• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (5067987)   Today's Articles (150)
For: Hand S, Shang X, Guest JS, Smith KC, Cusick RD. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies. Environ Sci Technol 2019;53:3748-3756. [PMID: 30821148 DOI: 10.1021/acs.est.8b06709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Number Cited by Other Article(s)
1
Jiang Y, Jin L, Wei D, Alhassan SI, Wang H, Chai L. Energy Consumption in Capacitive Deionization for Desalination: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022;19:10599. [PMID: 36078322 PMCID: PMC9517846 DOI: 10.3390/ijerph191710599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
2
Xu L, Peng S, Mao Y, Zong Y, Zhang X, Wu D. Enhancing Brackish Water Desalination using Magnetic Flow-electrode Capacitive Deionization. WATER RESEARCH 2022;216:118290. [PMID: 35306460 DOI: 10.1016/j.watres.2022.118290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/21/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
3
Wei W, Ge Z, Geng Y, Jiang M, Chen Z, Wu W. Toward carbon neutrality: Uncovering constraints on critical minerals in the Chinese power system. FUNDAMENTAL RESEARCH 2022;2:367-374. [PMID: 38933393 PMCID: PMC11197575 DOI: 10.1016/j.fmre.2022.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]  Open
4
Wang Q, Fang K, He C, Wang K. Ammonia removal from municipal wastewater via membrane capacitive deionization (MCDI) in pilot-scale. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
5
Xu L, Mao Y, Zong Y, Peng S, Zhang X, Wu D. Membrane-Current Collector-Based Flow-Electrode Capacitive Deionization System: A Novel Stack Configuration for Scale-Up Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:13286-13296. [PMID: 34529405 DOI: 10.1021/acs.est.1c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
6
Mao M, Yan T, Shen J, Zhang J, Zhang D. Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes via an Electro-Adsorption Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021;55:7665-7673. [PMID: 33983021 DOI: 10.1021/acs.est.1c01483] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
7
Xu L, Xie Y, Zong Y, Mao Y, Zhang B, Chu H, Wu D. Formic acid recovery from EDTA wastewater using coupled ozonation and flow-electrode capacitive deionization (Ozo/FCDI): Performance assessment at high cell voltage. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117613] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
8
Liu X, Shanbhag S, Natesakhawat S, Whitacre JF, Mauter MS. Performance Loss of Activated Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property Predictors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:15516-15526. [PMID: 33205957 DOI: 10.1021/acs.est.0c06549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
9
Hasseler TD, Ramachandran A, Tarpeh WA, Stadermann M, Santiago JG. Process design tools and techno-economic analysis for capacitive deionization. WATER RESEARCH 2020;183:116034. [PMID: 32736269 DOI: 10.1016/j.watres.2020.116034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 05/03/2023]
10
Wang H, Yuan T, Huang L, He Y, Wu B, Hou L, Liao Q, Yang W. Enhanced chloride removal of phosphorus doping in carbon material for capacitive deionization: Experimental measurement and theoretical calculation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020;720:137637. [PMID: 32325593 DOI: 10.1016/j.scitotenv.2020.137637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
11
Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
12
Pothanamkandathil V, Fortunato J, Gorski CA. Electrochemical Desalination Using Intercalating Electrode Materials: A Comparison of Energy Demands. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:3653-3662. [PMID: 32048848 DOI: 10.1021/acs.est.9b07311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
13
Salamat Y, Hidrovo CH. Significance of the micropores electro-sorption resistance in capacitive deionization systems. WATER RESEARCH 2020;169:115286. [PMID: 31734390 DOI: 10.1016/j.watres.2019.115286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
14
Energy storage and generation through desalination using flow-electrodes capacitive deionization. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
15
Hand S, Guest JS, Cusick RD. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:13353-13363. [PMID: 31657552 DOI: 10.1021/acs.est.9b04347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
16
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019;165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
17
Progress and outlook for capacitive deionization technology. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
18
Continuous Lithium Extraction from Aqueous Solution Using Flow-Electrode Capacitive Deionization. ENERGIES 2019. [DOI: 10.3390/en12152913] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
19
Srimuk P, Husmann S, Presser V. Low voltage operation of a silver/silver chloride battery with high desalination capacity in seawater. RSC Adv 2019;9:14849-14858. [PMID: 35516351 PMCID: PMC9064245 DOI: 10.1039/c9ra02570g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA