1
|
McKenzie LM, Allshouse WB, Johnson DR, DeVoe CC, Cockburn M, Ghosh D. Exposures from Oil and Gas Development and Childhood Leukemia Risk in Colorado: A Population-Based Case-Control Study. Cancer Epidemiol Biomarkers Prev 2025; 34:658-668. [PMID: 40067119 PMCID: PMC12046330 DOI: 10.1158/1055-9965.epi-24-1583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/30/2025] [Accepted: 03/05/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Children living in upstream oil and natural gas (O&G) areas may be exposed to leukemogens and at increased risk for acute lymphoblastic leukemia (ALL). METHODS We conducted a case-control study of children born in Colorado between 1992 and 2019. We matched 451 children diagnosed with ALL at ages 2 to 9 years starting in 2002 to 2,706 controls based on birth month/year and Hispanic ethnicity. We estimated upstream O&G activity intensities from conception through a 10-year latency using our intensity-adjusted inverse distance weighted (IA-IDW) model. We applied logistic regression models adjusted for confounders to evaluate associations between ALL and IA-IDW. RESULTS For children within 5 km of an O&G well site, we observed a 62% [OR = 1.62; 95% confidence interval (CI), 0.964-2.62], 84% (OR = 1.84; 95% CI, 1.35-2.48), and 100% (OR = 2.00; 95% CI, 1.14-3.37) increase in ALL risk for low, medium, and high IA-IDW groups, compared with the referent group. Within 13 km, we observed a 59% (OR = 1.59; 95% CI, 1.03-2.37), 40% (OR = 1.40; 95% CI, 1.09-1.80), and 164% (OR = 2.64; 95% CI, 1.80-3.86) increase in ALL risk for low, medium, and high IA-IDW groups. CONCLUSIONS Colorado's children living within 13 km of O&G well sites are at increased risk for ALL, with children within 5 km bearing the greatest risk. Current setbacks between O&G well sites and residences may not be sufficient to protect the health of these children. IMPACT Our results can be applied to policies to reduce childhood leukemogen exposures.
Collapse
Affiliation(s)
- Lisa M. McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - William B. Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Christopher C. DeVoe
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Myles Cockburn
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Sansone-Poe DM, Walters HL, Adgate JL, Allshouse WB, McKenzie LM, Dickinson KL. Variation in Proximity to Oil and Gas Well Pads across Race-Ethnicity and Income Groups in Colorado: An Inquiry into Distributive Environmental Justice Patterns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2494-2504. [PMID: 39888008 DOI: 10.1021/acs.est.4c10007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Proximity to oil and gas (OG) wells is associated with health risks. Evidence on the relationship between sociodemographic characteristics and OG well proximity is mixed. To investigate this question in Colorado, we combined OG location data with data on birthing people's race-ethnicity and Medicaid eligibility from the state's birth registry. We applied two OG proximity definitions: (1) living within 2,000 ft of an active well and (2) OG well density (inverse distance-weighted sum of wells within 2 miles). Our analysis includes people who gave birth between 2007 and 2017 and resided in one of seven OG-producing counties across three different OG basins. In the Denver-Julesburg basin (DJB), which accounted for 93% of the study sample, White and Medicaid ineligible people are more proximate than Hispanic and Medicaid eligible people. In some DJB counties, People of Color (non-Hispanic) are more proximate than Hispanic people. In the Piceance basin, White non-Hispanic people have higher proximity than Hispanic people, while Medicaid eligibility is associated with higher proximity. In the San Juan basin, Hispanic and Medicaid-eligible people were more proximate than White and Medicaid-ineligible people. Further research should examine differential exposure/proximity across other sensitive groups, and policies should pursue equal protection from OG well exposures.
Collapse
Affiliation(s)
- Danielle M Sansone-Poe
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - Hannah L Walters
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| | - Katherine L Dickinson
- Department of Environmental and Occupational Health, Colorado School of Public Health, Aurora, Colorado 80045, United States
| |
Collapse
|
3
|
Willis MD, Campbell EJ, Selbe S, Koenig MR, Gradus JL, Nillni YI, Casey JA, Deziel NC, Hatch EE, Wesselink AK, Wise LA. Residential Proximity to Oil and Gas Development and Mental Health in a North American Preconception Cohort Study: 2013-2023. Am J Public Health 2024; 114:923-934. [PMID: 38991173 PMCID: PMC11306607 DOI: 10.2105/ajph.2024.307730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/13/2024]
Abstract
Objectives. To evaluate associations between oil and gas development (OGD) and mental health using cross-sectional data from a preconception cohort study, Pregnancy Study Online. Methods. We analyzed baseline data from a prospective cohort of US and Canadian women aged 21 to 45 years who were attempting conception without fertility treatment (2013-2023). We developed residential proximity measures for active OGD during preconception, including distance from nearest site. At baseline, participants completed validated scales for perceived stress (10-item Perceived Stress Scale, PSS) and depressive symptoms (Major Depression Inventory, MDI) and reported psychotropic medication use. We used log-binomial regression and restricted cubic splines to estimate prevalence ratios (PRs) and 95% confidence intervals (CIs). Results. Among 5725 participants across 37 states and provinces, residence at 2 km versus 20 to 50 km of active OGD was associated with moderate to high perceived stress (PSS ≥ 20 vs < 20: PR = 1.08; 95% CI = 0.98, 1.18), moderate to severe depressive symptoms (MDI ≥ 20 vs < 20: PR = 1.27; 95% CI = 1.11, 1.45), and psychotropic medication use (PR = 1.11; 95% CI = 0.97, 1.28). Conclusions. Among North American pregnancy planners, closer proximity to OGD was associated with adverse preconception mental health symptomatology. (Am J Public Health. 2024;114(9):923-934. https://doi.org/10.2105/AJPH.2024.307730).
Collapse
Affiliation(s)
- Mary D Willis
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Erin J Campbell
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Sophie Selbe
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Martha R Koenig
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Jaimie L Gradus
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Yael I Nillni
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Joan A Casey
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Nicole C Deziel
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Elizabeth E Hatch
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Amelia K Wesselink
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| | - Lauren A Wise
- Mary D. Willis, Erin J. Campbell, Sophie Selbe, Martha R. Koenig, Jaimie L. Gradus, Elizabeth Hatch, Amelia K. Wesselink, and Lauren A. Wise are with the Department of Epidemiology, Boston University School of Public Health, Boston, MA. Yael I. Nillni is with the Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston. Joan A. Casey is with the Department of Environmental Health and Occupational Health Sciences, School of Public Health, University of Washington, Seattle. Nicole C. Deziel is with the Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT
| |
Collapse
|
4
|
González DJ, Morello-Frosch R, Liu Z, Willis MD, Feng Y, McKenzie LM, Steiger BB, Wang J, Deziel NC, Casey JA. Wildfires increasingly threaten oil and gas wells in the western United States with disproportionate impacts on marginalized populations. ONE EARTH (CAMBRIDGE, MASS.) 2024; 7:1044-1055. [PMID: 39036466 PMCID: PMC11259100 DOI: 10.1016/j.oneear.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The western United States is home to most of the nation's oil and gas production and, increasingly, wildfires. We examined historical threats of wildfires for oil and gas wells, the extent to which wildfires are projected to threaten wells as climate change progresses, and exposure of human populations to these wells. From 1984-2019, we found that cumulatively 102,882 wells were located in wildfire burn areas, and 348,853 people were exposed (resided ≤ 1 km). During this period, we observed a five-fold increase in the number of wells in wildfire burn areas and a doubling of the population within 1 km of these wells. These trends are projected to increase by late century, likely threatening human health. Approximately 2.9 million people reside within 1 km of wells in areas with high wildfire risk, and Asian, Black, Hispanic, and Native American people have disproportionately high exposure to wildfire-threatened wells.
Collapse
Affiliation(s)
- David J.X. González
- Department of Environmental Science, Policy, & Management and School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
- Lead contact
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy, & Management and School of Public Health, University of California, Berkeley, Berkeley, CA, United States of America
| | - Zehua Liu
- Department of Biostatistics, Columbia University, New York, NY, United States of America
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Mary D. Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, United States of America
| | - Yan Feng
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States of America
| | - Lisa M. McKenzie
- Department of Environmental & Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States of America
| | - Benjamin B. Steiger
- Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America
| | - Jiali Wang
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States of America
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, United States of America
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University, New York, NY, United States of America
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Seattle, WA, United States of America
| |
Collapse
|
5
|
McKenzie LM, Allshouse WB, Abrahams B, Tompkins C. Oil and gas development exposure and atrial fibrillation exacerbation: a retrospective study of atrial fibrillation exacerbation using Colorado's all payer claims dataset. FRONTIERS IN EPIDEMIOLOGY 2024; 4:1379271. [PMID: 38962693 PMCID: PMC11220195 DOI: 10.3389/fepid.2024.1379271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024]
Abstract
Introduction Emerging risk factors for atrial fibrillation (AF) incidence and episodes (exacerbation), the most common and clinically significant cardiac arrhythmia, include air and noise pollution, both of which are emitted during oil and natural gas (O&G) well site development. Methods We evaluated AF exacerbation risk and proximity to O&G well site development by employing a novel data source and interrupted time-series design. We retrospectively followed 1,197 AF patients living within 1-mile of an O&G well site (at-risk of exposure) and 9,764 patients living >2 miles from any O&G well site (unexposed) for AF claims in Colorado's All Payer Claims Dataset before, during, and after O&G well site development. We calculated AF exacerbation risk with multi-failure survival analysis. Results The analysis of the total study population does not provide strong evidence of an association between AF exacerbation and proximity to O&G wells sites during (HR = 1.07, 95% CI: 0.94, 1.22) or after (HR = 1.01, 95% CI: 0.88, 1.16) development. However, AF exacerbation risk differed by patient age and sex. In patients >80 years living within 0.39 miles (2,059 feet) of O&G well site development, AF exacerbation risk increased by 83% (HR = 1.83, 95% CI: 1.25, 2.66) and emergency room visits for an AF event doubled (HR = 2.55, 95% CI: 1.50, 4.36) during development, with risk increasing with proximity. In female patients living within 0.39 miles of O&G well site development, AF exacerbation risk increased by 56% percent (95% CI: 1.13, 2.15) during development. AF exacerbation risk did not persist past the well development period. We did not observe increased AF exacerbation risk in younger or male patients. Discussion The prospect that proximity to O&G well site development, a significant noise and air pollution source, may increase AF exacerbation risk in older and female AF patients requires attention. These findings support appropriate patient education to help mitigate risk and development of mitigation strategies and regulations to protect the health of populations in O&G development regions.
Collapse
Affiliation(s)
- Lisa M. McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - William B. Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Barbara Abrahams
- Department of Cardiology, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, United States
| | - Christine Tompkins
- Division of Electrophysiology, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Chan M, Shamasunder B, Johnston JE. Social and Environmental Stressors of Urban Oil and Gas Facilities in Los Angeles County, California, 2020. Am J Public Health 2023; 113:1182-1190. [PMID: 37499202 PMCID: PMC10568508 DOI: 10.2105/ajph.2023.307360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/29/2023]
Abstract
Objectives. To examine patterns of cumulative environmental injustice with respect to operations of urban oil and gas development in Los Angeles County, California. Methods. Using CalEnviroScreen (CES) 4.0, oil and gas data permit records, and US census data, we examined the association between CES score (grouped into equal quintiles, with the lowest representing low cumulative burden) and oil and gas development (presence or absence of an oil and gas production well) within 1 kilometer of a census block centroid. Results. Among census blocks in the highest quintile of CES score, we observed 94% increased odds of being within 1 kilometer of a well compared with census blocks in the lowest quintile of CES score (odds ratio = 1.94; 95% confidence interval = 1.83, 2.10). In our multivariable model, the proportion of Black residents and higher quintiles of CES score were also associated with increased odds of a nearby oil and gas well. Conclusions. These findings suggest that oil and gas facilities are operating in neighborhoods already cumulatively burdened and with higher proportions of Black residents. (Am J Public Health. 2023;113(11):1182-1190. https://doi.org/10.2105/AJPH.2023.307360).
Collapse
Affiliation(s)
- Marissa Chan
- Marissa Chan is with the Harvard T. H. Chan School of Public Health, Boston, MA. Bhavna Shamasunder is with Occidental College, Los Angeles, CA. Jill E. Johnston is with the University of Southern California, Los Angeles
| | - Bhavna Shamasunder
- Marissa Chan is with the Harvard T. H. Chan School of Public Health, Boston, MA. Bhavna Shamasunder is with Occidental College, Los Angeles, CA. Jill E. Johnston is with the University of Southern California, Los Angeles
| | - Jill E Johnston
- Marissa Chan is with the Harvard T. H. Chan School of Public Health, Boston, MA. Bhavna Shamasunder is with Occidental College, Los Angeles, CA. Jill E. Johnston is with the University of Southern California, Los Angeles
| |
Collapse
|
7
|
Gaughan C, Sorrentino KM, Liew Z, Johnson NP, Clark CJ, Soriano M, Plano J, Plata DL, Saiers JE, Deziel NC. Residential proximity to unconventional oil and gas development and birth defects in Ohio. ENVIRONMENTAL RESEARCH 2023; 229:115937. [PMID: 37076028 PMCID: PMC10198955 DOI: 10.1016/j.envres.2023.115937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/30/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chemicals used or emitted by unconventional oil and gas development (UOGD) include reproductive/developmental toxicants. Associations between UOGD and certain birth defects were reported in a few studies, with none conducted in Ohio, which experienced a thirty-fold increase in natural gas production between 2010 and 2020. METHODS We conducted a registry-based cohort study of 965,236 live births in Ohio from 2010 to 2017. Birth defects were identified in 4653 individuals using state birth records and a state surveillance system. We assigned UOGD exposure based on maternal residential proximity at birth to active UOG wells and a metric specific to the drinking-water exposure pathway that identified UOG wells hydrologically connected to a residence ("upgradient UOG wells"). We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for all structural birth defects combined and specific birth defect types using binary exposure metrics (presence/absence of any UOG well and presence/absence of an upgradient UOG well within 10 km), adjusting for confounders. Additionally, we conducted analyses stratified by urbanicity, infant sex, and social vulnerability. RESULTS The odds of any structural defect were 1.13 times higher in children born to mothers living within 10 km of UOGD than those born to unexposed mothers (95%CI: 0.98-1.30). Odds were elevated for neural tube defects (OR: 1.57, 95%CI: 1.12-2.19), limb reduction defects (OR: 1.99, 95%CI: 1.18-3.35), and spina bifida (OR 1.93; 95%CI 1.25-2.98). Hypospadias (males only) was inversely related to UOGD exposure (OR: 0.62, 95%CI: 0.43-0.91). Odds of any structural defect were greater in magnitude but less precise in analyses using the hydrological-specific metric (OR: 1.30; 95%CI: 0.85-1.90), in areas with high social vulnerability (OR: 1.27, 95%CI: 0.99-1.60), and among female offspring (OR: 1.28, 95%CI: 1.06-1.53). CONCLUSIONS Our results suggest a positive association between UOGD and certain birth defects, and findings for neural tube defects corroborate results from prior studies.
Collapse
Affiliation(s)
- Casey Gaughan
- Department of Ecology and Evolutionary Biology, Yale College, New Haven, CT, USA; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Keli M Sorrentino
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Nicholaus P Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Cassandra J Clark
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Mario Soriano
- Yale School of the Environment, Yale University, New Haven, CT, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Julie Plano
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Desiree L Plata
- Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James E Saiers
- Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Nicole C Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
8
|
Caron-Beaudoin É, Subramanian A, Daley C, Lakshmanan S, Whitworth KW. Estimation of exposure to particulate matter in pregnant individuals living in an area of unconventional oil and gas operations: Findings from the EXPERIVA study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:383-396. [PMID: 37154018 DOI: 10.1080/15287394.2023.2208594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Northeastern British Columbia (Canada) is an area of oil and gas exploitation, which may result in release of fine (PM2.5) and inhalable (PM10) particulate matter. The aims of this study were to: 1) apply extrapolation methods to estimate exposure to PM2.5 and PM10 concentrations among EXPERIVA (Exposures in the Peace River Valley study) participants using air quality data archives; and 2) conduct exploratory analyses to investigate correlation between PM exposure and metrics of oil and gas wells density, proximity, and activity. Gestational exposure to PM2.5 and PM10 of the EXPERIVA participants (n = 85) was estimated by averaging the concentrations measured at the closest or three closest air monitoring stations during the pregnancy period. Drilling metrics were calculated based upon the density and proximity of conventional and unconventional oil and gas wells to each participant's residence. Phase-specific metrics were determined for unconventional wells. The correlations (ρ) between exposure to PM2.5 and PM10 and metrics of well density/proximity were determined using Spearman's rank correlation test. Estimated PM ambient air concentrations ranged between 4.73 to 12.13 µg/m3 for PM2.5 and 7.14 to 26.61 µg/m3 for PM10. Conventional wells metrics were more strongly correlated with PM10 estimations (ρ between 0.28 and 0.79). Unconventional wells metrics for all phases were positively correlated with PM2.5 estimations (ρ between 0.23 and 0.55). These results provide evidence of a correlation between density and proximity of oil and gas wells and estimated PM exposure in the EXPERIVA participants.
Collapse
Affiliation(s)
- Élyse Caron-Beaudoin
- Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Centre for Clinical Epidemiology and Evaluation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amrita Subramanian
- Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Siddharthan Lakshmanan
- Department of Health and Society, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kristina W Whitworth
- Department of Medicine, Section of Epidemiology and Population Sciences, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
González DJX, Morton CM, Hill LAL, Michanowicz DR, Rossi RJ, Shonkoff SBC, Casey JA, Morello‐Frosch R. Temporal Trends of Racial and Socioeconomic Disparities in Population Exposures to Upstream Oil and Gas Development in California. GEOHEALTH 2023; 7:e2022GH000690. [PMID: 36968155 PMCID: PMC10035325 DOI: 10.1029/2022gh000690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
People living near oil and gas development are exposed to multiple environmental stressors that pose health risks. Some studies suggest these risks are higher for racially and socioeconomically marginalized people, which may be partly attributable to disparities in exposures. We examined whether racially and socioeconomically marginalized people in California are disproportionately exposed to oil and gas wells and associated hazards. We longitudinally assessed exposure to wells during three time periods (2005-2009, 2010-2014, and 2015-2019) using sociodemographic data at the census block group-level. For each block group and time period, we assessed exposure to new, active, retired, and plugged wells, and cumulative production volume. We calculated risk ratios to determine whether marginalized people disproportionately resided near wells (within 1 km). Averaged across the three time periods, we estimated that 1.1 million Californians (3.0%) lived within 1 km of active wells. Nearly 9 million Californians (22.9%) lived within 1 km of plugged wells. The proportion of Black residents near active wells was 42%-49% higher than the proportion of Black residents across California, and the proportion of Hispanic residents near active wells was 4%-13% higher than their statewide proportion. Disparities were greatest in areas with the highest oil and gas production, where the proportion of Black residents was 105%-139% higher than statewide. Socioeconomically marginalized residents also had disproportionately high exposure to wells. Though oil and gas production has declined in California, marginalized communities persistently had disproportionately high exposure to wells, potentially contributing to health disparities.
Collapse
Affiliation(s)
- David J. X. González
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCAUSA
| | - Claire M. Morton
- Mathematical and Computational Science ProgramStanford UniversityStanfordCAUSA
| | | | | | | | - Seth B. C. Shonkoff
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- PSE Healthy EnergyOaklandCAUSA
- Lawrence Berkeley National LaboratoryEnergy Technologies AreaBerkeleyCAUSA
| | - Joan A. Casey
- Department of Environmental Health SciencesColumbia UniversityNew YorkNYUSA
- Department of Environmental and Occupational Health SciencesUniversity of WashingtonSeattleWAUSA
| | - Rachel Morello‐Frosch
- Division of Environmental Health SciencesSchool of Public HealthUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCAUSA
| |
Collapse
|
10
|
Weisner ML, Allshouse WB, Erjavac BW, Valdez AP, Vahling JL, McKenzie LM. Health Symptoms and Proximity to Active Multi-Well Unconventional Oil and Gas Development Sites in the City and County of Broomfield, Colorado. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2634. [PMID: 36767999 PMCID: PMC9915243 DOI: 10.3390/ijerph20032634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
City and County of Broomfield (CCOB) residents reported over 500 health concerns between January 2020 and December 2021. Our objective was to determine if CCOB residents living within 1 mile of multi-well unconventional oil and gas development (UOGD) sites reported more frequent health symptoms than residents living > 2 miles away. We invited 3993 randomly selected households to participate in a health survey. We applied linear regression to test associations between distance to UOGD and summed Likert scores for health symptom categories. After covariate adjustment, respondents living within 1 mile of one of CCOB's UOGD sites tended to report higher frequencies of upper respiratory, lower respiratory, gastrointestinal and acute symptoms than respondents living more than 2 miles from the sites, with the largest differences for upper respiratory and acute symptoms. For upper respiratory and acute symptoms, scores differed by 0.81 (95% CI: 0.06, 2.58) and 0.75 (95% CI: 0.004, 1.99), respectively. Scores for adults most concerned about air pollution, noise and odors trended higher within 1 mile for all symptom categories, while scores among adults least concerned trended lower. Scores trended higher for lower respiratory, gastrointestinal and acute symptoms in children living within 2 miles of UOGD, after covariate adjustment. We did not observe any difference in the frequency of symptoms reported in unadjusted results. Additional study is necessary to understand relationships between proximity to UOGD and health symptoms.
Collapse
Affiliation(s)
- Meagan L. Weisner
- Department of Public Health and Environment, City and County of Broomfield, Broomfield, CO 80020, USA
| | - William B. Allshouse
- Department of Environmental & Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin W. Erjavac
- Department of Environmental & Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew P. Valdez
- Department of Strategic Initiatives, City and County of Broomfield, Broomfield, CO 80020, USA
| | - Jason L. Vahling
- Department of Public Health and Environment, City and County of Broomfield, Broomfield, CO 80020, USA
| | - Lisa M. McKenzie
- Department of Environmental & Occupational Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Willis MD, Carozza SE, Hystad P. Congenital anomalies associated with oil and gas development and resource extraction: a population-based retrospective cohort study in Texas. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:84-93. [PMID: 36460921 PMCID: PMC9852077 DOI: 10.1038/s41370-022-00505-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Oil and gas extraction-related activities produce air and water pollution that contains known and suspected teratogens. To date, health impacts of in utero exposure to these activities is largely unknown. OBJECTIVE We investigated associations between in utero exposure to oil and gas extraction activity in Texas, one of the highest producers of oil and gas, and congenital anomalies. METHODS We created a population-based birth cohort between 1999 and 2009 with full maternal address at delivery and linked to the statewide congenital anomaly surveillance system (n = 2,234,138 births, 86,315 cases). We examined extraction-related exposures using tertiles of inverse distance-squared weighting within 5 km for drilling site count, gas production, oil production, and produced water. In adjusted logistic regression models, we calculated odds of any congenital anomaly and 10 specific organ sites using two comparison groups: 1) 5 km of future drilling sites that are not yet operating (a priori main models), and 2) 5-10 km of an active well. RESULTS Using the temporal comparison group, we find increased odds of any congenital anomaly in the highest tertile exposure group for site count (OR: 1.25; 95% CI: 1.21, 1.30), oil production (OR: 1.08; 95% CI: 1.04, 1.12), gas production (1.20; 95% CI: 1.17, 1.23), and produced water (OR: 1.17; 95% CI: 1.14, 1.20). However, associations did not follow a consistent exposure-response pattern across tertiles. Associations are highly attenuated, but still increased, with the spatial comparison group in the highest tertile exposure group. Cardiac and circulatory defects are strongly and consistently associated with all exposure metrics. SIGNIFICANCE Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm findings, examine specific exposure pathways, and identify potential avenues to reduce exposures among local populations. IMPACT About 5% of the U.S. population (~17.6 million people) resides within 1.6 km of an active oil or gas extraction site, yet the influence of this industry on population health is not fully understood. In this analysis, we examined associations between oil and gas extraction-related exposures and congenital anomalies by organ site using birth certificate and congenital anomaly surveillance data in Texas (1999-2009). Increased odds of congenital anomalies, particularly cardiac and circulatory defects, were associated with exposures related to oil and gas extraction in this large population-based study. Future research is needed to confirm these findings.
Collapse
Affiliation(s)
- Mary D Willis
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA.
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| | - Susan E Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
12
|
Gonzalez DJX, Nardone A, Nguyen AV, Morello-Frosch R, Casey JA. Historic redlining and the siting of oil and gas wells in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:76-83. [PMID: 35418707 PMCID: PMC9556657 DOI: 10.1038/s41370-022-00434-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 05/15/2023]
Abstract
BACKGROUND The presence of active or inactive (i.e., postproduction) oil and gas wells in neighborhoods may contribute to ongoing pollution. Racially discriminatory neighborhood security maps developed by the Home-Owners Loan Corporation (HOLC) in the 1930s may contribute to environmental exposure disparities. OBJECTIVE To determine whether receiving worse HOLC grades was associated with exposure to more oil and gas wells. METHODS We assessed exposure to oil and gas wells among HOLC-graded neighborhoods in 33 cities from 13 states where urban oil and gas wells were drilled and operated. Among the 17 cities for which 1940 census data were available, we used propensity score restriction and matching to compare well exposure neighborhoods that were similar on observed 1940 sociodemographic characteristics but that received different grades. RESULTS Across all included cities, redlined D-graded neighborhoods had 12.2 ± 27.2 wells km-2, nearly twice the density in neighborhoods graded A (6.8 ± 8.9 wells km-2). In propensity score restricted and matched analyses, redlined neighborhoods had 2.0 (1.3, 2.7) more wells than comparable neighborhoods with a better grade. SIGNIFICANCE Our study adds to the evidence that structural racism in federal policy is associated with the disproportionate siting of oil and gas wells in marginalized neighborhoods.
Collapse
Affiliation(s)
- David J X Gonzalez
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA.
| | - Anthony Nardone
- University of California (UC) Berkeley-UC San Francisco (UCSF) Joint Medical Program, UC Berkeley School of Public Health and UCSF School of Medicine, Berkeley and San Francisco, CA, USA
| | - Andrew V Nguyen
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Rachel Morello-Frosch
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Joan A Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
13
|
Forster F, Herrera R, Hoopmann M, Kieschke J, Deitermann B, Radon K. Residential proximity to oil and gas production sites and hematologic malignancies: A case-control study. Am J Ind Med 2022; 65:985-993. [PMID: 36250627 DOI: 10.1002/ajim.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND We investigated the association between residential proximity to oil and gas production sites and hematologic malignancies, due to a cancer cluster in the German state of Lower Saxony. METHODS A registry-based case-control study was conducted including 3978 cases of hematologic malignancies diagnosed within 2013-2016 and 15,912 frequency-matched controls randomly drawn by population registries. Residential proximity to 5333 oil and gas production sites at the time of diagnosis was calculated. Unconditional logistic regression models were used to estimate the association between living within 1 km of any exposure site and developing a hematologic malignancy. Models were adjusted for matching variables sex, age group, district, and year of diagnosis as well as for proximity to main streets and to agricultural land. RESULTS We found no association between the development of hematologic malignancies and the proximity to all oil and gas production sites (odds ratio: 0.97; 95% confidence interval: 0.85, 1.11). Focusing on gas production sites increased the odds of developing hematologic cancer (odds ratio: 1.19; 95% confidence interval: 0.97, 1.45). In stratified analyses, associations were stronger in women and for acute myeloblastic leukemia. We also found an association in the district where the initial cluster occurred. CONCLUSIONS Our results suggest that residential proximity to oil and gas production is not a risk factor for all hematologic malignancies in general. Sporadic and past exposures are the most likely scenarios for mechanisms involving oil and gas production, leading to increased risk for certain subtypes of cancer in certain populations.
Collapse
Affiliation(s)
- Felix Forster
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ronald Herrera
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Michael Hoopmann
- Governmental Institute of Public Health of Lower Saxony, Hanover, Germany
| | | | | | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
14
|
Deziel NC, Clark CJ, Casey JA, Bell ML, Plata DL, Saiers JE. Assessing Exposure to Unconventional Oil and Gas Development: Strengths, Challenges, and Implications for Epidemiologic Research. Curr Environ Health Rep 2022; 9:436-450. [PMID: 35522388 PMCID: PMC9363472 DOI: 10.1007/s40572-022-00358-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Epidemiologic studies have observed elevated health risks in populations living near unconventional oil and gas development (UOGD). In this narrative review, we discuss strengths and limitations of UOG exposure assessment approaches used in or available for epidemiologic studies, emphasizing studies of children's health outcomes. RECENT FINDINGS Exposure assessment challenges include (1) numerous potential stressors with distinct spatiotemporal patterns, (2) critical exposure windows that cover long periods and occur in the past, and (3) limited existing monitoring data coupled with the resource-intensiveness of collecting new exposure measurements to capture spatiotemporal variation. All epidemiologic studies used proximity-based models for exposure assessment as opposed to surveys, biomonitoring, or environmental measurements. Nearly all studies used aggregate (rather than pathway-specific) models, which are useful surrogates for the complex mix of potential hazards. Simple and less-specific exposure assessment approaches have benefits in terms of scalability, interpretability, and relevance to specific policy initiatives such as set-back distances. More detailed and specific models and metrics, including dispersion methods and stressor-specific models, could reduce exposure misclassification, illuminate underlying exposure pathways, and inform emission control and exposure mitigation strategies. While less practical in a large population, collection of multi-media environmental and biological exposure measurements would be feasible in cohort subsets. Such assessments are well-suited to provide insights into the presence and magnitude of exposures to UOG-related stressors in relation to spatial surrogates and to better elucidate the plausibility of observed effects in both children and adults.
Collapse
Affiliation(s)
- Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St., New Haven, CT 06510 USA
| | - Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 630 West 168th Street, Room 16-416, New York, NY 10032 USA
| | - Michelle L. Bell
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| | - Desiree L. Plata
- Department of Civil and Environmental Engineering, Parsons Laboratory, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139 USA
| | - James E. Saiers
- Yale School of the Environment, 195 Prospect St., New Haven, CT 06511 USA
| |
Collapse
|
15
|
Clark CJ, Johnson NP, Soriano M, Warren JL, Sorrentino KM, Kadan-Lottick NS, Saiers JE, Ma X, Deziel NC. Unconventional Oil and Gas Development Exposure and Risk of Childhood Acute Lymphoblastic Leukemia: A Case-Control Study in Pennsylvania, 2009-2017. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87001. [PMID: 35975995 PMCID: PMC9383266 DOI: 10.1289/ehp11092] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/15/2022] [Accepted: 06/29/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Unconventional oil and gas development (UOGD) releases chemicals that have been linked to cancer and childhood leukemia. Studies of UOGD exposure and childhood leukemia are extremely limited. OBJECTIVE The objective of this study was to evaluate potential associations between residential proximity to UOGD and risk of acute lymphoblastic leukemia (ALL), the most common form of childhood leukemia, in a large regional sample using UOGD-specific metrics, including a novel metric to represent the water pathway. METHODS We conducted a registry-based case-control study of 405 children ages 2-7 y diagnosed with ALL in Pennsylvania between 2009-2017, and 2,080 controls matched on birth year. We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between residential proximity to UOGD (including a new water pathway-specific proximity metric) and ALL in two exposure windows: a primary window (3 months preconception to 1 y prior to diagnosis/reference date) and a perinatal window (preconception to birth). RESULTS Children with at least one UOG well within 2 km of their birth residence during the primary window had 1.98 times the odds of developing ALL in comparison with those with no UOG wells [95% confidence interval (CI): 1.06, 3.69]. Children with at least one vs. no UOG wells within 2 km during the perinatal window had 2.80 times the odds of developing ALL (95% CI: 1.11, 7.05). These relationships were slightly attenuated after adjusting for maternal race and socio-economic status [odds ratio (OR) = 1.74 (95% CI: 0.93, 3.27) and OR = 2.35 (95% CI: 0.93, 5.95)], respectively). The ORs produced by models using the water pathway-specific metric were similar in magnitude to the aggregate metric. DISCUSSION Our study including a novel UOGD metric found UOGD to be a risk factor for childhood ALL. This work adds to mounting evidence of UOGD's impacts on children's health, providing additional support for limiting UOGD near residences. https://doi.org/10.1289/EHP11092.
Collapse
Affiliation(s)
- Cassandra J. Clark
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicholaus P. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Mario Soriano
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Keli M. Sorrentino
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| | - Nina S. Kadan-Lottick
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia, USA
| | - James E. Saiers
- Yale School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Nicole C. Deziel
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, Connecticut, USA
- Center for Perinatal, Pediatric and Environmental Epidemiology, Yale University Schools of Public Health and Medicine, New Haven, Connecticut, USA
| |
Collapse
|
16
|
Gonzalez DJX, Francis CK, Shaw GM, Cullen MR, Baiocchi M, Burke M. Upstream oil and gas production and ambient air pollution in California. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150298. [PMID: 34844318 DOI: 10.1016/j.scitotenv.2021.150298] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND Prior studies have found that residential proximity to upstream oil and gas production is associated with increased risk of adverse health outcomes. Emissions of ambient air pollutants from oil and gas wells in the preproduction and production stages have been proposed as conferring risk of adverse health effects, but the extent of air pollutant emissions and resulting nearby pollution concentrations from wells is not clear. OBJECTIVES We examined the effects of upstream oil and gas preproduction (count of drilling sites) and production (total volume of oil and gas) activities on concentrations of five ambient air pollutants in California. METHODS We obtained data on approximately 1 million daily observations from 314 monitors in the EPA Air Quality System, 2006-2019, including daily concentrations of five routinely monitored ambient air pollutants: PM2.5, CO, NO2, O3, and VOCs. We obtained data on preproduction and production operations from Enverus and the California Geographic Energy Management Division (CalGEM) for all wells in the state. For each monitor and each day, we assessed exposure to upwind preproduction wells and total oil and gas production volume within 10 km. We used a panel regression approach in the analysis and fit adjusted fixed effects linear regression models for each pollutant, controlling for geographic, seasonal, temporal, and meteorological factors. RESULTS We observed higher concentrations of PM2.5 and CO at monitors within 3 km of preproduction wells, NO2 at monitors at 1-2 km, and O3 at 2-4 km from the wells. Monitors with proximity to increased production volume observed higher concentrations of PM2.5, NO2, and VOCs within 1 km and higher O3 concentrations at 1-2 km. Results were robust to sensitivity analyses. CONCLUSION Adjusting for geographic, meteorological, seasonal, and time-trending factors, we observed higher concentrations of ambient air pollutants at air quality monitors in proximity to preproduction wells within 4 km and producing wells within 2 km.
Collapse
Affiliation(s)
- David J X Gonzalez
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA; Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA, USA.
| | - Christina K Francis
- Program in Environmental Science and Studies, Johns Hopkins University, Baltimore, MD, USA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Mark R Cullen
- Founding Director of the Stanford Center for Population Health Sciences, USA
| | - Michael Baiocchi
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Marshall Burke
- Department of Earth System Science, School of Earth, Energy and Environmental Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
|
18
|
Zhong C, Zolfaghari A, Hou D, Goss GG, Lanoil BD, Gehman J, Tsang DCW, He Y, Alessi DS. Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7167-7185. [PMID: 33970611 DOI: 10.1021/acs.est.0c06119] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
There is considerable debate about the sustainability of the hydraulic fracturing (HF) water cycle in North America. Recently, this debate has expanded to China, where HF activities continue to grow. Here, we provide a critical review of the HF water cycle in China, including water withdrawal practices and flowback and produced water (FPW) management and their environmental impacts, with a comprehensive comparison to the U.S. and Canada (North America). Water stress in arid regions, as well as water management challenges, FPW contamination of aquatic and soil systems, and induced seismicity are all impacts of the HF water cycle in China, the U.S., and Canada. In light of experience gained in North America, standardized practices for analyzing and reporting FPW chemistry and microbiology in China are needed to inform its efficient and safe treatment, discharge and reuse, and identification of potential contaminants. Additionally, conducting ecotoxicological studies is an essential next step to fully reveal the impacts of accidental FPW releases into aquatic and soil ecosystems in China. From a policy perspective, the development of China's unconventional resources lags behind North America's in terms of overall regulation, especially with regard to water withdrawal, FPW management, and routine monitoring. Our study suggests that common environmental risks exist within the world's two largest HF regions, and practices used in North America may help prevent or mitigate adverse effects in China.
Collapse
Affiliation(s)
- Cheng Zhong
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
- School of Environment, Tsinghua University, Beijing, China
| | - Ashkan Zolfaghari
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, China
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Brian D Lanoil
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Joel Gehman
- Department of Strategy, Entrepreneurship and Management, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong, China
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Tang IW, Langlois PH, Vieira VM. Birth defects and unconventional natural gas developments in Texas, 1999-2011. ENVIRONMENTAL RESEARCH 2021; 194:110511. [PMID: 33245885 DOI: 10.1016/j.envres.2020.110511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Unconventional natural gas developments (UNGD) may release air and water pollutants into the environment, potentially increasing the risk of birth defects. We conducted a case-control study evaluating 52,955 cases with birth defects and 642,399 controls born between 1999 and 2011 to investigate the relationship between UNGD exposure and the risk of gastroschisis, congenital heart defects (CHD), neural tube defects (NTDs), and orofacial clefts in Texas. We calculated UNGD densities (number of UNGDs per area) within 1, 3, and 7.5 km of maternal address at birth and categorized exposure by density tertiles. For CHD subtypes with large case numbers, we also performed time-stratified analyses to examine temporal trends. We calculated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association with UNGD exposure, accounting for maternal characteristics and neighborhood factors. We also included a bivariable smooth of geocoded maternal location in an additive model to account for unmeasured spatially varying risk factors. Positive associations were observed between the highest tertile of UNGD density within 1 km of maternal address and risk of anencephaly (aOR: 2.44, 95% CI: 1.55, 3.86), spina bifida (aOR: 2.09, 95% CI: 1.47, 2.99), gastroschisis among older mothers (aOR: 3.19, 95% CI: 1.77, 5.73), aortic valve stenosis (aOR: 1.90, 95% CI: 1.33, 2.71), hypoplastic left heart syndrome (aOR: 2.00, 95% CI: 1.39, 2.86), and pulmonary valve atresia or stenosis (aOR: 1.36, 95% CI: 1.10, 1.66). For CHD subtypes, results did not differ substantially by distance from maternal address or when residual confounding was considered, except for atrial septal defects. We did not observe associations with orofacial clefts. Our results suggest that UNGDs were associated with some CHDs and possibly NTDs. In addition, we identified temporal trends and observed presence of spatial residual confounding for some CHDs.
Collapse
Affiliation(s)
- Ian W Tang
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA.
| | - Peter H Langlois
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health Austin Regional Campus, Austin, TX, USA
| | - Verónica M Vieira
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA
| |
Collapse
|
20
|
Willis M, Hystad P, Denham A, Hill E. Natural gas development, flaring practices and paediatric asthma hospitalizations in Texas. Int J Epidemiol 2021; 49:1883-1896. [PMID: 32879945 PMCID: PMC7825956 DOI: 10.1093/ije/dyaa115] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent advancements in drilling technology led to a rapid increase in natural gas development (NGD). Air pollution may be elevated in these areas and may vary by drilling type (conventional and unconventional), production volume and gas flaring. Impacts of NGD on paediatric asthma are largely unknown. This study quantifies associations between specific NGD activities and paediatric asthma hospitalizations in Texas. METHODS We leveraged a database of Texas inpatient hospitalizations between 2000 and 2010 at the zip code level by quarter to examine associations between NGD and paediatric asthma hospitalizations, where our primary outcome is 0 vs ≥1 hospitalization. We used quarterly production reports to assess additional drilling-specific exposures at the zip code-level including drilling type, production and gas flaring. We developed logistic regression models to assess paediatric asthma hospitalizations by zip code-quarter-year observations, thus capturing spatiotemporal exposure patterns. RESULTS We observed increased odds of ≥1 paediatric asthma hospitalization in a zip code per quarter associated with increasing tertiles of NGD exposure and show that spatiotemporal variation impacts results. Conventional drilling, compared with no drilling, is associated with odds ratios up to 1.23 [95% confidence interval (CI): 1.13, 1.34], whereas unconventional drilling is associated with odds ratios up to 1.59 (95% CI: 1.46, 1.73). Increasing production volumes are associated with increased paediatric asthma hospitalizations in an exposure-response relationship, whereas associations with flaring volumes are inconsistent. CONCLUSIONS We found evidence of associations between paediatric asthma hospitalizations and NGD, regardless of drilling type. Practices related to production volume may be driving these positive associations.
Collapse
Affiliation(s)
- Mary Willis
- School of Biological & Population Health, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Perry Hystad
- School of Biological & Population Health, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Alina Denham
- Department of Public Health Sciences, School of Medicine & Dentistry, University of Rochester, Rochester, NY, USA
| | - Elaine Hill
- School of Biological & Population Health, College of Public Health & Human Sciences, Oregon State University, Corvallis, OR, USA
- Department of Public Health Sciences, School of Medicine & Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
21
|
Cushing LJ, Vavra-Musser K, Chau K, Franklin M, Johnston JE. Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:77003. [PMID: 32673511 PMCID: PMC7362742 DOI: 10.1289/ehp6394] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Prior studies suggest exposure to oil and gas development (OGD) adversely affects birth outcomes, but no studies have examined flaring-the open combustion of natural gas-from OGD. OBJECTIVES We investigated whether residential proximity to flaring from OGD was associated with shorter gestation and reduced fetal growth in the Eagle Ford Shale of south Texas. METHODS We conducted a retrospective cohort study using administrative birth records from 2012 to 2015 (N = 23,487 ) and satellite observations of flaring activity during pregnancy within 5 km of maternal residence. Multivariate logistic and linear regression models were used to estimate associations between four outcomes (preterm birth, small-for-gestational age, continuous gestational age, and term birthweight) and exposure to a low (1-9) or high (≥ 10 ) number of nightly flare events, as compared with no exposure, while controlling for known maternal risk factors. We also examined associations with the number of oil and gas wells within 5 km using data from DrillingInfo (now Enverus). RESULTS Exposure to a high number of nightly flare events was associated with a 50% higher odds of preterm birth [odds ratio (OR) = 1.50 (95% CI: 1.23, 1.83)] and shorter gestation [mean difference = - 1.9 (95% CI: - 2.8 , - 0.9 ) d] compared with no exposure. Effect estimates were slightly reduced after adjustment for the number of wells within 5 km . In stratified models these associations were present only among Hispanic women. Flaring and fetal growth outcomes were not significantly associated. Women exposed to a high number of wells (fourth quartile, ≥ 27 ) vs. no wells within 5 km had a higher odds of preterm birth [OR = 1.31 (95% CI: 1.14, 1.49)], shorter gestation [- 1.3 (95% CI: - 1.9 , - 0.8 ) d], and lower average birthweight [- 19.4 (95% CI: - 36.7 , - 2.0 ) g]. DISCUSSION Our study suggests exposure to flaring from OGD is associated with an increased risk of preterm birth. Our findings need to be confirmed in other populations. https://doi.org/10.1289/EHP6394.
Collapse
Affiliation(s)
- Lara J Cushing
- Department of Environmental Health Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Kate Vavra-Musser
- Spatial Sciences Institute, University of Southern California, Los Angeles, California, USA
| | - Khang Chau
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| | - Jill E Johnston
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
22
|
Tran KV, Casey JA, Cushing LJ, Morello-Frosch R. Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006-2015 Births. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67001. [PMID: 32490702 PMCID: PMC7268907 DOI: 10.1289/ehp5842] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Studies suggest associations between oil and gas development (OGD) and adverse birth outcomes, but few epidemiological studies of oil wells or inactive wells exist, and none in California. OBJECTIVE Our study aimed to investigate the relationship between residential proximity to OGD and birth outcomes in California. METHODS We conducted a retrospective cohort study of 2,918,089 births to mothers living within 10 km of at least one production well between January 1, 2006 and December 31, 2015. We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2-5 wells, 6+ wells) and production volume from active wells in barrels of oil equivalent (BOE) (no BOE, 1-100 BOE/day, >100 BOE/day). We used generalized estimating equations to examine associations between overall and trimester-specific OGD exposures and term birth weight (tBW), low birth weight (LBW), preterm birth (PTB), and small for gestational age birth (SGA). We assessed effect modification by urban/rural community type. RESULTS Adjusted models showed exposure to active OGD was associated with adverse birth outcomes in rural areas; effect estimates in urban areas were close to null. In rural areas, increasing production volume was associated with stronger adverse effect estimates. High (>100 BOE/day) vs. no production throughout pregnancy was associated with increased odds of LBW [odds ratio (OR)=1.40, 95% confidence interval (CI): 1.14, 1.71] and SGA (OR=1.22, 95% CI: 1.02, 1.45), and decreased tBW (mean difference = -36 grams, 95% CI: -54, -17), but not with PTB (OR=1.03, 95% CI: 0.91, 1.18). CONCLUSION Proximity to higher production OGD in California was associated with adverse birth outcomes among mothers residing in rural areas. Future studies are needed to confirm our findings in other populations and improve exposure assessment measures. https://doi.org/10.1289/EHP5842.
Collapse
Affiliation(s)
- Kathy V Tran
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
| | - Joan A Casey
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Lara J Cushing
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Health Education, San Francisco State University, San Francisco, California, USA
| | - Rachel Morello-Frosch
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy and Management University of California, Berkeley, California, USA
| |
Collapse
|
23
|
Johnston JE, Chau K, Franklin M, Cushing L. Environmental Justice Dimensions of Oil and Gas Flaring in South Texas: Disproportionate Exposure among Hispanic communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6289-6298. [PMID: 32338877 PMCID: PMC8915929 DOI: 10.1021/acs.est.0c00410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Unconventional extraction techniques including hydraulic fracturing or "fracking" have led to a boom in oil and gas production in the Eagle Ford shale play, Texas, one of the most productive regions in the United States. Nearly 400000 people live within 5 km of an unconventional oil or gas well in this largely rural area. Flaring is associated primarily with unconventional oil wells and is an increasingly common practice in the Eagle Ford to dispose of excess gas through combustion. Flares can operate continuously for months and release hazardous air pollutants such as particulate matter and volatile organic compounds in addition to causing light and noise pollution and noxious odors. We estimated ethnic disparities in exposure to flaring using satellite observations from the Visible Infrared Imaging Spectroradiometer between March 2012-December 2016. Census blocks with majority Hispanic (>60%) populations were exposed to twice as many nightly flare events within 5 km as those with <20% Hispanics. We found that Hispanics were exposed to more flares despite being less likely than non-Hispanic White residents to live near unconventional oil and gas wells. Our findings suggest Hispanics are disproportionately exposed to flares in the Eagle Ford shale, a pattern known as environmental injustice, which could contribute to disparities in air pollution and other nuisance exposures.
Collapse
Affiliation(s)
- Jill E. Johnston
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Khang Chau
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Meredith Franklin
- Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States
| | - Lara Cushing
- Department of Health Education, San Francisco State University, San Francisco California, 94132, United States
| |
Collapse
|
24
|
Johnston J, Cushing L. Chemical Exposures, Health, and Environmental Justice in Communities Living on the Fenceline of Industry. Curr Environ Health Rep 2020; 7:48-57. [PMID: 31970715 PMCID: PMC7035204 DOI: 10.1007/s40572-020-00263-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE OF REVIEW Polluting industries are more likely to be located in low-income communities of color who also experience greater social stressors that may make them more vulnerable than others to the health impacts of toxic chemical exposures. We describe recent developments in assessing pollutant exposures and health threats posed by industrial facilities using or releasing synthetic chemicals to nearby communities in the U.S. RECENT FINDINGS More people are living near oil and gas development due to the expansion of unconventional extraction techniques as well as near industrial animal operations, both with suggestive evidence of increased exposure to hazardous pollutants and adverse health effects. Legacy contamination continues to adversely impact a new generation of residents in fenceline communities, with recent studies documenting exposures to toxic metals and poly- and perfluoroalkyl substances (PFASs). Researchers are also giving consideration to acute exposures resulting from inadvertent industrial chemical releases, including those resulting from extreme weather events linked to climate change. Natural experiments of industrial closures or cleanups provide compelling evidence that exposures from industry harm the health of nearby residents. New and legacy industries, coupled with climate change, present unique health risks to communities living near industry due to the release of toxic chemicals. Cumulative impacts from multiple stressors faced by environmental justice communities may amplify these adverse effects.
Collapse
Affiliation(s)
- Jill Johnston
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Lara Cushing
- Department of Health Education, San Francisco State University, San Francisco, CA, USA
| |
Collapse
|
25
|
Buonocore JJ, Casey JA, Croy R, Spengler JD, McKenzie L. Air Monitoring Stations Far Removed from Drilling Activities do not Represent Residential Exposures to Marcellus Shale Air Pollutants. Response to the Paper by Hess et al. on Proximity-Based Unconventional Natural Gas Exposure Metrics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020504. [PMID: 31941139 PMCID: PMC7013646 DOI: 10.3390/ijerph17020504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Jonathan J. Buonocore
- Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
- Correspondence:
| | - Joan A. Casey
- Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10027, USA;
| | - Rachel Croy
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (R.C.); (J.D.S.)
| | - John D. Spengler
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (R.C.); (J.D.S.)
| | - Lisa McKenzie
- Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO 80204, USA;
| |
Collapse
|
26
|
McKenzie LM, Allshouse W, Daniels S. Congenital heart defects and intensity of oil and gas well site activities in early pregnancy. ENVIRONMENT INTERNATIONAL 2019; 132:104949. [PMID: 31327466 DOI: 10.1016/j.envint.2019.104949] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Preliminary studies suggest that offspring to mothers living near oil and natural gas (O&G) well sites are at higher risk of congenital heart defects (CHDs). OBJECTIVES Our objective was to address the limitations of previous studies in a new and more robust evaluation of the relationship between maternal proximity to O&G well site activities and births with CHDs. METHODS We employed a nested case-control study of 3324 infants born in Colorado between 2005 and 2011. 187, 179, 132, and 38 singleton births with an aortic artery and valve (AAVD), pulmonary artery and valve (PAVD), conotruncal (CTD), or tricuspid valve (TVD) defect, respectively, were frequency matched 1:5 to controls on sex, maternal smoking, and race and ethnicity yielding 2860 controls. We estimated monthly intensities of O&G activity at maternal residences from three months prior to conception through the second gestational month with our intensity adjusted inverse distance weighted model. We used logistic regression models adjusted for O&G facilities other than wells, intensity of air pollution sources not associated with O&G activities, maternal age and socioeconomic status index, and infant sex and parity, to evaluate associations between CHDs and O&G activity intensity groups (low, medium, and high). RESULTS Overall, CHDs were 1.4 (1.0, 2.0) and 1.7 (1.1, 2.6) times more likely than controls in the medium and high intensity groups, respectively, compared to the low intensity group. PAVDs were 1.7 (0.93, 3.0) and 2.5 (1.1, 5.3) times more likely in the medium and high intensity groups for mothers with an address found in the second gestational month. In rural areas, AAVDs, CTDs, and TVDs were 1.8 (0.97, 3.3) and 2.6 (1.1, 6.1); 2.1 (0.96, 4.5) and 4.0 (1.4, 12); and 3.4 (0.95, 12) and 4.6 (0.81, 26) times more likely than controls in the medium and high intensity groups. CONCLUSIONS This study provides further evidence of a positive association between maternal proximity to O&G well site activities and several types of CHDs, particularly in rural areas.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA.
| | - William Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Stephen Daniels
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, USA
| |
Collapse
|