittichai Natesakhawat
- National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jay F Whitacre
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- The Scott Institute for Energy Innovation, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Meagan S Mauter
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
9
|
Hasseler TD, Ramachandran A, Tarpeh WA, Stadermann M, Santiago JG. Process design tools and techno-economic analysis for capacitive deionization. WATER RESEARCH 2020; 183:116034. [PMID: 32736269 DOI: 10.1016/j.watres.2020.116034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 05/03/2023]
Abstract
Capacitive deionization (CDI) devices use cyclical electrosorption on porous electrode surfaces to achieve water desalination. Process modeling and design of CDI systems requires accurate treatment of the coupling among input electrical forcing, input flow rates, and system responses including salt removal dynamics, water recovery, energy storage, and dissipation. Techno-economic analyses of CDI further require a method to calculate and compare between a produced commodity (e.g. desalted water) versus capital and operational costs of the system. We here demonstrate a new modeling and analysis tool for CDI developed as an installable Matlab program that allows direct numerical simulation of CDI dynamics and calculation of key performance and cost parameters. The program is provided for free and is used to run open-source Simulink models. The Simulink environment sends information to the program and allows for a drag and drop design space where users can connect CDI cells to relevant periphery blocks such as grid energy, battery, solar panel, waste disposal, and maintenance/labor cost streams. The program allows for simulation of arbitrary current forcing and arbitrary flow rate forcing of one or more CDI cells. We employ validated well-mixed reactor formulations together with a non-linear circuit model formulation that can accommodate a variety of electric double layer sub-models (e.g. for charge efficiency). The program includes a graphical user interface (GUI) to specify CDI plant parameters, specify operating conditions, run individual tests or parameter batch-mode simulations, and plot relevant results. The techno-economic models convert among dimensional streams of species (e.g. feed, desalted water, and brine), energy, and cost and enable a variety of economic estimates including levelized water costs.
Collapse
Affiliation(s)
- Tristan D Hasseler
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - Ashwin Ramachandran
- Department of Aeronautics & Astronautics, Stanford University, Stanford, CA, 94305, United States
| | - William A Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, United States
| | - Michael Stadermann
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
| | - Juan G Santiago
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, United States.
| |
Collapse
|
10
|
Wang H, Yuan T, Huang L, He Y, Wu B, Hou L, Liao Q, Yang W. Enhanced chloride removal of phosphorus doping in carbon material for capacitive deionization: Experimental measurement and theoretical calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137637. [PMID: 32325593 DOI: 10.1016/j.scitotenv.2020.137637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Heteroatoms doping is an important modification method in carbon electrode for CDI technology. In this study, a new facile approach of homogeneous phosphorus doping in carbon matrix was proposed via crosslinking polymerization of m-phenylenediamine and phytic acid. The carbonized composites (NPC) showed the characteristics of phosphorus/nitrogen co-doping with excellent hydrophilicity, high electrochemical performance, lower inner resistance and good cycling stability, far beyond that of carbon without phosphorus doping. Compared with reported similar materials and commercial carbon, the chloride adsorption capacity of NPC used as electrode for deionization capacitors was significantly improved (21.4 mg g-1 in a 500 mg L-1 Cl- solution at 1.2 V). Particularly, based on the charge distribution analysis of phosphorus doping in carbon matrix by using Material Studio calculation, the possible enhanced dichlorination mechanism of the carbon composites as electrode for deionization capacitors was carefully explored. The phosphorus/nitrogen co-doped carbon displayed a promising prospect for chloride removal in the application of CDI technology.
Collapse
Affiliation(s)
- Haiying Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Tao Yuan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lei Huang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yingjie He
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - BiChao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Lanjing Hou
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China.
| |
Collapse
|
11
|
Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Pothanamkandathil V, Fortunato J, Gorski CA. Electrochemical Desalination Using Intercalating Electrode Materials: A Comparison of Energy Demands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3653-3662. [PMID: 32048848 DOI: 10.1021/acs.est.9b07311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One approach for desalinating brackish water is to use electrode materials that electrochemically remove salt ions from water. Recent studies found that sodium-intercalating electrode materials (i.e., materials that reversibly insert Na+ ions into their structures) have higher specific salt storage capacities (mgsalt/gmaterial) than carbon-based electrode materials over smaller or similar voltage windows. These observations have led to the hypothesis that energy demands of electrochemical desalination systems can be decreased by replacing carbon-based electrodes with intercalating electrodes. To test this hypothesis and directly compare intercalation materials, we examined nine electrode materials thought to be capable of sodium intercalation in an electrochemical flow cell with respect to volumetric energy demands (W·h·L-1) and thermodynamic efficiencies as a function of productivity (i.e., the rate of water desalination, L·m-2·h-1). We also examined how the materials' charge-storage capacities changed over 50 cycles. Intercalation materials desalinated brackish water more efficiently than carbon-based electrodes when we assumed that no energy recovery occurred (i.e., no energy was recovered when the cell produced electrical power during cycling) and exhibited similar efficiencies when we assumed complete energy recovery. Nickel hexacyanoferrate exhibited the lowest energy demand among all of the materials and exhibited the highest stability over 50 cycles.
Collapse
Affiliation(s)
- Vineeth Pothanamkandathil
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jenelle Fortunato
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Salamat Y, Hidrovo CH. Significance of the micropores electro-sorption resistance in capacitive deionization systems. WATER RESEARCH 2020; 169:115286. [PMID: 31734390 DOI: 10.1016/j.watres.2019.115286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Capacitive Deionization (CDI) is an emerging technology representing a potential alternative to the common, energy-intensive desalination methods for low salinity water streams. In CDI an electrical field is applied to separate ionic species from aqueous solutions and electro-adsorb them into a highly porous material. CDI is a complex multi-scale system which requires robust mathematical models to closely describe its performance. Here, a dynamic two-dimensional model is developed coupling the diffusion and advection of the species in the bulk solution with their diffusion and electro-sorption in the porous electrodes. In this model, the adsorption/desorption resistance between the micropores and macropores along with variable non-electrostatic attractive forces in the micropores are also incorporated. The proposed theory is validated against experiments using a circular CDI cell operating under various conditions, where different transport mechanisms are limiting the total ion removal process. Performance of the CDI systems is also evaluated using inclusive figures of merit. The obtained results accentuate the significant effect of the rate-limited transfer of the ionic species from the macropores into the micropores, especially in systems subject to severe ion starvation, where neglecting this electro-sorption resistance leads to up to 50% and 210% overestimation of the energy efficiency and overall desalination performance, respectively. Furthermore, although the commonly used transport theory describing CDI fails to capture the dynamics of the systems at low initial concentration and high adsorption capacity by assuming fast electro-sorption without any resistance, the presented theory closely models the transport mechanisms in such systems. Moreover, we experimentally and numerically demonstrate a trade-off between the energetic and desalination performance in systems with low and high mass Péclet number.
Collapse
Affiliation(s)
- Yasamin Salamat
- Mechanical and Industrial Engineering Department, Northeastern University, 334 Snell Engineering Center, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Carlos H Hidrovo
- Mechanical and Industrial Engineering Department, Northeastern University, 334 Snell Engineering Center, 360 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Energy storage and generation through desalination using flow-electrodes capacitive deionization. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Hand S, Guest JS, Cusick RD. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13353-13363. [PMID: 31657552 DOI: 10.1021/acs.est.9b04347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Capacitive deionization (CDI), a class of electrochemical separation technologies, has been proposed as an energy-efficient brackish water desalination method. Previous studies have focused on improving capacity and energy consumption through material (e.g., ion-selective membranes [IEMs], charged carbon) and operational modifications, but there has been no analysis that directly links lab-scale experimental performance to capital and operating costs of full-scale water production. In this study, we developed a parameterized process model and technoeconomic analysis framework to project capital and operating costs at the million gallon per day scale based on reported material and operational characteristics for constant current CDI with and without low ($20 m-2)- and high-cost ($100 m-2) IEMs. Using this framework, we conducted global sensitivity and uncertainty analyses for water price across the reported CDI design space. Our results show that the operating constraints of brackish water desalination lead to capital costs 2-14 times greater than operating costs (particularly for MCDI). While MCDI outperforms CDI, IEM prices dictate the threshold at which MCDI is more cost-effective. The high relative capital costs highlight the importance of achieving system lifetimes at 2 years or beyond. Last, we set performance and areal cost benchmarks for material-based CDI performance and lifetime improvements.
Collapse
Affiliation(s)
- Steven Hand
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| | - Roland D Cusick
- Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801-2352 , United States
| |
Collapse
|
16
|
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019; 165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Deionization devices that use intercalation reactions to reversibly store and release cations from solution show promise for energy-efficient desalination of alternative water resources. Intercalation materials often display low electronic conductivity that results in increased energy consumption during desalination. Accordingly, we performed experiments to quantify the impact of the size and mass fraction of conductive additives and insulative active particles on the effective electronic conductivity, ionic conductivity, and hydraulic permeability of porous electrodes. We find that Ketjen black conductive additives with nodules <50 nm in diameter produce superior electronic conductivity at lower mass fractions than the larger carbon blacks commonly used in capacitive deionization. Hydraulic permeability and effective ionic conductivity depend weakly on carbon black content and size, though smaller active particles decrease hydraulic permeability. Based on these results we analyzed the energy consumption and salt removal rate of different electrode formulations by constructing an electrochemical Ashby plot predicting the variation of desalination performance with electrode transport properties. Optimized electrodes containing insulative Prussian blue analogue (PBA) particles were then fabricated and used in an experimental cation intercalation desalination (CID) cell with symmetric electrodes. For 100 mM NaCl influent energy consumption varied from 7 to 33 kJ/mol when current density increased from 1 to 8 mA/cm2, approaching ten-fold increased salt removal rate at similar energy consumption levels to past CID demonstrations. Complementary numerical and analytical modeling indicates that further improvements in energy consumption and salt removal rate are attainable by enhancing transport in solution and within PBA agglomerates.
Collapse
Affiliation(s)
- Erik R Reale
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Aniruddh Shrivastava
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kyle C Smith
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Computational Science and Engineering Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
17
|
|
18
|
Continuous Lithium Extraction from Aqueous Solution Using Flow-Electrode Capacitive Deionization. ENERGIES 2019. [DOI: 10.3390/en12152913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flow-electrode-based capacitive deionization (FCDI) is a desalination process that uses electrostatic adsorption and desorption of ions onto electrode materials. It provides a continuous desalination flow with high salt removal performance and low energy consumption. Since lithium has been regarded as an essential element for the last few decades, the efficient production of lithium from the natural environment has been intensively investigated. In this study, we have extracted lithium ions from aqueous solution by using FCDI desalination. We confirmed that lithium and chloride ions could be continuously collected and that the salt removal rate depends on various parameters, including feed-flow rate and a feed saline concentration. We found that the salt removal rate increases as the feed-flow rate decreases and the feed salt concentration increases. Furthermore, the salt removal rate depends on the circulation mode of the feed solution (continuous feed stream vs. batch feed stream), which allows control of the desalination performance (higher capacity vs. higher efficiency) depending on the purpose of the application. The salt removal rate was highest, at 215.06 μmol/m−2s−1, at the feed rate of 3 mL/min and the feed concentration of 100 mg/L. We believe that such efficient and continuous extraction of lithium chloride using FCDI desalination can open a new door for the current lithium-production industry, which typically uses natural water evaporation.
Collapse
|
19
|
Srimuk P, Husmann S, Presser V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Adv 2019; 9:14849-14858. [PMID: 35516351 PMCID: PMC9064245 DOI: 10.1039/c9ra02570g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Technologies for the effective and energy efficient removal of salt from saline media for advanced water remediation are in high demand. Capacitive deionization using carbon electrodes is limited to highly diluted salt water. Our work demonstrates the high desalination performance of the silver/silver chloride conversion reaction by a chloride ion rocking-chair desalination mechanism. Silver nanoparticles are used as positive electrodes while their chlorination into AgCl particles produces the negative electrode in such a combination that enables a very low cell voltage of only Δ200 mV. We used a chloride-ion desalination cell with two flow channels separated by a polymeric cation exchange membrane. The optimized electrode paring between Ag and AgCl achieves a low energy consumption of 2.5 kT per ion when performing treatment with highly saline feed (600 mM NaCl). The cell affords a stable desalination capacity of 115 mg g−1 at a charge efficiency of 98%. This performance aligns with a charge capacity of 110 mA h g−1. The silver/silver chloride conversion reaction allows for a high desalination capacity of saline media with high molar strength.![]()
Collapse
Affiliation(s)
- Pattarachai Srimuk
- Department of Materials Science and Engineering
- Saarland University
- 66123 Saarbrücken
- Germany
- INM - Leibniz Institute for New Materials
| | - Samantha Husmann
- Department of Materials Science and Engineering
- Saarland University
- 66123 Saarbrücken
- Germany
| | - Volker Presser
- Department of Materials Science and Engineering
- Saarland University
- 66123 Saarbrücken
- Germany
- INM - Leibniz Institute for New Materials
| |
Collapse
|