1
|
Ma J, Liang S, Yang X, Wang Y, Wang B, Gao W, Ye K, Maihaiti M, Iqbal J, Abdukayum A, Pan F. Design of Carbon Materials with Selective Ion Separation in Capacitive Deionisation and Their Applications. CHEMSUSCHEM 2025:e202402563. [PMID: 39853953 DOI: 10.1002/cssc.202402563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Capacitive deionization (CDI) is a novel, cost-effective and environmentally friendly desalination technology that has garnered significant attention in recent years. Carbon materials, owing to their excellent properties, have become the preferred electrode materials for CDI. Given the significant differences between different ions, ion-selective performance has emerged as a critical aspect of CDI applications. However, comprehensive reviews on the selective ion separation capabilities of carbon materials for CDI remain scarce. This review examines the progress in developing carbon materials for ion-selective separation in CDI, focusing on regulatory mechanisms and representative materials. It also discusses the applications of selective CDI carbon materials in areas such as heavy metal removal, nutrient recovery, seawater desalination resourcing, and water softening. Furthermore, the challenges and future prospects for advancing carbon materials in CDI are explored. This review aims to provide theoretical insights and practical guidance for utilising carbon materials in wastewater treatment and resource recovery.
Collapse
Affiliation(s)
- Jie Ma
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
- Research Center for Environmental Functional Materials, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuzhen Liang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Xue Yang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Yabo Wang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Bingzheng Wang
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Wei Gao
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Kang Ye
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Mairemu Maihaiti
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| | - Javed Iqbal
- Bahrain & Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abdukader Abdukayum
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
| | - Fanghui Pan
- Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, P. R. China
- Xinjiang Key Laboratory of Engineering Materials and Structural Safety, School of Civil Engineering, Kashi University, Kashi, 844000, P. R. China
| |
Collapse
|
2
|
Liu W, Xu L, Yang Z, Zhang X, Lin S. Mixing due to Solution Switch Limits the Performance of Electrosorption for Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13995-14004. [PMID: 39025784 PMCID: PMC11308525 DOI: 10.1021/acs.est.4c02681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Electrosorption (ES) is a research frontier in electrochemical separation, with proven potential applications in desalination, wastewater treatment, and selective resource extraction. However, due to the limited adsorption capacity of film electrodes, ES requires short circuiting or circuit reversal, accompanied by a solution switch between the feed solution and receiving solution, to sustain desalination over many charge-discharge cycles. In previously reported studies, solution switches have been commonly ignored to simplify experimental procedures, and their impacts on separation performance are thus not well understood. This study aims to provide a quantitative analysis of the impacts of mixing due to a solution switch on the performance of ES-based desalination. A numerical model of ES has been employed to evaluate the adverse effects of the solution switch on the desalination performance in three commonly used operation modes. The analysis reveals that the impacts of mixing due to solution-switch are more severe with a larger concentration difference between the desalinated water and the brine and provides insights into the effectiveness of increasing electrode loading or specific capacity in mitigating the detrimental impacts of mixing. Even with state-of-the-art systems, producing freshwater from seawater or even brackish water with medium-to-high salinity is practically challenging due to the presence of solution switch.
Collapse
Affiliation(s)
- Weifan Liu
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Longqian Xu
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Zezhou Yang
- Department
of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Xudong Zhang
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department
of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department
of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|
3
|
He Z, Miller CJ, Zhu Y, Wang Y, Fletcher J, Waite TD. Membrane capacitive deionization (MCDI): A flexible and tunable technology for customized water softening. WATER RESEARCH 2024; 259:121871. [PMID: 38852388 DOI: 10.1016/j.watres.2024.121871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
There is a growing demand for water treatment systems for which the quality of feedwater in and product water out are not necessarily fixed with "tunable" technologies essential in many instances to satisfy the unique requirements of particular end-users. For example, in household applications, the optimal water hardness differs for particular end uses of the supplied product (such as water for potable purposes, water for hydration, or water for coffee or tea brewing) with the inclusion of specific minerals enhancing the suitability of the product in each case. However, conventional softening technologies are not dynamically flexible or tunable and, typically, simply remove all hardness ions from the feedwater. Membrane capacitive deionization (MCDI) can potentially fill this gap with its process flexibility and tunability achieved by fine tuning different operational parameters. In this article, we demonstrate that constant-current MCDI can be operated flexibly by increasing or decreasing the current and flow rate simultaneously to achieve the same desalination performance but different productivity whilst maintaining high water recovery. This characteristic can be used to operate MCDI in an energy-efficient manner to produce treated water more slowly at times of normal demand but more rapidly at times of peak demand. We also highlight the "tunability" of MCDI enabling the control of effluent hardness over different desired ranges by correlating the rates of hardness and conductivity removal using a power function model. Using this model, it is possible to either i) soften water to the same hardness level regardless of the fluctuation in hardness of feed waters, or ii) precisely control the effluent hardness at different levels to avoid excessive or insufficient hardness removal.
Collapse
Affiliation(s)
- Zhizhao He
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yunyi Zhu
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, PR China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Zhu Y, Miller C, Lian B, Wang Y, Fletcher J, Zhou H, He Z, Lyu S, Purser M, Juracich P, Sweeney D, Waite TD. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. WATER RESEARCH 2024; 254:121413. [PMID: 38489850 DOI: 10.1016/j.watres.2024.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
A long-term field trial of membrane capacitive deionization (MCDI) was conducted in a remote community in the Northern Territory of Australia, with the aim of producing safe palatable drinking water from groundwater that contains high concentrations of salt and hardness ions and other contaminants. This trial lasted for 1.5 years, which, to our knowledge, is one of the longest reported studies of pilot-scale MCDI field trials. The 8-module MCDI pilot unit reduced salt concentration to below the Australian Drinking Water Guideline value of 600 mg/L total dissolved solids (TDS) concentration with a relatively high water recovery of 71.6 ± 8.7 %. During continuous constant current operation and electrode discharging at near zero volts, a rapid performance deterioration occurred that was primarily attributed to insufficient desorption of multivalent ions from the porous carbon electrodes. Performance could be temporarily recovered using chemical cleaning and modified operating procedures however these approaches could not fundamentally resolve the issue of insufficient electrode performance regeneration. Constant current discharging of the electrodes to a negative cell cut-off voltage was hence employed to enhance the stability and overall performance of the MCDI unit during the continuous operation. An increase in selectivity of monovalent ions over divalent ions was also attained by implementing negative voltage discharging. The energy consumption of an MCDI system with a capacity of 1000 m3/day was projected to be 0.40∼0.53 kWh/m3, which is comparable to the energy consumption of electrodialysis reversal (EDR) and brackish water reverse osmosis (BWRO) systems of the same capacity. The relatively low maintenance requirements of the MCDI system rendered it the most cost-efficient water treatment technology for deployment in remote locations. The LCOW of an MCDI system with a capacity of 1000 m3/day was projected to be AU$1.059/m3 and AU$1.146/m3 under two operational modes, respectively. Further investigation of particular water-energy trade-offs amongst MCDI performance metrics is required to facilitate broader application of this promising water treatment technology.
Collapse
Affiliation(s)
- Yunyi Zhu
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
| | - Hang Zhou
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Australia
| | - Zhizhao He
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia
| | - Shunzhi Lyu
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China
| | - Megan Purser
- Power and Water Corporation, Northern Territory, Australia
| | - Peter Juracich
- Power and Water Corporation, Northern Territory, Australia
| | - David Sweeney
- Power and Water Corporation, Northern Territory, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu, China; Water Research Centre, School of Civil and Environmental Engineering, UNSW Sydney, Australia.
| |
Collapse
|
5
|
Sun X, Hao Z, Zhou X, Chen J, Zhang Y. Advanced capacitive deionization for ion selective separation: Insights into mechanism over a functional classification. CHEMOSPHERE 2024; 346:140601. [PMID: 37918536 DOI: 10.1016/j.chemosphere.2023.140601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Due to the diversity and variability of harmful ions in polluted water bodies, the selective removal and separation for specific ions is of great significance in water purification and resource processes. Capacitive deionization (CDI), an emerging desalination technology, shows great potential to selectively remove harmful ionic pollutants and further recover valuable ions because of the simple operation and low energy consumption. Researchers have done a lot of work to investigate ion selectivity utilizing CDI, including both theoretical and experimental studies. Nevertheless, in the investigation of selective mechanisms, phenomena where carbon materials exhibit entirely opposite selectivity require further analysis. Furthermore, there is a need to summarize the specific chemical reaction mechanisms, including the formation of hydrogen bonds, complexation reactions, and ligand exchanges, within selective electrodes, which have not been thoroughly examined in detail previously. In order to fill these gaps, in this review, we summarized the recent progress of CDI technologies for ion selective separation, and explored the selective separation mechanism of CDI from three aspects: selective physical adsorption, specific chemical reaction, and the utilization of selective barriers. Additionally, this review analyzes in detail the formation process of chemical bonds and ion conversion pathways when ions interact with electrode materials. Finally, some significant development prospects and challenges were offered for the future selective CDI systems. We believe the review will provide new insights for researchers in the field of ion selective separation.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zewei Hao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
6
|
He Z, Li Y, Wang Y, Miller CJ, Fletcher J, Lian B, Waite TD. Insufficient desorption of ions in constant-current membrane capacitive deionization (MCDI): Problems and solutions. WATER RESEARCH 2023; 242:120273. [PMID: 37393810 DOI: 10.1016/j.watres.2023.120273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Membrane capacitive deionization (MCDI) is a water desalination technology that involves the removal of charged ions from water under an electric field. While constant-current MCDI coupled with stopped-flow during ion discharge is expected to exhibit high water recovery and good performance stability, previous studies have typically been undertaken using NaCl solutions only with limited investigation of MCDI performance using multi-electrolyte solutions. In the present work, the desalination performance of MCDI was evaluated using feed solutions with different levels of hardness. The increase of hardness resulted in the degradation of desalination performance with the desalination time (Δtd), total removed charge, water recovery (WR) and productivity decreasing by 20.5%, 21.8%, 3.8% and 3.2%, respectively. A more serious degradation of WR and productivity would be caused if Δtd decreases further. Analysis of the voltage profiles and effluent ion concentrations reveal that the insufficient desorption of divalent ions at constant-current discharge to 0 V was the principal reason for the degradation of performance. The Δtd and WR can be improved by discharging the cell using a lower current but the productivity decreased by 15.7% on decreasing the discharging current from 161 to 107 mA. Discharging the cell to a negative potential was shown to be a better option with the Δtd, total removed charge, WR and productivity increasing by 27.4%, 23.9%, 3.6% and 5.3%, respectively, when the cell was discharged to a minimum voltage of - 0.3 V. Use of such a method should be feasible for operation of full scale MCDI plants and would be expected to lead to better regeneration of the electrode, improved desalination performance and, potentially, a significant reduction in the need for use of clean-in-place procedures.
Collapse
Affiliation(s)
- Zhizhao He
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yingnan Li
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Wang
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher J Miller
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - John Fletcher
- School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney 2052, Australia
| | - Boyue Lian
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China; School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Bales C, Kinsela AS, Miller C, Wang Y, Zhu Y, Lian B, Waite TD. Removal of Trace Uranium from Groundwaters Using Membrane Capacitive Deionization Desalination for Potable Supply in Remote Communities: Bench, Pilot, and Field Scale Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37464745 DOI: 10.1021/acs.est.3c03477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The performance of membrane capacitive deionization (MCDI) desalination was investigated at bench, pilot, and field scales for the removal of uranium from groundwater. It was found that up to 98.9% of the uranium can be removed using MCDI from a groundwater source containing 50 μg/L uranium, with the majority (94.5%) being retained on the anode. Uranium was found to physiochemically adsorb to the electrode without the application of a potential by displacing chloride ions, with 16.6% uranium removal at the bench scale via this non-electrochemical process. This displacement of chloride did not occur during the MCDI adsorption phase with the adsorption of all ions remaining constant during a time series analysis on the pilot unit. For the scenarios tested on the pilot unit, the flowrate of the product water ranged from 0.15 to 0.23 m3/h, electrode energy consumption from 0.28 to 0.51 kW h/m3, and water recovery from 69 to 86%. A portion (13-53% on the pilot unit) of the uranium was found to remain on the electrodes after the brine discharge phase with conventional cleaning techniques unable to release this retained uranium. MCDI was found to be a suitable means to remove uranium from groundwater systems though with the need to manage the accumulation of uranium on the electrodes over time.
Collapse
Affiliation(s)
- Clare Bales
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuan Wang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Yunyi Zhu
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| |
Collapse
|
8
|
Mao Y, Qin H, Zhang H, Wu W, Wu D. Unraveling the effect of CDI electrode characteristics on Cs removal from the perspective of ion transfer and energy composition. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131263. [PMID: 36989788 DOI: 10.1016/j.jhazmat.2023.131263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Capacitive deionization (CDI) is surprisingly efficient to remove the aqueous Cs ion due to its small hydrated size and low hydration energy. But current experimental techniques fail in investigating deeply into the influence of some key electrode characteristics due to the difficulty in experimentally fabricating the electrodes as desired. This work presents a dynamic transport model of salt ions in a flow-by CDI cell. By using this model, the electrode thickness, macro- and micro-porosity are investigated to evaluate Cs ion removal efficiency and energy efficiency particularly from the aspect of ion transfer by the approach of decomposing energy contribution. The results indicate that the thick electrode coupled with the high current could greatly improve the effluent quality, but reduce the salt adsorption capacity (SAC). The increasement of the current density from 3 A/m2 to 6 A/m2 greatly decreases the SAC from 4.0 mg/g to 0.8 mg/g. Lower current could prolong the charging period, leading to more ions stored in the micropore. Not all the electrical energy is consumed for separating ions from the feed as desired, but some are used for driving ions diffusing in the electrodes. Consequently charging efficiency will be reduced especially when the electrodes are characterized with high porosity. It is highlighted that future work is required to further consider the complex details of porous structure and pore connectivity.
Collapse
Affiliation(s)
- Yunfeng Mao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China; State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China
| | - Huai Qin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hua Zhang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
| | - Weidong Wu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, 200092 Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
9
|
Chu M, Tian W, Zhao J, Zou M, Lu Z, Zhang D, Jiang J. A comprehensive review of capacitive deionization technology with biochar-based electrodes: Biochar-based electrode preparation, deionization mechanism and applications. CHEMOSPHERE 2022; 307:136024. [PMID: 35973487 DOI: 10.1016/j.chemosphere.2022.136024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The recently developed techniques for desalination and wastewater treatment are costly and unsustainable. Therefore, a cost-effective and sustainable approach is essential to achieve desalination through wastewater treatment. Capacitive deionization (CDI), an electrochemical desalination technology, has been developed as a novel water treatment technology with great potential. The electrode material is one of the key factors that promotes the development of CDI technology and broadens the scope of CDI applications. Biochar-based electrode materials have attracted increasing attention from researchers because of their advantages, such as environmentally friendly, economical, and renewable properties. This paper reviews the methods for preparing biochar-based electrode materials and elaborates on the mechanism of CDI ion storage. We then summarize the applications of CDI technology in water treatment, analyze the mechanism of pollutant removal and resource recovery, and discuss the applicability of different CDI configurations, including hybrid CDI systems. In addition, the paper notes that environmentally friendly green activators that facilitate the development of pore structure should be developed more often to avoid the adverse environmental impact. The development of ion-selective electrode materials should be enhanced and it is necessary to comprehensively assess the impact of heteroatoms on selective ion removal and CDI performance. Electrooxidation of organic pollutants should be further promoted to achieve organic degradation by extending to redox reactions.
Collapse
Affiliation(s)
- Meile Chu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Weijun Tian
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, PR China.
| | - Jing Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Mengyuan Zou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhiyang Lu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Dantong Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Junfeng Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, PR China
| |
Collapse
|
10
|
Sulfonated polymer coating enhances selective removal of calcium in membrane capacitive deionization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Kong L, Palacios E, Guan X, Shen M, Liu X. Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Luo L, He Q, Yi D, Zu D, Ma J, Chen Y. Indirect charging of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI. WATER RESEARCH 2022; 220:118688. [PMID: 35661514 DOI: 10.1016/j.watres.2022.118688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Reversible electrochemical separation based on flow electrodes (e.g., flow-electrode capacitive deionization (FCDI)) is promising to desalinate brackish water, a reliable alternative source of freshwater. The deployment of redox mediators (RMs) in FCDI offers an energy-efficient means to improve the process performance, but the nature of the RMs-mediated charge transfer remains poorly understand. We therefore systematically investigated commonly-used RMs including sodium anthraquinone-2-sulfonate (AQS), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), hydroquinone (HQ) and ferricyanide ([Fe(CN)6]3-). Results showed that the desalination rate could be increased by over 260% with the addition of 10 mM [Fe(CN)6]3-. The lowest efficiency of AQS among the RMs should be ascribed to its reduction potential of -0.84 V (vs. Ag/AgCl) exceeding the potential (-0.48 V) of the negatively charged current collector at 1.2 V. While aqueous TEMPO and HQ could facilitate salt removal, their loss of efficiencies upon sorption onto the carbon surface indicated the insignificant pseudocapacitive contribution to ion migration. In-situ cyclic voltammetry measurements demonstrated the crucial role of the indirect charging of the flowable carbon materials to enhance the desalination performance in RMs-mediated FCDI. To sum up, results of this work pave a way to understand the RMs-mediated charge transfer and ion migration in FCDI, which would serve the purpose of design and optimization of the flow electrode systems for wider environmental applications.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China
| | - Daoyuan Zu
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
13
|
Shang X, Liu J, Hu B, Nie P, Yang J, Zhang B, Wang Y, Zhan F, Qiu J. CNT-Strung LiMn 2 O 4 for Lithium Extraction with High Selectivity and Stability. SMALL METHODS 2022; 6:e2200508. [PMID: 35560872 DOI: 10.1002/smtd.202200508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 06/15/2023]
Abstract
LiMn2 O4 is of great potential for selectively extracting Li+ from brines and seawater, yet its application is hindered by its poor cycle stability and conductivity. Herein a two-step strategy to fabricate highly conductive and stable CNT-strung LiMn2 O4 (CNT-s-LMO) is reported, by first stringing Mn3 O4 particles with multiwalled carbon nanotube (CNT), then converting the hybrids into CNT-s-LMO through hydrothermal lithiation. The as-synthesized CNT-s-LMO materials have a net-like structure with CNTs threading through LMO particles. This unique structure has endowed the CNT-s-LMO electrode with excellent conductivity, high specific capacitance, and enhanced rate performance. Because of this, the CNT-s-LMO electrode in the hybrid capacitive deionization cell (HCDI) can deliver a high Li+ extraction percentage (≈84%) in brine and an outstanding lithium selectivity with a separation factor of ≈181 at the Mg2+ /Li+ molar ratio of 60. Significantly, the CNT-s-LMO-based HCDI cell has a high stability, evidenced by 90% capacity retention and negligible Mn loss in 100 cycles. This method has paved a new way to fabricate carbon-enabled LMO-based absorbents with tuned structure and superior capacity for electrochemical lithium extraction with high Li+ selectivity and exceptional cycling stability, which may help to tackle the shortage in supply of Li-ion batteries in industry in the future.
Collapse
Affiliation(s)
- Xiaohong Shang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, P. R. China
| | - Jianyun Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P. R. China
| | - Bin Hu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, P. R. China
| | - Pengfei Nie
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, P. R. China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai, 201620, P. R. China
| | - Boshuang Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, P. R. China
| | - Yiwen Wang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai, 201620, P. R. China
| | - Fei Zhan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
14
|
Xiang S, Mao H, Geng W, Xu Y, Zhou H. Selective removal of Sr(II) from saliferous radioactive wastewater by capacitive deionization. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128591. [PMID: 35247739 DOI: 10.1016/j.jhazmat.2022.128591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
90Sr-containing radioactive wastewater during Fukushima nuclear accident (FNA) aroused extensive consideration for its disposal. Massive coexisted Na+ ions seriously inhibited Sr2+ removal, aggravating the expenditure of radioactive wastewater treatment. Herein, a chestnut shell derived porous carbon material modified with aryl diazonium salt (ADS) of sodium 4-aminoazobenzene-4'-sulfonate (SPAC) was developed as capacitive deionization electrode for selective removal of Sr2+ from saliferous radioactive wastewater. Based on ADS modification, the Sr2+ electrosorption capacity of SPAC electrode was improved to 33.11 mg g-1 with fast ion removal rate of 2.89 mg g-1 min-1, comparing with only 16.10 mg g-1 before modification. The isothermal adsorption and kinetics by SPAC electrode fitted well with Langmuir and pseudo-second-order model, achieving a maximum Sr2+ electrosorption capacity of 58.21 mg g-1, superior cycling stability, and excellent charge efficiency (77.63%). Fascinatingly, the SPAC electrode exhibited superhigh Sr2+ selectivity of 70.65 against Na+ in Na+-Sr2+ mixed solution with molar ratio of Na+:Sr2+ as 20:1. Density functional theory (DFT) simulation, combining with electrochemical and spectral analyses, revealed that the high overlap of electron cloud between Sr2+ ion and anionic sulfonic group (-SO3-) provided SPAC with remarkable selectivity of Sr2+ ion, and illustrated the ion-swapping mechanism of Sr2+ selectivity.
Collapse
Affiliation(s)
- Shuhong Xiang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hengjian Mao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wusong Geng
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Yingsheng Xu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China; Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
15
|
Abstract
Severe freshwater shortages and global pollution make selective removal of target ions from solutions of great significance for water purification and resource recovery. Capacitive deionization (CDI) removes charged ions and molecules from water by applying a low applied electric field across the electrodes and has received much attention due to its lower energy consumption and sustainability. Its application field has been expanding in the past few years. In this paper, we report an overview of the current status of selective ion removal in CDI. This paper also discusses the prospects of selective CDI, including desalination, water softening, heavy metal removal and recovery, nutrient removal, and other common ion removal techniques. The insights from this review will inform the implementation of CDI technology.
Collapse
|
16
|
Enhanced capacitive removal of hardness ions by hierarchical porous carbon cathode with high mesoporosity and negative surface charges. J Colloid Interface Sci 2022; 612:277-286. [PMID: 34995864 DOI: 10.1016/j.jcis.2021.12.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Capacitive deionization (CDI), as a promising desalination technology, has been widely applied for water purification, heavy metal removal and water softening. In this study, the hierarchical porous carbon (HPC) with extremely large specific surface area (∼1636 m2 g-1), high mesoporosity and negative surface charges, was successfully prepared by one-step carbonization of magnesium citrate and acid etching. HPC carbonized at 800 ℃ exhibited an excellent specific capacitance (207.2 F g-1). The negative surface charge characteristic of HPC was demonstrated by potential of zero charge test. With HPC-800 as a CDI cathode, the super high adsorption capacity of hardness ions (Mg2+: 472 μmol g-1, Ca2+: 425 μmol g-1) with ultrafast adsorption rate was realized, attributed to its abundant mesoporous structure and negative surface charges. The priority order of ion adsorption on HPC in the multi-component salt solution was Mg2+ > Ca2+ > K+ ≈ Na+. The desalination and softening of the actual brackish water have been simultaneously achieved by three-cell CDI stack after four times of adsorption, with 63% decrease of total dissolved solids and 76% reduction of hardness. The current HPC material with outstanding adsorption performance for hardness ions shows great potential in brackish water purification.
Collapse
|
17
|
Wang W, Sun J, Zhang Y, Zhang Y, Hong G, Moutloali RM, Mamba BB, Li F, Ma J, Shao L. Mussel-inspired tannic acid/polyethyleneimine assembling positively-charged membranes with excellent cation permselectivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153051. [PMID: 35032526 DOI: 10.1016/j.scitotenv.2022.153051] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The extraction of valuable target ions through monovalent cation exchange membranes (MCEMs) has been increasingly attracting in modern energy and environmental fields. However, the separation performance of MCEMs in terms of the permselectivity and cation fluxes, is typically restricted by membrane architecture and applied materials. Recently, mussel-inspired surface modification methods have been deployed in new membrane fabrications with special surface characteristics and functions. Herein, a facile layer-by-layer assembly method was designed to construct a series of de novo positively-charged tannic acid/polyethyleneimine (TA/PEI) membranes containing a negatively-charged support membrane and a TA/PEI selective layer. Notably, the peculiar support membrane with a much dense structure and abundant cation exchange groups can enable our TA/PEI membranes to possess high total cation fluxes. The selective layer with vast positive charges ensures mussel-inspired TA/PEI assembled positively-charged membranes to have a high permselectivity. Most importantly, compared with the separation performance of the state-of-the-art MCEMs, the superior separation performance of our developed new MCEMs at 5 mA·cm-2 and 10 mA·cm-2 is beyond the current "Upper Bound" plot between Na+ flux and the permselectivity (Na+/Mg2+), which opens new avenues for the construction of MCEMs. Furthermore, high purity of Li+ (95.37%) can be obtained through deploying mussel-inspired TA/PEI assembled positively-charged membranes with high permselectivity of Li+/Mg2+ (13.72), proving its great potentials in the field of resource recovery towards sustainability.
Collapse
Affiliation(s)
- Wenguang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jikun Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yang Zhang
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guanghui Hong
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Richard Motlhaletsi Moutloali
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Engineering, Science and Technology, University of South Africa, Florida Science Campus, 1709 Roodepoort, South Africa
| | - Feiran Li
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing and School of Mechatronics Engineering, Harbin Institute of Technology, Xidazhi 92, Harbin 150001, PR China
| | - Jun Ma
- School of Environmental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Department of Chemical Engineering, Zhengzhou University, Zhengzhou 450002, China..
| |
Collapse
|
18
|
Hu B, Shang X, Nie P, Zhang B, Yang J, Liu J. Lithium ion sieve modified three-dimensional graphene electrode for selective extraction of lithium by capacitive deionization. J Colloid Interface Sci 2022; 612:392-400. [PMID: 34999544 DOI: 10.1016/j.jcis.2021.12.181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Faced with the strong demand of clean energy, development of lithium source is becoming exceedingly vital. Spinel-type manganese oxide (λ-MnO2) is a typical lithium ion sieve material. Herein, the conductive three-dimensional (3D) lithium ion sieve electrode material was fabricated by in-situ growth of λ-MnO2 on 3D reduced graphene oxide (3D-rGO) matrix for Li extraction by capacitive deionization (CDI). The λ-MnO2 modified rGO (λ-MnO2/rGO) retained the 3D network structure with uniform distribution of λ-MnO2 nanosheets on rGO. Electrochemical characterization demonstrated its high conductivity and fast lithium ion diffusion rate. By adjusting the rGO concentration, λ-MnO2 activity was improved significantly. With λ-MnO2/rGO as a positive electrode (activated carbon as negative electrode), the corresponding CDI system was successfully applied for the selective extraction of Li+. The final rGO content in the λ-MnO2/rGO was attained by thermogravity analysis. With the appropriate rGO content (15.5%), the obtained λ-MnO2/rGO electrode achieved the optimal Li+ adsorption amount. The corresponding λ-MnO2/rGO-based CDI cell showed good selectivity and high cycle stability. When applied to the extraction of lithium from synthetic salt lake brine, the electrode also obtained high Li+ adsorption amount with good selectivity.
Collapse
Affiliation(s)
- Bin Hu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Xiaohong Shang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Pengfei Nie
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Boshuang Zhang
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China
| | - Jianmao Yang
- Research Center for Analysis & Measurement, Donghua University, Shanghai 201620, PR China
| | - Jianyun Liu
- College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
19
|
Jiang H, Zhang J, Luo K, Xing W, Du J, Dong Y, Li X, Tang W. Effective fluoride removal from brackish groundwaters by flow-electrode capacitive deionization (FCDI) under a continuous-flow mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150166. [PMID: 34517327 DOI: 10.1016/j.scitotenv.2021.150166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Herein, we demonstrated the suitability and effectiveness of utilizing flow-electrode capacitive deionization (FCDI) for treatment of fluoride-contaminated brackish groundwater. By comparing operational modes of short-circuited closed-cycle (SCC), isolated closed-cycle (ICC) and single cycle (SC), it was found that SCC mode was the most advantageous. In SCC configuration, the effects of different parameters on the removal of F- and Cl- were investigated including current density, hydraulic residence time (HRT), activated carbon (AC) loading and feed concentration of coexisting NaCl. Results indicated that the steady-state effluent Cl- concentration dropped with elevated applied current, and the decreasing rate got faster with the increase of HRT or AC loading. However, for the steady-state effluent F- concentration, it dropped to a value under a small applied current and maintained stable in spite of the increase in applied current, and both HRT and AC loading had insignificant effects on the steady-state effluent F- concentration. F- was preferentially removed from the treated water compared with Cl-, and a higher ion selectivity could be obtained at lower applied current and smaller HRT with the trade-off being that operation under these circumstances would generate outlet water with little change in conductivity compared to the influent. The removal efficiencies of F- and Cl- both decreased with increasing feed concentration of coexisting NaCl. This study should be of value in establishing FCDI as a viable technology for treatment of fluoride-contaminated brackish groundwater.
Collapse
Affiliation(s)
- Huan Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Kunyue Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Jiaxin Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yi Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xiaoting Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
20
|
Yu F, Yang Z, Cheng Y, Xing S, Wang Y, Ma J. A comprehensive review on flow-electrode capacitive deionization: Design, active material and environmental application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Cai Y, Wang Y, Fang R, Wang J. Flexible structural engineering of PPy-NiCo-LDH@Mxene for improved capacitive deionization and efficient hard water softening process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119828] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Pan Z, An J, Wang P, Fan X, Shen T, Xu R, Song Y, Song C. Novel strategy to enhance the desalination performance of flow-electrode capacitive deionization process via the assistance of electro-catalytic water splitting. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
|
24
|
Li Y, Wu J, Yong T, Fei Y, Qi J. Investigation of bromide removal and bromate minimization of membrane capacitive deionization for drinking water treatment. CHEMOSPHERE 2021; 280:130857. [PMID: 34162099 DOI: 10.1016/j.chemosphere.2021.130857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/09/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
The ubiquitous bromide (Br-) poses a challenge to current drinking water treatment schemes due to the formation of brominated disinfection by-products, especially bromate (BrO3-). A cost-effective and energy-efficient technology to remove Br- before disinfection is highly desired. In this work, the application of membrane capacitive deionization (MCDI) for the removal of Br- and BrO3- minimization for drinking water treatment was systematically investigated. Results showed that the removal of Br- by MCDI followed the pseudo-second-order kinetics, in which kinetics was faster at lower Br- concentration. Additionally, Br- displayed a preferential electrosorption over Cl- in MCDI despite the relatively smaller amounts. Due to high removal performance of Br-, 99.49% of BrO3- minimization can be achieved. Moreover, the presence of humic acid (HA) had a negative effect on the removal of Br- and BrO3- minimization. However, Br- could be more preferentially removed than Cl- in the presence of HA due to the weak interaction with HA. Finally, by treating an actual surface water sample, it was found that the removal rate of Br- was 91.80%, and 83.97% of BrO3- minimization can be achieved. BrO3- concentration of effluent meets the control standard. Overall, these results prove the feasibility of MCDI for practical drinking water treatment.
Collapse
Affiliation(s)
- Yang Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China.
| | - Junsheng Wu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Tianzhi Yong
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Yingxiang Fei
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, PR China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| |
Collapse
|
25
|
Luo L, He Q, Ma Z, Yi D, Chen Y, Ma J. In situ potential measurement in a flow-electrode CDI for energy consumption estimation and system optimization. WATER RESEARCH 2021; 203:117522. [PMID: 34384947 DOI: 10.1016/j.watres.2021.117522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Flow electrode capacitive deionization (FCDI) is a promising electrochemical technique for brackish water desalination; however, there are challenges in estimating the distribution of resistance and energy consumption inside a FCDI system, which hinders the optimization of the rate-limiting compartment. In this study, energy consumption of each FCDI component (e.g., flow electrodes, membranes and desalination chamber) was firstly described by using in situ potential measurement (ISPM). Results of this study showed that the energy consumption (EC) of the flow electrodes dominated under most conditions. While an increase in the carbon black content in the flow electrodes could improve the energy efficiency of the electrode component, consideration should be given to the contribution of ion exchange membranes (IEMs) and the desalination chamber to the EC. Based on the above analysis, system optimization was carried out by introducing IEMs with relatively low resistance and/or packing the desalination chamber with titanium meshes. Results showed that the voltage-driven desalination capability was increased by 39.3% with the EC reduced by 17.5% compared to the control, which overcame the tradeoff between the kinetic and energetic efficiencies. Overall, the present work facilitates our understanding of the potential drops across an FCDI system and provides insight to the optimization of system design and operation.
Collapse
Affiliation(s)
- Liang Luo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Zixin Ma
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Duo Yi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China.; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing 400044, PR China..
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
26
|
Xu Y, Xiang S, Zhou H, Wang G, Zhang H, Zhao H. Intrinsic Pseudocapacitive Affinity in Manganese Spinel Ferrite Nanospheres for High-Performance Selective Capacitive Removal of Ca 2+ and Mg 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38886-38896. [PMID: 34374272 DOI: 10.1021/acsami.1c09996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pseudocapacitor-type hybrid capacitive deionization (PHCDI) has been developed extensively for deionization, which enables to address the worldwide freshwater shortage. However, the exploitation of selective hardness ion removal in resourceful hard water via the intrinsic pseudocapacitive effect, rather than the ion-sieving or ion-swapping effect based on the electric double layer (EDL) of porous carbon, is basically blank and urgent. Herein, manganese spinel ferrite (MFO) nanospheres were successfully fabricated by one-step solvothermal synthesis and used as the cathode for PHCDI assembled with commercial activated carbon. The MFO electrode exhibited prominent capacities of 534.6 μmol g-1 (CaCl2) and 980.4 μmol g-1 (MgCl2), outperforming those of other materials ever reported in the literature. Fascinatingly, systematic investigation of binary and ternary ion solutions showed the high electro-affinity of hardness ions (Ca2+ and Mg2+) toward Na+, especially the leading affinity of Mg2+, in which the superhigh hardness selectivity of 34.76 was achieved in the ternary solution with a molar ratio of Na-Ca-Mg as 20:1:1. Unexpectedly, the ion-swapping trace in a multi-ion environment was also first detected in our pseudocapacitive-based electrode. The electrochemical response in unary and multiple electrolytes disclosed that the unique pseudocapacitive affinity based on the cation (de)intercalation-redox mechanism was from the synergistic effect of the relative redox potential, ionic radius, and valence, in which the redox potential was the dominant factor.
Collapse
Affiliation(s)
- Yingsheng Xu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuhong Xiang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
27
|
Son M, Jeong K, Yoon N, Shim J, Park S, Park J, Cho KH. Pharmaceutical removal at low energy consumption using membrane capacitive deionization. CHEMOSPHERE 2021; 276:130133. [PMID: 33690037 DOI: 10.1016/j.chemosphere.2021.130133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
The performance of the membrane capacitive deionization (MCDI) system was evaluated during the removal of three selected pharmaceuticals, neutral acetaminophen (APAP), cationic atenolol (ATN), and anionic sulfamethoxazole (SMX), in batch experiments (feed solution: 2 mM NaCl and 0.01 mM of each pharmaceutical). Upon charging, the cationic ATN showed the highest removal rate of 97.65 ± 1.71%, followed by anionic SMX (93.22 ± 1.66%) and neutral APAP (68.08 ± 5.24%) due to the difference in electrostatic charge and hydrophobicity. The performance parameters (salt adsorption capacity, specific capacity, and cycling efficiency) and energy factors (specific energy consumption and recoverable energy) were further evaluated over ten consecutive cycles depending on the pharmaceutical addition. A significant decrease in the specific adsorption capacity (from 24.6 to ∼3 mg-NaCl g-1) and specific capacity (from 17.6 to ∼2.5 mAh g-1) were observed mainly due to the shortened charging and discharging time by pharmaceutical adsorption onto the electrode. This shortened charging time also led to an immediate drop in specific energy consumption from 0.41 to 0.04 Wh L-1. Collectively, these findings suggest that MCDI can efficiently remove pharmaceuticals at a low energy demand; however, its performance changes dramatically as the pharmaceuticals are present in the target water.
Collapse
Affiliation(s)
- Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Kwanho Jeong
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Nakyung Yoon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Jaegyu Shim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Sanghun Park
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo, 51140, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
28
|
Sayed ET, Al Radi M, Ahmad A, Abdelkareem MA, Alawadhi H, Atieh MA, Olabi AG. Faradic capacitive deionization (FCDI) for desalination and ion removal from wastewater. CHEMOSPHERE 2021; 275:130001. [PMID: 33984902 DOI: 10.1016/j.chemosphere.2021.130001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Capacitive deionization (CDI) is one of the emerging desalination technologies that attracted much attention in the last years as a low-cost, energy-efficient, and environmentally-friendly alternative to other desalination technologies, such as multi-stage flash desalination (MSF) and multiple effect distillation (MED). The implementation of faradaic electrode materials is a promising method for enhancing CDI systems' performance by achieving higher salt removal characteristics, lower energy consumption, and better ion selectivity. Therefore, a novel CDI technology named Faradaic CDI (FCDI) that implements faradaic electrode materials arose as a high-performance CDI cell design. In this work, the application of FCDI cells in desalination and wastewater treatment systems is reviewed. First, the progress done on using various FCDI systems for saline water desalination is summarized and discussed. Next, the application of FCDI in wastewater treatment applications and selective ion removal is presented. A thorough comparison between FCDI and conventional carbon-based CDI is carried out in terms of working principle, electrode material's cost, salt removal performance, energy consumption, advantages, and disadvantages. Finally, future research consideration regarding FCDI technology is included to drive this technology closer towards practical application.
Collapse
Affiliation(s)
- Enas Taha Sayed
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt
| | - Muaz Al Radi
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Electrical Engineering and Computer Science, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Aasim Ahmad
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Chemical Engineering Department, Minia University, Elminia, Egypt; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| | - Hussain Alawadhi
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Dept. of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Muataz Ali Atieh
- Center for Advanced Materials Research, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Mechanical and Nuclear Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates.
| | - A G Olabi
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Mechanical Engineering and Design, Aston University, School of Engineering and Applied Science, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
29
|
Yang K, Qin M. The Application of Cation Exchange Membranes in Electrochemical Systems for Ammonia Recovery from Wastewater. MEMBRANES 2021; 11:membranes11070494. [PMID: 34208972 PMCID: PMC8305737 DOI: 10.3390/membranes11070494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Electrochemical processes are considered promising technologies for ammonia recovery from wastewater. In electrochemical processes, cation exchange membrane (CEM), which is applied to separate compartments, plays a crucial role in the separation of ammonium nitrogen from wastewater. Here we provide a comprehensive review on the application of CEM in electrochemical systems for ammonia recovery from wastewater. Four kinds of electrochemical systems, including bioelectrochemical systems, electrochemical stripping, membrane electrosorption, and electrodialysis, are introduced. Then we discuss the role CEM plays in these processes for ammonia recovery from wastewater. In addition, we highlight the key performance metrics related to ammonia recovery and properties of CEM membrane. The limitations and key challenges of using CEM for ammonia recovery are also identified and discussed.
Collapse
Affiliation(s)
| | - Mohan Qin
- Correspondence: ; Tel.: +1-(608)-265-9733
| |
Collapse
|
30
|
Mao M, Yan T, Shen J, Zhang J, Zhang D. Selective Capacitive Removal of Heavy Metal Ions from Wastewater over Lewis Base Sites of S-Doped Fe-N-C Cathodes via an Electro-Adsorption Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7665-7673. [PMID: 33983021 DOI: 10.1021/acs.est.1c01483] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The pollution of toxic heavy metals is becoming an increasingly important issue in environmental remediation because these metals are harmful to the ecological environment and human health. Highly efficient selective removal of heavy metal ions is a huge challenge for wastewater purification. Here, highly efficient selective capacitive removal (SCR) of heavy metal ions from complex wastewater over Lewis base sites of S-doped Fe-N-C cathodes was originally performed via an electro-adsorption process. The SCR efficiency of heavy metal ions can reach 99% in a binary mixed solution [NaCl (100 ppm) and metal nitrate (10 ppm)]. Even the SCR efficiency of heavy metal ions in a mixed solution containing NaCl (100 ppm) and multicomponent metal nitrates (10 ppm for each) can approach 99%. Meanwhile, the electrode also demonstrated excellent cycle performance. It has been demonstrated that the doping of S can not only enhance the activity of Fe-N sites and improve the removal ability of heavy metal ions but also combine with heavy metal ions by forming covalent bonds of S- clusters on Lewis bases. This work demonstrates a prospective way for the selective removal of heavy metal ions in wastewater.
Collapse
Affiliation(s)
- Minlin Mao
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Junjie Shen
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, College of Sciences, State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
31
|
Zhang C, Ma J, Wu L, Sun J, Wang L, Li T, Waite TD. Flow Electrode Capacitive Deionization (FCDI): Recent Developments, Environmental Applications, and Future Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4243-4267. [PMID: 33724803 DOI: 10.1021/acs.est.0c06552] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the increasing severity of global water scarcity, a myriad of scientific activities is directed toward advancing brackish water desalination and wastewater remediation technologies. Flow-electrode capacitive deionization (FCDI), a newly developed electrochemically driven ion removal approach combining ion-exchange membranes and flowable particle electrodes, has been actively explored over the past seven years, driven by the possibility of energy-efficient, sustainable, and fully continuous production of high-quality fresh water, as well as flexible management of the particle electrodes and concentrate stream. Here, we provide a comprehensive overview of current advances of this interesting technology with particular attention given to FCDI principles, designs (including cell architecture and electrode and separator options), operational modes (including approaches to management of the flowable electrodes), characterizations and modeling, and environmental applications (including water desalination, resource recovery, and contaminant abatement). Furthermore, we introduce the definitions and performance metrics that should be used so that fair assessments and comparisons can be made between different systems and separation conditions. We then highlight the most pressing challenges (i.e., operation and capital cost, scale-up, and commercialization) in the full-scale application of this technology. We conclude this state-of-the-art review by considering the overall outlook of the technology and discussing areas requiring particular attention in the future.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lei Wu
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Li Wang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Tianyu Li
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China
| |
Collapse
|
32
|
Theoretical Analysis of Constant Voltage Mode Membrane Capacitive Deionization for Water Softening. MEMBRANES 2021; 11:membranes11040231. [PMID: 33805237 PMCID: PMC8064386 DOI: 10.3390/membranes11040231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/05/2022]
Abstract
Water softening is desirable to reduce scaling in water infrastructure and to meet industrial water quality needs and consumer preferences. Membrane capacitive deionization (MCDI) can preferentially adsorb divalent ions including calcium and magnesium and thus may be an attractive water softening technology. In this work, a process model incorporating ion exclusion effects was applied to investigate water softening performance including ion selectivity, ion removal efficiency and energy consumption in a constant voltage (CV) mode MCDI. Trade-offs between the simulated Ca2+ selectivity and Ca2+ removal efficiency under varying applied voltage and varying initial concentration ratio of Na+ to Ca2+ were observed. A cut-off CV mode, which was operated to maximize Ca2+ removal efficiency per cycle, was found to lead to a specific energy consumption (SEC) of 0.061 kWh/mole removed Ca2+ for partially softening industrial water and 0.077 kWh/m3 removed Ca2+ for slightly softening tap water at a water recovery of 0.5. This is an order of magnitude less than reported values for other softening techniques. MCDI should be explored more fully as an energy efficient means of water softening.
Collapse
|
33
|
Shang X, Hu B, Nie P, Shi W, Hussain T, Liu J. LiNi0.5Mn1.5O4-based hybrid capacitive deionization for highly selective adsorption of lithium from brine. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118009] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Zhang C, Wang M, Xiao W, Ma J, Sun J, Mo H, Waite TD. Phosphate selective recovery by magnetic iron oxide impregnated carbon flow-electrode capacitive deionization (FCDI). WATER RESEARCH 2021; 189:116653. [PMID: 33232816 DOI: 10.1016/j.watres.2020.116653] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
The recovery of phosphorus (P) from wastewaters is a worthy goal considering the potential environmental and economic benefits. Flow-electrode capacitive deionization (FCDI), which employs flowable carbon electrodes instead of the static electrodes used in conventional CDI, has been demonstrated to be a promising P recovery technology. FCDI outperforms CDI and other competitive technologies in a number of aspects including (i) large salt adsorption capacity and (ii) extremely high water recovery rate. In this study, magnetic (Fe3O4 impregnated) activated carbon particles were prepared and applied as FCDI electrodes. The magnetic carbon electrodes were found to have a strong affinity towards P, facilitating the selective adsorption of P to the magnetic particles through a ligand exhange mechanism. Continuous operation of the FCDI system could be achieved with only three minutes required to separate the electrode particles from the brine stream on application of an external magnetic field. A P-rich stream was produced on regeneration of the exhausted magnetic electrodes using alkali solution. We envision that the use of magnetic carbon enhanced flow-electrodes will pave the way for efficient operation of FCDI as well as the preferential recovery of P.
Collapse
Affiliation(s)
- Changyong Zhang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Min Wang
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Wei Xiao
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jingyi Sun
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Hengliang Mo
- Beijing Origin Water Membrane Technology Company Limited, Huairou, Beijing, 101400, P. R. China
| | - T David Waite
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia; Shanghai Institute of Pollution Control and Ecological Safety, Tongji University, Shanghai 200092, P. R. China; UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu Province 214206, P. R. China.
| |
Collapse
|
35
|
Carbon nanotube membranes – Strategies and challenges towards scalable manufacturing and practical separation applications. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Kim DH, Kang MS. Pore-Filled Ion-Exchange Membranes with Optimal Cross-Linking Degrees for Efficient Membrane Capacitive Deionization. Macromol Res 2021. [DOI: 10.1007/s13233-020-8157-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Liu X, Shanbhag S, Natesakhawat S, Whitacre JF, Mauter MS. Performance Loss of Activated Carbon Electrodes in Capacitive Deionization: Mechanisms and Material Property Predictors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15516-15526. [PMID: 33205957 DOI: 10.1021/acs.est.0c06549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the material property origins of performance decay in carbon electrodes is critical to maximizing the longevity of capacitive deionization (CDI) systems. This study investigates the cycling stability of electrodes fabricated from six commercial and two post-processed activated carbons. We find that the capacity decay rate of electrodes in half cells is positively correlated with the specific surface area and total surface acidity of the activated carbons. We also demonstrate that half-cell cycling stability is consistent with full cell desalination performance durability. Additionally, our results suggest that increase in internal resistance and physical pore blockage resulting from extensive cycling may be important mechanisms for the specific capacitance decay of activated carbon electrodes in this study. Our findings provide crucial guidelines for selecting activated carbon electrodes for stable CDI performance over long-term operation and insight into appropriate parameters for electrode performance and longevity in models assessing the techno-economic viability of CDI. Finally, our half-cell cycling protocol also offers a method for evaluating the stability of new electrode materials without preparing large, freestanding electrodes.
Collapse
Affiliation(s)
- Xitong Liu
- Department of Civil & Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd Street NW, Washington, D.C. 20052, United States
| | - Sneha Shanbhag
- Department of Civil & Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sittichai Natesakhawat
- National Energy Technology Laboratory, U.S. Department of Energy, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15236, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Jay F Whitacre
- Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department of Material Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- The Scott Institute for Energy Innovation, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Meagan S Mauter
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
38
|
Highly efficient water softening by mordenite modified cathode in asymmetric capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Xu Y, Zhou H, Wang G, Zhang Y, Zhang H, Zhao H. Selective Pseudocapacitive Deionization of Calcium Ions in Copper Hexacyanoferrate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41437-41445. [PMID: 32820894 DOI: 10.1021/acsami.0c11233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In recent years, the capacitive deionization (CDI) technology has gradually become a promising technology for hard water treatment. Up to now, most of the work for water softening in CDI was severely limited by the inferior selectivity and electrosorption performances of carbon-based electrodes in spite of combining Ca2+-selective ion-exchange resin or membranes. Pseudocapacitive electrode materials that selectively interact with specific ions by Faradic redox reactions or ion (de)intercalation offer an alternative strategy for highly selective electrosorption of Ca2+ from water because of brilliant ion adsorption capacity. Here, we first used copper hexacyanoferrate (CuHCF) as a pseudocapacitive electrode to methodically study the selective pseudocapacitive deionization of Ca2+ over Na+ and Mg2+. Using the hybrid CDI cell consisting of a CuHCF cathode and an activated carbon anode without any ion-exchange membrane, the outstanding Ca2+ electrosorption capacity of 42.8 mg·g-1 and superior selectivity &(Ca2+/Na+) of 3.05 at a molar ratio of 10:1 were obtained at 1.4 V, surpassing those of the reported carbon-based electrodes. Finally, electrochemical measurements and molecular dynamics (MD) simulations provided an in-depth understanding of the selective pseudocapacitive deionization of Ca2+ ions in a CuHCF electrode. Our study would be helpful for developing high-efficiency selective electrosorption of target charged ions by intrinsic properties of pseudocapacitive materials.
Collapse
Affiliation(s)
- Yingsheng Xu
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Guozhong Wang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yunxia Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Centre for Clean Environment and Energy, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| |
Collapse
|
40
|
Sahin S, Dykstra JE, Zuilhof H, Zornitta RL, de Smet LC. Modification of Cation-Exchange Membranes with Polyelectrolyte Multilayers to Tune Ion Selectivity in Capacitive Deionization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34746-34754. [PMID: 32589009 PMCID: PMC7404204 DOI: 10.1021/acsami.0c05664] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 05/22/2023]
Abstract
Capacitive deionization (CDI) is a desalination technique that can be applied for the separation of target ions from water streams. For instance, mono- and divalent cation selectivities were studied by other research groups in the context of water softening. Another focus is on removing Na+ from recirculated irrigation water (IW) in greenhouses, aiming to maintain nutrients. This is important as an excess of Na+ has toxic effects on plant growth by decreasing the uptake of other nutrients. In this study, we investigated the selective separation of sodium (Na+) and magnesium (Mg2+) in MCDI using a polyelectrolyte multilayer (PEM) on a standard grade cation-exchange membrane (Neosepta, CMX). Alternating layers of poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) were coated on a CMX membrane (CMX-PEM) using the layer-by-layer (LbL) technique. The layer formation was examined with X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements (SWA) for each layer. For each membrane, i.e., the CMX-PEM membrane, CMX membrane, and for a special-grade cation-exchange membrane (Neosepta, CIMS), the Na+/Mg2+ selectivity was investigated by performing MCDI experiments, and selectivity values of 2.8 ± 0.2, 0.5 ± 0.04, and 0.4 ± 0.1 were found, respectively, over up to 40 cycles. These selectivity values indicate flexible switching from a Mg2+-selective membrane to a Na+-selective membrane by straightforward modification with a PEM. We anticipate that our modular functionalization method may facilitate the further development of ion-selective membranes and electrodes.
Collapse
Affiliation(s)
- Sevil Sahin
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jouke E. Dykstra
- Environmental
Technology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rafael L. Zornitta
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- . Tel: +31-317484810
| | - Louis C.P.M. de Smet
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- . Tel: +31-317481268
| |
Collapse
|
41
|
Nordstrand J, Dutta J. Predicting and Enhancing the Ion Selectivity in Multi-Ion Capacitive Deionization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8476-8484. [PMID: 32594747 PMCID: PMC7467760 DOI: 10.1021/acs.langmuir.0c00982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Lack of potable water in communities across the globe is a serious humanitarian problem promoting the desalination of saline water (seawater and brackish water) to meet the growing demands of human civilization. Multiple ionic species can be present in natural water sources in addition to sodium chloride, and capacitive deionization (CDI) is an upcoming technology with the potential to address these challenges because of its efficacy in removing charged species from water by electro-adsorption. In this work, we have investigated the effect of device operation on the preferential removal of different ionic species. A dynamic Langmuir (DL) model has been a starting point for deriving the theory, and the model predictions have been validated using data from reports in the literature. Crucially, we derive a simple relationship between the adsorption of different ionic species for short and long adsorption periods. This is leveraged to directly predict and enhance the selective ion removal in CDI. Furthermore, we demonstrate an example of how this selectivity could reduce excess removal of ions to avoid remineralization needs. In conclusion, the method could be valuable for predicting the impact of improved device operation on capacitive deionization with multi-ion compositions prevalent in natural water sources.
Collapse
|
42
|
Bian Y, Chen X, Ren ZJ. pH Dependence of Phosphorus Speciation and Transport in Flow-Electrode Capacitive Deionization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9116-9123. [PMID: 32584558 DOI: 10.1021/acs.est.0c01836] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical processes such as capacitive deionization have shown great promise for salt removal and nutrient recovery, but their effectiveness on phosphate removal was lower than other charged ions. This study hypothesized that the speciation and transport behaviors of phosphate ions are highly influenced by electrolyte pH, and it used experimental and modeling approaches to elucidate such impacts in flow-electrode capacitive deionization (FCDI) cells. Phosphate removal was investigated in either constant current (CC) or constant voltage (CV) charging mode with pH ranged from 5 to 9 in the feed solution. Results showed that the average P removal rate increased from 20.8 (CC mode) and 16.8 mg/min (CV mode) at pH 9 to 38.3 (CC mode) and 34.3 mg/min (CV mode) at pH 5 (84-104% in improvement), respectively. Correspondingly, the energy consumption reduced from 1.04 kWh/kg P at pH 9 to 0.59 kWh/kg P at pH 5 (42.9-56.1% in saving). Such benefits were attributed to the shift in dominant P-species from HPO42- to H2PO4-. Conversely, high-electrolyte pH (pH = 11) for flow-electrode led to ∼74.8% higher phosphate recovery during discharge compared with pH 5, which was associated with the higher distribution of phosphate ions in the electrolyte versus on the flow-electrodes due to surface charge change. These results improved our understanding in ion distribution and migration and indicate that solution pH is critical for operating FCDI reactors. It shed lights on the best practices on electrochemical phosphate removal and recovery.
Collapse
Affiliation(s)
- Yanhong Bian
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Xi Chen
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and the Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
43
|
Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116660] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Chang J, Li Y, Duan F, Su C, Li Y, Cao H. Selective removal of chloride ions by bismuth electrode in capacitive deionization. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116600] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Liu N, Zhang Y, Xu X, Wang Y. A binder free hierarchical mixed capacitive deionization electrode based on a polyoxometalate and polypyrrole for brackish water desalination. Dalton Trans 2020; 49:6321-6327. [PMID: 32342067 DOI: 10.1039/d0dt00162g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Capacitive deionization technology is an efficient method for brackish water desalination, in which the pseudocapacitive material plays a vital role in determining the desalination performance of the electrode directly. Compared with a traditional double-layer capacitance deionization electrode, a mixed capacitive deionization electrode possesses obvious advantages, because it integrates pseudocapacitance and double-layer capacitance together. A brand-new mixed capacitive deionization electrode is fabricated by co-deposition of P2Mo18O626- and polypyrrole on a 3D exfoliated graphite matrix using an electrochemical technique. In this electrode, composite particles composed of P2Mo18O626- and polypyrrole distribute evenly on the 3D exfoliated graphite matrix. At 1 A g-1 current, the specific capacitance of this electrode is 156.2 mA h g-1. Its rate capability is also promising with more than 76.5% of the capacitance being retained when the current increases to 20 A g-1. At 1.2 V voltage, its desalination capacity and rate reach 17.8 mg g-1 and 1.12 mg g-1 min-1 in 600 mg L-1 NaCl. This satisfactory desalination performance is attributed to the unique electrochemical properties of P2Mo18O623- and polypyrrole and the binder free character of this electrode. Even after 100 cycles, its desalination ability does not decay, which confirms its excellent stability. This work confirms the prospects for polyoxometalate based electrodes in brackish water desalination.
Collapse
Affiliation(s)
- Ning Liu
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| | - Yi Zhang
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| | - Xinxin Xu
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| | - Yi Wang
- Department of Chemistry, College of Science, Northeast University, Shenyang, 110819, P. R. China.
| |
Collapse
|
46
|
Shi W, Gao X, Mao J, Qian X, Liu W, Wu F, Li H, Zeng Z, Shen J, Cao X. Exploration of Energy Storage Materials for Water Desalination via Next-Generation Capacitive Deionization. Front Chem 2020; 8:415. [PMID: 32500060 PMCID: PMC7242748 DOI: 10.3389/fchem.2020.00415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Clean energy and environmental protection are critical to the sustainable development of human society. The numerous emerged electrode materials for energy storage devices offer opportunities for the development of capacitive deionization (CDI), which is considered as a promising water treatment technology with advantages of low cost, high energy efficiency, and wide application. Conventional CDI based on porous carbon electrode has low salt removal capacity which limits its application in high salinity brine. Recently, the faradaic electrode materials inspired by the researches of sodium-batteries appear to be attractive candidates for next-generation CDI which capture ions by the intercalation or redox reactions in the bulk of electrode. In this mini review, we summarize the recent advances in the development of various faradaic materials as CDI electrodes with the discussion of possible strategies to address the problems present.
Collapse
Affiliation(s)
- Wenhui Shi
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xinlong Gao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jing Mao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xin Qian
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Fangfang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Haibo Li
- Ningxia Key Lab Photovolta Material, Ningxia University, Yinchuan, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
47
|
Chaudhury S, Nir O. Electro-Enhanced Membrane Sorption: A New Approach for Selective Ion Separation and Its Application to Phosphate and Arsenic Removal. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sanhita Chaudhury
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba 8499000, Israel
| | - Oded Nir
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba 8499000, Israel
| |
Collapse
|
48
|
Liu H, Zhang J, Xu X, Wang Q. A Polyoxometalate‐Based Binder‐Free Capacitive Deionization Electrode for Highly Efficient Sea Water Desalination. Chemistry 2020; 26:4403-4409. [DOI: 10.1002/chem.201905606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Hang Liu
- Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
| | - Juan Zhang
- Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
| | - Xinxin Xu
- Department of Chemistry College of Science Northeastern University Shenyang 110819 P. R. China
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials MOE Northeastern University Shenyang 110819 P. R. China
| |
Collapse
|
49
|
Lin S. Energy Efficiency of Desalination: Fundamental Insights from Intuitive Interpretation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:76-84. [PMID: 31816233 DOI: 10.1021/acs.est.9b04788] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Desalination has become an essential toolset to combat the worsening water stress resulting from population and industrial growth and exacerbated by climate change. Various technologies have been developed to desalinate feedwater with a wide spectrum of salinity. While energy consumption is an important consideration in many desalination studies, it is challenging to make (intuitive) sense of energy efficiency due to the different mechanisms of various desalination processes and the very different separations achieved. This perspective aims to provide an intuitive, thermodynamics-based interpretation of energy efficiency by illustrating how energy consumption breaks down into minimum energy of separation and the irreversible energy dissipation. The energy efficiencies of different desalination processes are summarized and rationalized based on their working mechanisms. Notably, a new concept called the minimum mean voltage is proposed as a convenient tool to evaluate the energy efficiency of electrochemical desalination processes. Lastly, the intrinsic trade-off between energy efficiency and desalination rate and the relevance of energy efficiency in different desalination applications are discussed.
Collapse
|