1
|
Zhou W, Bu D, Huang K, Liang Y, Fu J, Zhang Q, Zhang Q, Zhang A, Fu J, Jiang G. From environment to free-range chickens: Broad exposure to short- and medium-chain chlorinated paraffins in rural Tibetan Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136288. [PMID: 39471632 DOI: 10.1016/j.jhazmat.2024.136288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Chlorinated paraffins (CPs) are widely employed in various consumer products. Rapid socioeconomic development drives the elevation of CPs contamination by increasing the usage of modern lifestyle products, but limited information exists about their occurrence in remote rural areas. In this study, the occurrence, and profiles of short- and medium-chain CPs (SCCPs and MCCPs) in soils, plants, chicken feeds, eggs, and free-range chicken tissues in the rural Tibetan Plateau were investigated. The median concentrations of SCCPs and MCCPs were 108 and 141 ng/g dry weight (dw) in soils, 1.76 × 103 and 1.16 × 103 ng/g dw in plants, 43.6 and 24.3 ng/g dw in chicken feeds, 299 and 251 ng/g lipid weight in free-range chicken eggs, and 182 -3.45 × 103 and 396 -7.75 × 103 ng/g lipid weight in chicken tissues, respectively. Correlation analysis demonstrated that soil was the primary source of CPs, and free-range chicken eggs were effective bioindicators for SCCPs and MCCPs contamination. Tissue distribution showed that SCCPs and MCCPs were highly accumulated in chicken tissues that local resident preferred to consume (such as muscle and stomach). Our findings lay the foundations for further evaluation of the potential risks of CPs on the ecosystem and human health in remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
2
|
Zhou W, Bu D, Huang K, Zhang Q, Cui X, Dan Z, Yang Y, Fu Y, Yang Q, Teng Y, Fu J, Zhang A, Fu J, Jiang G. First comprehensive assessment of dietary chlorinated paraffins intake and exposure risk for the rural population of the Tibetan Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172435. [PMID: 38615758 DOI: 10.1016/j.scitotenv.2024.172435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Knowledge regarding the occurrence of short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) in foodstuffs and their dietary exposure risks for rural Tibetan residents remains largely unknown. Herein, we collected main foodstuffs (including highland barley, vegetables, Tibetan butter, mutton, and yak beef) across the rural Tibetan Plateau and characterized the CP profiles and concentrations. The highest SCCPs concentrations were detected in Tibetan butter (geometric mean (GM): 240.6 ng/g wet weight (ww)), followed by vegetables (59.4 ng/g ww), mutton (51.4 ng/g ww), highland barley (46.3 ng/g ww), and yak beef (31.7 ng/g ww). For MCCPs, the highest concentrations were also detected in Tibetan butter (319.5 ng/g ww), followed by mutton (181.9 ng/g ww), vegetables (127.0 ng/g ww), yak beef (71.2 ng/g ww), and highland barley (30.3 ng/g ww). The predominant congener profiles of SCCPs were C13Cl7-8 in mutton and yak beef, C10Cl7-8 in Tibetan butter, and C10-11Cl6-7 in highland barley and vegetables. The predominant congener profiles of MCCPs were C14Cl7-9 in all sample types. Combined with our previous results of free-range chicken eggs, the median estimated daily intakes (EDIs) of SCCPs and MCCPs via diet for Tibetan rural adults and children was estimated to be 728.8 and 1853.9 ng/kg bw/day and 2565.6 and 5952.8 ng/kg bw/day, respectively. In the worst scenario, MCCPs might induce potential health risks for rural Tibetan population. To our knowledge, this is the first systematic dietary exposure research of SCCPs and MCCPs in the remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zeng Dan
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yinzheng Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qianyuan Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Guibin Jiang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
3
|
Chen S, Ren X, Yu Y, Cheng L, Ding G, Yang H, Zhang H, Chen J, Geng N. Metabolic disturbance of short- and medium-chain chlorinated paraffins to zebrafish larva. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171372. [PMID: 38431168 DOI: 10.1016/j.scitotenv.2024.171372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Chlorinated paraffins (CPs) are widely produced chemicals. Short-chain CPs (SCCPs) and medium-chain CPs (MCCPs) were listed as Persistent Organic Pollutants (POPs) and candidate POPs under the Stockholm Convention, respectively. The present study explored the developmental toxicity and metabolic disruption caused by SCCPs and MCCPs in zebrafish (Danio rerio) larvae. CPs exposure at environmentally relevant levels caused no obvious phenotypic changes with zebrafish larvae except that the body length shortening was observed after exposure to CPs at 1-200 μg/L for 7 day post fertilization. A further metabolomic approach was conducted to explore the early biological responses of developmental toxicity induced by CPs at low dose (1, 5, and 10 μg/L). The results of metabolic disorder, pathway analysis and chronic values indicated that, compared with SCCPs, MCCPs exhibited more risks to zebrafish larvae at low doses. Lipid metabolism was markedly affected in SCCPs exposure group, whereas MCCPs primarily disturbed lipid metabolism, amino acid, and nucleotide metabolisms. Compare with SCCPs, the relatively higher lipid solubility, protein affinity and metabolic rate of MCCPs can probably explain why MCCP-mediated metabolic disruption was significantly higher than that of SCCP. Notably, SCCPs and MCCPs have the same potential to cause cancer, but no evidence indicates the mutagenicity. In summary, our study provides insight into the potential adverse outcome for SCCP and MCCP at low doses.
Collapse
Affiliation(s)
- Shuangshuang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China; College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xiaoqian Ren
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Yu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Lin Cheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Hairong Yang
- Safety Evaluation Center of Shenyang SYRICI Testing Co., Ltd., Shenyang, Liaoning 110141, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
| |
Collapse
|
4
|
Zhou W, Huang K, Bu D, Zhang Q, Fu J, Hu B, Zhou Y, Chen W, Fu Y, Zhang A, Fu J, Jiang G. Remarkable Contamination of Short- and Medium-Chain Chlorinated Paraffins in Free-Range Chicken Eggs from Rural Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5093-5102. [PMID: 38386012 DOI: 10.1021/acs.est.3c08815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Rapid social-economic development introduces modern lifestyles into rural areas, not only bringing numerous modern products but also new pollutants, such as chlorinated paraffins (CPs). The rural Tibetan Plateau has limited industrial activities and is a unique place to investigate this issue. Herein we collected 90 free-range chicken egg pool samples across the rural Tibetan Plateau to evaluate the pollution status of CPs. Meanwhile, CPs in related soils, free-range chicken eggs from Jiangxi, and farmed eggs from markets were also analyzed. The median concentrations of SCCPs (159 ng g-1 wet weight (ww)) and MCCPs (1390 ng g-1 ww) in Tibetan free-range chicken eggs were comparable to those from Jiangxi (259 and 938 ng g-1 ww) and significantly higher than those in farmed eggs (22.0 and 81.7 ng g-1 ww). In the rural Tibetan Plateau, the median EDI of CPs via egg consumption by adults and children were estimated to be 81.6 and 220.2 ng kg-1 bw day-1 for SCCPs and 483.4 and 1291 ng kg-1 bw day-1 for MCCPs, respectively. MCCPs might pose potential health risks for both adults and children in the worst scenario. Our study demonstrates that new pollutants should not be ignored and need further attention in remote rural areas.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Duo Bu
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Qiangying Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Boyuan Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
5
|
Li S, Li Y, Wang W, Jiao J, Degen AA, Zhang T, Bai Y, Zhao J, Kreuzer M, Shang Z. Dietary habits of pastoralists on the Tibetan plateau are influenced by remoteness and economic status. Food Res Int 2023; 174:113627. [PMID: 37981357 DOI: 10.1016/j.foodres.2023.113627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
In general, dietary habits of pastoralists are livestock-derived, but are also influenced by external food sources under globalization. We hypothesized that dietary habits of pastoralists would be influenced by their remoteness, and that changes from the traditional diet would result in deviations in the local ecological chain. To test this hypothesis, we determined the δ13C and δ15N values of soil, plants, and hair of animals and pastoralists (n = 885). The δ13C value in human hair reflects the proportions of protein originating from C3 and C4 plants; whereas, the δ15N value reflects the proportions of protein derived from plants and animals, with higher values indicating a greater consumption of meat. The isotopic signatures enabled us to estimate the variation in dietary habits of pastoralists across a socio-economic gradient of easily accessible to remote areas on the Tibetan plateau, and to determine the trophic transfer of the isotopes along an ecological chain. The trophic magnification factor (TMF) evaluated the trophic transfer of δ15N in the soil-plants-animals-pastoralists ecological chain. The high δ15N values in soil and plants were not recovered in animals and pastoralists in easily accessible and developed areas, indicating the use of external feed and food resources, and that they deviated from the ecological chain. The mean δ13C (-22.0 ‰) and δ15N values (6.9 ‰) of pastoralists indicated diets consisting mainly of local C3 plants and animal products. However, pastoralists in remote areas relied more on meat protein and on the local ecological chain than pastoralists in easily accessible areas, as their δ15N values and trophic magnification factor of δ15N in the ecological chain were greater. In addition to remoteness, per capita GDP influenced dietary changes in pastoralists, with richer pastoralists consuming more external food. We concluded that dietary changes of pastoralists in the easily accessible areas were due to external food resources and alterations in the local ecological chain of animals and plant-based foods available to the pastoralists.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Yinfeng Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wenyin Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jianxin Jiao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Tao Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yanfu Bai
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jingxue Zhao
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Michael Kreuzer
- ETH Zurich, Institute of Agricultural Sciences, Eschikon 27, 8315 Lindau, Switzerland
| | - Zhanhuan Shang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Dong C, Zhang Q, Xiong S, Yang R, Pei Z, Li Y, Jiang G. Occurrence and Trophic Transfer of Polychlorinated Naphthalenes (PCNs) in the Arctic and Antarctic Benthic Marine Food Webs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17076-17086. [PMID: 37839075 DOI: 10.1021/acs.est.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Information about the occurrence and trophic transfer of polychlorinated naphthalenes (PCNs) in polar ecosystems is vital but scarce. In this study, PCNs were analyzed in benthic marine sediment and several biological species, collected around the Chinese polar scientific research stations in Svalbard in the Arctic and South Shetland Island in Antarctica. Total PCNs in biota ranged from 28 to 249 pg/g of lipid weight (lw) and from 11 to 284 pg/g lw in the Arctic and Antarctic regions, respectively. The concentrations and toxic equivalent (TEQ) of PCNs in polar marine matrices remained relatively low, and the compositions were dominated by lower chlorinated homologues (mono- to trichlorinated naphthalenes). Trophic magnification factors (TMFs) were calculated for congeners, homologues, and total PCNs in the polar benthic marine food webs. Opposite PCN transfer patterns were observed in the Arctic and Antarctic regions, i.e., trophic dilution and trophic magnification, respectively. This is the first comprehensive study of PCN trophic transfer behaviors in remote Arctic and Antarctic marine regions, providing support for further investigations of the biological trophodynamics and ecological risks of PCNs.
Collapse
Affiliation(s)
- Cheng Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Siyuan Xiong
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiguo Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
7
|
Gobas FAPC, Lee YS, Fremlin KM, Stelmachuk SC, Redman AD. Methods for assessing the bioaccumulation of hydrocarbons and related substances in terrestrial organisms: A critical review. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2023; 19:1433-1456. [PMID: 36880196 DOI: 10.1002/ieam.4756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
This study investigates and reviews methods for the assessment of the terrestrial bioaccumulation potential of hydrocarbons and related organic substances. The study concludes that the unitless biomagnification factor (BMF) and/or the trophic magnification factor (TMF) are appropriate, practical, and thermodynamically meaningful metrics for identifying bioaccumulative substances in terrestrial food chains. The study shows that various methods, including physical-chemical properties like the KOA and KOW , in vitro biotransformation assays, quantitative structure-activity relationships, in vivo pharmacokinetic and dietary bioaccumulation tests, and field-based trophic magnification studies, can inform on whether a substance has the potential to biomagnify in a terrestrial food chain as defined by a unitless BMF exceeding 1. The study further illustrates how these methods can be arranged in a four-tier evaluation scheme for the purpose of screening assessments that aim to minimize effort and costs and expediate bioaccumulation assessment of the vast numbers of organic substances in commerce, identifies knowledge gaps, and provides recommendations for further research to improve bioaccumulation assessment. Integr Environ Assess Manag 2023;19:1433-1456. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Frank A P C Gobas
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Yung-Shan Lee
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katharine M Fremlin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie C Stelmachuk
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aaron D Redman
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| |
Collapse
|
8
|
Kutarna S, Du X, Diamond ML, Blum A, Peng H. Widespread presence of chlorinated paraffins in consumer products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:893-900. [PMID: 37039315 DOI: 10.1039/d2em00494a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) were listed for elimination under the Stockholm Convention in 2017 due to their persistence and toxicity. Although Canada and other Stockholm signatories have prohibited the manufacture, usage and import of SCCPs since 2013, they can still be detected at high concentrations in indoor dust. To identify the sources of the SCCPs in the Canadian indoor environment, short-, medium- and long-chain chlorinated paraffins (SCCPs, MCCPs, LCCPs, respectively) were measured using a sensitive LC-ESI-orbitrap method. SCCPs were detected in 84 of the 96 products purchased in Canada after 2013 (87.5%) including electronic devices, clothing, plastics (toys), and paintings. Concentrations of SCCPs were up to 0.93% (9.34 mg g-1). SCCPs were also detected in newly purchased toys at 0.005-2.02 mg g-1, indicating the potential for children's exposure. Profiles of chlorinated paraffins differed among categories of products. For example, C13-SCCPs were most common in toys, while electronic devices like headphones showed comparable concentrations of SCCPs and MCCPs. Additionally, four new carboxylate derivatives of CPs were detected in an electronic device sample. These are the first data to show the ubiquitous occurrences of SCCPs in a wide range of products currently marketed in Canada, suggesting continuing indoor exposure to SCCPs despite their prohibition.
Collapse
Affiliation(s)
- Steven Kutarna
- Department of Chemistry, University of Toronto, Toronto, ON, M5S3H6, Canada.
| | - Xuan Du
- Department of Chemistry, University of Toronto, Toronto, ON, M5S3H6, Canada.
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - Arlene Blum
- Green Science Policy Institute, Berkeley, California 94709, USA
- Department of Cell and Molecular Biology, University of California, Berkeley, CA, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, M5S3H6, Canada.
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Tang J, Zhang C, Zhang J, Jia Y, Fang J. Trophodynamic of endocrine disrupting compounds in the aquatic food webs: Association with hydrophobicity and biota metabolic rate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161731. [PMID: 36681335 DOI: 10.1016/j.scitotenv.2023.161731] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Increasing concentration of endocrine disrupting compounds (EDCs) are released into the aquatic environment, resulting in irreversible effects on the endocrine and reproductive systems of biota. How the liver enzymes affect metabolic rate of these compounds and thus their structure-related trophic transfer in aquatic food webs remains largely unknown. In this study, the concentrations of seven common EDCs were measured in 15 species of fish, 7 invertebrate species and plankton collected from Liuxi River to Pearl River, South China. The mean ΣEDC concentrations generally were found to increase as follows: plankton (29.59 ng g-1 dw) < invertebrate species (50.69 ng g-1 dw) < fish (122.56 ng g-1 dw), with 4-nonylphenol (4-NP) and bisphenol S (BPS) as the predominant components. Trophic magnification factors (TMFs) values were >1.0 ranged from 1.30 (BPS) to 4.07 (4-NP), indicating trophic magnification potential. Measurement of metabolism and activities of microsomal CYP450 enzymes were performed in the fish liver microsomes of Hypophthalmichthys molitrix ([TL] = 2.27), Cirrhinus mrigala (TL = 3.87) and Odontamblyopus rubicundus (TL = 4.73). TMFs were significantly negatively correlated with the obtained in vitro biotransformation clearance rates (CL in vitro) of EDCs and CYP450 enzymes activities. A multiple linear regression model indicated that biotransformation clearance is a more powerful predictor for TMFs than the hydrophobicity (Kow) to drive changes in the studied aquatic food web trophodynamics.
Collapse
Affiliation(s)
- Jinpeng Tang
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Chencheng Zhang
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jinhua Zhang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Ji Fang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| |
Collapse
|
10
|
Li X, Liu Y, Yin Y, Wang P, Su X. Occurrence of some legacy and emerging contaminants in feed and food and their ranking priorities for human exposure. CHEMOSPHERE 2023; 321:138117. [PMID: 36775031 DOI: 10.1016/j.chemosphere.2023.138117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The "feed-to-food" pathway is one of the most important routes for human exposure to manmade contaminants. The contaminants could threaten human health through the "feed-to-food" route and have recently become of great public concern. This review selects the representative legacy and emerging contaminants (ECs), such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), organophosphate esters (OPEs), short-chain chlorinated paraffins (SCCPs), and per- and polyfluoroalkyl substances (PFASs), regarding their occurrence in feed and food, as well as their metabolites and transport in farming and livestock ecosystems. Factors that might influence their presence and behavior are discussed. This review raises an approach to rank the priority of ECs using the EC concentrations in feed and food and using the hazard quotient (HQ) method for human health. Although SCCPs have the highest levels in feed and food, their potential risks appear to be the lowest. PFASs have the highest HQs on account of human exposure risk. Future research should pay more attention to the combined effects of multiple ECs.
Collapse
Affiliation(s)
- Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China.
| | - Yifei Liu
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yuhan Yin
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Peilong Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaoou Su
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
11
|
Cao X, Lu R, Xu Q, Zheng X, Zeng Y, Mai B. Distinct biomagnification of chlorinated persistent organic pollutants in adjacent aquatic and terrestrial food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120841. [PMID: 36493935 DOI: 10.1016/j.envpol.2022.120841] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Biomagnification of persistent organic pollutants (POPs) in food webs has been studied for many years. However, the different processes and influencing factors in biomagnification of POPs in aquatic and terrestrial food webs still need clarification. Polychlorinated biphenyls (PCBs) and short-chain chlorinated paraffins (SCCPs) were measured in organisms from adjacent terrestrial and aquatic environment in this study. The median levels of PCBs in terrestrial and aquatic organisms were 21.7-138 ng/g lw and 37.1-149 ng/g lw, respectively. SCCP concentrations were 18.6-87.3 μg/g lw and 21.4-93.9 μg/g lw in terrestrial and aquatic organisms, respectively. Biomagnification factors (BMFs) of PCBs increased with higher log KOW in all food chains. BMFs of SCCPs were negatively correlated with log KOW in aquatic food chains, but positively correlated with log KOW in terrestrial food chains. The terrestrial food web had similar trophic magnification factors (TMFs) of PCBs, and higher TMFs of SCCPs than the aquatic food web. Biomagnification of PCBs was consistent in aquatic and terrestrial food webs, while SCCPs had higher biomagnification potential in terrestrial than aquatic organisms. The distinct biomagnification of SCCPs was affected by the respiratory elimination for terrestrial organisms, the different metabolism rates in various species, and more homotherms in terrestrial food webs. Fugacity model can well predict levels of less hydrophobic chemicals, and warrants more precise toxicokinetic data of SCCPs.
Collapse
Affiliation(s)
- Xingpei Cao
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qishan Xu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| |
Collapse
|
12
|
Chen L, Mai B, Luo X. Bioaccumulation and Biotransformation of Chlorinated Paraffins. TOXICS 2022; 10:778. [PMID: 36548610 PMCID: PMC9783579 DOI: 10.3390/toxics10120778] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs), a class of persistent, toxic, and bioaccumulated compounds, have received increasing attention for their environmental occurrence and ecological and human health risks worldwide in the past decades. Understanding the environmental behavior and fate of CPs faces a huge challenge owing to the extremely complex CP congeners. Consequently, the aims of the present study are to summarize and integrate the bioaccumulation and biotransformation of CPs, including the occurrence of CPs in biota, tissue distribution, biomagnification, and trophic transfer, and biotransformation of CPs in plants, invertebrates, and vertebrates in detail. Biota samples collected in China showed higher CP concentrations than other regions, which is consistent with their huge production and usage. The lipid content is the major factor that determines the physical burden of CPs in tissues or organs. Regarding the bioaccumulation of CPs and their influence factors, inconsistent results were obtained. Biotransformation is an important reason for this variable. Some CP congeners are readily biodegradable in plants, animals, and microorganisms. Hydroxylation, dechlorination, chlorine rearrangement, and carbon chain decomposition are potential biotransformation pathways for the CP congeners. Knowledge of the influence of chain length, chlorination degree, constitution, and stereochemistry on the tissue distribution, bioaccumulation, and biotransformation is still scarce.
Collapse
Affiliation(s)
- Liujun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
13
|
Lin L, Abdallah MAE, Chen LJ, Luo XJ, Mai BX, Harrad S. Comparative in vitro metabolism of short chain chlorinated paraffins (SCCPs) by human and chicken liver microsomes: First insight into heptachlorodecanes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158261. [PMID: 36030865 DOI: 10.1016/j.scitotenv.2022.158261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are emerging persistent organic pollutants of great concern due to their ubiquitous distribution in the environment. However, little information is available on the biotransformation of SCCPs in organisms. In this study, a chlorinated decane: 1, 2, 5, 5, 6, 9, 10-heptachlorodecanes (HeptaCDs) was subjected to in vitro metabolism by human and chicken liver microsomes at environmentally relevant concentration. Using ultra-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry, two metabolites: monohydroxylated hexachlorodecane (HO-HexCD) and monohydroxy heptachlorodecane (HO-HeptaCD) were detected in human liver microsomal assays, while only one metabolite (HO-HexCD) was identified in chicken liver microsomal assays. The formation of HO-HexCD was fitted to a Michaelis-Menten model for chicken liver microsomes with a Vmax (maximum metabolic rate) value of 4.52 pmol/mg/min. Metabolic kinetic parameters could not be obtained for human liver microsomes as steady state conditions were not reached under our experimental conditions. Notwithstanding this, the observed average biotransformation rate of HeptaCDs was much faster for human liver microsomes than for chicken liver microsomes. Due to the lack of authentic standards for the identified metabolites, the detailed structure of each metabolite could not be confirmed due to the possibility of conformational isomers. This study provides first insights into the biotransformation of SCCPs, providing potential biomarkers and enhancing understanding of bioaccumulation studies.
Collapse
Affiliation(s)
- Lan Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohamed Abou-Elwafa Abdallah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B5 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Liu-Jun Chen
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China.
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou, 510640, China
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B5 2TT, United Kingdom
| |
Collapse
|
14
|
Li H, Li H, Zhang S, Li H, Zhao Y, Chen X, Cai Z. Dietary exposure and risk assessment of chlorinated paraffins in roots and rhizomes of traditional Chinese medicine herbs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80637-80645. [PMID: 35725876 DOI: 10.1007/s11356-022-21527-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Traditional Chinese medicine (TCM) provides therapeutic and health care effects through dietary intake. Owing to the susceptibility of plants to contaminations, a risk assessment system is urgently needed to ensure the safe use of TCMs. In this study, the contamination levels and risks associated with the dietary intake of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) were investigated in six kinds of frequently-used TCM herbs. The concentrations varied from 144.4 to 1527.8 ng·g-1 dw for SCCPs and non-detect to 1214.1 ng·g-1 dw for MCCPs, with mean values of 551.5 and 259.8 ng·g-1 dw, respectively. A geographic distribution analysis indicated that the concentrations of CPs in TCMs were mainly associated with their levels of contamination in the ambient environment. Carbon atom-chlorine congener profiles of CPs were dominated by C10Cl7-8 and C14Cl7-8 congeners, accounting for 20.1% and 32.4% of the total SCCP and MCCP concentrations, respectively. Principal component analysis indicated that the TCM species might be the main factor influencing the accumulation of SCCPs congeners. Finally, a risk assessment reveals that the estimated daily intake and margin of exposure were far below levels that might pose a health risk, indicating an acceptable dietary intake of SCCPs and MCCPs in the studied TCMs. This is the first report of CPs in the TCM herbs and the obtained results are expected to aid in future evaluation of the quality of TCMs and ensuring diet and drug safety.
Collapse
Affiliation(s)
- Huijuan Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Hui Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Shishan Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Huizhi Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yanfang Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China.
| | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
15
|
Chai L, Zhou Y, Wang X. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1616-1630. [PMID: 35770617 DOI: 10.1039/d1em00550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Global warming profoundly affects not only mountainous and polar environments, but also the global and regional cycling of pollutants. Mercury (Hg) and persistent organic pollutants (POPs) have global transport capacity and are regulated by the Minamata Convention and Stockholm Convention, respectively. Since the beginning of this century, understanding of the origin and fate of Hg and POPs on the Tibetan Plateau (TP, also known as the third pole) has been deepening. In this paper, the existing literature is reviewed to comprehensively understand the atmospheric transport, atmospheric deposition, cumulative transformation and accumulation of Hg and POPs on the TP region under the background of global warming. The biogeochemical cycle of both Hg and POPs has the following environmental characteristics: (1) the Indian summer monsoon and westerly winds carry Hg and POPs inland to the TP; (2) the cold trapping effect causes Hg and POPs to be deposited on the TP by dry and wet deposition, making glaciers, permafrost, and snow the key sinks of Hg and POPs; (3) Hg and POPs can subsequently be released due to the melting of glaciers and permafrost; (4) bioaccumulation and biomagnification of Hg and POPs have been examined in the aquatic food chain; (5) ice cores and lake cores preserve the impacts of both regional emissions and glacial melting on Hg and POP migration. This implies that comprehensive models will be needed to evaluate the fate and toxicity of Hg and POPs on larger spatial and longer temporal scales to forecast their projected tendencies under diverse climate scenarios. Future policies and regulations should address the disrupted repercussions of inclusive CC such as weather extremes, floods and storms, and soil sustainable desertification on the fate of Hg and POPs. The present findings advocate the strengthening of the cross-national programs aimed at the elimination of Hg and POPs in polar (Arctic, Antarctic and TP) and certain mountainous (the Himalaya, Rocky Mountains, and Alps) ecosystems for better understanding the impacts of global warming on the accumulation of Hg/POPs in cold and remote areas.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Occurrence, Distribution and Health Risk of Short-Chain Chlorinated Paraffins (SCCPs) in China: A Critical Review. SEPARATIONS 2022. [DOI: 10.3390/separations9080208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With being listed in the Stockholm Convention, the ban on short-chain chlorinated paraffins (SCCPs) has been put on the agenda in China. Based on the literature over the past decade, this study comprehensively analyzed the occurrence, distribution of and human exposure to SCCPs in China, aiming to provide a reference for the changes in SCCPs after the ban. SCCPs were ubiquitous in environmental matrices, and the levels were considerably higher than those in other countries. SCCPs from the emission region were 2–4 orders of magnitude higher than those in the background area. Environmental processes may play an important role in the SCCP profiles in the environment, and C10 and Cl6 were identified as potential factors distinguishing their spatial distribution. River input was the dominant source in the sea areas, and atmospheric transport was the main source in the remote inland areas. Ingestion and dermal absorption and food intake may pose potential risk to residents, especially for children and infants. More studies are needed on their temporal trend, source emission and environmental degradation. The enactment of the restriction order will have a great impact on China’s CP industry; nevertheless, it will play a positive role in the remediation of SCCP pollution in the environment.
Collapse
|
17
|
Chen W, Hou X, Mao X, Jiao S, Wei L, Wang Y, Liu J, Jiang G. Biotic and Abiotic Transformation Pathways of a Short-Chain Chlorinated Paraffin Congener, 1,2,5,6,9,10-C 10H 16Cl 6, in a Rice Seedling Hydroponic Exposure System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9486-9496. [PMID: 35622943 DOI: 10.1021/acs.est.2c01119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a typical congener of short-chain chlorinated paraffins (SCCPs) with six chlorine atoms (CP-4, 1,2,5,6,9,10-C10H16Cl6, 250 ng/mL) was selected to elaborate the comprehensive environmental transformation of SCCPs in rice seedling exposure system. CP-4 was quickly absorbed, translocated, and phytovolatilized by seedlings with a small quality of CP-4 (5.81-36.5 ng) being detected in the gas phase. Only 21.4 ± 1.6% of an initial amount (10,000 ng) of CP-4 remained in the exposure system at the end of exposure. Among the transformed CP-4, some were attributed to the degradation of the rhizosphere microorganism (9.1 ± 5.8%), root exudates (2.2 ± 4.2%), and abiotic transformation (3.0 ± 2.8%) that were proved by several transformation products found in the root exudate exposure groups and unplanted controls, and a majority was phytotransformed by rice seedlings. Here, 61 products were determined through complex transformation pathways, including multihydroxylation, -HCl elimination, dechlorination, acetylation, sulfation, glycosylation, and amide acid conjugation. The acetylated and amide acid conjugates of CPs were first observed. Phase I and Phase II phytometabolic reactions of CPs were found intertwining. These findings demonstrate that multiactive transformation reactions contribute to the overlook of CPs accumulated in plants and are helpful for the environmental and health risk assessments of SCCPs in agricultural plants.
Collapse
Affiliation(s)
- Weifang Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowei Mao
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Suning Jiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaotian Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|
18
|
Sun S, Zhang B, Luo Y, Ma X, Cao R, Zhang Y, Gao Y, Chen J, Zhang H. Accumulation characteristics of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls in human breast milk from a seaside city of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118794. [PMID: 34998892 DOI: 10.1016/j.envpol.2022.118794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Breast milk samples were collected from 51 mothers in a seaside city Dalian, where the residents usually have higher dietary exposure to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs) due to the larger consumption of seafood. The lipid-basis concentrations of ∑Cl2-8DD/Fs, ∑Cl2-10Bs, and total toxicity equivalent (WHO-TEQ) were measured to be in the ranges of 35.7-2727.8 pg/g, 4.91-52.64 ng/g, and 2.27-36.30 pg/g, respectively. The average proportion of ∑Cl2-3DD/Fs was higher than that of ∑Cl4-7DD/Fs in the collected human breast milk samples, suggesting that the health risk of Cl2-3DD/Fs should be especially concerned. The concentration data of PCDD/Fs and PCBs in human breast milk essentially followed a positive skew probability distribution. Women in high-level exposure scenarios exhibited a higher potential to accumulate homologues Cl4DFs, Cl7DFs, Cl8DF, and Cl6Bs in breast milk. Three PCDD/F congeners (1,2,3,6,7,8-Cl6DF, 1,2,3,4,7,8-Cl6DF, and 1,2,3,4,6,7,8-Cl7DD) and three PCB congeners (PCB 126, PCB 138, and PCB 169) were identified as good indicators for the accumulation of PCDD/Fs and PCBs in human breast milk, respectively. The food-to-milk accumulation factors (FMAF) were calculated to evaluate the accumulation potentials of different PCDD/F and PCB congeners in human breast milk via dietary exposure. The calculated FMAF value presented a non-monotonic variation with the logarithm of n-octanol-water partition coefficient (log KOW) with a peak at a log KOW value of about 7.3 and a valley at a log KOW value of about 8. The mean value of the estimated daily intake (EDI) of total WHO-TEQ for breast-fed infants in Dalian, predicted by Monte Carlo simulation, was 10 folds higher than the upper range of the tolerable daily intake (TDI) value (4 pg WHO-TEQ/kg bw/d), suggesting continued and enhanced efforts should be made to reduce the exposure risk of infants to PCDD/Fs and PCBs.
Collapse
Affiliation(s)
- Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Baoqin Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xindong Ma
- State Oceanic Administration Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian, 116023, PR China
| | - Rong Cao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yichi Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yuan Gao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| |
Collapse
|
19
|
Hou R, Huang Q, Pan Y, Lin L, Liu S, Li H, Xu X. Novel Brominated Flame Retardants (NBFRs) in a Tropical Marine Food Web from the South China Sea: The Influence of Hydrophobicity and Biotransformation on Structure-Related Trophodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3147-3158. [PMID: 35175039 DOI: 10.1021/acs.est.1c08104] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increasing discharge and ubiquitous occurrence of novel brominated flame retardants (NBFRs) in aquatic environments have initiated intense global concerns; however, little information is available regarding their structure-related trophodynamics in marine food webs. In this study, a tropical marine food web including 29 species (18 fish and 11 invertebrate species) was collected from coral reef waters of the Xisha Islands, the South China Sea, for an analysis of 11 representative NBFRs. The mean ∑NBFR concentrations generally increased in the following sequence: sea cucumbers (0.330 ng/g lw) < crabs (0.380 ng/g lw) < shells (2.10 ng/g lw) < herbivorous fishes (2.30 ng/g lw) < carnivorous fishes (4.13 ng/g lw), with decabromodiphenyl ethane (DBDPE) and hexabromobenzene (HBB) as the predominant components. Trophic magnification was observed for all of the investigated NBFRs, with trophic magnification factors (TMFs) ranging from 1.53 (tetrabromobisphenol A bis(dibromopropyl ether)) to 5.32 (HBB). Significant negative correlations were also found between the TMFs and the tested in vitro transformation clearance rates (CLin vitro) for the target NBFRs except for bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH) (p < 0.05). Multiple linear regression analysis confirmed that the transformation rate is a more powerful predictor for TMFs than the hydrophobicity of NBFRs in this marine food web.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qianyi Huang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunfeng Pan
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| |
Collapse
|
20
|
Wang K, Gao L, Zhu S, Liu X, Chen Q, Cui L, Qiao L, Xu C, Huang D, Wang S, Zheng M. Short- and medium-chain chlorinated paraffins in soil from an urban area of northern China: Levels, distribution, and homolog patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150833. [PMID: 34627908 DOI: 10.1016/j.scitotenv.2021.150833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are persistent organic pollutants that are present in relatively high concentrations in various environmental media in China. Many studies have focused on chlorinated paraffins in soil from agricultural land and contaminated areas. There are limited data on the levels of chlorinated paraffins in soil from urban areas. In this study, to investigate the levels, distribution, and homolog patterns of chlorinated paraffins (CPs) in soil from a typical urban area, 130 soil samples were collected and combined to form 26 pooled samples. The samples were analyzed for 50 CP congener groups (C9-17Cl5-10). The concentration ranges for SCCPs, medium-chain CPs (MCCP), and chlorinated nonane paraffin (C9-CP) were 19-1456 ng/g (average: 234 ng/g), <10-385 ng/g (average: 54 ng/g), and 1-39 ng/g (average: 11 ng/g), respectively. The CP concentrations were not significantly correlated with the total organic carbon content (P > 0.05). Compared with other areas worldwide, the SCCP and C9-CP concentrations in soil in this area were at the medium level, and the concentrations of MCCPs were at a low level. The CP concentrations were higher in soil samples collected near factories and domestic garbage disposal sites. C10Cl6-7 were the main SCCP homologs and C14Cl7-8 were the main MCCP homologs. Principal component analysis showed that the sources of C9-CPs, SCCPs, and MCCPs in the soils were similar. Risk assessment showed that the concentrations of SCCPs and MCCPs in soil in this area did not pose a significant risk to soil organisms or human health.
Collapse
Affiliation(s)
- Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; China National Institute of Standardization, Beijing 100191, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment Hangzhou Institute for Advanced study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing 100037, China
| | - Xia Liu
- China National Institute of Standardization, Beijing 100191, China
| | - Qianwen Chen
- China National Institute of Standardization, Beijing 100191, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | |
Collapse
|
21
|
Niu S, Harner T, Chen R, Parnis JM, Saini A, Hageman K. Guidance on the Application of Polyurethane Foam Disk Passive Air Samplers for Measuring Nonane and Short-Chain Chlorinated Paraffins in Air: Results from a Screening Study in Urban Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11693-11702. [PMID: 34431673 DOI: 10.1021/acs.est.1c02428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study provides guidance on using polyurethane foam-based passive air samplers (PUF-PASs) for atmospheric nonane chlorinated paraffins (C9-CPs) and short-chain CPs (SCCPs) and reports SCCP concentrations in air in the Greater Toronto Area (GTA), Canada. We estimated the partition coefficients between PUF and air (KPUF-A) and between octanol and air (KOA) for C9-CP and SCCP congeners using the COSMO-RS method, so that PUF disk uptake profiles for each formula group could be calculated. We then measured SCCP concentrations in PUF disk samples collected from distinct source sectors in urban air across the GTA. Concentrations in samplers were used to calculate C9-CP and SCCP concentrations in air and the PUF disk uptake profiles revealed that time-weighted linear phase sampling was possible for congeners having log KOA values greater than 8.5. The highest SCCP concentrations, with an annual average concentration of 35.3 ng/m3, were measured at the industrial site, whereas lower but comparable SCCP concentrations were found in residential and background sites, with annual averages of 7.73 and 10.5 ng/m3, respectively. No consistent seasonal variation in SCCP concentrations was found in the six distinct source sectors. Direct measurements of KPUF-A and KOA values as a function of temperature could be used to increase accuracy in future studies.
Collapse
Affiliation(s)
- Shan Niu
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Ruiwen Chen
- Utah Water Research Laboratory, Utah State University, Logan, Utah 84322, United States
| | - J Mark Parnis
- Department of Chemistry and Canadian Environmental Modelling Centre, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Amandeep Saini
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Kimberly Hageman
- Department of Chemistry & Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
22
|
Gong Y, Geng N, Zhang H, Luo Y, Giesy JP, Sun S, Wu P, Yu Z, Chen J. Exposure to short-chain chlorinated paraffins inhibited PPARα-mediated fatty acid oxidation and stimulated aerobic glycolysis in vitro in human cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144957. [PMID: 33578161 DOI: 10.1016/j.scitotenv.2021.144957] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) could disrupt fatty acid metabolism in male rat liver through activating rat PPARα signaling. However, whether this mode of action can translate to humans remained largely unclear. In this study, based on luciferase assays, C10-13-CPs (56.5% Cl) at concentrations greater than 1 μM (i.e., 362 μg/L) showed weak agonistic activity toward human PPARα (hPPARα) signaling. But in HepG2 cells, exposure to C10-13-CPs (56.5% Cl) at the human internal exposure level (100 μg/L) down-regulated expressions of most of the tested hPPARα target genes, which encode for enzymes that oxidize fatty acids. In line with the gene expression data, metabolomics further confirmed that exposure to four SCCP standards with varying chlorine contents at 100 μg/L significantly suppressed oxidation of fatty acids in HepG2 cells, mainly evidenced by elevations in both total fatty acids and long-chain acylcarnitines. In addition, exposure to these SCCPs also caused a shift in carbohydrate metabolism from the tricarboxylic acid cycle (TCA cycle) to aerobic glycolysis. Overall, the results revealed that SCCPs could inhibit hPPARα-mediated fatty acid oxidation, and stimulated aerobic glycolysis in HepG2 cells.
Collapse
Affiliation(s)
- Yufeng Gong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shuai Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ping Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Zhengkun Yu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| |
Collapse
|
23
|
Xu H, Zheng M, Wang L, Zhao W, Hua Y, Fang L, Liu A, Zhao Z. High throughput extraction strategy for simultaneous analysis of 19 tetrabromobisphenol A and halogenated carbazole analogs in seafood. Food Chem 2021; 350:129214. [PMID: 33601093 DOI: 10.1016/j.foodchem.2021.129214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/02/2021] [Accepted: 01/24/2021] [Indexed: 11/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA), halogenated carbazole (HCZ), and their analogs are the emerging pollutants invading the marine environment. So far, a few methods have been reported for the simultaneous analysis of these pollutants due to their large polarity difference. In this study, an effective extraction and cleanup strategy was developed for the simultaneous determination of 19 TBBPA and HCZ congeners in seafood. The 19 analytes could be directly analyzed through high performance liquid chromatography after ultrasonic extraction (methanol, duplicate ethyl acetate-acetone (1:1, v/v)) and gel permeation chromatography cleanup. The acceptable spike-recoveries were within 65.7-118.3%; the precision was intra-/inter-day RSDs: 0.0-6.7%/0.0-8.5%; and the matrix effects were between -14.1% and 12.4%. The detection limits and quantification limits were 0.002-0.014 and 0.020-0.200 µg g-1 dw, respectively. Additionally, this method successfully analyzed the seafood samples and the concentrations of these analytes were in range of nd-5.4 µg g-1 dw.
Collapse
Affiliation(s)
- Hongyan Xu
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Minggang Zheng
- Marine Ecology Research Center, First Institute of Oceanography, Ministry of Natural Resources, 266061 Qingdao, China
| | - Ling Wang
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Wucai Zhao
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Yi Hua
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Lidan Fang
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| | - Aifeng Liu
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China.
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, 266071 Qingdao, China
| |
Collapse
|
24
|
Li H, Bu D, Gao Y, Zhu N, Wu J, Chen X, Fu J, Wang Y, Zhang A, Jiang G. Long-range atmospheric transport and alpine condensation of short-chain chlorinated paraffins on the southeastern Tibetan Plateau. J Environ Sci (China) 2021; 99:275-280. [PMID: 33183706 DOI: 10.1016/j.jes.2020.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 05/22/2023]
Abstract
Pristine alpine regions are ideal regions for investigating the long-range atmospheric transport and cold trapping effects of short chain chlorinated paraffins (SCCPs). The concentrations and alpine condensation of SCCPs were investigated in lichen samples collected from the southeastern Tibetan Plateau. The concentrations of SCCPs ranged from 3098 to 6999 ng/g lipid weight (lw) and appeared to have an increasing trend with altitude. For congeners, C10 dominated among all the congener groups. The different environmental behavior for different congener groups was closely related to their octanol-air partition coefficient (Koa). C10 congeners showed an increasing trend with altitude, whereas C13 congeners were negatively correlated with altitude. Volumetric bioconcentration factors (BCF) of SCCPs reached 8.71 in lichens, which were higher than other semivolatile organic compounds (SVOCs) such as organochlorine pesticides (OCPs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and hexabromocyclododecane (HBCD). These results suggested that SCCPs were prone to accumulate in the lichen from the air and provided evidence for the role of lichens as a suitable atmospheric indicator in the Tibetan Plateau.
Collapse
Affiliation(s)
- Huijuan Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Jinan 250014, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Duo Bu
- Department of Chemistry & Environmental Science, Tibet University, Lhasa 850000, China
| | - Yan Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nali Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiangfeng Chen
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytic Instrument, Jinan 250014, China
| | - Jianjie Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
25
|
Li J, Xu L, Zhou Y, Yin G, Wu Y, Yuan GL, Du X. Short-chain chlorinated paraffins in soils indicate landfills as local sources in the Tibetan Plateau. CHEMOSPHERE 2021; 263:128341. [PMID: 33297267 DOI: 10.1016/j.chemosphere.2020.128341] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 05/22/2023]
Abstract
Background contamination levels of contemporary persistent organic pollutants (POPs) may be elevated due to local discharges, and hence it is of high importance to assess and monitor them in alpine and Polar Regions. This study investigated the role of waste disposal in the Tibetan plateau as the local source of short-chain chlorinated paraffins (SCCPs). SCCPs were determined in soils from the urban landfill and rural dumpsites, with a concentration range of 56.8-1348 ng/g dw. The gradient descent of SCCP levels from Lhasa landfill to the surrounding soils with increasing distances suggested a significant SCCP release from waste disposal. The transport pattern was well fitted by the Boltzmann equation after normalization in terms of soil organic carbon contents. Compared to the landfill cells closed in early years, the recently closed cells contained higher concentrations but lower proportions of the short-chain congener groups, likely reflecting the SCCP use history in Tibet. In open-burning dumpsites, higher SCCP levels and dominance of lighter congener groups indicates that such crude waste treatment process might cause an extra release of volatile SCCPs. This study elucidates local SCCP inputs to the background environment, and demonstrates that both urbanization and badly-managed landfill have been contributing to the presence of contemporary POPs in the Tibetan Plateau.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Liang Xu
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ge Yin
- Shimadzu (China) Co., LTD, Shanghai, 200233, China
| | - Yan Wu
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Guo-Li Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China; School of the Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
| | - Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
26
|
Zhang X, Cheng X, Lei B, Zhang G, Bi Y, Yu Y. A review of the transplacental transfer of persistent halogenated organic pollutants: Transfer characteristics, influential factors, and mechanisms. ENVIRONMENT INTERNATIONAL 2021; 146:106224. [PMID: 33137703 DOI: 10.1016/j.envint.2020.106224] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Persistent halogenated organic pollutants (HOPs) are a class of toxic chemicals, which may have adverse effects on fetuses via transplacental transfer from their mothers. Here, we review reported internal exposure levels of various HOPs (organochlorinated pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, short- and medium-chain chlorinated paraffins, and per- and poly-fluoroalkyl substances) in placenta, and both maternal and umbilical cord sera. We also present analyses of the transplacental transfer and placental distribution characteristics of each class of compounds, and discuss effects of several factors on the transfer and accumulation efficiencies of HOPs, as well as the main mechanisms of HOPs' transfer across the placental barrier. Reported compound-specific transplacental transfer efficiencies and distribution efficiencies, expressed as umbilical cord:maternal serum and placental:maternal serum concentration ratios (RCM and RPM, respectively), are summarized. Average published RCM values of the HOPs range from 0.24 to 3.08 (lipid-adjusted) and from 0.04 to 3.1 (based on wet weights), and are highest for perfluoroalkylcarboxylates (PFCAs) and tetrabromobisphenol A. Average published RPM values range from 0.14 to 1.02 (lipid-adjusted) and from 0.30 to 1.4 (based on wet weights). The broad RCM and RPM ranges may reflect effects of various factors, inter alia physicochemical properties of HOPs, metabolic capacities of mothers and fetuses, placental maturity, and differential expression of influx/efflux transporters in the placenta. Generally, HOPs' RCM values decline linearly with molecular size, and are curvilinearly related to solubility. Plasma protein binding affinity and the difference between maternal and fetal metabolic capacities may also affect some HOPs' transfer efficiencies. HOPs' molecular size may be influential. Transplacental transport of HOPs likely occurs mostly through passive diffusion, although influx/efflux transporters expressed on maternal and/or fetal sides of the placenta may also facilitate or hinder their transport. Overall, the review highlights clear gaps in our understanding of mechanisms involved in HOPs' transplacental transport.
Collapse
Affiliation(s)
- Xiaolan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Xiaomeng Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Bingli Lei
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guoxia Zhang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, PR China
| | - Yuhao Bi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
A simplified screening method for short- and medium-chain chlorinated paraffins in food by gas chromatography-low resolution mass spectrometry. J Chromatogr A 2020; 1631:461574. [PMID: 32987312 DOI: 10.1016/j.chroma.2020.461574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
This study evaluates the performance of a simplified screening method for short- and medium-chain chlorinated paraffins (SCCPs and MCCPs, respectively) based on gas chromatography-electron capture negative ionization/mass spectrometry (GC-ECNI/MS) analysis and chlorine content quantification. The response from different combinations of 'indicator' congener groups present in technical mixture standards were used within calibration calculations to test the hypothesis that ∑SCCPs and ∑MCCPs could be quantified with acceptable accuracy using only a subset of the commonly analysed C10 to C17 and Cl5 to Cl10 groups. Potential combinations were assessed with respect to calibration curve performance and accuracy of SCCP and MCCP analysis of spiked food samples (olive oil, salmon, pork sausage, breakfast cereal, cow's milk and lard). Based on these trials, a screening method which quantifies ∑SCCPs and ∑MCCPs using only congener groups with 6 and 8 chlorine atoms for each carbon chain length was proposed. Concentrations of SCCPs and MCCPs in triplicate analyses of spiked food samples calculated using the proposed screening method deviated by ≤ 25% for the vast majority of samples (maximum deviation 37%) from levels determined using all analysed congener groups. The mean trueness of the screening method as applied to each of the spiked food samples and lard samples from a previous European Union Reference Laboratory (EURL) interlaboratory study ranged from 65 to 110% for ∑SCCPs and 102 to 175% for ∑MCCPs. Relative standard deviations (RSDs) were ≤ 25% for all triplicate analyses and matrix specific LOQs ranged from 0.7 to 6 ng/g ww for ∑SCCPs and from 1.3 to 12 ng/g ww for ∑MCCPs. The proposed screening method has the potential to deliver substantial time savings in instrumental analysis and manual labour without greatly reducing the overall accuracy and sensitivity of SCCP and MCCP quantification.
Collapse
|
28
|
Liu Y, Luo X, Zeng Y, Wang Q, Tu W, Yang C, Mai B. Trophic Magnification of Short- and Medium-Chain Chlorinated Paraffins in Terrestrial Food Webs and Their Bioamplification in Insects and Amphibians during Metamorphosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11282-11291. [PMID: 32822158 DOI: 10.1021/acs.est.0c03096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies on the biomagnification of short- and medium-chain chlorinated paraffins (SCCPs and MCCPs) in terrestrial ecosystems and their bioamplification during metamorphosis in insects and amphibians are scarce. Therefore, this study sought to characterize the occurrence and trophic dynamics of SCCPs and MCCPs in an insect-dominated terrestrial food web in an e-waste recycling site in South China. Median ∑SCCPs and ∑MCCPs concentrations in the organisms ranged from 2200 to 34 000 ng/g lipid weight and from 990 to 19 000 ng/g lipid weight, respectively. The homologue profiles of CPs in the predators were distinct from those in insects, presenting more short chain-high chlorinated congeners (C10-12Cl8-10). The trophic magnification factors (TMFs) of ∑SCCPs and ∑MCCPs were 2.08 and 2.45, respectively, indicating biomagnification in the terrestrial food web. A significant positive relationship between the TMFs and octanol-air partition coefficients was observed. TMFs were also positively correlated with chlorination degree but did not correlate with carbon chain length. Nonlinear correlations between metamorphosis-associated bioamplification and the octanol-water partition coefficients of SCCPs and MCCPs were observed for insects, whereas negative linear correlations were observed for amphibians, which suggested species-specific alterations to the chemicals during metamorphosis.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanghong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Chunyan Yang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
29
|
Sun R, Chen J, Shao H, Tang L, Zheng X, Li QX, Wang Y, Luo X, Mai B. Bioaccumulation of short-chain chlorinated paraffins in chicken (Gallus domesticus): Comparison to fish. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122590. [PMID: 32315939 DOI: 10.1016/j.jhazmat.2020.122590] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Short chain chlorinated paraffins (SCCPs) are a complex group of chlorinated organic pollutants that have raised an increasing public attention. However, limited information is currently available on the bioaccumulation of SCCPs in terrestrial birds which are abundant and widely distributed around the world. In the present study, chicken (Gallus domesticus) was used as a model organism to provide significant implications for other avian species. We investigated the transfer of SCCPs from dietary sources (feed and topsoil) to chicken and their tissue distribution behavior. SCCPs were detected in chicken feed (54-170 ng/g, dry weight), topsoil (170-860 ng/g, dry weight), and adult chicken tissues (460-13000 ng/g, lipid weight). Adult chicken tended to accumulate SCCP congeners with lower n-octanol-water partition coefficients (KOW) and octanol-air partition coefficients (KOA). The accumulation ratio values for SCCPs of the chicken were more influenced by KOA than by KOW, which was contrary to those for aquatic fish. Levels and homologue profiles of SCCPs varied among chicken tissues. SCCP levels in the livers were significantly lower than those in the other tissues (p < 0.05). The accumulation potential for SCCP congeners with higher KOW increased in the order of muscle < liver < fat.
Collapse
Affiliation(s)
- Runxia Sun
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiemin Chen
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Haiyang Shao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Yangyang Wang
- College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
30
|
Wang K, Gao L, Zhu S, Cui L, Qiao L, Xu C, Huang D, Zheng M. Spatial distributions and homolog profiles of chlorinated nonane paraffins, and short and medium chain chlorinated paraffins in soils from Yunnan, China. CHEMOSPHERE 2020; 247:125855. [PMID: 31935577 DOI: 10.1016/j.chemosphere.2020.125855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 05/22/2023]
Abstract
To preliminarily investigate the occurrence, spatial distributions, homolog compositions, and ecological risks of chlorinated paraffins (CPs) in Yunnan, China, 110 soil samples were collected from an area part of Yunnan, representative of the whole Yunnan area, where had similar characteristics to most parts of Yunnan and 22 pooled soil samples were analyzed for 50 CP congener groups (C9-17Cl5-10). The chlorinated nonane paraffin (C9-CP), short chain (SCCP), and medium chain chlorinated paraffin (MCCP) concentrations in soil samples were 8-109 ng/g (average 39 ng/g), 79-948 ng/g (average 348 ng/g), and 20-1206 ng/g (average 229 ng/g), respectively. The C9-CP homologs contributed 5%-16% of the C9-13-CP concentrations in soils. No significant correlation was found between CP concentrations and the total organic carbon content (P > 0.05). The CP levels in soils from Yunnan were at a medium level compared with those in other areas worldwide. Human activity and atmosphere deposition would influence the levels and spatial distributions of CPs in this area. The concentrations of CPs in east area were higher than those in west area. C10Cl6-7 were the major SCCP congeners and C14Cl6-7 were the major MCCP congeners. Principal component analysis indicated that SCCPs and MCCPs came from different sources. A preliminary risk assessment indicated that these concentrations of CPs in soil from Yunnan do not pose a significant ecological risk for soil organisms.
Collapse
Affiliation(s)
- Kunran Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shuai Zhu
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Lili Cui
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Qiao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chi Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | |
Collapse
|
31
|
Du X, Yuan B, Zhou Y, de Wit CA, Zheng Z, Yin G. Chlorinated Paraffins in Two Snake Species from the Yangtze River Delta: Tissue Distribution and Biomagnification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2753-2762. [PMID: 32036653 DOI: 10.1021/acs.est.9b06467] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Very-short, short-, medium-, and long-chain chlorinated paraffins (vSCCPs, SCCPs, MCCPs, and LCCPs, respectively) were analyzed in different tissues of the terrestrial short-tailed mamushi (Gloydius brevicaudus) and the semi-aquatic red-backed rat snake (Elaphe rufodorsata) from the Yangtze River Delta, China. The total CP concentrations in liver, muscle, and adipose tissues in the two snake species were in the range of 2500-24 000, 4900-48 000, and 12-630 ng/g lw, respectively. Tissue burdens indicated that vSCCPs (C6-9) and SCCPs (C10-13) preferentially distributed to snake liver, while adipose was an important storage site and sink of MCCPs (C14-17) and LCCPs (C>18). On a lipid weight basis, vSCCPs and SCCPs were found in highest concentrations in red-backed rat snake liver and MCCPs and LCCPs in muscle, whereas for short-tailed mamushi, all CP groups were predominant in muscle, probably reflecting ecosystem/food web differences. Moreover, vSCCPs, SCCPs, MCCPs, and LCCPs were found to be biomagnified from black-spotted frogs to red-backed rat snakes with mean (maximum) biomagnification factors of 2.2 (3.4), 1.9 (3.7), 1.8 (2.8), and 1.7 (4.5), respectively. This is the first field study of biomagnification potential involving vSCCPs and LCCPs and highlights the need to include all CPs in studies.
Collapse
Affiliation(s)
- Xinyu Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Yihui Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Ziye Zheng
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Ge Yin
- Shimadzu (China) Company, LTD, 200233 Shanghai, China
| |
Collapse
|