1
|
Huang Y, Deng M, Zhou S, Xue Y, Yeerken S, Wang Y, Li L, Song K. Microbial mechanisms underlying the reduction of N 2O emissions from submerged plant covered system. WATER RESEARCH X 2025; 28:100314. [PMID: 40007796 PMCID: PMC11849602 DOI: 10.1016/j.wroa.2025.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Submerged plant (SP) restoration is a crucial strategy for restoring aquatic ecosystem. However, the effect of SP on nitrous oxide (N2O) emissions remains controversial, and the impact of SP-attached biofilms on N2O emissions is often overlooked. In this study, SP and non-submerged plant (NSP) systems were set up and operated continuously for 189 days, revealing that SP reduced N2O flux by 42.4 %. By comparing the N2O net emission rates from water, sediment, and biofilms, we identified biofilms as the primary medium responsible for the reduction in N2O emissions in both SP and NSP systems. Further analysis of N2O metabolic rates from nitrification, denitrification, and abiotic processes under light and dark conditions confirmed that counter-diffusion of dissolved oxygen and nutrients in SP biofilms plays a key role in reducing denitrification-driven N2O emissions. Additionally, SP-attached biofilms increased nosZII-type denitrifiers (e.g., Bacillus) and reduced N2O production potential ((nirS+nirK)/(nosZI+nosZII)). Notably, the establishment of a SP restoration project in a typical eutrophic freshwater lake demonstrated that SP could reduce N2O fluxes by 61.5 %. This study provides significant insights for strategies aimed at mitigating N2O emissions.
Collapse
Affiliation(s)
- Yongxia Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Shuni Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yunpeng Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lu Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Kang Song
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China
| |
Collapse
|
2
|
Schacksen PS, Macêdo WV, Rellegadla S, Vergeynst L, Nielsen JL. Dynamics of nitrogen-transforming microbial populations in wastewater treatment during recirculation of hydrothermal liquefaction process-water. WATER RESEARCH 2025; 276:123254. [PMID: 39954461 DOI: 10.1016/j.watres.2025.123254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The global reliance on non-renewable fossil fuels highlights the urgent need for sustainable alternative energy sources. Hydrothermal liquefaction (HTL) offers a promising solution by converting biomass, such as sewage sludge, into biocrude oil. However, the integration of excess HTL-process water (HTL-PW), a by-product of this process, into conventional wastewater treatment requires careful evaluation. This study investigates the effects of recirculating HTL-PW in sequencing batch reactors (SBRs) using synthetic wastewater. Two SBRs were operated in parallel: one fed 0.15 % (v/v) HTL-PW and the other with only synthetic feed. The reactor receiving HTL-PW demonstrated superior stability, effective nitrification, and consistent denitrification with no adverse effects on nitrogen species turnover. A comprehensive approach combining 16S rRNA gene amplicon sequencing for relative abundance and metagenomic analysis, for enhanced resolution of nitrogen-transforming populations, revealed the genetic repertoire and potential of 58±4 % and 65±4 % of the genus-level annotations from the HTL-PW and control reactors, respectively. The HTL-PW-fed reactor maintained robust performance, with microbial community analysis revealing a strong association between nitrogen transformations and specific microbial taxa, thereby explaining the observed reactor stability and efficiency in nitrogen conversion. These findings demonstrate the feasibility of integrating HTL-PW into wastewater treatment systems, showing that recirculating HTL-PW at the tested concentrations does not adversely affect nitrogen transformations, supports stable nitrification and denitrification, ensures complete ammonium utilisation, and promotes diverse and dynamic microbial communities similar to those in full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Patrick Skov Schacksen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg East 9220, Denmark
| | - Williane Vieira Macêdo
- Department of Biological and Chemical Engineering, Aarhus University Centre for Water Technology (WATEC), Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark
| | - Sandeep Rellegadla
- Department of Biological and Chemical Engineering, Aarhus University Centre for Water Technology (WATEC), Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark
| | - Leendert Vergeynst
- Department of Biological and Chemical Engineering, Aarhus University Centre for Water Technology (WATEC), Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg East 9220, Denmark.
| |
Collapse
|
3
|
Tan X, Nie WB, Lu Y, Wang XW, Dang CC, Wang X, Liu LY, Ren NQ, Ni BJ, Xie GJ. Anaerobic methane oxidation drives simultaneous nitrite and nitrous oxide removal. BIORESOURCE TECHNOLOGY 2025; 423:132247. [PMID: 39965713 DOI: 10.1016/j.biortech.2025.132247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/29/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) processes have been proven effective for nitrogen removal while contributing to the sustainable operation of wastewater treatment plants. However, it remains unclear whether DAMO-centric technologies can simultaneously remove nitrous oxide (N2O). Here, we demonstrated high removal performance of nitrite and N2O with methane as the electron donor over a prolonged period. The DAMO bacteria Candidatus Methylomirabilis always dominated the community during the synchronous removal of nitrite and N2O, meanwhile microorganisms with complete denitrification pathways thrived. Metabolic profiles revealed that their synergy effects were responsible for anaerobic methane oxidation driven simultaneous removal of nitrite and N2O, where the electrons for nitrite and N2O reduction originated from methane or its metabolic intermediates. This enables them to remove N2O efficiently and flexibly. This finding suggests that DAMO-centric technologies harbor great potential for N2O removal, contributing to strengthen greenhouse gases reduction under the increasingly severe climate change.
Collapse
Affiliation(s)
- Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Wen-Bo Nie
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yang Lu
- Water Innovation and Smart Environment Laboratory, School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4001, Australia
| | - Xiao-Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney 2052, Australia.
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Zhou Y, Oba K, Xu T, Kuroiwa M, Hori T, Terada A. Actively N 2O-Reducing Oxygen-Tolerant Microbial Consortium Attained by Using a High-Dilution-Rate Chemostat Fed with Methanol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6673-6685. [PMID: 40145240 DOI: 10.1021/acs.est.4c12732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Nitrous oxide-reducing bacteria (N2ORB) are generally considered the only biological sink for the potent greenhouse gas N2O. Although N2O consumption activities by diverse heterotrophic N2ORB have been detected, knowledge gaps remain about the phylogenies, physiologies, and activities of N2ORB. Here, we successfully enriched a methylotrophic N2ORB consortium under intermittent oxygen and N2O supplies. 15N tracer analysis showed that the N2O consumption activity of the enriched consortium was higher than its N2O production activity in the presence of either a single or multiple electron acceptors (i.e., nitrogen oxides). The observed maximum N2O consumption was 80.7 μmol·g-biomass-1·h-1. Quantitative PCR results showed that clade I nosZ bacteria overwhelmed clade II nosZ bacteria at high (0.41 mmol·min-1) and low (0.08 mmol·min-1) N2O loading rates. The dilution rate and N2O loading rate affected the microbial community composition and activity. A higher N2O loading rate stimulated active and oxygen-tolerant N2ORB that boosted N2O consumption by approximately 50% in the presence of oxygen. Metagenomic analysis unraveled the predominance of a novel methylotrophic N2ORB, possessing entire denitrifying genes and high-affinity terminal oxidase genes, from the reactor with a high N2O loading rate. The unique physiological traits of the consortium enriched by methanol shed light on a novel function─aerobic N2O consumption by N2ORB─and pave the way for innovative N2O mitigation strategies applying powerful N2O sinks in engineered systems.
Collapse
Affiliation(s)
- Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Kohei Oba
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tianxiang Xu
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Megumi Kuroiwa
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| |
Collapse
|
5
|
Zhang Y, Chen Q, Yang X, Hao L, Lu L, Kleindienst S, Lin J, Li S. Unravelling the Activity and Presence of N 2O Reducers on Urban Greening Tree Leaves. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40079375 DOI: 10.1111/pce.15463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and can be biotically emitted from soils, water, and the less recognised plant leaves. Leaves can produce N2O and may host N2O-reducing microbes that use it as a respiratory substrate, potentially mitigating climate warming. This study examines the ecophysiology of N2O reducers in the plant phyllosphere. Anoxic microcosm experiments, quantification of N2O reduction kinetics, and analysis of nosZ gene governing N2O reduction were conducted to assess the activity and presence of N2O reducers in leaf epiphytes from various canopy positions of Photinia fraseri, an urban greenery plant. Results revealed canopy position-dependent N2O reduction activity in the leaf microbiota. We identified previously unrecognised atypical Clade II nosZ gene in the phyllosphere microbiome, with its absolute abundance positively correlated with N2O reduction activity, highlighting its significance in this process. Sequencing of bacterial and archaeal 16S rRNA genes revealed keystone taxa as primary drivers of N2O reduction activity. These findings underscore the functional potential for N2O reduction and the presence of the Clade II nosZ group within epiphytic microbes. This work provides insights into the ecophysiology of epiphytic N2O reducers and underpins the development of leaf-based microbial solutions for N2O mitigation under future warming.
Collapse
Affiliation(s)
- Yifang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinglin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Xiaoru Yang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| | - Likai Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong, China
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Sara Kleindienst
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shun Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, China
| |
Collapse
|
6
|
Mise K, Masuda Y, Senoo K, Itoh H. Betaproteobacterial clade II nosZ activated under high N2O concentrations in paddy soil microcosms. J Appl Microbiol 2025; 136:lxaf055. [PMID: 40052378 DOI: 10.1093/jambio/lxaf055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
AIMS Microbial communities in paddy soils act as potential sinks of nitrous oxide (N2O), a notorious greenhouse gas, but their potential to reduce external N2O is unclear. The direct observation of N2O reduction in submerged field soils is technically difficult. Here, we aimed to identify soil microbial clades that underpin the strong N2O mitigation capacity. METHODS AND RESULTS We constructed paddy soil microcosms with external N2O amendment that enabled the simultaneous evaluation of N2O reductase gene (nosZ) transcripts and N2O consumption. Although the amount of N2O amended was large, it was mostly consumed after 6-8 days of microcosm incubation. Metatranscriptomic sequencing revealed that betaproteobacterial nosZ, especially those classified as clade II nosZ belonging to the orders Rhodocyclales or Nitrosomonadales, occupied >50% of the nosZ transcripts in three of the five paddy soils used. On the other hand, publicly available shotgun metagenomic sequences of 46 paddy soils were not dominated by betaproteobacterial clade II nosZ sequences, although they were ubiquitous. The same applied to the 16S rRNA sequences of Rhodocyclales or Nitrosomonadales. CONCLUSIONS The results indicated that betaproteobacterial N2O reducers potentially serve as powerful N2O sinks. Betaproteobacteria holding clade II nosZ can be targets of biostimulation, although further studies are required to understand their ecophysiology.
Collapse
Affiliation(s)
- Kazumori Mise
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yoko Masuda
- Department of Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keishi Senoo
- Department of Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideomi Itoh
- National Institute of Advanced Industrial Science and Technology, 2-17-2-1 Tsukisamu-higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
7
|
Phan HV, Yasuda S, Oba K, Tsukamoto H, Hori T, Kuroiwa M, Terada A. Active bacteria driving N2O mitigation and dissimilatory nitrate reduction to ammonium in ammonia recovery bioreactors. THE ISME JOURNAL 2025; 19:wraf021. [PMID: 39913347 PMCID: PMC11879220 DOI: 10.1093/ismejo/wraf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
Shifting from ammonia removal to recovery is the current strategy in wastewater treatment management. We recently developed a microaerophilic activated sludge system for retaining ammonia whereas removing organic carbon with minimal N2O emissions. A comprehensive understanding of nitrogen metabolisms in the system is essential to optimize system performance. Here, we employed metagenomics and metatranscriptomics analyses to characterize the microbial community structure and activity during the transition from a microoxic to an oxic condition. A hybrid approach combining high-quality short reads and Nanopore long reads reconstructed 98 medium- to high-quality non-redundant metagenome-assembled genomes from the communities. The suppressed bacterial ammonia monooxygenase (amoA) expression was upregulated after shifting from a microoxic to an oxic condition. Seventy-three reconstructed metagenome-assembled genomes (>74% of the total) from 11 bacterial phyla harbored genes encoding proteins involved in nitrate respiration; 39 (~53%) carried N2O reductase (nosZ) genes with the predominance of clade II nosZ (31 metagenome-assembled genomes), and 24 (~33%) possessed nitrite reductase (ammonia-forming) genes (nrfA). Clade II nosZ and nrfA genes exhibited the highest and second-highest expressions among nitrogen metabolism genes, indicating robust N2O consumption and ammonification. Non-denitrifying clade II nosZ bacteria, Cloacibacterium spp., in the most abundant and active phylum Bacteroioda, were likely major N2O sinks. Elevated dissolved oxygen concentration inhibited clade II nosZ expression but not nrfA expression, potentially switching phenotypes from N2O reduction to ammonification. Collectively, the multi-omics analysis illuminated bacteria responsible for N2O reduction and ammonification in microoxic and oxic conditions, facilitating high-performance ammonia recovery.
Collapse
Affiliation(s)
- Hop V Phan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
- Department of Civil Engineering, University of Galway, University Road, Galway H91 TK33, Ireland
| | - Kohei Oba
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Hiroki Tsukamoto
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Megumi Kuroiwa
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| |
Collapse
|
8
|
Laureni M, Corbera-Rubio F, Kim DD, Browne S, Roothans N, Weissbrodt DG, Olavaria K, de Jonge N, Yoon S, Pabst M, van Loosdrecht MCM. Selective enrichment of high-affinity clade II N 2O-reducers in a mixed culture. ISME COMMUNICATIONS 2025; 5:ycaf022. [PMID: 40092579 PMCID: PMC11906303 DOI: 10.1093/ismeco/ycaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/28/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Microorganisms encoding for the N2O reductase (NosZ) are the only known biological sink of the potent greenhouse gas N2O and are central to global N2O mitigation efforts. Clade II NosZ populations are of particular biotechnological interest as they usually feature high N2O affinities and often lack other denitrification genes. We focus on the yet-unresolved ecological constraints selecting for different N2O-reducers strains and controlling the assembly of N2O-respiring communities. Two planktonic N2O-respiring mixed cultures were enriched at low dilution rates under limiting and excess dissolved N2O availability to assess the impact of substrate affinity and N2O cytotoxicity, respectively. Genome-resolved metaproteomics was used to infer the metabolism of the enriched populations. Under N2O limitation, clade II N2O-reducers fully outcompeted clade I affiliates, a scenario previously only theorized based on pure-cultures. All enriched N2O-reducers encoded and expressed the sole clade II NosZ, while also possessing other denitrification genes. Two Azonexus and Thauera genera affiliates dominated the culture, and we hypothesize their coexistence to be explained by the genome-inferred metabolic exchange of cobalamin intermediates. Under excess N2O, clade I and II populations coexisted; yet, proteomic evidence suggests that clade II affiliates respired most of the N2O, de facto outcompeting clade I affiliates. The single dominant N2O-reducer (genus Azonexus) notably expressed most cobalamin biosynthesis marker genes, likely to contrast the continuous cobalamin inactivation by dissolved cytotoxic N2O concentrations (400 μM). Ultimately, our results strongly suggest the solids dilution rate to play a pivotal role in controlling the selection among NosZ clades, albeit the conditions selecting for genomes possessing the sole nosZ remain elusive. We furthermore highlight the potential significance of N2O-cobalamin interactions in shaping the composition of N2O-respiring microbiomes.
Collapse
Affiliation(s)
- Michele Laureni
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Francesc Corbera-Rubio
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - DaeHyun Daniel Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daehakro 291, KAIST, Daejeon 34141, South Korea
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Savanna Browne
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Nina Roothans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - David G Weissbrodt
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Sem Sælands vei 8, Trondheim 7034, Norway
| | - Karel Olavaria
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg DK-9220, Denmark
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daehakro 291, KAIST, Daejeon 34141, South Korea
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft, HZ NL- 2629, The Netherlands
| |
Collapse
|
9
|
Yeerken S, Deng M, Li L, Thi Kinh C, Wang Z, Huang Y, Xiao Y, Song K. Evaluating the role of high N 2O affinity complete denitrifiers and non-denitrifying N 2O reducing bacteria in reducing N 2O emissions in river. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135602. [PMID: 39191010 DOI: 10.1016/j.jhazmat.2024.135602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
Freshwater rivers are hotspots of N2O greenhouse gas emissions. Dissolved organic carbon (DOC) is the dominant electron donor for microbial N2O reduction, which can reduce N2O emission through enriching high N2O affinity denitrifiers or enriching non-denitrifying N2O-reducing bacteria (N2ORB), but the primary regulatory pathway remains unclear. Here, field study indicated that high DOC concentration in rivers enhanced denitrification rate but reduced N2O flux by improving nosZ gene abundance. Then, four N2O-fed membrane aeration biofilm reactors inoculated with river sediments from river channel, estuary, adjacent lake, and a mixture were continuously performed for 360 days, including low, high, and mixed DOC stages. During enrichment stages, the (nirS+nirK)/nosZ ratio showed no significant difference, but the community structure of denitrifiers and N2ORB changed significantly (p < 0.05). In addition, N2ORB strains isolated from different enrichment stages positioned in different branches of the phylogenetic tree. N2ORB strains isolated during high DOC stage showed significant higher maximum N2O-reducing capability (Vmax: 0.6 ± 0.4 ×10-4 pmol h-1 cell-1) and N2O affinity (a0: 7.8 ± 7.7 ×10-12 L cell-1 h-1) than strains isolated during low (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.7 ± 0.4 ×10-12 L cell-1 h-1) and mixed DOC stages (Vmax: 0.1 ± 0.1 ×10-4 pmol h-1 cell-1, a0: 0.9 ± 0.9 ×10-12 L cell-1 h-1) (p < 0.05). Hence, under high DOC concentration conditions, the primary factor in reducing N2O emissions in rivers is the enrichment of complete denitrifiers with high N2O affinity, rather than non-denitrifying N2ORB.
Collapse
Affiliation(s)
- Senbati Yeerken
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Co Thi Kinh
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zezheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxia Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Lake and Watershed Science for Water Security, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Song K, Wang S, Xu X, Ma J, Yang Y, Zeng Y, Li J, Zhou X, Zhou Y. Benthic clade II-type nitrous oxide reducers suppress nitrous oxide emissions in shallow lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172908. [PMID: 38697552 DOI: 10.1016/j.scitotenv.2024.172908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Shallow lakes, recognized as hotspots for nitrogen cycling, contribute to the emission of the potent greenhouse gas nitrous oxide (N2O), but the current emission estimates for this gas have a high degree of uncertainty. However, the role of N2O-reducing bacteria (N2ORB) as N2O sinks and their contribution to N2O reduction in aquatic ecosystems in response to N2O dynamics have not been determined. Here, we investigated the N2O dynamics and microbial processes in the nitrogen cycle, which included both N2O production and consumption, in five shallow lakes spanning approximately 500 km. The investigated sites exhibited N2O oversaturation, with excess dissolved N2O concentrations (ΔN2O) ranging from 0.55 ± 0.61 to 53.17 ± 15.75 nM. Sediment-bound N2O (sN2O) was significantly positively correlated with the nitrate concentration in the overlying water (p < 0.05), suggesting that nitrate accumulation contributes to benthic N2O generation. High N2O consumption activity (RN2O) corresponded to low ΔN2O. In addition, a significant negative correlation was found between RN2O and nir/nosZ, showing that bacteria encoding nosZ contributed to N2O consumption in the benthic sediments. Redundancy analysis indicated that benthic functional genes effectively reflected the variations in RN2O and ∆N2O. qPCR analysis revealed that the clade II nosZ gene was more sensitive to ΔN2O than the clade I nosZ gene. Furthermore, four novel genera of potential nondenitrifying N2ORB were identified based on metagenome-assembled genome analysis. These genera, which are affiliated with clade II, lack genes responsible for N2O production. Collectively, benthic N2ORB, especially for clade II-type N2ORB, harnesses N2O consumption activity leading to low N2O emissions from shallow lakes. This study advances our knowledge of the role of benthic clade II-type N2ORB in regulating N2O emissions in shallow lakes.
Collapse
Affiliation(s)
- Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jie Ma
- Ministry of Ecology and Environment, Nanjing Institute of Environment Sciences, Nanjing 210042, China
| | - Yuxuan Yang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Yuli Zeng
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jining Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaohong Zhou
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
11
|
Hiis EG, Vick SHW, Molstad L, Røsdal K, Jonassen KR, Winiwarter W, Bakken LR. Unlocking bacterial potential to reduce farmland N 2O emissions. Nature 2024; 630:421-428. [PMID: 38811724 PMCID: PMC11168931 DOI: 10.1038/s41586-024-07464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Farmed soils contribute substantially to global warming by emitting N2O (ref. 1), and mitigation has proved difficult2. Several microbial nitrogen transformations produce N2O, but the only biological sink for N2O is the enzyme NosZ, catalysing the reduction of N2O to N2 (ref. 3). Although strengthening the NosZ activity in soils would reduce N2O emissions, such bioengineering of the soil microbiota is considered challenging4,5. However, we have developed a technology to achieve this, using organic waste as a substrate and vector for N2O-respiring bacteria selected for their capacity to thrive in soil6-8. Here we have analysed the biokinetics of N2O reduction by our most promising N2O-respiring bacterium, Cloacibacterium sp. CB-01, its survival in soil and its effect on N2O emissions in field experiments. Fertilization with waste from biogas production, in which CB-01 had grown aerobically to about 6 × 109 cells per millilitre, reduced N2O emissions by 50-95%, depending on soil type. The strong and long-lasting effect of CB-01 is ascribed to its tenacity in soil, rather than its biokinetic parameters, which were inferior to those of other strains of N2O-respiring bacteria. Scaling our data up to the European level, we find that national anthropogenic N2O emissions could be reduced by 5-20%, and more if including other organic wastes. This opens an avenue for cost-effective reduction of N2O emissions for which other mitigation options are lacking at present.
Collapse
Affiliation(s)
- Elisabeth G Hiis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Silas H W Vick
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Molstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Kristine Røsdal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Wilfried Winiwarter
- International Institute for Applied Systems Analysis, Laxenburg, Austria
- Institute of Environmental Engineering, University of Zielona Góra, Zielona Góra, Poland
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
12
|
Bunse P, Pidde AV, Lackner S. Looking deeper into the effects of scouring and aeration on membrane aerated biofilms: Analysis of nitrogen conversion, oxygen profiles and nitrous oxide emissions. WATER RESEARCH 2024; 254:121400. [PMID: 38457946 DOI: 10.1016/j.watres.2024.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
This study investigated the effects of aeration and scouring strategies on the performance of Membrane Aerated Biofilm Reactors (MABRs) and the distribution of oxygen and nitrous oxide in the biofilm. Four flat sheet MABRs were operated with synthetic feed under different conditions: two with intermittent aeration (iMABR) and two with continuous aeration (cMABR). Scouring was induced by bubbling dinitrogen gas through the reactor bulk at low and high frequencies (LF and HF). In the iMABRs, a partial nitritation biofilm initially developed, but the biofilm adapted to the aeration strategy over time and became nitrifying. The cMABRs directly developed a nitrifying biofilm without a significant phase of partial nitritation. Limiting oxygen availability improved the overall performance with regards to total nitrogen (TN) removal by providing a better environment for anaerobic ammonium oxidation (Anammox) while limiting complete nitrification. Oxygen profiles were measured in the iMABR over time at different biofilms depths, showing that intermittent aeration led to various oxygen concentrations and temporal variations in the oxygen availabilities at different depths of the biofilm. Also, N2O emissions from the MABRs differed greatly between the different systems, but still remained lower compared to other reactor configurations for nitrogen removal, making the MABR technology a worthy alternative. The results showed large differences between the operating strategies of the MABRs and can help to gain more insight into the specific properties of MABRs for nitrogen removal.
Collapse
Affiliation(s)
- Philipp Bunse
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Darmstadt, Germany
| | - Annika Vera Pidde
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Darmstadt, Germany
| | - Susanne Lackner
- Technical University of Darmstadt, Institute IWAR, Chair of Water and Environmental Biotechnology, Darmstadt, Germany.
| |
Collapse
|
13
|
Feng R, Li Z, Qi Z. China's anthropogenic N 2O emissions with analysis of economic costs and social benefits from reductions in 2022. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120234. [PMID: 38308993 DOI: 10.1016/j.jenvman.2024.120234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
We assess China's overall anthropogenic N2O emissions via the official guidebook published by Chinese government. Results show that China's overall anthropogenic N2O emissions in 2022 were around 1593.1 (1508.7-1680.7) GgN, about 47.0 %, 27.0 %, 13.4 %, 4.9 %, and 7.7 % of which were caused by agriculture, industry, energy utilization, wastewater, and indirect sources, respectively. Maximum reduction rate for N2O emissions from agriculture, industry, energy utilization, wastewater, and indirect sources can achieve 69 %, 99 %, 79 %, 86 %, and 48 %, respectively, in 2022. However, given current global scenarios with a rapidly changing population and geopolitical and energy tension, the emission reduction may not be fully fulfilled. Without compromising yields, China's theoretical minimum anthropogenic N2O emissions would be 600.6 (568.8-633.6) GgN. In terms of the economic costs for reducing one kg of N2O-N emissions, the price ranged from €12.9 to €81.1 for agriculture, from €0.08 to €0.16 for industry, and from €104.8 to €1571.5 for energy utilization. We acknowledge the emission reduction rates may not be completely realistic for large-scale application in China. The social benefits gained from reducing one kg of N2O-N emissions in China was about €5.2, indicating anthropogenic N2O emissions caused a loss 0.03 % of China's GDP, but only justifying reduction in industrial N2O emissions from the economic perspective. We perceive that the present monetized values will be trustworthy for at least three to five years, but later the numerical monetized values need to be considered in inflation and other currency-dependent conditions.
Collapse
Affiliation(s)
- Rui Feng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
| | - Zhenhua Li
- Xiacheng District Study-Aid Science & Technology Studio, Hangzhou, 310004, China
| | - Zhuangzhou Qi
- School of Economics and Management, University of Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
14
|
Tong J, Wu H, Jiang X, Ruan C, Li W, Zhang H, Pan S, Wang J, Ren J, Zhang C, Shi J. Dual Regulatory Role of Penicillium oxalicum SL2 in Soil: Phosphorus Solubilization and Pb Stabilization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:603-616. [PMID: 38109294 DOI: 10.1021/acs.est.3c08881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The mechanisms of the P. oxalicum SL2-mediated microbial community on phosphorus solubilization and Pb stabilization were investigated through a 90-day soil experiment. In the treatments inoculated with P. oxalicum SL2, the amount of P. oxalicum SL2-GFP remained at 77.8%-138.6% of the initial inoculation amount after 90 days, and the available phosphorus (AP) content increased 21.7%-40.8% while EDTA-Pb decreased 29.9%-43.2% compared with CK treatment. SEM-EDS results showed that P. oxalicum SL2 changed the agglomeration degree of microaggregates and promoted the combination of Pb with C and O elements. These phenomena were enhanced when applied with Ca3(PO4)2. Microbial community analysis showed that P. oxalicum SL2 improved soil microbial activity, in which the fungi absolute abundance increased about 15 times within 90 days. Correlation analyses and a partial least-squares path model showed that the activation of Penicillium, Ascobolus, Humicola, and Spizellomyces in a fungal community increased the content of oxalate and AP, which directly decreased EDTA-Pb content, while the change of Bacillus, Ramlibacter, Gemmatimonas, and Candidatus Solibacter in the bacterial community regulated Fe/Mn/S/N cycle-related functions, thus promoting the conversion of Pb to oxidizable state. Our findings highlight that P. oxalicum SL2 enhanced the microbial-induced phosphate precipitation process by activating soil microbial communities and regulating their ecological functions.
Collapse
Affiliation(s)
- Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weilong Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Oba K, Suenaga T, Yasuda S, Kuroiwa M, Hori T, Lackner S, Terada A. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide. Microbes Environ 2024; 39:ME23106. [PMID: 38538312 PMCID: PMC10982107 DOI: 10.1264/jsme2.me23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria and an exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739–8527, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16–1 Onogawa, Tsukuba, Ibaraki, 305–8569, Japan
| | - Susanne Lackner
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Water and Environmental Biotechnology Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| |
Collapse
|
16
|
Wang X, Xiang B, Li J, Zhang M, Frostegard A, Bakken L, Zhang X. Using adaptive and aggressive N 2O-reducing bacteria to augment digestate fertilizer for mitigating N 2O emissions from agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166284. [PMID: 37586512 DOI: 10.1016/j.scitotenv.2023.166284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Nitrous oxide (N2O) emitted from agricultural soils destroys stratospheric ozone and contributes to global warming. A promising approach to reduce emissions is fertilizing the soil using organic wastes augmented by non-denitrifying N2O-reducing bacteria (NNRB). To realize this potential, we need a suite of NNRB strains that fulfill several criteria: efficient reduction of N2O, ability to grow in organic waste, and ability to survive in farmland soil. In this study, we enriched such organisms by sequential anaerobic batch incubations with N2O and reciprocating inoculation between the sterilized substrates of anaerobic manure digestate and soils. 16S rDNA amplicon sequencing and metagenomics analysis showed that a cluster of bacteria containing nosZ genes encoding N2O-reductase, was enriched during the incubation process. Strains of several dominant members were then isolated and characterized, and three of them were found to harbor the nosZ gene but none of the other denitrifying genes, thus qualifying as NNRB. The selected isolates were tested for their capacities to reduce N2O emissions from three different typical Chinese farmland soils. The results indicated the significant mitigation effect of these isolates, even in very acidic red soil. In conclusion, this study demonstrated a strategy to engineer the soil microbiome with promising NNRB with high adaptability to livestock manure digestate as well as different agricultural soils, which would be suitable for developing novel fertilizer for farmland application to efficiently mitigate the N2O emissions from agricultural soils.
Collapse
Affiliation(s)
- Xinhui Wang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoyu Xiang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ji Li
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Asa Frostegard
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Aas, Norway
| | - Lars Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Aas, Norway
| | - Xiaojun Zhang
- State Key Laboratory of Microbial Metabolism, and Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Garrido-Amador P, Stortenbeker N, Wessels HJCT, Speth DR, Garcia-Heredia I, Kartal B. Enrichment and characterization of a nitric oxide-reducing microbial community in a continuous bioreactor. Nat Microbiol 2023; 8:1574-1586. [PMID: 37429908 PMCID: PMC10390337 DOI: 10.1038/s41564-023-01425-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Nitric oxide (NO) is a highly reactive and climate-active molecule and a key intermediate in the microbial nitrogen cycle. Despite its role in the evolution of denitrification and aerobic respiration, high redox potential and capacity to sustain microbial growth, our understanding of NO-reducing microorganisms remains limited due to the absence of NO-reducing microbial cultures obtained directly from the environment using NO as a substrate. Here, using a continuous bioreactor and a constant supply of NO as the sole electron acceptor, we enriched and characterized a microbial community dominated by two previously unknown microorganisms that grow at nanomolar NO concentrations and survive high amounts (>6 µM) of this toxic gas, reducing it to N2 with little to non-detectable production of the greenhouse gas nitrous oxide. These results provide insight into the physiology of NO-reducing microorganisms, which have pivotal roles in the control of climate-active gases, waste removal, and evolution of nitrate and oxygen respiration.
Collapse
Affiliation(s)
| | | | - Hans J C T Wessels
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daan R Speth
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Boran Kartal
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- School of Science, Constructor University, Bremen, Germany.
| |
Collapse
|
18
|
Wang Y, Deng M, Li B, Li L, Oon YS, Zhao X, Song K. High nitrous oxide (N 2O) greenhouse gas reduction potential of Pseudomonas sp. YR02 under aerobic condition. BIORESOURCE TECHNOLOGY 2023; 378:128994. [PMID: 37004889 DOI: 10.1016/j.biortech.2023.128994] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Aerobic environments exist widely in wastewater treatment plants (WWTP) and are unfavorable for greenhouse gas nitrous oxide (N2O) reduction. Here, a novel strain Pseudomonas sp. YR02, which can perform N2O reduction under aerobic conditions, was isolated. The successful amplification of four denitrifying genes proved its complete denitrifying ability. The inorganic nitrogen (IN) removal efficiencies (NRE) were >98.0% and intracellular nitrogen and gaseous nitrogen account for 52.6-58.4% and 41.6-47.4% of input nitrogen, respectively. The priority of IN utilization was TAN > NO3--N > NO2--N. The optimal conditions for IN and N2O removal were consistent, except for the C/N ratio, which is 15 and 5 for IN and N2O removal, respectively. The biokinetic constants analysis indicated strain YR02 had high potential to treat high ammonia and dissolved N2O wastewater. Strain YR02 bioaugmentation mitigated 98.7% of N2O emission and improved 32% NRE in WWTP, proving its application potential for N2O mitigation.
Collapse
Affiliation(s)
- Yuren Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Min Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Biqing Li
- Guangzhou Sewage Purification Co. Ltd, Guangzhou 510655, China
| | - Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
19
|
Wang Z, Vishwanathan N, Kowaliczko S, Ishii S. Clarifying Microbial Nitrous Oxide Reduction under Aerobic Conditions: Tolerant, Intolerant, and Sensitive. Microbiol Spectr 2023; 11:e0470922. [PMID: 36926990 PMCID: PMC10100939 DOI: 10.1128/spectrum.04709-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/18/2023] [Indexed: 03/17/2023] Open
Abstract
One of the major challenges for the bioremediation application of microbial nitrous oxide (N2O) reduction is its oxygen sensitivity. While a few strains were reported capable of reducing N2O under aerobic conditions, the N2O reduction kinetics of phylogenetically diverse N2O reducers are not well understood. Here, we analyzed and compared the kinetics of clade I and clade II N2O-reducing bacteria in the presence or absence of oxygen (O2) by using a whole-cell assay with N2O and O2 microsensors. Among the seven strains tested, N2O reduction of Stutzerimonas stutzeri TR2 and ZoBell was not inhibited by oxygen (i.e., oxygen tolerant). Paracoccus denitrificans, Azospirillum brasilense, and Gemmatimonas aurantiaca reduced N2O in the presence of O2 but slower than in the absence of O2 (i.e., oxygen sensitive). N2O reduction of Pseudomonas aeruginosa and Dechloromonas aromatica did not occur when O2 was present (i.e., oxygen intolerant). Amino acid sequences and predicted structures of NosZ were highly similar among these strains, whereas oxygen-tolerant N2O reducers had higher oxygen consumption rates. The results suggest that the mechanism of O2 tolerance is not directly related to NosZ structure but is rather related to the scavenging of O2 in the cells and/or accessory proteins encoded by the nos cluster. IMPORTANCE Some bacteria can reduce N2O in the presence of O2, whereas others cannot. It is unclear whether this trait of aerobic N2O reduction is related to the phylogeny and structure of N2O reductase. The understanding of aerobic N2O reduction is critical for guiding emission control, due to the common concurrence of N2O and O2 in natural and engineered systems. This study provided the N2O reduction kinetics of various bacteria under aerobic and anaerobic conditions and classified the bacteria into oxygen-tolerant, -sensitive, and -intolerant N2O reducers. Oxygen-tolerant N2O reducers rapidly consumed O2, which could help maintain the low O2 concentration in the cells and keep their N2O reductase active. These findings are important and useful when selecting N2O reducers for bioremediation applications.
Collapse
Affiliation(s)
- Zhiyue Wang
- Department of Civil and Environmental Engineering, University of Hawai'i, Honolulu, Hawai'i, USA
- Water Resources Research Center, University of Hawai'i, Honolulu, Hawai'i, USA
| | - Nisha Vishwanathan
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Sophie Kowaliczko
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
20
|
Han H, Kim DD, Song MJ, Yun T, Yoon H, Lee HW, Kim YM, Laureni M, Yoon S. Biotrickling Filtration for the Reduction of N 2O Emitted during Wastewater Treatment: Results from a Long-Term In Situ Pilot-Scale Testing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3883-3892. [PMID: 36809918 DOI: 10.1021/acs.est.2c08818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Wastewater treatment plants (WWTPs) are a major source of N2O, a potent greenhouse gas with 300 times higher global warming potential than CO2. Several approaches have been proposed for mitigation of N2O emissions from WWTPs and have shown promising yet only site-specific results. Here, self-sustaining biotrickling filtration, an end-of-the-pipe treatment technology, was tested in situ at a full-scale WWTP under realistic operational conditions. Temporally varying untreated wastewater was used as trickling medium, and no temperature control was applied. The off-gas from the covered WWTP aerated section was conveyed through the pilot-scale reactor, and an average removal efficiency of 57.9 ± 29.1% was achieved during 165 days of operation despite the generally low and largely fluctuating influent N2O concentrations (ranging between 4.8 and 96.4 ppmv). For the following 60-day period, the continuously operated reactor system removed 43.0 ± 21.2% of the periodically augmented N2O, exhibiting elimination capacities as high as 5.25 g N2O m-3·h-1. Additionally, the bench-scale experiments performed abreast corroborated the resilience of the system to short-term N2O starvations. Our results corroborate the feasibility of biotrickling filtration for mitigating N2O emitted from WWTPs and demonstrate its robustness toward suboptimal field operating conditions and N2O starvation, as also supported by analyses of the microbial compositions and nosZ gene profiles.
Collapse
Affiliation(s)
- Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Daehyun D Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Taeho Yun
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hyun Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- School of Civil & Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | | | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Michele Laureni
- Department of Geoscience and Engineering, Delft University of Technology, 2628 CN Delft, The Netherlands
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
21
|
Behrendt U, Spanner T, Augustin J, Zak DH, Horn MA, Kolb S, Ulrich A. Consumption of N2O by Flavobacterium azooxidireducens sp. nov. Isolated from Decomposing Leaf Litter of Phragmites australis (Cav.). Microorganisms 2022; 10:microorganisms10112304. [PMID: 36422374 PMCID: PMC9697520 DOI: 10.3390/microorganisms10112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
Microorganisms acting as sinks for the greenhouse gas nitrous oxide (N2O) are gaining increasing attention in the development of strategies to control N2O emissions. Non-denitrifying N2O reducers are of particular interest because they can provide a real sink without contributing to N2O release. The bacterial strain under investigation (IGB 4-14T), isolated in a mesocosm experiment to study the litter decomposition of Phragmites australis (Cav.), is such an organism. It carries only a nos gene cluster with the sec-dependent Clade II nosZ and is able to consume significant amounts of N2O under anoxic conditions. However, consumption activity is considerably affected by the O2 level. The reduction of N2O was not associated with cell growth, suggesting that no energy is conserved by anaerobic respiration. Therefore, the N2O consumption of strain IGB 4-14T rather serves as an electron sink for metabolism to sustain viability during transient anoxia and/or to detoxify high N2O concentrations. Phylogenetic analysis of 16S rRNA gene similarity revealed that the strain belongs to the genus Flavobacterium. It shares a high similarity in the nos gene cluster composition and the amino acid similarity of the nosZ gene with various type strains of the genus. However, phylogenomic analysis and comparison of overall genome relatedness indices clearly demonstrated a novel species status of strain IGB 4-14T, with Flavobacterium lacus being the most closely related species. Various phenotypic differences supported a demarcation from this species. Based on these results, we proposed a novel species Flavobacterium azooxidireducens sp. nov. (type strain IGB 4-14T = LMG 29709T = DSM 103580T).
Collapse
Affiliation(s)
- Undine Behrendt
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| | - Tobias Spanner
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Jürgen Augustin
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Dominik H. Zak
- Institute for Ecoscience, Aarhus University, C.F. Møllersvej, Bygning 1331, 8000 Aarhus, Denmark
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berlin, Müggelseedamm 301, D-12587 Berlin, Germany
| | - Marcus A. Horn
- Institute of Microbiology, Leibniz University Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Steffen Kolb
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
| | - Andreas Ulrich
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, D-15374 Müncheberg, Germany
- Correspondence: (U.B.); (A.U.); Tel.: +49-33432-82460 (U.B.); +49-33432-82345 (A.U.)
| |
Collapse
|
22
|
Read-Daily B, Ben Maamar S, Sabba F, Green S, Nerenberg R. Effect of nitrous oxide (N 2O) on the structure and function of nitrogen-oxide reducing microbial communities. CHEMOSPHERE 2022; 307:135819. [PMID: 35977570 DOI: 10.1016/j.chemosphere.2022.135819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas that can be produced by nitrifying and denitrifying bacteria. Yet the effects of N2O on microbial communities is not well understood. We used batch tests to explore the effects of N2O on mixed denitrifying communities. Batch tests were carried out with acetate as the electron donor and with the following electron acceptors: nitrate (NO3-), nitrite (NO2-), N2O, NO3- + N2O, and NO2- + N2O. Activated sludge from a municipal wastewater treatment plant was used as the inoculum. The bacteria grew readily with N2O as the sole acceptor. When N2O was provided along with NO3- or NO2-, it was used concurrently and resulted in higher growth rates than the same acceptors without added N2O. The microbial communities resulting from N2O addition were significantly different at the genus level from those with just NO3- or NO2-. Tests with N2O as the sole added acceptor revealed a reduced diversity. Analysis of inferred gene content using PICRUSt2 indicated a greater abundance of genera with a complete denitrification pathway when growing on N2O or NO2-, relative to all other tests. This suggests that specific N2O reduction rates are high, and that N2O alone selects for a low-diversity, fully denitrifying community. When N2O is present with NO2- or NO3-, the microbial communities were more diverse and did not select exclusively for full denitrifiers. N2O alone appears to select for a "generalist" community with full denitrification pathways and lower diversity. In terms of denitrification genes, the combination of acceptors with N2O appeared to increase the number of microbes carrying nirK, while fully denitrifying bacteria appear more likely to carry nirS. Lastly, all the taxa in NO2- and N2O samples were predicted to harbor nosZ. This suggests the potential for reduced N2O emissions in denitrifying systems.
Collapse
Affiliation(s)
- B Read-Daily
- Department of Engineering and Physics, Elizabethtown College, Elizabethtown, PA, 17022, USA; Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - S Ben Maamar
- Samuel J. Wood Library, Weill Cornell Medicine, New York, NY, 10065, USA
| | - F Sabba
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA; Black & Veatch, KS, USA
| | - S Green
- Rush Medical College, Chicago, IL, 60612, USA
| | - R Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
23
|
Oba K, Suenaga T, Kuroiwa M, Riya S, Terada A. Exploring the Functions of Efficient Canonical Denitrifying Bacteria as N 2O Sinks: Implications from 15N Tracer and Transcriptome Analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11694-11706. [PMID: 35917165 DOI: 10.1021/acs.est.2c02119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In denitrifying reactors, canonical complete denitrifying bacteria reduce nitrate (NO3-) to nitrogen via N2O. However, they can also produce N2O under certain conditions. We used a 15N tracer method, in which 15N-labeled NO3-/nitrite (NO2-) and nonlabeled N2O were simultaneously supplied with organic electron donors to five canonical complete denitrifying bacteria affiliated with either Clade I or Clade II nosZ. We calculated their NO3-, NO2-, and N2O consumption rates. The Clade II nosZ bacterium Azospira sp. strain I13 had the highest N2O consumption rate (3.47 ± 0.07 fmol/cell/h) and the second lowest NO3- consumption rate (0.20 ± 0.03 fmol/cell/h); hence, it is a N2O sink. A change from peptone- to acetate/citrate-based organic electron donors increased the NO3- consumption rate by 4.8 fold but barely affected the N2O consumption rate. Electron flow was directed to N2O rather than NO3- in Azospira sp. strain I13 and Az. oryzae strain PS only exerting a N2O sink but to NO3- in the Clade I nosZ N2O-reducing bacteria Pseudomonas stutzeri strain JCM 5965 and Alicycliphilus denitrificans strain I51. Transcriptome analyses revealed that the genotype could not fully describe the phenotype. The results show that N2O production and consumption differ among canonical denitrifying bacteria and will be useful for developing N2O mitigation strategies.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
- Department of Chemical Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8527, Japan
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei, Tokyo 184-8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-Cho, Fuchu, Tokyo 185-8538, Japan
| |
Collapse
|
24
|
Valk LC, Peces M, Singleton CM, Laursen MD, Andersen MH, Mielczarek AT, Nielsen PH. Exploring the microbial influence on seasonal nitrous oxide concentration in a full-scale wastewater treatment plant using metagenome assembled genomes. WATER RESEARCH 2022; 219:118563. [PMID: 35594748 DOI: 10.1016/j.watres.2022.118563] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Nitrous oxide is a highly potent greenhouse gas and one of the main contributors to the greenhouse gas footprint of wastewater treatment plants (WWTP). Although nitrous oxide can be produced by abiotic reactions in these systems, biological N2O production resulting from the imbalance of nitrous oxide production and reduction by microbial populations is the dominant cause. The microbial populations responsible for the imbalance have not been clearly identified, yet they are likely responsible for strong seasonal nitrous oxide patterns. Here, we examined the seasonal nitrous oxide concentration pattern in Avedøre WWTP alongside abiotic parameters, the microbial community composition based on 16S rRNA gene sequencing and already available metagenome-assembled genomes (MAGs). We found that the WWTP parameters could not explain the observed pattern. While no distinct community changes between periods of high and low dissolved nitrous oxide concentrations were determined, we found 26 and 28 species with positive and negative correlations to the seasonal N2O concentrations, respectively. MAGs were identified for 124 species (approximately 31% mean relative abundance of the community), and analysis of their genomic nitrogen transformation potential could explain this correlation for four of the negatively correlated species. Other abundant species were also analysed for their nitrogen transformation potential. Interestingly, only one full-denitrifier (Candidatus Dechloromonas phosphorivorans) was identified. 59 species had a nosZ gene predicted, with the majority identified as a clade II nosZ gene, mainly from the phylum Bacteroidota. A correlation of MAG-derived functional guilds with the N2O concentration pattern showed that there was a small but significant negative correlation with nitrite oxidizing bacteria and species with a nosZ gene (N2O reducers (DEN)). More research is required, specifically long-term activity measurements in relation to the N2O concentration to increase the resolution of these findings.
Collapse
Affiliation(s)
- Laura Christina Valk
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Miriam Peces
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Caitlin Margaret Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Mads Dyring Laursen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | | | | | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark.
| |
Collapse
|
25
|
Identification of nosZ-expressing microorganisms consuming trace N 2O in microaerobic chemostat consortia dominated by an uncultured Burkholderiales. THE ISME JOURNAL 2022; 16:2087-2098. [PMID: 35676322 PMCID: PMC9381517 DOI: 10.1038/s41396-022-01260-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Microorganisms possessing N2O reductases (NosZ) are the only known environmental sink of N2O. While oxygen inhibition of NosZ activity is widely known, environments where N2O reduction occurs are often not devoid of O2. However, little is known regarding N2O reduction in microoxic systems. Here, 1.6-L chemostat cultures inoculated with activated sludge samples were sustained for ca. 100 days with low concentration (<2 ppmv) and feed rate (<1.44 µmoles h−1) of N2O, and the resulting microbial consortia were analyzed via quantitative PCR (qPCR) and metagenomic/metatranscriptomic analyses. Unintended but quantified intrusion of O2 sustained dissolved oxygen concentration above 4 µM; however, complete N2O reduction of influent N2O persisted throughout incubation. Metagenomic investigations indicated that the microbiomes were dominated by an uncultured taxon affiliated to Burkholderiales, and, along with the qPCR results, suggested coexistence of clade I and II N2O reducers. Contrastingly, metatranscriptomic nosZ pools were dominated by the Dechloromonas-like nosZ subclade, suggesting the importance of the microorganisms possessing this nosZ subclade in reduction of trace N2O. Further, co-expression of nosZ and ccoNO/cydAB genes found in the metagenome-assembled genomes representing these putative N2O-reducers implies a survival strategy to maximize utilization of scarcely available electron acceptors in microoxic environmental niches.
Collapse
|
26
|
Variable Inhibition of Nitrous Oxide Reduction in Denitrifying Bacteria by Different Forms of Methanobactin. Appl Environ Microbiol 2022; 88:e0234621. [PMID: 35285718 DOI: 10.1128/aem.02346-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic methanotrophic activity is highly dependent on copper availability, and methanotrophs have developed multiple strategies to collect copper. Specifically, when copper is limiting (ambient concentrations less than 1 μM), some methanotrophs produce and secret a small modified peptide (less than 1,300 Da) termed methanobactin (MB) that binds copper with high affinity. As MB is secreted into the environment, other microbes that require copper for their metabolism may be inhibited as MB may make copper unavailable; e.g., inhibition of denitrifiers as complete conversion nitrate to dinitrogen involves multiple enzymes, some of which are copper-dependent. Of key concern is inhibition of the copper-dependent nitrous oxide reductase (NosZ), the only known enzyme capable of converting nitrous oxide (N2O) to dinitrogen. Herein, we show that different forms of MB differentially affect copper uptake and N2O reduction by Pseudomonas stutzeri strain DCP-Ps1 (that expresses clade I NosZ) and Dechloromonas aromatica strain RCB (that expresses clade II NosZ). Specifically, in the presence of MB from Methylocystis sp. strain SB2 (SB2-MB), copper uptake and nosZ expression were more significantly reduced than in the presence of MB from Methylosinus trichosporium OB3b (OB3b-MB). Further, N2O accumulation increased more significantly for both P. stutzeri strain DCP-Ps1 and D. aromatica strain RCB in the presence of SB2-MB versus OB3b-MB. These data illustrate that copper competition between methanotrophs and denitrifying bacteria can be significant and that the extent of such competition is dependent on the form of MB that methanotrophs produce. IMPORTANCE Herein, it was demonstrated that the different forms of methanobactin differentially enhance N2O emissions from Pseudomonas stutzeri strain DCP-Ps1 (harboring clade I nitrous oxide reductase) and Dechloromonas aromatica strain RCB (harboring clade II nitrous oxide reductase). This work contributes to our understanding of how aerobic methanotrophs compete with denitrifiers for the copper uptake and also suggests how MBs prevent copper collection by denitrifiers, thus downregulating expression of nitrous oxide reductase. This study provides critical information for enhanced understanding of microbe-microbe interactions that are important for the development of better predictive models of net greenhouse gas emissions (i.e., methane and nitrous oxide) that are significantly controlled by microbial activity.
Collapse
|
27
|
Qi C, Zhou Y, Suenaga T, Oba K, Lu J, Wang G, Zhang L, Yoon S, Terada A. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. WATER RESEARCH 2022; 209:117910. [PMID: 34920314 DOI: 10.1016/j.watres.2021.117910] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 05/21/2023]
Abstract
Harnessing nitrous oxide (N2O)-reducing bacteria is a promising strategy to reduce the N2O footprint of engineered systems. Applying a preferred organic carbon source as an electron donor accelerates N2O consumption by these bacteria. However, their N2O consumption potential and activity when fed different organic carbon species remain unclear. Here, we systematically compared the effects of various organic carbon sources on the activity of N2O-reducing bacteria via investigation of their biokinetic properties and genomic potentials. Five organic carbon sources-acetate, succinate, glycerol, ethanol, and methanol-were fed to four N2O-reducing bacteria harboring either clade I or clade II nosZ gene. Respirometric analyses were performed with four N2O-reducing bacterial strains, identifying distinct shifts in DO- and N2O-consumption biokinetics in response to the different feeding schemes. Regardless of the N2O-reducing bacteria, higher N2O consumption rates, accompanied by higher biomass yields, were obtained with acetate and succinate. The biomass yield (15.45 ± 1.07 mg-biomass mmol-N2O-1) of Azospira sp. strain I13 (clade II nosZ) observed under acetate-fed condition was significantly higher than those of Paracoccus denitrificans and Pseudomonas stutzeri, exhibiting greater metabolic efficiency. However, the spectrum of the organic carbon species utilizable to Azospira sp. strain I13 was limited, as demonstrated by the highly variable N2O consumption rates observed with different substrates. The potential to metabolize the supplemented carbon sources was investigated by genomic analysis, the results of which corroborated the N2O consumption biokinetics results. Moreover, electron donor selection had a substantial impact on how N2O consumption activities were recovered after oxygen exposure. Collectively, our findings highlight the importance of choosing appropriate electron donor additives for increasing the N2O sink capability of biological nitrogen removal systems.
Collapse
Affiliation(s)
- Chuang Qi
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan
| | - Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 185-8538, Japan
| | - Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan
| | - Jilai Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Limin Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 185-8538, Japan.
| |
Collapse
|
28
|
Liao H, Qu M, Hou X, Lin X, Li H, Duan CS, Tian Y. Nitrogeniibacter mangrovi gen. nov., sp. nov., a novel anaerobic and aerobic denitrifying betaproteobacterium and reclassification of Azoarcus pumilus as Aromatoleum pumilum comb. nov. Int J Syst Evol Microbiol 2021; 71. [PMID: 34369861 DOI: 10.1099/ijsem.0.004946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Denitrification is a vital link in the global bio-nitrogen cycle. Here, we isolated a strain (M9-3-2T) that is a novel benzo[a]pyrene (BaP)-tolerant, anaerobic and aerobic denitrifying bacterium from a continuous BaP-enrichment cultured mangrove sediment. In silico comparative genomics and taxonomic analysis clearly revealed that strain M9-3-2T (=MCCC 1K03313T=JCM 32045T) represents a novel species of a novel genus named as Nitrogeniibacter mangrovi gen. nov., sp. nov., belonging to family Zoogloeaceae, order Rhodocyclales. In addition, the species Azoarcus pumilus is transferred into genus Aromatoleum and named Aromatoleum pumilum comb. nov. The predominant respiratory quinone of strain M9-3-2T was ubiquinone-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. In this study, the capacity of strain M9-3-2T to eliminate nitrate was detected under anaerobic and aerobic conditions, and the removal rates of nitrate were 6.1×10-6 µg N/l/h/cell and 3×10-7 µg N/l/h/cell, respectively. Our results suggested that strain M9-3-2T could play an important role in the nitrogen removal regardless of the presence of oxygen in natural or/and man-made ecosystems.
Collapse
Affiliation(s)
- Hu Liao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China.,Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mingming Qu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xinyue Hou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xiaolan Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China
| | - Chen-Song Duan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, PR China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
29
|
Boonnorat J, Honda R, Panichnumsin P, Boonapatcharoen N, Yenjam N, Krasaesueb C, Wachirawat M, Seemuang-On S, Jutakanoke R, Teeka J, Angthong S, Prachanurak P. Treatment efficiency and greenhouse gas emissions of non-floating and floating bed activated sludge system with acclimatized sludge treating landfill leachate. BIORESOURCE TECHNOLOGY 2021; 330:124952. [PMID: 33744739 DOI: 10.1016/j.biortech.2021.124952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
This research investigates the treatment efficiency and greenhouse gas (GHG) emissions of non-floating and floating bed AS systems with acclimatized sludge treating landfill leachate. The GHGs under study included carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). The non-floating and floating bed AS systems were operated in parallel with identical landfill leachate influent under different hydraulic retention time (HRT) conditions (24, 18, and 12 h). The experimental results showed that the treatment efficiency of organic compounds under 24 h HRT of both systems (90 - 98%) were insignificantly different, while the nutrient removal efficiency of both systems were between 54 and 98 %. The treatment efficiency of the floating bed AS system, despite shorter HRT, remained relatively unchanged due to an abundance of effective bacteria residing in the floating media. The CO2 emissions were insignificantly different between both AS systems under all HRT conditions (22 - 26.3 μmol/cm2.min). The CO2 emissions were positively correlated with organic loading but inversely correlated with HRT. The CH4 emissions were positively correlated with HRT (26.3 μmol/cm2.min under 24 h HRT of the floating bed AS system). The N2O emissions were positively correlated with nitrogen loading, and the N2O emissions from the floating bed AS system were lower due to an abundance of N2O-reducing bacteria. The floating media enhanced the biological treatment efficiency while maintaining the bacterial community in the system. However, the floating media promoted CH4 production under anoxic conditions. The originality of this research lies in the use of floating media in the biological treatment system to mitigate GHG emissions, unlike existing research which focused primarily on enhancement of the treatment efficiency.
Collapse
Affiliation(s)
- Jarungwit Boonnorat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand.
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, Otsu 520-0811, Japan
| | - Pornpan Panichnumsin
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok 10150, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nimaradee Boonapatcharoen
- Excellent Center of Waste Utilization and Management (ECoWaste), King Mongkut's University of Technology Thonburi (KMUTT), Bang Khun Thian, Bangkok 10150, Thailand
| | - Nawamin Yenjam
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Chananya Krasaesueb
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Manyapron Wachirawat
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Sestapong Seemuang-On
- Department of Environmental Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Mueang, Phitsanulok 65000, Thailand
| | - Jantima Teeka
- Department of Biology, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Sivakorn Angthong
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi (RMUTT), Klong 6, Pathum Thani 12110, Thailand
| | - Pradthana Prachanurak
- Department of Civil and Environmental Engineering, Faculty of Engineering, Srinakharinwirot University, Ongkharak, Nakhon Nayok 26120, Thailand
| |
Collapse
|
30
|
Duan H, Zhao Y, Koch K, Wells GF, Zheng M, Yuan Z, Ye L. Insights into Nitrous Oxide Mitigation Strategies in Wastewater Treatment and Challenges for Wider Implementation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7208-7224. [PMID: 33975433 DOI: 10.1021/acs.est.1c00840] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nitrous oxide (N2O) emissions account for the majority of the carbon footprint of wastewater treatment plants (WWTPs). Many N2O mitigation strategies have since been developed while a holistic view is still missing. This article reviews the state-of-the-art of N2O mitigation studies in wastewater treatment. Through analyzing existing studies, this article presents the essential knowledge to guide N2O mitigations, and the logics behind mitigation strategies. In practice, mitigations are mainly carried out by aeration control, feed scheme optimization, and process optimization. Despite increasingly more studies, real implementation remains rare, which is a combined result of unclear climate change policies/incentives, as well as technical challenges. Five critical technical challenges, as well as opportunities, of N2O mitigations were identified. It is proposed that (i) quantification methods for overall N2O emissions and pathway contributions need improvement; (ii) a reliable while straightforward mathematical model is required to quantify benefits and compare mitigation strategies; (iii) tailored risk assessment needs to be conducted for WWTPs, in which more long-term full-scale trials of N2O mitigation are urgently needed to enable robust assessments of the resulting operational costs and impact on nutrient removal performance; (iv) current mitigation strategies focus on centralized WWTPs, more investigations are warranted for decentralised systems, especially decentralized activated sludge WWTPs; and (v) N2O may be mitigated by adopting novel strategies promoting N2O reduction denitrification or microorganisms that emit less N2O. Overall, we conclude N2O mitigation research is reaching a maturity while challenges still exist for a wider implementation, especially in relation to the reliability of N2O mitigation strategies and potential risks to nutrient removal performances of WWTPs.
Collapse
Affiliation(s)
- Haoran Duan
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yingfen Zhao
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Min Zheng
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Liu Ye
- School of Chemical Engineering, the University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
31
|
Genome Sequence of the Type Strain Azospira restricta SUA2 (DSM 18626). Microbiol Resour Announc 2021; 10:10/18/e00156-21. [PMID: 33958413 PMCID: PMC8103858 DOI: 10.1128/mra.00156-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azospira restricta SUA2T (DSM 18626) is a Gram-negative-staining bacterium able to fix nitrogen and accumulate polyhydroxybutyrate storage granules. Here, we report the complete genome sequence (3,975,213 bp with 68.64 mol% G+C content), which may prove useful in future efforts to assess the role of Azospira in nutrient cycling. Azospira restricta SUA2T (DSM 18626) is a Gram-negative-staining bacterium able to fix nitrogen and accumulate polyhydroxybutyrate storage granules. Here, we report the complete genome sequence (3,975,213 bp with 68.64 mol% G+C content), which may prove useful in future efforts to assess the role of Azospira in nutrient cycling.
Collapse
|
32
|
Garrido-Amador P, Kniaziuk M, Vekeman B, Kartal B. Learning from microorganisms: using new insights in microbial physiology for sustainable nitrogen management. Curr Opin Biotechnol 2021; 67:42-48. [PMID: 33444876 PMCID: PMC8012881 DOI: 10.1016/j.copbio.2020.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/26/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Abstract
To reduce nitrate to N2 distinct nitrogen-oxide-reducing microorganisms function together. Detecting nirS, nirK or narG genes cannot be directly linked to NO and N2O emission. Nitrogen-oxide-reducing specialists can be exploited to reduce NO and N2O emission from wwtp. Aerobic methanotrophs and methane stripping must be considered for the application of N-DAMO. Ammonium recovery could be a more sustainable alternative to nitrogen removal.
Diverse nitrogen-transforming microorganisms with a wide variety of physiological properties are employed for biological nitrogen removal from wastewater. There are many technologies that achieve the required nitrogen discharge standards; however, greenhouse gas emissions and energy consumption constitute the bulk of the environmental footprint of wastewater treatment plants. In this review, we highlight current and proposed approaches aiming to achieve more energy-efficient and environment-friendly biological nitrogen removal, discuss whether new discoveries in microbial physiology of nitrogen-transforming microorganisms could be used to reduce greenhouse gas emissions, and summarize recent advances in ammonium recovery from wastewater.
Collapse
Affiliation(s)
- Paloma Garrido-Amador
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Margarita Kniaziuk
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bram Vekeman
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
33
|
Liang D, He W, Li C, Wang F, Crittenden JC, Feng Y. Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell. WATER RESEARCH 2021; 188:116498. [PMID: 33080455 DOI: 10.1016/j.watres.2020.116498] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Complete biological denitrification is usually restricted in electron donor lacking waters. Hydrogenotrophic denitrification attracts attention for its clean and cost-efficiency advantages. Therein, the hydrogen could be effectively generated by microbial electrolysis cells (MECs) from organic wastes. In this study, a gas diffusion membrane (GDM) integrated MEC (MMEC) was constructed and provided a novel non-polluting approach for nitrate contaminated water remediation, in which the hydrogen was recovered from substrate degradation in anode and diffused across GDM as electron donor for denitrification. The high overall nitrogen removal of 91 ± 0.1%-95 ± 1.9% and 90 ± 1.6%-94 ± 2.2% were respectively achieved in Ti-MMEC and SS-MMEC with titanium and stainless-steel mesh as cathode at all applied voltages (0.4-0.8 V). Decreasing applied voltage from 0.8 to 0.4 V significantly improved the electron utilization efficiency for denitrification from 26 ± 3.6% to 73 ± 0.1% in Ti-MMEC. Integrating MEC with GDM greatly improved TN removal by 40% under applied voltage of 0.8 V. The hydrogenotrophic denitrifiers of Rhodocyclaceae, Paracoccus, and Dethiobacter, dominated in MMECs facilitating TN removal. Functional denitrification related genes including napAB, nirKS, norBC and nosZ predicted by PICRUSt2 based on 16S rRNA gene data demonstrated higher abundance in MMECs.
Collapse
Affiliation(s)
- Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Fei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - John C Crittenden
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China; Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
34
|
Zhou Y, Suenaga T, Qi C, Riya S, Hosomi M, Terada A. Temperature and oxygen level determine N 2 O respiration activities of heterotrophic N 2 O-reducing bacteria: Biokinetic study. Biotechnol Bioeng 2020; 118:1330-1341. [PMID: 33305820 DOI: 10.1002/bit.27654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/23/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Nitrous oxide (N2 O), a potent greenhouse gas, is reduced to N2 gas by N2 O-reducing bacteria (N2 ORB), a process which represents an N2 O sink in natural and engineered ecosystems. The N2 O sink activity by N2 ORB depends on temperature and O2 exposure, yet the specifics are not yet understood. This study explores the effects of temperature and oxygen exposure on biokinetics of pure culture N2 ORB. Four N2 ORB, representing either clade I type nosZ (Pseudomonas stutzeri JCM5965 and Paracoccus denitrificans NBRC102528) or clade II type nosZ (Azospira sp. strains I09 and I13), were individually tested. The higher activation energy for N2 O by Azospira sp. strain I13 (114.0 ± 22.6 kJ mol-1 ) compared with the other tested N2 ORB (38.3-60.1 kJ mol-1 ) indicates that N2 ORB can adapt to different temperatures. The O2 inhibition constants (KI ) of Azospira sp. strain I09 and Ps. stutzeri JCM5965 increased from 0.06 ± 0.05 and 0.05 ± 0.02 μmol L-1 to 0.92 ± 0.24 and 0.84 ± 0.31 μmol L-1 , respectively, as the temperature increased from 15°C to 35°C, while that of Azospira sp. strain I13 was temperature-independent (p = 0.106). Within the range of temperatures examined, Azospira sp. strain I13 had a faster recovery after O2 exposure compared with Azospira sp. strain I09 and Ps. stutzeri JCM5965 (p < 0.05). These results suggest that temperature and O2 exposure result in the growth of ecophysiologically distinct N2 ORB as N2 O sinks. This knowledge can help develop a suitable N2 O mitigation strategy according to the physiologies of the predominant N2 ORB.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chuang Qi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,School of Environment, Nanjing Normal University, Nanjing, China
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
35
|
Han X, Qu Y, Wu J, Li D, Ren N, Feng Y. Nitric oxide reduction by microbial fuel cell with carbon based gas diffusion cathode for power generation and gas purification. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122878. [PMID: 32937696 DOI: 10.1016/j.jhazmat.2020.122878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) from anthropogenic emission is one of the main air contaminants and induces many environmental problems. Microbial fuel cells (MFCs) with gas diffusion cathode provide an alternative technology for NO reduction. In this work, pure NO as the sole electron acceptor of MFCs with gas diffusion cathode (NO-MFCs) was verified. The NO-MFCs obtained a maximum power density of 489 ± 50 mW/m2. Compared with MFCs using O2 in air as electron acceptor (Air-MFCs), the columbic efficiency increased from 23.2% ± 4.3% (Air-MFCs) to 55.7% ± 4.6% (NO-MFCs). The NO removal rate was 12.33 ± 0.14 mg/L/h and N2 was the main reduction product. Cathode reduction was the dominant pathway of NO conversion in NO-MFCs, including abiotic electrochemical reduction and microbial denitrification process. The predominant genera in anodic microbial community changed from exoelectrogenic bacteria in Air-MFCs to denitrifying bacteria in NO-MFCs and effected the power generation.
Collapse
Affiliation(s)
- Xiaoyu Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Youpeng Qu
- School of Life Science and Technology, Harbin Institute of Technology, No. 2 Yikuang Street, Nangang District, Harbin 150080, China.
| | - Jing Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Da Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No 73 Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
36
|
Kim DD, Park D, Yoon H, Yun T, Song MJ, Yoon S. Quantification of nosZ genes and transcripts in activated sludge microbiomes with novel group-specific qPCR methods validated with metagenomic analyses. WATER RESEARCH 2020; 185:116261. [PMID: 32791454 DOI: 10.1016/j.watres.2020.116261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Substantial N2O emission results from activated sludge nitrogen removal processes. N2O-reducing organisms possessing NosZ-type N2O reductases have been recognized to play crucial roles in suppressing emission of N2O produced in anoxic activated sludge via denitrification; however, which of the diverse nosZ-possessing organisms function as the major N2O sink in situ remains largely unknown. Here, nosZ genes and transcripts in wastewater microbiomes were analyzed with the group-specific qPCR assays designed de novo combining culture-based and computational approaches. A sewage sample was enriched in a batch reactor fed continuous stream of N2 containing 20-10,000 ppmv N2O with excess amount (10 mM) of acetate as the source of carbon and electrons, where 14 genera of potential N2O-reducers were identified. All available amino acid sequences of NosZ affiliated to these taxa were grouped into five subgroups (two clade I and three clade II groups), and primers/probe sets exclusively and comprehensively targeting the subgroups were designed and validated with in silico PCR. Four distinct activated sludge samples from three different wastewater treatment plants in Korea were analyzed with the qPCR assays and the results were validated with the shotgun metagenome analysis results. With these group-specific qPCR assays, the nosZ genes and transcripts of six additional activated sludge samples were analyzed and the results of the analyses clearly indicated the dominance of two clade II nosZ subgroups (Flavobacterium-like and Dechloromonas-like) among both nosZ gene and transcript pools.
Collapse
Affiliation(s)
- Daehyun D Kim
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 350-701, Korea
| | - Doyoung Park
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 350-701, Korea
| | - Hyun Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 350-701, Korea; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Taeho Yun
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 350-701, Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 350-701, Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 350-701, Korea.
| |
Collapse
|
37
|
Fukushi M, Mino S, Tanaka H, Nakagawa S, Takai K, Sawabe T. Biogeochemical Implications of N 2O-Reducing Thermophilic Campylobacteria in Deep-Sea Vent Fields, and the Description of Nitratiruptor labii sp. nov. iScience 2020; 23:101462. [PMID: 32866828 PMCID: PMC7476070 DOI: 10.1016/j.isci.2020.101462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/21/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023] Open
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and has significantly increased in the atmosphere. Deep-sea hydrothermal fields are representative environments dominated by mesophilic to thermophilic members of the class Campylobacteria that possess clade II nosZ encoding nitrous oxide reductase. Here, we report a strain HRV44T representing the first thermophilic campylobacterium capable of growth by H2 oxidation coupled to N2O reduction. On the basis of physiological and genomic properties, it is proposed that strain HRV44T (=JCM 34002 = DSM 111345) represents a novel species of the genus Nitratiruptor, Nitratiruptor labii sp. nov. The comparison of the N2O consumption ability of strain HRV44T with those of additional Nitratiruptor and other campylobacterial strains revealed the highest level in strain HRV44T and suggests the N2O-respiring metabolism might be the common physiological trait for the genus Nitratiruptor. Our findings provide insights into contributions of thermophilic Campylobacteria to the N2O sink in deep-sea hydrothermal environments.
Collapse
Affiliation(s)
- Muneyuki Fukushi
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| | - Hirohisa Tanaka
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), Yokosuka, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate 041-8611, Japan
| |
Collapse
|
38
|
Park HJ, Kwon JH, Yun J, Cho KS. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1459-1467. [PMID: 32960129 DOI: 10.1080/10934529.2020.1812321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
A new nitrous oxide (N2O)-reducing bacterium was isolated from a consortium that was enriched using advanced wastewater treatment sludge as an inoculum and N2O as the sole nitrogen source. The isolated facultative anaerobe was identified as Azospira sp. HJ23. Azospira sp. HJ23 exhibited optimum N2O-reducing activity with a C/N ratio of 62 at pH 6 in the temperature range of 37 °C to 40 °C. The optimum carbon source for N2O reduction was a mixture of glucose and acetate. The maximum rate of N2O reduction by Azospira sp. HJ23 was 4.8 mmol·g-dry cell-1·h-1, and its N2O-reducing activity was higher than other known N2O reducers. Azospira sp. HJ23 possessed several functional genes for denitrification. These included narG (NO3- reductase), nirK (NO2- reductase), norB (NO reductase), and nosZ (N2O reductase) genes. These results suggest that Azospira sp. HJ23 can be applied in the denitrification process to minimalize N2O emission.
Collapse
Affiliation(s)
| | | | | | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|