1
|
Cooke M, Dam M, Wingen LM, Perraud V, Thomas AE, Rojas B, Nagalingam S, Ezell MJ, La Salle S, Bauer PS, Finlayson-Pitts BJ, Smith JN. Emissions of Nitrous Acid, Nitryl Chloride, and Dinitrogen Pentoxide Associated with Automotive Braking. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9167-9177. [PMID: 40305074 PMCID: PMC12080250 DOI: 10.1021/acs.est.4c13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
As worldwide trends move toward replacing combustion transportation modes with electric vehicles, characterizing non-tailpipe emissions, such as those from brake wear, becomes increasingly important. Nitrous acid (HONO), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5) are important sources of radical oxidants (e.g., •OH, •Cl, •NO3) and nitrogen oxides (NOx) in the atmosphere, driving the chemistry that leads to air quality degradation. Discrepancies between measurements and model predictions indicate that there are significant unknown sources of these species, particularly HONO, where the contributions of different formation processes have been controversial since the first ambient observations in the 1970s. We report the generation of these reactive nitrogen species during automotive braking using chemical ionization mass spectrometry configured with iodide reagent ion. Substantial HONO levels are observed from ceramic and semi-metallic brake pads, and smaller quantities of ClNO2 and N2O5 were also detected. We propose that HONO is formed in the hot plume emanating from the brake rotor via abstraction by NO2 of allylic and aldehyde hydrogen atoms found in the complex mixture of volatile organic compounds emitted simultaneously. These results suggest that emissions from automotive braking must be taken into account in urban oxidation chemistry.
Collapse
Affiliation(s)
- Madeline
E. Cooke
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Michelia Dam
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Lisa M. Wingen
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Véronique Perraud
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Adam E. Thomas
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Berenice Rojas
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Sanjeevi Nagalingam
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Michael J. Ezell
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Samuel La Salle
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Paulus S. Bauer
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | | | - James N. Smith
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Yin J, Xu Z, Wei W, Jia Z, Fang T, Jiang Z, Cao Z, Wu L, Wei N, Men Z, Guo Q, Zhang Q, Mao H. Laboratory measurement and machine learning-based analysis of driving factors for brake wear particle emissions from light-duty electric vehicles and heavy-duty vehicles. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137433. [PMID: 39884042 DOI: 10.1016/j.jhazmat.2025.137433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This study investigates brake wear particle (BWP) emissions from light-duty electric vehicles (EVs) and heavy-duty vehicles (HDVs) using a self-developed whole-vehicle testing system and a modified brake dynamometer. The results show that regenerative braking significantly reduces emissions: weak and strong regenerative braking modes reduce brake wear PM2.5 by 75 % and 87 %, and brake wear PM10 by 90 % and 95 %, respectively. HDVs with drum brakes produce lower emissions and higher PM2.5/PM10 ratios than those with disc brakes. A machine learning model (XGBoost) was developed to analyze the relationship between BWP emissions and factors (11 for light-duty EVs and 8 for HDVs, based on kinematic, vehicle, and braking parameters). SHapley Additive exPlanations (SHAP) were used for model interpretation. For light-duty EVs, reducing high kinetic energy losses (Ike > 6500 J) and initial speeds (V > 45 km/h) braking events significantly lowers emissions. Additionally, the emission reduction effect of regenerative braking intensity (BI) stabilizes when BI exceeds 900 J. For HDVs, controlling braking temperature (Avg.T < 200°C) and initial speed (V < 50 km/h) effectively reduces emissions. Our findings provide new insights into the emission characteristics and control strategies for BWPs. SYNOPSIS: The construction and interpretation of a machine learning based model of brake wear emissions provides new insights into the refined assessment and control of non-exhaust emissions.
Collapse
Affiliation(s)
- Jiawei Yin
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhou Xu
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wendi Wei
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhenyu Jia
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhiwen Jiang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zeping Cao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ning Wei
- Jinchuan Group Information and Automation Engineering Co. Ltd., Jinchang 737100, China
| | - Zhengyu Men
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Quanyou Guo
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Wen Y, Yu Q, He BY, Ma J, Zhang S, Wu Y, Zhu Y. Persistent Environmental Injustice due to Brake and Tire Wear Emissions and Heavy-Duty Trucks in Future California Zero-Emission Fleets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19372-19384. [PMID: 39421921 PMCID: PMC11526366 DOI: 10.1021/acs.est.4c04126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
The adoption of zero-emission vehicles (ZEVs) offers multiple benefits for the climate, air quality, and public health by reducing tailpipe emissions. However, the environmental justice implications of the nonexhaust emissions from future ZEV fleets for near-roadway communities remain unclear. Here, we model the on-road fine particulate matter (PM2.5) emissions across all California counties and assess the near-roadway exposure disparities at the census block group level in the Los Angeles County in 2050, when almost all passenger vehicles are projected to be ZEVs. We found that promoting zero-emission heavy-duty trucks generates more air quality benefits for disadvantaged communities than light-duty passenger vehicles. Persistent disparities in near-roadway PM2.5 levels, however, exist due to the remaining brake and tire wear emissions and increased truck traffic in disadvantaged communities. We recommend implementing fleet-specific ZEV policies to address brake and tire wear emissions and optimizing freight structures to address these persistent environmental justice issues in California.
Collapse
Affiliation(s)
- Yifan Wen
- School
of Environment, State Key Joint Laboratory of Environment Simulation
and Pollution Control, Tsinghua University, Beijing 100084, China
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| | - Qiao Yu
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| | - Brian Yueshuai He
- Department
of Civil and Environmental Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Jiaqi Ma
- Department
of Civil and Environmental Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Shaojun Zhang
- School
of Environment, State Key Joint Laboratory of Environment Simulation
and Pollution Control, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
- Beijing
Laboratory of Environmental Frontier Technologies, Beijing 100084, China
- Laboratory
of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry
of Transport, Beijing 100028, China
| | - Ye Wu
- School
of Environment, State Key Joint Laboratory of Environment Simulation
and Pollution Control, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
- Beijing
Laboratory of Environmental Frontier Technologies, Beijing 100084, China
- Laboratory
of Transport Pollution Control and Monitoring Technology, Transport Planning and Research Institute, Ministry
of Transport, Beijing 100028, China
| | - Yifang Zhu
- Department
of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Patel A, Aggarwal S, Bard L, Durif O, Introna M, Juárez-Facio AT, Tu M, Elihn K, Nozière B, Olofsson U, Steimer SS. Gaseous emissions from brake wear can form secondary particulate matter. Sci Rep 2024; 14:23253. [PMID: 39370421 PMCID: PMC11456579 DOI: 10.1038/s41598-024-74378-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Road traffic is an important source of urban air pollutants. Due to increasingly strict controls of exhaust emissions from road traffic, their contribution to the total emissions has strongly decreased over time in high-income countries. In contrast, non-exhaust emissions from road vehicles are not yet legislated and now make up the major proportion of road traffic emissions in many countries. Brake wear, which occurs due to friction between brake linings and their rotating counterpart, is one of the main non-exhaust sources contributing to particle emissions. Since the focus of brake wear emission has largely been on particulate pollutants, little is currently known about gaseous emissions such as volatile organic compounds from braking and their fate in the atmosphere. This study investigates the oxidative ageing of gaseous brake wear emissions generated with a pin-on-disc tribometer, using an oxidation flow reactor. The results demonstrate, for the first time, that the photooxidation of gaseous brake wear emissions can lead to formation of secondary particulate matter, which could amplify the environmental impact of brake wear emissions.
Collapse
Affiliation(s)
- Anil Patel
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
- Bolin Centre for Climate Research, 11418, Stockholm, Sweden
- Department of Atmospheric and Oceanic Sciences, University of California at Los Angeles, Los Angeles, CA, 90095-1565, USA
| | - Sneha Aggarwal
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
- Bolin Centre for Climate Research, 11418, Stockholm, Sweden
| | - Lucas Bard
- Department of Machine Design, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Olivier Durif
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Micol Introna
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Minghui Tu
- Department of Machine Design, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Barbara Nozière
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden.
- Bolin Centre for Climate Research, 11418, Stockholm, Sweden.
| |
Collapse
|
5
|
Perraud V, Blake DR, Wingen LM, Barletta B, Bauer PS, Campos J, Ezell MJ, Guenther A, Johnson KN, Lee M, Meinardi S, Patterson J, Saltzman ES, Thomas AE, Smith JN, Finlayson-Pitts BJ. Unrecognized volatile and semi-volatile organic compounds from brake wear. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:928-941. [PMID: 38635247 DOI: 10.1039/d4em00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Motor vehicles are among the major sources of pollutants and greenhouse gases in urban areas and a transition to "zero emission vehicles" is underway worldwide. However, emissions associated with brake and tire wear will remain. We show here that previously unrecognized volatile and semi-volatile organic compounds, which have a similarity to biomass burning emissions are emitted during braking. These include greenhouse gases or, these classified as Hazardous Air Pollutants, as well as nitrogen-containing organics, nitrogen oxides and ammonia. The distribution and reactivity of these gaseous emissions are such that they can react in air to form ozone and other secondary pollutants with adverse health and climate consequences. Some of the compounds may prove to be unique markers of brake emissions. At higher temperatures, nucleation and growth of nanoparticles is also observed. Regions with high traffic, which are often disadvantaged communities, as well as commuters can be impacted by these emissions even after combustion-powered vehicles are phased out.
Collapse
Affiliation(s)
- V Perraud
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - D R Blake
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - L M Wingen
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - B Barletta
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - P S Bauer
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - J Campos
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - M J Ezell
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - A Guenther
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - K N Johnson
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - M Lee
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - S Meinardi
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - J Patterson
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - E S Saltzman
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - A E Thomas
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - J N Smith
- Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
6
|
Tomson M, Kumar P, Abhijith KV, Watts JF. Exploring the interplay between particulate matter capture, wash-off, and leaf traits in green wall species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170950. [PMID: 38360301 DOI: 10.1016/j.scitotenv.2024.170950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/17/2024]
Abstract
The study investigated inter-species variation in particulate matter (PM) accumulation, wash-off, and retention on green wall plants, with a focus on leaf characteristics. Ten broadleaf plant species were studied in an experimental green wall. Ambient PM concentrations remained relatively stable throughout the measurement period: PM1: 16.60 ± 9.97 μgm-3, PM2.5: 23.27 ± 11.88 μgm-3, and PM10: 39.59 ± 25.72 μgm-3. Leaf samples were taken before and after three rainfall events, and PM deposition was measured using Scanning Electron Microscopy (SEM). Leaf micromorphological traits, including surface roughness, hair density, and stomatal density, exhibited variability among species and leaf surfaces. Notably, I.sempervirens and H.helix had relatively high PM densities across all size fractions. The study underscored the substantial potential of green wall plants for atmospheric PM removal, with higher Wall Leaf Area Index (WLAI) species like A.maritima and T.serpyllum exhibiting increased PM accumulation at plant level. Rainfall led to significant wash-off for smaller particles, whereas larger particles exhibited lower wash-off rates. Leaf micromorphology impacted PM accumulation, although effects varied among species, and parameters such as surface roughness, stomatal density, and leaf size did not consistently affect PM deposition. The composition of deposited particles encompassed natural, vehicular, salt, and unclassified agglomerates, with minimal changes after rainfall. Air Pollution Tolerance Index (APTI) assessments revealed that I.sempervirens displayed the highest air pollution tolerance, while O.vulgare had the lowest. APTI showed a moderate positive correlation with PM deposition across all fractions. The study concluded that the interplay of macro and micromorphology in green wall plant species determines their PM removal potential. Further research is needed to identify the key leaf characteristics for optimal green wall species selection for effective PM removal.
Collapse
Affiliation(s)
- Mamatha Tomson
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Centre for Atmospheric Chemistry, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom; Institute for Sustainability, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom.
| | - K V Abhijith
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| | - John F Watts
- School of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, Surrey, United Kingdom
| |
Collapse
|
7
|
Thomas AE, Bauer PS, Dam M, Perraud V, Wingen LM, Smith JN. Automotive braking is a source of highly charged aerosol particles. Proc Natl Acad Sci U S A 2024; 121:e2313897121. [PMID: 38466875 PMCID: PMC10990126 DOI: 10.1073/pnas.2313897121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Although the last several decades have seen a dramatic reduction in emissions from vehicular exhaust, nonexhaust emissions (e.g., brake and tire wear) represent an increasingly significant class of traffic-related particulate pollution. Aerosol particles emitted from the wear of automotive brake pads contribute roughly half of the particle mass attributed to nonexhaust sources, while their relative contribution to urban air pollution overall will almost certainly grow coinciding with vehicle fleet electrification and the transition to alternative fuels. To better understand the implications of this growing prominence, a more thorough understanding of the physicochemical properties of brake wear particles (BWPs) is needed. Here, we investigate the electrical properties of BWPs as emitted from ceramic and semi-metallic brake pads. We show that up to 80% of BWPs emitted are electrically charged and that this fraction is strongly dependent on the specific brake pad material used. A dependence of the number of charges per particle on charge polarity and particle size is also demonstrated. We find that brake wear produces both positive and negative charged particles that can hold in excess of 30 elementary charges and show evidence that more negative charges are produced than positive. Our results will provide insights into the currently limited understanding of BWPs and their charging mechanisms, which potentially have significant implications on their atmospheric lifetimes and thus their relevance to climate and air quality. In addition, our study will inform future efforts to remove BWP emissions before entering the atmosphere by taking advantage of their electric charge.
Collapse
Affiliation(s)
- Adam E. Thomas
- Department of Chemistry, University of California, Irvine, CA92697
| | - Paulus S. Bauer
- Department of Chemistry, University of California, Irvine, CA92697
| | - Michelia Dam
- Department of Chemistry, University of California, Irvine, CA92697
| | | | - Lisa M. Wingen
- Department of Chemistry, University of California, Irvine, CA92697
| | - James N. Smith
- Department of Chemistry, University of California, Irvine, CA92697
| |
Collapse
|
8
|
Zhang Q, Yin J, Fang T, Guo Q, Sun J, Peng J, Zhong C, Wu L, Mao H. Regenerative braking system effectively reduces the formation of brake wear particles. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133350. [PMID: 38154178 DOI: 10.1016/j.jhazmat.2023.133350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Brake wear particles (BWPs) are considered one of the most significant non-exhaust particle emission sources from motor vehicles. Previous studies have primarily focused on BWPs from conventional fuel vehicles (CFVs), with limited research available on BWPs from new energy vehicles (NEVs). We developed an independent BWP emission testing system applicable to NEVs and conducted BWP emission tests on representative NEVs and CFVs under various testing cycles via a chassis dynamometer. The BWP emission characteristics of the NEVs equipped with regenerative braking system significantly differed from those of gasoline vehicles. For transient emission characteristics, gasoline vehicles exhibited higher peak concentrations during brake events than brake drag events, while those with regenerative braking exhibited the opposite feature. Under continuous braking, the concentration of ultrafine particles emitted by NEVs was reduced by more than 3 orders of magnitude compared to gasoline vehicles. In terms of single-particle morphology, BWPs could be mainly divided into three categories: carbonaceous particles, iron-rich particles, and mixed metal particles. We obtained realistic emission characteristics of BWPs from NEVs, which could provide data support and a scientific basis for the formulation of relevant emission standards and control measures in the future.
Collapse
Affiliation(s)
- Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Jiawei Yin
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Quanyou Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiaxing Sun
- China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Chongzhi Zhong
- China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Lee ES, Sahay K, O'Neil E, Biswas S, Dzhema I, Huang SM, Lin P, Chang MCO, Huai T. Tracer-Gas-Integrated Measurements of Brake-Wear Particulate Matter Emissions from Heavy-Duty Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15968-15978. [PMID: 37782561 DOI: 10.1021/acs.est.3c03673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Automotive brake-wear emissions are increasingly important in on-road particulate matter (PM) emission inventory. Previous studies reported a high level of PM emissions from the friction materials of light/medium-duty vehicles, but there are few data available from heavy-duty (HD) vehicles equipped with drum brakes despite their popularity (∼85% in HD vehicle fleet). This study developed a novel tracer-gas-integrated method for brake-wear PM emission measurements and evaluated four HD vehicles on a chassis dynamometer that complied with regulatory exhaust emission testing requirements. Three class-6 vehicles with a similar test weight demonstrated repeatability, with the coefficient of variation in the range of 9-36%. Braking events increased PM concentrations by 3 orders of magnitude above the background level. Resuspension of brake-wear PM also occurred during acceleration and contributed to 8-31% of the total PM2.5 mass. The class-6 vehicles had PM2.5 emissions from a single brake (0.7-1.5 mg/km/brake), generally similar to the level of tail-pipe exhaust PM emissions (0.7-1.5 mg/km/vehicle) of each vehicle. A class-8 vehicle exhibited brake-wear PM2.5 emissions (2.4-3.4 mg/km/brake) significantly higher than the tail-pipe exhaust PM emissions (∼1.3 mg/km/vehicle). This article reports an exceptionally high level of brake-wear PM emissions measured directly from the drum brakes of HD vehicles.
Collapse
Affiliation(s)
- Eon S Lee
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Keshav Sahay
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Edward O'Neil
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Subhasis Biswas
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Inna Dzhema
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Shiou-Mei Huang
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Peng Lin
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Ming-Chih Oliver Chang
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| | - Tao Huai
- Mobile Source Laboratory Division, California Air Resources Board, 4001 Iowa Avenue, Riverside, California 92507, United States
| |
Collapse
|
10
|
Orozco CR, Tangtermsirikul S, Sugiyama T, Babel S. Comparative environmental assessment of low and high CaO fly ash in mass concrete mixtures for enhanced sustainability: Impact of fly ash type and transportation. ENVIRONMENTAL RESEARCH 2023; 234:116579. [PMID: 37423372 DOI: 10.1016/j.envres.2023.116579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
The effect of fly ash type on the sustainability of concrete mixtures has yet to be quantified. This study aims to assess the environmental impacts of low calcium oxide (CaO) and high CaO fly ash in mass concrete mixtures from Thailand. The study analyzed 27 concrete mixtures with varying percentages of fly ash as a cement replacement (0%, 25%, and 50%) for 30 MPa, 35 MPa, and 40 MPa compressive strengths at specified design ages of 28 and 56 days. Sources of fly ash have been located between 190 km and 600 km away from batching plants. The environmental impacts were assessed using SimaPro 9.3 software. The global warming potential of concrete is reduced by 22-30.6% and 44-51.4% when fly ash, regardless of type, is used at 25% and 50%, respectively, in comparison with pure cement concrete. High CaO fly ash has more environmental benefits than low CaO fly ash when utilized as a cement substitute. The reduction in environmental burden was most significant for the midpoint categories of mineral resource scarcity (10.2%), global warming potential (8.8%), and water consumption (8.2%) for the 40 MPa, 56-day design with 50% fly ash replacement. The longer design age (56 days) for fly ash concrete showed better environmental performance. However, long-distance transport significantly affects ionizing radiation and ecotoxicity indicators for terrestrial, marine, and freshwater environments. Furthermore, the results show that a high cement replacement level (50%) may not always have a reduced environmental impact on mass concrete when considering long-distance transportation. The critical distance calculated based on ecotoxicity indicators was shorter than those calculated using global warming potential. The results of this study can provide insights for developing policies to increase concrete sustainability using different types of fly ash.
Collapse
Affiliation(s)
- Christian R Orozco
- Sirindhorn International Institute of Technology, Thammasat University, PO Box 22, Pathum Thani, 12121, Thailand; Graduate School of Engineering, Hokkaido University, Japan, Sapporo, 060-8628, Hokkaido, Japan
| | - Somnuk Tangtermsirikul
- Sirindhorn International Institute of Technology, Thammasat University, PO Box 22, Pathum Thani, 12121, Thailand
| | - Takafumi Sugiyama
- Faculty of Engineering, Hokkaido University, Japan, Sapporo, 060-8628, Hokkaido, Japan
| | - Sandhya Babel
- Sirindhorn International Institute of Technology, Thammasat University, PO Box 22, Pathum Thani, 12121, Thailand.
| |
Collapse
|
11
|
Feo ML, Torre M, Tratzi P, Battistelli F, Tomassetti L, Petracchini F, Guerriero E, Paolini V. Laboratory and on-road testing for brake wear particle emissions: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100282-100300. [PMID: 37620705 DOI: 10.1007/s11356-023-29229-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Brake wear emission is a significant contributor to vehicle-related particulate matter, especially in areas with high traffic density and braking frequency. Only recently, non-exhaust emissions from car brake wear have been regulated under Euro 7 regulation, which introduces emission limits for both brake and tires. It also introduces a standard brake particle assessment procedure which includes sampling procedure and measurement techniques defined in the Global Technical Regulation on brakes from light-duty vehicles up to 3.5 t. Over the years, various experimental setups have been tried leading to non-comparable results. The brake wear particle emissions, expressed as emission factors, are mostly estimated as particle mass or particle number and described using different units (e.g., mg/stop brake, mg/km brake; particle number/cm3) making the comparison between studies very difficult. The aim of the present literature review is to present the state-of-the-art of different experimental methods tuned for assessing brake wear emissions, including electric vehicles. The experiments are carried in close, semi-closed, and open systems, and depending on the experimental design, different sampling methods are applied to reduce particle transport loss and guarantee the efficiency of the particle sampling. Driving condition (e.g., speed and applied pressure), formulation of brake materials, and friction temperature have been found to strongly affect the emission characteristics of brake particles, and this needs to be considered when designing study procedures. The findings reported in this review can be beneficial to policy makers and researchers.
Collapse
Affiliation(s)
- Maria Luisa Feo
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Marco Torre
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy.
| | - Patrizio Tratzi
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Francesca Battistelli
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Laura Tomassetti
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Francesco Petracchini
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Ettore Guerriero
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| | - Valerio Paolini
- Institute of Atmospheric Pollution Research, National Research Council of Italy, Area della Ricerca di Roma 1 - AdR RM1, Strada Provinciale 35d, 9, 00010, Montelibretti, (RM), Italy
| |
Collapse
|
12
|
Fu Z, Wu Y, Zhao S, Bai X, Liu S, Zhao H, Hao Y, Tian H. Emissions of multiple metals from vehicular brake linings wear in China, 1980-2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164380. [PMID: 37216994 DOI: 10.1016/j.scitotenv.2023.164380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Metals emitted from brake linings wear have adverse effects on air quality and human health due to their toxicity and reactivity. However, complexities of factors affecting brake like conditions of vehicles and roads hinder the accurate quantification. Here, we established a comprehensive emission inventory for multi-metals from brake linings wear in China during 1980-2020, based on metals contents in well-representative samples, the wear of brake linings before replacement, vehicle populations, fleet composition, and vehicle-kilometers travelled (VKT). We show that with the boom of vehicle population, the total emissions of studied metals have surged from 3.7 × 106 g in 1980 to 4.9 × 1010 g in 2020, which mainly concentrated in coastal and eastern urban areas while grown significantly in the central and western urban areas in recent years. Therein, Ca, Fe, Mg, Al, Cu, and Ba were the top six metals emitted, together responsible for >94 % of the mass total. Jointly determined by brake linings especially metals contents thereof, VKTs, and vehicle populations, heavy-duty trucks, light-duty passenger vehicles, and heavy-duty passenger vehicles were the top three contributors in metals emissions, together accounting about 90 % of the total. Moreover, more precise description on real-world metals emissions from brake linings wear are still urgently needed, considering the increasingly significant role it has been playing on worsening air quality and public health.
Collapse
Affiliation(s)
- Zhiqiang Fu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yiming Wu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuang Zhao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Xiaoxuan Bai
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Shuhan Liu
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Hongyan Zhao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China
| | - Yan Hao
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China.
| | - Hezhong Tian
- State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China; Center for Atmospheric Environmental Studies, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
13
|
Liu J, Peng J, Men Z, Fang T, Zhang J, Du Z, Zhang Q, Wang T, Wu L, Mao H. Brake wear-derived particles: Single-particle mass spectral signatures and real-world emissions. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 15:100240. [PMID: 36926019 PMCID: PMC10011745 DOI: 10.1016/j.ese.2023.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter (PM). The single-particle spectral fingerprints of brake wear particles (BWPs) provide essential information for understanding their formation mechanism and atmospheric contributions. Herein, we obtained the single-particle mass spectra of BWPs by combining a brake dynamometer with an online single particle aerosol mass spectrometer and quantified real-world BWP emissions through a tunnel observation in Tianjin, China. The pure BWPs mainly include three distinct types of particles, namely, Ba-containing particles, mineral particles, and carbon-containing particles, accounting for 44.2%, 43.4%, and 10.3% of the total BWP number concentration, respectively. The diversified mass spectra indicate complex BWP formation pathways, such as mechanical, phase transition, and chemical processes. Notably, the mass spectra of Ba-containing particles are unique, which allows them to serve as an excellent indicator for estimating ambient BWP concentrations. By evaluating this indicator, we find that approximately 4.0% of the PM in the tunnel could be attributable to brake wear; the real-world fleet-average emission factor of 0.28 mg km-1 veh-1 is consistent with the estimation obtained using the receptor model. The results presented herein can be used to inform assessments of the environmental and health impacts of BWPs to formulate effective emissions control policies.
Collapse
|
14
|
Motta M, Fedrizzi L, Andreatta F. Corrosion Stiction in Automotive Braking Systems. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103710. [PMID: 37241336 DOI: 10.3390/ma16103710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
This review paper targets the corrosion-stiction phenomenon that can occur in automotive braking systems under static conditions in aggressive environments. The corrosion of gray cast iron discs can lead to a strong adhesion of the brake pad at the pad/disc interface that can impair the reliability and performance of the braking system. The main constituents of friction materials are initially reviewed in order to highlight the complexity of a brake pad. Corrosion-related phenomena, including stiction and stick-slip, are considered in detail to discuss the complex effect of the chemical and physical properties of friction materials on these phenomena. In addition, testing methods to evaluate the susceptibility to corrosion stiction are reviewed in this work. Electrochemical methods, including potentiodynamic polarization and electrochemical impedance spectroscopy, are useful tools for a better understanding of corrosion stiction. The development of friction materials with low susceptibility to stiction should follow a complementary approach targeting an accurate selection of the constituents, control of local conditions at the pad-disc interface, and the use of specific additives or surface treatments to reduce the corrosion susceptibility of gray cast-iron rotors.
Collapse
Affiliation(s)
- Michele Motta
- Polytechnic Department of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Lorenzo Fedrizzi
- Polytechnic Department of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| | - Francesco Andreatta
- Polytechnic Department of Engineering and Architecture, University of Udine, Via del Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
15
|
Maricq MM. Engine, aftertreatment, fuel quality and non-tailpipe achievements to lower gasoline vehicle PM emissions: Literature review and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161225. [PMID: 36596425 DOI: 10.1016/j.scitotenv.2022.161225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Spark ignition gasoline vehicles comprise most light duty vehicles worldwide. These vehicles were not historically associated with PM emissions. This changed about 15 years ago when emissions regulations forced diesel engines to employ exhaust particulate filters and fuel economy requirements ushered in gasoline direct injection (GDI) technology. These shifts reversed the roles of gasoline and diesel vehicles, with GDI vehicles now regarded as the high PM emitters. Regulators worldwide responded with new or revised PM emissions standards. This review takes a comprehensive look at PM emissions from gasoline vehicles. It examines the technological advances that made it possible for GDI vehicles to meet even the most stringent tailpipe PM standards. These include fuel injection strategies and injector designs to limit fuel films in the engine cylinder that were pathways for soot formation and the development of gasoline particle filters to remove PM from engine exhaust. The review also examines non-exhaust PM emissions from brake, tire, and road wear, which have become the dominant sources of vehicle derived PM. Understanding the low levels of GDI tailpipe PM emissions that have been achieved and its contribution to total vehicle PM emissions is essential for the current debate about the future of internal combustion engines versus rapidly evolving battery electric vehicles. In this context, it does not make sense to consider BEVs as zero emitting vehicles. Rather, a more holistic framework is needed to compare the relative merits of various vehicle powertrains.
Collapse
|
16
|
Woo SH, Jang H, Lee SB, Lee S. Comparison of total PM emissions emitted from electric and internal combustion engine vehicles: An experimental analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156961. [PMID: 35760182 DOI: 10.1016/j.scitotenv.2022.156961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Electric vehicles (EVs) are regarded as zero emission vehicles due to the absence of exhaust emissions. However, they still contribute non-exhaust particulate matter (PM) emissions, generated by brake wear, tire wear, road wear, and resuspended road dust. In fact, because EVs are heavier than internal combustion engine vehicles (ICEVs), their non-exhaust emissions are like to be even higher. While total PM emissions, including exhaust and non-exhaust PM emissions, from ICEVs and EVs have been compared based on the emission factors (EFs) listed in national emission inventories, there have been no comparisons based on experimental determinations. In this study, exhaust and non-exhaust emissions generated from a gasoline ICEV, diesel ICEV, and EV were experimentally investigated. The results showed that the EFs for the total PM emissions of ICEVs and EV were dependent on the inclusion of secondary exhaust PM, the brake pad type, and the regenerative braking intensity of the EV. When only primary exhaust PM emissions were considered in vehicles equipped with non-asbestos organic (NAO) brake pads, the total PM10 EF of the EV (47.7-49.3 mg/V·km) was 10-17 % higher than those of the gasoline ICEV (42.3 mg/V·km) and diesel ICEV (43.2 mg/V·km). However, in vehicles equipped with low-metallic (LM) brake pads, the total PM10 EF of the EV (49.2-57.7 mg/V·km) was comparable or lower than those of the gasoline ICEV (56.3 mg/V·km) and diesel ICEV (57.2 mg/V·km). When secondary PM emissions were included, the EF was always significantly lower for the EV than ICEVs. The total PM10 EF of the EV (47.7-57.7 mg/V·km) was lower than those of the gasoline ICEV (56.5-70.5 mg/V·km) and diesel ICEV (58.0-72.0 mg/V·km). Since secondary PM particles are mostly of submicron size, the EFs of the PM2.5 fraction of the ICEVs (28.7-33.0 mg/V·km) were two times higher than those of the EV (13.9-17.4 mg/V·km).
Collapse
Affiliation(s)
- Sang-Hee Woo
- Department of Mobility Power Research, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Hyungjoon Jang
- Department of Mobility Power Research, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea
| | - Seung-Bok Lee
- Center for Sustainable Environment Research, Korea Institute of Science and Technology, 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seokhwan Lee
- Department of Mobility Power Research, Korea Institute of Machinery and Materials, 156, Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea.
| |
Collapse
|
17
|
Liu Y, Chen H, Wu S, Gao J, Li Y, An Z, Mao B, Tu R, Li T. Impact of vehicle type, tyre feature and driving behaviour on tyre wear under real-world driving conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156950. [PMID: 35753475 DOI: 10.1016/j.scitotenv.2022.156950] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 05/27/2023]
Abstract
Tyre wear generates not only large pieces of microplastics but also airborne particle emissions, which have attracted considerable attention due to their adverse impacts on the environment, human health, and the water system. However, the study on tyre wear is scarce in real-world driving conditions. In the present study, the left-front and left-rear tyre wear in terms of volume lost in mm3 of 76 taxi cars was measured about every three months. This study covered 22 months from September 2019 to June 2021 and included more than 500 measurements in total. Some of the data was used to evaluate the effects of vehicle type and tyre type on tyre wear. In addition, a machine learning method (i.e., Extreme gradient boosting (XGBoost)) was used to probe the effect of driving behaviour on tyre wear by monitoring real-time driving behaviour. The current statistical results showed that, on average, the tyre wear was 72 mg veh-1 km-1 for a hybrid car and 53 mg veh-1 km-1 for a conventional internal combustion engine car. The average tyre wear measured for a taxi vehicle configuration featuring winter tyres was 160 mg veh-1 km-1, which was 1.4 and 3.0 times as much as those with all-season tyres and summer tyres, respectively. The wear rate of left-front tyres was 1.7 times higher than that of left-rear tyres. The XGBoost results indicated that compared to driving behaviour, tyre type and tyre position had more important effects on tyre wear. Among driving behaviours, braking and accelerating events presented the most considerable impact on tyre wear, followed by cornering manoeuvres and driving speed. Thus, it seems that limiting harsh braking and acceleration has the potential to reduce tyre wear significantly.
Collapse
Affiliation(s)
- Ye Liu
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK.
| | - Haibo Chen
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK.
| | - Sijin Wu
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK; Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jianbing Gao
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
| | - Ying Li
- Dynnoteq, 61 Bridge Street, Kington HR5 3DJ, UK
| | - Zihao An
- Institute for Transport Studies, University of Leeds, Leeds LS2 9JT, UK
| | - Baohua Mao
- Integrated Transport Research Center of China, Beijing Jiaotong University, Beijing 100044, China
| | - Ran Tu
- School of Transportation, Southeast University, Nanjing 210096, China
| | - Tiezhu Li
- School of Transportation, Southeast University, Nanjing 210096, China
| |
Collapse
|
18
|
Liu Y, Chen H, Yin C, Federici M, Perricone G, Li Y, Margaritis D, Shen Y, Guo J, Wei T. PM 10 prediction for brake wear of passenger car during different test driving cycles. CHEMOSPHERE 2022; 305:135481. [PMID: 35753424 DOI: 10.1016/j.chemosphere.2022.135481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/01/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
PM10 emissions generated from the brake wear of passenger car per braking event during three test driving cycles (WLTP, LACT, and WLTP-Brake) were studied using a finite element analysis (FEA) approach in combination with the relationship among the mass emitted rate of airborne particles versus local contact pressure and sliding speed. In addition, PM10 emissions were measured per braking event during the WLTP-Brake cycle on a brake dynamometer using an electrical low-pressure impactor (ELPI+) to validate the proposed FEA approach. The simulated and experimental results for WLTP-Brake illustrated that the proposed simulation approach has the potential to predict PM10 from brake wear per braking event, with an R2 value of 0.93. The FEA results of three test driving cycles showed that there was a gradient rise in pad wear on both sides from the inner to outer radii. The simulated PM10 emission factors during the WLTP, LACT, and WLTP-Brake were 7.9 mg km-1 veh-1, 9.8 mg km-1 veh-1, and 6.4 mg km-1 veh-1, respectively. Among three test driving cycles, the ratio of PM10 to total brake wear mass per braking event was the largest for the LACT, followed by WLTP and WLTP-Brake. From a practical application perspective, reducing the frequency of high-speed braking may be an effective way to decrease the generation of PM10 emissions.
Collapse
Affiliation(s)
- Ye Liu
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK.
| | - Haibo Chen
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK.
| | - Chuhan Yin
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | - Ying Li
- Dynnoteq, 61 Bridge Street, Kington, HR5 3DJ, UK
| | - Dimitris Margaritis
- Centre for Research and Technology Hellas (CERTH), Hellenic Institute of Transport (HIT), 6th km Charilaou-Thermi, 57001, Thermi, Thessaloniki, Greece
| | - Yang Shen
- Zhejiang Xinchai CO., LTD, Shaoxin, 312500, China
| | - Junhua Guo
- School of Transportation Engineering, East China Jiaotong University, Jiangxi, 330013, China
| | - Tangjian Wei
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK; School of Transportation Engineering, East China Jiaotong University, Jiangxi, 330013, China
| |
Collapse
|
19
|
Lin S, Liu Y, Chen H, Wu S, Michalaki V, Proctor P, Rowley G. Impact of change in traffic flow on vehicle non-exhaust PM 2.5 and PM 10 emissions: A case study of the M25 motorway, UK. CHEMOSPHERE 2022; 303:135069. [PMID: 35623436 DOI: 10.1016/j.chemosphere.2022.135069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
This study quantifies the change in traffic flow on the M25 motorway in the UK due to the COVID-19 outbreak. Moreover, the impact of the change in traffic flow on non-exhaust PM2.5 and PM10 emissions for different categories of vehicle was explored. During the year of the COVID-19 outbreak (March 2020 to February 2021), the total traffic flows of passenger cars (PCs), light goods vehicles (LGVs), heavy goods vehicles (HGVs), and long HGVs on the M25 motorway decreased by 38.6%, 27.6%, 15.9% and 7.2%, respectively, in comparison to the previous year. Correspondingly, the total mass of non-exhaust emissions (PM2.5 and PM10) of PCs, LGVs, HGVs, and long HGVs reduced by 38.7%, 27.3%, 16.2% and 7%, respectively. The traffic flows per year before and during the COVID-19 outbreak of long HGVs were 87.2% and 80.7% less than those of PCs. Correspondingly, the long HGVs emitted 10.2% less but 36.3% more PM2.5 emissions, as well as 10.9% and 66.7% more PM10 emissions than the latter, indicating that long HGVs contribute much more to non-exhaust particles than PCs. In addition, it was found that resuspension of road dust on the M25 motorway was the largest contributor to air pollution among non-exhaust emissions, followed by road wear, tyre wear, and brake wear particles.
Collapse
Affiliation(s)
- Siyi Lin
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK
| | - Ye Liu
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK.
| | - Haibo Chen
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sijin Wu
- Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, UK
| | - Vivi Michalaki
- National Highways, Temple Quay House, 2 The Square, Bristol, BS1 6HA, UK
| | - Phillip Proctor
- National Highways, Temple Quay House, 2 The Square, Bristol, BS1 6HA, UK
| | - Gavin Rowley
- National Highways, Temple Quay House, 2 The Square, Bristol, BS1 6HA, UK
| |
Collapse
|
20
|
Abstract
In this study, two different dust collectors, one based on an inertial separator and the other based on an electrostatic precipitator (ESP), were developed in order to reduce brake wear particulate matter (PM) emissions. Additionally, the collection efficiencies for brake wear particles (BWPs) of the inertial separator and the ESP were evaluated according to brake pad type. In the case of the inertial separator, the BWP collection efficiencies for the low-metallic (LM) and non-asbestos organic (NAO) pads were similar, and the cut-off size at 50% collection efficiency (D50) was 2.2 µm. The ESP was designed without an additional electrostatic charging device because naturally induced electrostatic charging occurred due to the friction between the brake disc and pad. The BWP collection efficiency of the ESP was higher for NAO pad than for LM pad because the BWPs generated from the NAO pad contained a relatively low iron (Fe) component compared to that of the LM pad, thereby generating more frictional electricity. The maximum ESP collection efficiencies of the BWPs generated from the LM and NAO pads were determined to be 60% and 75%, respectively, and the remaining BWPs that were not collected were presumed to be particles that were not frictionally charged.
Collapse
|
21
|
Men Z, Zhang X, Peng J, Zhang J, Fang T, Guo Q, Wei N, Zhang Q, Wang T, Wu L, Mao H. Determining factors and parameterization of brake wear particle emission. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128856. [PMID: 35413517 DOI: 10.1016/j.jhazmat.2022.128856] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Brake wear emission contributes to an increasingly significant proportion of vehicle-related particulate matter, but knowledge of its emission features and determining factors is still highly insufficient. Here, brake dynamometer experiments were conducted under controlled variables tests and real-world driving conditions to systematically investigate brake wear particle (BWP) emission. Compared to the decelerating process, the separating of pads and disc releases more BWPs, accounting for 47-76% of the total PM2.5 mass. Particle number and mass distributions exhibit bimodal (< 0.01 µm and 0.8-1.2 µm) and unimodal (2-5 µm) patterns, respectively. Larger speed reduction exponentially amplifies BWP emission, and the significant enhancement of nanoparticles is proved to be related to the evaporation of organic constituents in the pads with threshold ranging from 170 °C to 270 °C. Emissions from front and rear brake assemblies don't agree with braking torque distribution, mainly attributive to the different braking pressures. A parameterization scheme for BWP emission based on kinetic energy loss is further established and proved to sufficiently predict the variation of BWP under real-world driving conditions. Being corrected by 1.8th power of the initial speed, the scheme improves the prediction.
Collapse
Affiliation(s)
- Zhengyu Men
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xinfeng Zhang
- China Automotive Technology and Research Center Co. Ltd, Tianjin 300300, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Jing Zhang
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China
| | - Tiange Fang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Quanyou Guo
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ning Wei
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qijun Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Fussell JC, Franklin M, Green DC, Gustafsson M, Harrison RM, Hicks W, Kelly FJ, Kishta F, Miller MR, Mudway IS, Oroumiyeh F, Selley L, Wang M, Zhu Y. A Review of Road Traffic-Derived Non-Exhaust Particles: Emissions, Physicochemical Characteristics, Health Risks, and Mitigation Measures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6813-6835. [PMID: 35612468 PMCID: PMC9178796 DOI: 10.1021/acs.est.2c01072] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Implementation of regulatory standards has reduced exhaust emissions of particulate matter from road traffic substantially in the developed world. However, nonexhaust particle emissions arising from the wear of brakes, tires, and the road surface, together with the resuspension of road dust, are unregulated and exceed exhaust emissions in many jurisdictions. While knowledge of the sources of nonexhaust particles is fairly good, source-specific measurements of airborne concentrations are few, and studies of the toxicology and epidemiology do not give a clear picture of the health risk posed. This paper reviews the current state of knowledge, with a strong focus on health-related research, highlighting areas where further research is an essential prerequisite for developing focused policy responses to nonexhaust particles.
Collapse
Affiliation(s)
- Julia C. Fussell
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Meredith Franklin
- Department
of Statistical Sciences, University of Toronto, Toronto, Ontario M5G 1Z5, Canada
| | - David C. Green
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Mats Gustafsson
- Swedish
National Road and Transport Research Institute (VTI), SE-581 95, Linköping, Sweden
| | - Roy M. Harrison
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, U.K.
- Department
of Environmental Sciences / Centre of Excellence in Environmental
Studies, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - William Hicks
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Frank J. Kelly
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Franceska Kishta
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Mark R. Miller
- Centre
for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, U.K.
| | - Ian S. Mudway
- National
Institute for Health Research Health Protection Research Unit in Environmental
Exposures and Health, School of Public Health, Imperial College London, London, W12 0BZ, U.K.
| | - Farzan Oroumiyeh
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Liza Selley
- MRC
Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge,CB2 1QR, U.K.
| | - Meng Wang
- University
at Buffalo, School of Public
Health and Health Professions, Buffalo, New York 14214, United States
| | - Yifang Zhu
- Department
of Environmental Health Sciences, Jonathan and Karin Fielding School
of Public Health, University of California,
Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
Bessagnet B, Allemand N, Putaud JP, Couvidat F, André JM, Simpson D, Pisoni E, Murphy BN, Thunis P. Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles—A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. APPLIED SCIENCES-BASEL 2022; 12:1-52. [PMID: 35529678 PMCID: PMC9067409 DOI: 10.3390/app12073623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airborne particulate matter (PM) is a pollutant of concern not only because of its adverse effects on human health but also on visibility and the radiative budget of the atmosphere. PM can be considered as a sum of solid/liquid species covering a wide range of particle sizes with diverse chemical composition. Organic aerosols may be emitted (primary organic aerosols, POA), or formed in the atmosphere following reaction of volatile organic compounds (secondary organic aerosols, SOA), but some of these compounds may partition between the gas and aerosol phases depending upon ambient conditions. This review focuses on carbonaceous PM and gaseous precursors emitted by road traffic, including ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) that are clearly linked to the evolution and formation of carbonaceous species. Clearly, the solid fraction of PM has been reduced during the last two decades, with the implementation of after-treatment systems abating approximately 99% of primary solid particle mass concentrations. However, the role of brown carbon and its radiative effect on climate and the generation of ultrafine particles by nucleation of organic vapour during the dilution of the exhaust remain unclear phenomena and will need further investigation. The increasing role of gasoline vehicles on carbonaceous particle emissions and formation is also highlighted, particularly through the chemical and thermodynamic evolution of organic gases and their propensity to produce particles. The remaining carbon-containing particles from brakes, tyres and road wear will still be a problem even in a future of full electrification of the vehicle fleet. Some key conclusions and recommendations are also proposed to support the decision makers in view of the next regulations on vehicle emissions worldwide.
Collapse
Affiliation(s)
- Bertrand Bessagnet
- Joint Research Centre, European Commission, 21027 Ispra, Italy
- Correspondence: or
| | | | | | - Florian Couvidat
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, 0313 Oslo, Norway
- Department Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Enrico Pisoni
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Philippe Thunis
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| |
Collapse
|
24
|
Stojanovic N, Glisovic J, Abdullah OI, Belhocine A, Grujic I. Particle formation due to brake wear, influence on the people health and measures for their reduction: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9606-9625. [PMID: 34993797 DOI: 10.1007/s11356-021-17907-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
For achieving the desired vehicle speed, the IC engine is very important, while for further vehicle speed maintaining and adaptation to road conditions, the braking system is important. With each brake's activation, wear products are forming, which are very harmful to the environment, because they can contain heavy metals. The braking working parameters (initial speed and braking pressure) are beside the achieved temperature in contact par, the most responsible, for particle formation and their release into the air. The particles forming can be divided by size on coarse, fine, and ultrafine particles, and which were observed in the paper. However, the greatest accent was placed on coarse and fine particles. For the determination of the composition of wear products, most often, laboratory tests were used. Particle composition greatly depends on the composition of brake pads, which can consist of about 30 components, and where some of these components have very unfavourable effects on people's health. So today, many researches are focused on finding such composition for brake pads, which will wear as less as possible, without disturbing the basic tribological properties. The conclusion of this paper shows that the applied materials for manufacturing the braking system are very important, as well as the construction, for the reduction of particle emission.
Collapse
Affiliation(s)
- Nadica Stojanovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Jasna Glisovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia
| | - Oday I Abdullah
- Dept. of Energy Engineering, College of Engineering, University of Baghdad, Baghdad, Iraq
- Department of Mechanics, Al-Farabi Kazakh National University, Almaty, Kazakhstan, 050040
- System Technologies and Engineering Design Methodology, Hamburg University of Technology, 21073, Hamburg, Germany
| | - Ali Belhocine
- Department of Mechanical Engineering, University of Sciences and the Technology of Oran, L.P 1505 El -MNAOUER, Usto, 31000, Oran, Algeria
| | - Ivan Grujic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
25
|
Dynamometric Investigation on Airborne Particulate Matter (PM) from Friction Materials for Automobile: Impact of Abrasive and Lubricant on PM Emission Factor. LUBRICANTS 2021. [DOI: 10.3390/lubricants9120118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reduction of non-exhaust airborne particulate matter (PM), leading to adverse effects in respiratory system, is an urgent task. In this work, we evaluated the impact of raw materials in friction materials on PM emission due to brake wear for passenger vehicle. Time- and temperature-dependent measurements using dynamometer were made for low-steel friction materials with varied abrasives and lubricant(graphite). The brake emission factor (BEF) for graphite of varied sizes ranged from 6.48 to 7.23 mg/km/vehicle. The number concentration indicates that smaller graphite (10 μm) produces more nano-sized particles than larger size (700 μm) by >50%. Depending on abrasives, BEF was found to be varied as large as by three-times, ranging from 4.37 to 14.41 mg/km/vehicle. As hardness of abrasive increases (SiC > Al2O3 > ZrSiO4), higher BEF was obtained, suggesting that abrasive wear directly contributes to emissions, evidenced by surface topology. Temperature-dependent data imply that particle emission for SiC abrasive is initiated at lower speed in WLTC cycle, where disc temperature (Tdisc) is ~100 °C, than that for ZrSiO4 (Tdisc >120 °C). Analysis of wear debris suggests that larger micron-sized particles include fragmented Fe lumps from disc, whereas smaller particles are, in part, formed by combination of oxidation and aggregation of nano-sized particles into small lumps.
Collapse
|
26
|
Vojtíšek-Lom M, Vaculík M, Pechout M, Hopan F, Arul Raj AF, Penumarti S, Horák JS, Popovicheva O, Ondráček J, Doušová B. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147779. [PMID: 34034186 DOI: 10.1016/j.scitotenv.2021.147779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Automobile friction brakes generate, in addition to coarse particles generated by mechanical processes, highly variable amount of nanoparticles from high temperature processes. The effects of braking conditions - speed, deceleration rate, brake rotor temperatures - on nanoparticle production were investigated here, aiming to provide practical guidance for reducing emissions through driving style and traffic management. Typical brake pads and a rotor from a common passenger car were subjected, on a brake dynamometer, to three runs of the WLTP brake cycle developed for brake wear particle measurements. Additionally, four sets of common brake pads were subjected to those parts of standardized brake performance tests believed to be reasonably realistic for common driving. Particle size distributions (5.6-560 nm electric mobility diameter, without removal of volatiles) show a dominant peak at 10 nm commensurate to the severity of braking and a non-linear increase of the total particle number at higher braking powers and higher total energy dissipated. The average emissions for three runs of the WLTP brake cycle were 3.3 × 1010 particles/km, while the harshest deceleration, 175-100 km/h at 5.28 m·s-2, has produced 8.4 to 38 × 1013 particles, corresponding to 2.5-11.5 thousands of km of WLTP-like driving. While previous studies have correlated higher PN production with higher average brake rotor temperature, a more complex relationship between nanoparticle emissions and a combination of initial rotor temperature, total energy dissipated and braking power has been observed here. From a driver behavior and regulatory perspective, it appears limiting harsh braking and braking from high speeds, possibly through improved driving practices, road design and traffic management, may potentially reduce brake wear nanoparticles. From the measurement perspective, it appears that "off-cycle" braking, even if relatively infrequent, may be associated with exponentially higher emissions and non-negligible share of the total emissions, and therefore should not be neglected.
Collapse
Affiliation(s)
- Michal Vojtíšek-Lom
- Center for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic.
| | - Miroslav Vaculík
- Nanotechnology Center, VSB - Technical University Ostrava, 17. listopadu 15/2172, Ostrava-Poruba, Czech Republic
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamýcká 129, 165 21 Praha 6, Czech Republic
| | - František Hopan
- Energy Research Center, VSB - Technical University of Ostrava, 17. Listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
| | - Alden Fred Arul Raj
- Center for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic
| | - Srinath Penumarti
- Center for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic
| | - Jiří Smokeman Horák
- Energy Research Center, VSB - Technical University of Ostrava, 17. Listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
| | - Olga Popovicheva
- Scobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Jakub Ondráček
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02 Prague 6 - Suchdol, Czech Republic
| | - Barbora Doušová
- University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
27
|
Input Parameters for Airborne Brake Wear Emission Simulations: A Comprehensive Review. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-exhaust emissions, generated by the wear of brake systems, tires, roads, clutches, and road resuspension, are responsible for a large part of airborne pollutants in urban areas. Brake wear accounts for 55% of non-exhaust emissions and significantly contributes to urban health diseases related to air pollution. A major part of the studies reported in the scientific literature are focused on experimental methods to sample and characterize brake wear particles in a reliable, representative, and repeatable way. In this framework, simulation is an important tool, which makes it possible to give interpretations of the experimental results, formulate new testing approaches, and predict the emission produced by brakes. The present comprehensive literature review aims to introduce the state of the art of the research on the different aspects of airborne wear debris resulting from brake systems which can be used as inputs in future simulation models. In this review, previous studies focusing on airborne emissions produced by brake systems are investigated in three main categories: the subsystem level, system level, and environmental level. As well as all the information provided in the literature, the simulation methodologies are also investigated at all levels. It can be concluded from the present review study that various factors, such as the uncertainty and repeatability of the brake wear experiments, distinguish the results of the subsystem and system levels. This gap should be taken into account in the development of future experimental and simulation methods for the investigation of airborne brake wear emissions.
Collapse
|
28
|
Testing of Alternative Disc Brakes and Friction Materials Regarding Brake Wear Particle Emissions and Temperature Behavior. ATMOSPHERE 2021. [DOI: 10.3390/atmos12040436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this study, different disc brakes and friction materials are evaluated with respect to particle emission output and characteristic features are derived. The measurements take place on an inertia dynamometer using a constant volume sampling system. Brake wear particle emission factors of different disc concepts in different sizes are determined and compared, using a grey cast iron disc, a tungsten carbide-coated disc and a carbon ceramic disc. The brakes were tested over a section (trip #10) novel test cycle developed from the database of the worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). First, brake emission factors were determined along the bedding process using a series of trip-10 tests. The tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. In addition to number- and mass-related emission factors (PM2.5–PM10), the particle size distribution was determined. Another focus was the evaluation of temperature ranges and the associated challenges in the use of temperature readings in a potential regulation of brake wear particle emissions. The results illustrate the challenges associated with establishing a universal bedding procedure and using disc temperature measurements for the control of a representative braking procedure. Using tungsten carbide coated discs and carbon ceramic discs, emission reduction potentials of up to 70% (PM10) could be demonstrated along the WLTP brake cycle. The reduction potential is primarily the result of the high wear resistance of the disc, but is additionally influenced by the pad composition and the temperature in the friction contact area.
Collapse
|
29
|
Particle Emissions and Disc Temperature Profiles from a Commercial Brake System Tested on a Dynamometer under Real-World Cycles. ATMOSPHERE 2021. [DOI: 10.3390/atmos12030377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The particle emissions from a commercial brake system utilizing copper-free pads have been characterized on a brake dynamometer under two real-world driving cycles. These included a novel cycle developed from analysis of the database of the World Harmonized Test Procedure (WLTP-Brake) and a short version of the Los Angeles City Traffic cycle (3h-LACT) developed in the framework of the European LowBraSys project. Disc temperature measurements using an array of embedded thermocouples revealed a large temporal and spatial non-uniformity with the radial temperature distribution depending also on the test procedure. Averaging over the duration of the cycle, it effectively reduced the influence of thermocouple positioning, allowing for more reliable quantification of the effectiveness of convective cooling. Particulate Matter (PM) emissions were similar for both cycles with PM2.5 averaging at 2.2 (±0.2) mg/km over the WLTP-Brake and 2.2 (±0.2) mg/km over the 3h-LACT, respectively. The corresponding PM10 emissions were 5.6 (±0.2) mg/km and 8.6 (±0.7) mg/km, respectively. The measurements revealed the formation of nanosized particles peaking at 10 nm, which were thermally stable at 350 °C under both cycles. Volatile nanoparticles were observed over the more demanding 3h-LACT cycle, with their emission rates decreasing with increasing the tunnel flow, suggesting nucleation of organic vapors released during braking as a potential formation process.
Collapse
|
30
|
Wu T, Lo K, Stafford J. Vehicle non-exhaust emissions - Revealing the pathways from source to environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115654. [PMID: 33068845 DOI: 10.1016/j.envpol.2020.115654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Brakes, tyres and road deposits have become important contributors to the overall particle emissions of vehicles globally, with constituents in these wear particles considered to be harmful to human health (PM10 and PM2.5). Previous research has documented mass/size distributions, physical and chemical characteristics, emission factors and long-term implications and environmental occurrences. The complex path these pollutants take from their origins to the environment, however, is not fully understood. This is partly owing to the breadth of spatio-temporal scales involved in the advection-diffusion processes (nanometers to meters, microseconds to minutes). These short timescale particle transport mechanisms impact human exposure, such as pedestrians and cyclists, and initiate the long-term interaction of these pollutants with other environmental compartments. Here, we present an analysis for urban driving conditions to highlight the opportunities to reveal these complex pathways and formulate opinions that aim to stimulate future enquiry. We describe important vehicular areas and exposure scenarios where efforts should focus. Future interdisciplinary research into these particle transport mechanisms must be prioritised as it can provide the foundation for developing urgently needed pollution control strategies, transport infrastructure layouts and transport policies that mitigate, or possibly eliminate pollution exposure risks.
Collapse
Affiliation(s)
- Tiantong Wu
- School of Engineering, College of Engineering & Physical Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Kelly Lo
- School of Engineering, College of Engineering & Physical Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Jason Stafford
- School of Engineering, College of Engineering & Physical Sciences, University of Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
31
|
Statistical Assessment and Temperature Study from the Interlaboratory Application of the WLTP–Brake Cycle. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relative contribution of brake emissions to traffic-induced ambient Particulate Matter (PM) concentrations has increased over the last decade. Nowadays, vehicles’ brakes are recognised as an important source of non-exhaust emissions. Up to now, no standardised method for measuring brake particle emissions exists. For that reason, the Particle Measurement Programme (PMP) group has been working on the development of a commonly accepted method for sampling and measuring brake particle emissions. The applied braking cycle is an integral part of the overall methodology. In this article, we present the results of an interlaboratory study exploring the capacity of existing dynamometer setups to accurately execute the novel Worldwide Harmonised Light-Duty Vehicles Test Procedure (WLTP)–brake cycle. The measurements took place at eight locations in Europe and the United States. Having several dynamometers available enabled the coordination and execution of the intended exercise, to determine the sources of variability and provide recommendations for the correct application of the WLTP–brake cycle on the dyno. A systematic testing schedule was applied, followed by a thorough statistical analysis of the essential parameters according to the ISO 5725 standards series. The application of different control programmes influenced the correct replication of the cycle. Speed control turned out to be more accurate and precise than deceleration control. A crucial output of this interlaboratory study was the quantification of standard deviations for repeatability (between repeats), sample effect (between tests), laboratory effect (between facilities), and total reproducibility. Three critical aspects of the statistical analysis were: (i) The use of methods for heterogeneous materials; (ii) robust algorithms to reduce the artificial increase in variability from values with significant deviation from the normal distribution; and (iii) the reliance on the graphical representation of results for ease of understanding. Even if the study of brake emissions remained out of the scope of the current exercise, useful conclusions are drawn from the analysis of the temperature profile of the WLTP–brake cycle. Urban braking events are generally correlated to lower disc temperature. Other parameters affecting the brake temperature profile include the correct application of soak times, the temperature measurement method, the proper conditioning of incoming cooling air and the adjustment of the cooling airspeed.
Collapse
|
32
|
Zhang J, Peng J, Song C, Ma C, Men Z, Wu J, Wu L, Wang T, Zhang X, Tao S, Gao S, Hopke PK, Mao H. Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115268. [PMID: 32836045 DOI: 10.1016/j.envpol.2020.115268] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Vehicular non-exhaust emissions account for a significant share of atmospheric particulate matter (PM) pollution, but few studies have successfully quantified the contribution of non-exhaust emissions via real-world measurements. Here, we conduct a comprehensive study combining tunnel measurements, laboratory dynamometer and resuspension experiments, and chemical mass balance modeling to obtain source profiles, real-world emission factors (EFs), and inventories of vehicular non-exhaust PM emissions in Chinese megacities. The average vehicular PM2.5 and PM10 EFs measured in the four tunnels in four megacities (i.e., Beijing, Tianjin, Zhengzhou, and Qingdao) range from 8.8 to 16.0 mg km-1 veh-1 and from 37.4 to 63.9 mg km-1 veh-1, respectively. A two-step source apportionment is performed with the information of key tracers and localized profiles of each exhaust and non-exhaust source. Results show that the reconstructed PM10 emissions embody 51-64% soil and cement dust, 26-40% tailpipe exhaust, 7-9% tire wear, and 1-3% brake wear, while PM2.5 emissions are mainly composed of 59-80% tailpipe exhaust, 11-31% soil and cement dust, 4-10% tire wear, and 1-5% brake wear. Fleet composition, road gradient, and pavement roughness are essential factors in determining on-road non-exhaust emissions. Based on the EFs and the results of source apportionment, we estimate that the road dust, tire wear, and brake wear emit 8.1, 2.5, and 0.8 Gg year-1 PM2.5 in China, respectively. Our study highlights the importance of non-exhaust emissions in China, which is essential to assess their impacts on air quality, human health, and climate and formulating effective controlling measures.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China; Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Congbo Song
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chao Ma
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Zhengyu Men
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianhui Wu
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Wu
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Xinfeng Zhang
- China Automotive Technology and Research Center Co., Ltd., Tianjin, 300300, China
| | - Shuangcheng Tao
- China Academy of Transportation Science, Beijing, 100029, China
| | - Shuohan Gao
- China Academy of Transportation Science, Beijing, 100029, China
| | - Philip K Hopke
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Hongjun Mao
- Tianjin Key Laboratory of Urban Transport Emission Research& State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
33
|
Abstract
The presented article picks out brake particle emission testing as a central theme. Those emissions are part of the so-called non-exhaust emissions, which play an increasing role for particle emissions from transportation. The authors propose a laboratory test setup by using a brake dynamometer and a constant volume sampling approach to determine the emissions in regard to the particle number concentration. Several impacts were investigated while the same test cycle (novel worldwide harmonized light vehicles test procedure (novel-WLTP)) was applied. In a first item, the importance of the bedding process was investigated and it is shown that friction couples without bedding emit much more particles. Furthermore, the efforts for reaching a bedded friction state are discussed. Additionally, the impact of brake lining compositions is investigated and shows that NAO concepts own crucial advantages in terms of brake particle emissions. Another impact, the vehicle weight and inertia, respectively, shows how important lightweight measures and brake cooling improvements are. Finally, the role of the load profile is discussed, which shows the importance of driving parameters like vehicle speed and reservoir dynamics. The authors show that, under urban driving conditions, extreme low particle emissions are detected. Furthermore, it is explained that off-brake emissions can play a relevant role in regard to brake particle emissions.
Collapse
|
34
|
Experimental Characterization Protocols for Wear Products from Disc Brake Materials. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The increasing interest in the emission from the disc brake system poses new challenges for the characterization approaches used to investigate the particles emitted from the wearing out of the relevant tribological systems. This interest stems from different factors. In the first place, a thorough characterization of brake wear particles is important for a complete understanding of the active tribological mechanisms, under different testing and servicing conditions. This information is an important prerequisite not only for the general improvement of brake systems, but also to guide the development of new materials for discs and brake pads, responding better to the specific requirements, including not only performance, but also the emission behavior. In this review paper, the main material characterization protocols used for the analyses of the brake wear products, with particular regard for the airborne fraction, are presented. Reliable results require investigating the fine and ultrafine particles as concerns their composition together with their structural and microstructural aspects. For this reason, in general, multi-analytical protocols are very much recommended.
Collapse
|
35
|
Influence of Disc Temperature on Ultrafine, Fine, and Coarse Particle Emissions of Passenger Car Disc Brakes with Organic and Inorganic Pad Binder Materials. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Passenger car disc brakes are a source of ultrafine, fine, and coarse particles. It is estimated that 21% of total traffic-related PM10 emissions in urban environments originate from airborne brake wear particles. Particle number emission factors are in the magnitude of 1010 km−1 wheel brake during real-world driving conditions. Due to the complexity of the tribological processes and the limited observability of the friction zone between brake disc and pad, the phenomena causing particle emission of disc brakes are only partially understood. To generate a basis for understanding the emission process and, based on this, to clarify which influencing variables have how much potential for reduction measures, one approach consists in the identification and quantification of influencing variables in the form of emission maps. The subject of this publication is the influence of disc brake temperature on ultrafine, fine, and coarse particle emissions, which was investigated with a systematic variation of temperature during single brake events on an enclosed brake dynamometer. The systematic variation of temperature was achieved by increasing or decreasing the disc temperature stepwise which leads to a triangular temperature variation. Two types of brake pads were used with the main distinction in its chemical composition being organic and inorganic binder materials. The critical disc brake temperature for the generation of ultrafine particles based on nucleation is at approximately 180 °C for pads with an organic binder and at approximately 240 °C for pads with inorganic binder materials. Number concentration during those nucleation events decreased for successive events, probably due to aging effects. PM10 emissions increased by factor 2 due to an increase in temperature from 80 °C to 160 °C. The influence of temperature could be only repeatable measured for disc brake temperatures below 180 °C. Above this temperature, the emission behavior was dependent on the temperature history, which indicates also a critical temperature for PM10 relevant emissions but not in an increasing rather than a decreasing manner.
Collapse
|
36
|
A Study of the Effect of Brake Pad Scorching on Tribology and Airborne Particle Emissions. ATMOSPHERE 2020. [DOI: 10.3390/atmos11050488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Non-exhaust wear emissions from disc brakes affect the air quality in cities throughout the world. These emissions come from the wear of the contact surfaces of both the pads and disc. The tribological and emissions performance of disc brakes strongly depend on the contact surface characteristics of the pads and discs. The surfaces of conventional pads are scorched by heating it to several hundred degrees to make the resin carbonize down to a few millimetres deep into the pad. This is done to have a shorter run-in period for new pads. It is not known how scorching will affect the amount of airborne particle emissions. Therefore, the aim of the present study is to investigate how pad scorching influence the airborne particle emissions. This is done by comparing the pin-on-disc tribometer and inertia dyno bench emission results from a Cu-free friction material run against a grey cast iron disc. Three types of modified friction material surfaces have been tested: scorched, extra-scorched and rectified. The results show that the level of scorching strongly affects the airborne particle emissions in the initial phase of the tests. Even if the scorched layer is removed (rectified) before testing, it seems like it still has a measurable influence on the airborne particle emissions. The results from the tribometer tests are qualitatively in line with the inertia dyno bench test for about the first forty brake events; thereafter, the airborne particle emissions are higher for the scorched pads. It can be concluded that it seems that the level of scorching has an adverse influence on both the tribological performance and level of particle emissions.
Collapse
|
37
|
Octau C, Meresse D, Watremez M, Schiffler J, Lippert M, Keirsbulck L, Dubar L. Characterization of particulate matter emissions in urban train braking - An investigation of braking conditions influence on a reduced-scale device. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18615-18631. [PMID: 32200475 DOI: 10.1007/s11356-020-08337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The particulate matter emissions related to the braking of railway rolling stock are investigated using a reduced scale braking device. Samples of organic materials and cast iron discs are tested for different nominal contact pressures and disc surface temperatures, representative of real conditions. The aim of this work is to investigate the influence of braking conditions on the global amount of particles emitted, their distribution in number and size, and their morphological and chemical characteristics. To be representative, the tested conditions are designed to dissipate the same amount of energy for all the braking events by adjusting the pad application duration. The results show that for the same dissipated energy, a temperature increase above a transition value in the range of 230-280 ∘C depending on the braking conditions modifies the size and number distributions of the generated particles. The results obtained are of interest to better represent their propagation through CFD modelling according to the characteristic of the particle emission.
Collapse
Affiliation(s)
- Charlene Octau
- ALSTOM TRANSPORT SA, 33 Rue des Bateliers, 93400, Saint-Ouen, France
| | - Damien Meresse
- LAMIH Laboratory, UMR CNRS 8201, Polytechnic University of Hauts-de-France, 59300, Valenciennes, France.
| | - Michel Watremez
- LAMIH Laboratory, UMR CNRS 8201, Polytechnic University of Hauts-de-France, 59300, Valenciennes, France
| | - Jesse Schiffler
- LAMIH Laboratory, UMR CNRS 8201, Polytechnic University of Hauts-de-France, 59300, Valenciennes, France
| | - Marc Lippert
- LAMIH Laboratory, UMR CNRS 8201, Polytechnic University of Hauts-de-France, 59300, Valenciennes, France
| | - Laurent Keirsbulck
- LAMIH Laboratory, UMR CNRS 8201, Polytechnic University of Hauts-de-France, 59300, Valenciennes, France
| | - Laurent Dubar
- LAMIH Laboratory, UMR CNRS 8201, Polytechnic University of Hauts-de-France, 59300, Valenciennes, France
| |
Collapse
|
38
|
Baur S, Reemtsma T, Stärk HJ, Wagner S. Surfactant assisted extraction of incidental nanoparticles from road runoff sediment and their characterization by single particle-ICP-MS. CHEMOSPHERE 2020; 246:125765. [PMID: 31927370 DOI: 10.1016/j.chemosphere.2019.125765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
A surfactant assisted extraction (SAE) method was developed to extract incidental nanoparticles (INPs) in the <300 nm particle size fraction from road runoff sediments and applied to a road runoff sediment. The method was evaluated by spiking experiments of road runoff sediment with engineered nanoparticle (ENP) suspensions of gold (Au-ENPs) between 30 nm and 200 nm and platinum (Pt-ENPs) between 30 nm and 70 nm with content ranging from 40 to 800 ng/g. Suspensions were analyzed by single particle (sp-)ICP-MS. In the presence of a road runoff matrix, an increase in ENP sizes by a maximum of 8% for Au-ENPs and 9% for Pt-ENPs was observed. ENPs mass recovery was >50% for all Au-ENPs with content higher than 200 ng/g and for 30 and 50 nm Pt-ENPs at content of 160 ng/g while for lower content the recovery was 0%. For 70 nm Pt-ENPs, recovery was always >80% and increased with increasing Pt content up to 100% in the presence of road runoff matrix. Metal content of INPs in the road runoff sediment in the fraction <300 nm decreased from copper (Cu; μg/g)> zinc (Zn)> zirconium (Zr)> cerium (Ce)> lead (Pb)> cadmium (Cd) > platinum (Pt; μg/g). Over 90% of Pt-, Zn-, Cd-, Pb- and Ce-INPs are composed of particles with less than 20 fg, while Zr- and Cu-INPs are dominated by masses higher than 20 fg. The tested SAE may be applicable to determine environmental contents of INPs in sediments and possibly in soils.
Collapse
Affiliation(s)
- Sandra Baur
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany; University of Leipzig, Institute of Analytical Chemistry, Linnéstrasse 3, 04103, Leipzig, Germany
| | - Hans-Joachim Stärk
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Stephan Wagner
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research GmbH - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
39
|
Abstract
A dilution tunnel was designed for the characterization of brake-wear particle emissions up to 10 μm on a brake dyno. The particulate matter emission levels from a single front brake were found to be 4.5 mg/km (1.5 mg/km being smaller than 2.5 μm) over a novel real-world brake cycle, for a commercial Economic Commission for Europe (ECE) pad. Particle Number (PN) emissions as defined in exhaust regulations were in the order of 1.5 to 6 × 109 particles per km per brake (#/km/brake). Concentration levels could exceed the linearity range of full-flow Condensation Particle Counters (CPCs) over specific braking events, but remained at background levels for 60% of the cycle. Similar concentrations measured with condensation and optical counters suggesting that the majority of emitted particles were larger the 300 nm. Application of higher braking pressures resulted in elevated PN emissions and the systematic formation of nano-sized particles that were thermally stable at 350 °C. Volatile particles were observed only during successive harsh braking events leading to elevated temperatures. The onset depended on the type of brakes and their prehistory, but always at relatively high disc temperatures (280 to 490 °C).
Collapse
|
40
|
Brake Wear Particle Emissions of a Passenger Car Measured on a Chassis Dynamometer. ATMOSPHERE 2019. [DOI: 10.3390/atmos10090556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brake wear emissions with a special focus on particle number (PN) concentrations were investigated during a chassis dynamometer measurement campaign. A recently developed, well-characterized, measurement approach was applied to measure brake particles in a semi-closed vehicle setup. Implementation of multiple particle measurement devices allowed for simultaneous measurement of volatile and solid particles. Estimated PN emission factors for volatile and solid particles differed by up to three orders of magnitude with an estimated average solid particle emission factor of 3∙109 # km−1 brake−1 over a representative on-road brake cycle. Unrealistic high brake temperatures may occur and need to be ruled out by comparison with on-road temperature measurements. PN emissions are strongly temperature dependent and this may lead to its overestimation. A high variability for PN emissions was found when volatile particles were not removed. Volatiles were observed under high temperature conditions only which are not representative of normal driving conditions. The coefficient of variation for PN emissions was 1.3 without catalytic stripper and 0.11 with catalytic stripper. Investigation of non-braking sections confirmed that particles may be generated at the brake even if no brakes are applied. These “off-brake-event” emissions contribute up to about 30% to the total brake PM10 emission.
Collapse
|