1
|
Chen Y, Yang W, Liu H, Mao W, Zhang J, Wang B, Yang L, Wang S, Zhou H, Zeng P, Wu P. Phosphorus-loaded magnetic biochar for remediation of cadmium contaminated paddy soil: Efficacy and identification of limiting factors. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138162. [PMID: 40184969 DOI: 10.1016/j.jhazmat.2025.138162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Alleviating cadmium (Cd) risk in paddy soils is a global research hotspot. Although biochar reduces Cd mobility, a holistic perspective on the effects of biochar on Cd fraction distribution in rice rhizosphere and its immobilization mechanisms is lacking. Here, we developed a pathway model that links soil physicochemical properties, IP formation, enzyme activity, microbial biomass, porewater nutrients, and soil Cd fractions to fill knowledge gaps. Results revealed that phosphorus-loaded magnetic biochar (PMLB) application increased soil pH, available phosphorus (AP), total phosphorus (TP), microbial biomass, and TP and Fe contents in porewater while inhibiting soil enzyme activities. Compared with the control, 0.2 %-1 % w/w PMLB treatment reduced soil acetic acid-extractable Cd (Aci-Cd) content during the tillering, filling, and maturity periods by 23.71-32.92 %, 25.45-37.33 %, and 7.39-18.40 %, respectively. Cd content in brown rice was reduced by 44.02-47.86 %. Soil pH, AP and urease activity were the primary drivers of soil Aci-Cd reduction. Soil microbial biomass contributed most to reducing Cd content in rice tissues (total path coefficient: -0.48), followed by enzyme activity and IP. Additionally, PMLB promoted IP formation and altered the immobilization methods of Cd by IP, from coprecipitation with iron (hydr)oxides and phosphate to ternary complex formation with phosphate as a bridge to band Cd and iron (hydr)oxides.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wentao Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China.
| | - Hongyan Liu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China; College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Wenjian Mao
- Guizhou Environment and Engineering Appraisal Center, Guiyang 550002, China
| | - Jian Zhang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Bing Wang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Liyu Yang
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Pan Wu
- Key Laboratory of Karst Geological Resources and Environment, Ministry of Education, College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Ding L, Han B, Jia R, Yang X, Liang X, Guo X. Molecular Insights into the Synergistic Inhibition of Microplastics-Derived Dissolved Organic Matter and Anions on the Transformation of Ferrihydrite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4104-4112. [PMID: 39973252 DOI: 10.1021/acs.est.4c11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Ferrihydrite (Fh), as a ubiquitous iron (oxyhydr)oxide, plays an essential role in nutrient cycling and pollutant transformation due to its high surface area and diversified reaction sites. In the natural environment, Fh transformation could be easily influenced by coexisting components (particularly dissolved organic matter (DOM) and anions). As a new and important carbon source, microplastic-derived DOM (MP-DOM) directly or indirectly affects the morphology and fate of Fh, but limited knowledge exists about the combined effect of MP-DOM and anions on Fh transformation. Herein, this study elucidates the joint effects of polystyrene DOM (PS-DOM) and anions (such as Cl-, SO42-, and PO43-) on Fh transformation. Single anions (especially PO43-) were shown to inhibit the transformation of Fh to hematite (Hm) by hindering the dissolution and recrystallization of Fe(III). However, the inhibitory effect was strongly enhanced when PS-DOM and anions coexisted, which is attributed to their synergetic effects on inhibiting dissolution/recrystallization by occupying more active sites and hindering electron transfer. Furthermore, Fh transformation was predominantly controlled by PS-DOM, especially those containing high-unsaturation, high-oxidation-state, and O-rich phenolic compounds. These findings provide a new perspective on the significance of considering the joint effects of DOM and anions in evaluating the transformation of iron minerals.
Collapse
Affiliation(s)
- Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bing Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rongrong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Forestry Carbon Sequestration and Pollution Control in Arid and Semi-arid Region, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Forestry Carbon Sequestration and Pollution Control in Arid and Semi-arid Region, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Fan WY, Zhang X, Xie DH, Leung KMY, Sheng GP. Cerium-based nanohydrolase for fast catalytic hydrolysis of β-lactam antibiotics in wastewater effluents. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136800. [PMID: 39644848 DOI: 10.1016/j.jhazmat.2024.136800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
To defuse risks of antibiotic residues in effluent to achieve safe wastewater reuse, direct hydrolysis of the functional group responsible for the antibacterial activity, such as the of β-lactam ring in β-lactam antibiotics, has been recognized as an efficient and cost-effective strategy. However, the instability of natural hydrolases limits their use in treating antibiotic-containing wastewater. Herein, inspired by the active site of natural hydrolase, a Ce-based nanohydrolase was created for rapid hydrolysis of β-lactam antibiotics. The typical β-lactam antibiotic, penicillin G (PG), could be totally removed by the nanohydrolase within 2 min with a hydrolysis efficiency of 44%, and the hydrolysis efficiency could reach 98% within 10 min. It revealed that Ce(IV) in the nanohydrolase adsorbed PG via Lewis acid-Lewis base interaction to activate the β-lactam ring, while the -OH on Ce(III) served as nucleophile to attack the β-lactam ring, thereby promoting the hydrolysis of PG. The Ce-based nanohydrolase also showed good catalytic hydrolysis performance towards other commonly used β-lactam antibiotics and structurally related chemicals, implying its substrate universality. In addition to having high hydrolytic activity similar to that of natural hydrolases, this nanohydrolase exhibited extraordinary reusability and potential for practical applications that natural hydrolases do not possess. This work offers an innovative strategy to eliminate the risks of hydrolysable micropollutants in wastewater effluents and also provides reference for designing better nanohydrolase.
Collapse
Affiliation(s)
- Wen-Yuan Fan
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China; USTC-CityU Joint Advanced Research Center, Suzhou Research Institute, University of Science and Technology of China, Suzhou 215123, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry and School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
4
|
Pei X, Wang W, Chen Z, Liu K, Liang Z, Jiang C, Zhang T, Chen W. Metal heteroatoms significantly enhance efficacy of TiO 2 nanomaterials in promoting hydrolysis of organophosphates: Implications for mitigating pollution of plastic additives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177548. [PMID: 39542273 DOI: 10.1016/j.scitotenv.2024.177548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
Organophosphate esters (OPEs) are prevalent pollutants in the aquatic environment. OPEs are released from many sources, particularly, from the breakdown and weathering of plastic wastes, as OPEs are commonly used plastic additives. Metal oxide mineral nanoparticles play critical roles in the hydrolytic transformation of OPEs. While natural minerals often contain metal impurities, it is unclear how metal heteroatoms affect the efficiency of mineral nanoparticles in mediating hydrolysis reactions. Herein, we show that transition metal-doped anatase titanium dioxide (TiO2) nanomaterials are more effective in catalyzing the hydrolysis of 4-nitrophenyl phosphate (pNPP), a model OPE compound, with the relative effects of the heteroatoms following the order of Fe > Cr > Mn ≈ Ni > Co > Cu. With multiple lines of evidence based on spectroscopic analysis, kinetics modeling, and theoretical calculations, we show that metal doping increases the Lewis acidity of the TiO2 nanomaterials by increasing the oxidation state of surface Ti atoms, inducing oxygen vacancies, and creating additional Lewis acid sites with stronger acidities. Moreover, the increased amounts of surface hydroxyl groups due to metal doping enhance inner-sphere complexation of pNPP through ligand exchange. The interesting observation that Fe-doped TiO2 exhibited the highest catalytic efficiency may have important implications for reducing the risks of organophosphate plastic additives, as iron is the most common heteroatom of naturally occurring TiO2 (nano)materials.
Collapse
Affiliation(s)
- Xule Pei
- School of Chemistry and Environment, Ankang Research Centre of New Nano-materials Science and Technology, Innovation Research Institute of Advanced Energy Storage Materials and Battery Technology for Future Industrialization, Shaanxi Provincial University Key Laboratory of Interfacial Porous Materials, Ankang University, Shaanxi Ankang 725000, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Weichao Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China; Department of Electronics, Nankai University, Tianjin 300071, China
| | - Zaihao Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Keman Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Zongsheng Liang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Lin D, Meng Z, Han C, Hong Y, Yang L. Rapid Dynamic Surface-Enhanced Raman Spectroscopy Detection of Amoxicillin-Mediated Morphological Changes in a Pathogen for Diagnosis of Clinical Urine Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64609-64616. [PMID: 39540231 DOI: 10.1021/acsami.4c16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The swift and stable detection of pathogens in urine samples holds significant implications for the immediate clinical diagnosis and treatment of urinary tract infections (UTIs). In this study, we propose a detection strategy utilizing a hybrid substrate composed of graphene oxide (GO) and silver nanoparticles (Ag NPs) for the detection of pathogens subjected to amoxicillin-mediated (amo-mediated) treatment. This strategy employs dynamic surface-enhanced Raman spectroscopy (D-SERS) for stable and rapid detection, capturing signal variations induced by amo-mediated changes in pathogen morphology. During the 5 min D-SERS detection time window, stable SERS signals were detected for three types of pathogens and four types of pathogens were successfully distinguished using principal component analysis (PCA). In comparison to conventional nanosubstrates, the GO/Ag NP hybrid substrate exhibits outstanding stability and enhancement effects. This approach enables the dual detection of the pathogen cell structure and metabolites, facilitating specific identification of pathogens in the urinary tract, with a detection limit for Escherichia coli reaching 1 × 104 colony-forming units (CFU)/mL, meeting the clinical microbiology laboratory diagnostic standards for UTIs (105 CFU/mL). Testing of 188 clinically collected urine samples using this strategy yielded a sensitivity (SENS) of 86.4% and a specificity (SPC) of 89.7%. This introduces a novel method for diagnosing UTIs, offering broad applications in the field of clinical pathogen detection.
Collapse
Affiliation(s)
- Dongyue Lin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Zhicai Meng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Cong Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Yan Hong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|
6
|
Ma Z, Cheng H. Insights into the Photochemical Mechanism of Goethite: Roles of Different Types of Surface Hydroxyl Groups in Reactive Oxygen Species Generation and Fe(III) Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14812-14822. [PMID: 39118219 DOI: 10.1021/acs.est.4c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The surface photochemical activity of goethite, which occurs widely in surface soils and sediments, plays a crucial role in the environmental transformation of various pollutants and natural organic matter. This study systemically investigated the mechanism of different types of surface hydroxyl groups on goethite in generating reactive oxygen species (ROSs) and Fe(III) reduction under sunlight irradiation. Surface hydroxyl groups were found to induce photoreductive dissolution of Fe(III) at the goethite-water interface to produce Fe2+(aq), while promoting the production of ROSs. Substitution of the surface hydroxyl groups on goethite by fluoride significantly inhibited the photochemical activity of goethite, demonstrating their important role in photochemical activation of goethite. The results showed that the surface hydroxyl groups (especially the terminating hydroxyl groups, ≡FeOH) led to the formation of Fe(III)-hydroxyl complexes via ligand-metal charge transfer on the goethite surface upon photoexcitation, facilitating the production of Fe2+(aq) and •OH. The bridging hydroxyl groups (≡Fe2OH) were shown to mainly catalyze the production of H2O2, leading to the subsequent light-driven Fenton reaction to produce •OH. These findings provide important insights into the activation of molecular oxygen on the goethite surface driven by sunlight in the environment, and the corresponding degradation of anthropogenic and natural organic compounds caused by the generated ROSs.
Collapse
Affiliation(s)
- Zhipeng Ma
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Pan Y, Rao Z, Yu W, Chen B, Chu C. Water Vapor Condensation Triggers Simultaneous Oxidation and Hydrolysis of Organic Pollutants on Iron Mineral Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12147-12154. [PMID: 38934559 DOI: 10.1021/acs.est.4c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Increasing worldwide contamination with organic chemical compounds is a paramount environmental challenge facing humanity. Once they enter nature, pollutants undergo transformative processes that critically shape their environmental impacts and associated risks. This research unveils previously overlooked yet widespread pathways for the transformations of organic pollutants triggered by water vapor condensation, leading to spontaneous oxidation and hydrolysis of organic pollutants. These transformations exhibit variability through either sequential or parallel hydrolysis and oxidation, contingent upon the functional groups within the organic pollutants. For instance, acetylsalicylic acid on the goethite surface underwent sequential hydrolysis and oxidation that first hydrolyzed to salicylic acid followed by hydroxylation oxidation of the benzene moiety driven by the hydroxyl radical (•OH). In contrast, chloramphenicol underwent parallel oxidation and hydrolysis, forming hydroxylated chloramphenicol and 2-amino-1-(4-nitrophenyl)-1,3-propanediol, respectively. The spontaneous oxidation and hydrolysis occurred consistently on three naturally abundant iron minerals with the key factors being •OH production capacity and surface binding strength. Given the widespread presence of iron minerals on Earth's surface, these spontaneous transformation paths could play a role in the fate and risks of organic pollutants of health concerns.
Collapse
Affiliation(s)
- Yishuai Pan
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zepeng Rao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wanchao Yu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Ma J, Zhao Q, Ye Z. An eco-friendly self-assembled catalyst preparation and study of tetracycline degradation: Performance, mechanism to application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171768. [PMID: 38499103 DOI: 10.1016/j.scitotenv.2024.171768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Chloromethyl styrene resin can undergo specific chemical modifications and is an excellent adsorbent material for treating difficult-to-degrade substances in wastewater. In this study, chloromethyl styrene resin will be used as a carrier, and polystyrene chloromethyl resin (PS-Cl) was converted into PS-NH2 by amino modification. The self-assembly of cobalt-based metal-organic framework (CoMOF) was induced on the surface of PS-NH2 by using a novel preparation technique. The performance of the prepared PS-NH2@CoMOF self-assembled catalysts with core-shell-like structures in degrading the target pollutant, tetracycline (TC), was evaluated. The catalysts effectively induced rapid OH radical production from H2O2, had a degradation rate of as high as 88.3 % for 20 mg/L TC solution, and were highly stable and adaptable to aqueous environments. Free radicals and intermediates in the catalytic degradation process were detected by electron paramagnetic resonance and high-performance liquid chromatography mass spectrometry, and possible catalytic degradation pathways were analyzed. The catalytic dissociation behavior of H2O2 in the presence of different catalysts was studied in depth and compared with that of similar metal-organic framework materials through density-functional theory calculations. Results demonstrated the excellent performance of the PS-NH2@CoMOF catalysts. Finally, the catalysts' potential for use in practical engineering applications was evaluated with a flow column experimental model, and the results were more than satisfactory. Therefore, the use of the catalysts to degrade TC has great potential.
Collapse
Affiliation(s)
- Jinmao Ma
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Quanlin Zhao
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| | - Zhengfang Ye
- Department of Environmental Engineering, Peking University, the Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
9
|
Xu Z, Tsang DC. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:59-76. [PMID: 38318344 PMCID: PMC10840363 DOI: 10.1016/j.eehl.2023.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/24/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024]
Abstract
Soil, the largest terrestrial carbon reservoir, is central to climate change and relevant feedback to environmental health. Minerals are the essential components that contribute to over 60% of soil carbon storage. However, how the interactions between minerals and organic carbon shape the carbon transformation and stability remains poorly understood. Herein, we critically review the primary interactions between organic carbon and soil minerals and the relevant mechanisms, including sorption, redox reaction, co-precipitation, dissolution, polymerization, and catalytic reaction. These interactions, highly complex with the combination of multiple processes, greatly affect the stability of organic carbon through the following processes: (1) formation or deconstruction of the mineral-organic carbon association; (2) oxidative transformation of the organic carbon with minerals; (3) catalytic polymerization of organic carbon with minerals; and (4) varying association stability of organic carbon according to the mineral transformation. Several pieces of evidence related to the carbon turnover and stability during the interaction with soil minerals in the real eco-environment are then demonstrated. We also highlight the current research gaps and outline research priorities, which may map future directions for a deeper mechanisms-based understanding of the soil carbon storage capacity considering its interactions with minerals.
Collapse
Affiliation(s)
- Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C.W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| |
Collapse
|
10
|
Li Y, Bi E. Influencing mechanisms of tartaric acid on adsorption and degradation of tetracycline on goethite: insight from solid and liquid aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6411-6424. [PMID: 38148461 DOI: 10.1007/s11356-023-31465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
The interactions between organic pollutants and iron minerals play an important role in their environmental fate. In this study, the effects of low-molecular-weight organic acids (LMWOAs) on the adsorption and degradation of tetracycline (TC) on goethite were investigated. Tartaric acid (TA) was taken as the representative of LMWOAs to study the influencing mechanism through batch experiments and microscale characterization. In addition, the properties of TC-TA clusters under different pHs were determined by density functional theory (DFT) calculations. The results showed that all five LMWOAs inhibited TC adsorption and degradation. The preferential adsorption of TA on goethite changed TC adsorption from inner spherical to outer spherical complexation and mainly inhibited TC adsorption and degradation of the singly coordinated hydroxyl group. TC degradation rate decreased from 0.0287 to 0 h-1 in the first stage. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results showed that TA could influence the interactions of amide groups, C = O on the A-ring, and dimethylamino group of TC with goethite, and the formation of ≡Fe(II) was inhibited. In addition to competing for the effective sites, the effects of complexation between TA and TC in solution should be considered. According to DFT calculations, hydrogen bonds could be formed between the carboxyl group of TA and the H atom of TC at different pH. These findings can provide evidence for estimating the contribution of adsorption and degradation to TC removal by iron oxides with the coexistence of LMWOAs in a soil-water environment.
Collapse
Affiliation(s)
- Yujia Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, and Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China
| | - Erping Bi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, and Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences (Beijing), Beijing, 100083, People's Republic of China.
| |
Collapse
|
11
|
Li J, Ma D, Huang Q, Du Y, He Q, Ji H, Ma W, Zhao J. Cu 2+ coordination-induced in situ photo-to-heat on catalytic sites to hydrolyze β-lactam antibiotics pollutants in waters. Proc Natl Acad Sci U S A 2023; 120:e2302761120. [PMID: 38109527 PMCID: PMC10756305 DOI: 10.1073/pnas.2302761120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/26/2023] [Indexed: 12/20/2023] Open
Abstract
For degradation of β-lactam antibiotics pollution in waters, the strained β-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening β-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the β-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common β-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of β-lactam antibiotics pollutants by the only energy source available, the sunlight.
Collapse
Affiliation(s)
- Jiazhen Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Dongge Ma
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing100048, People’s Republic of China
| | - Qiang Huang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Yangyang Du
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Qin He
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Wanhong Ma
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing100190, People’s Republic of China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
12
|
El-Zahry MR, Nasr JJM, Al-Shaalan NH, Mahmoud AF. SERS study of classical and newly β-lactams-metal complexation based on in situ laser-induced coral reefs-like silver photomicroclusters: In vitro study of antibacterial activity. J Pharm Biomed Anal 2023; 235:115617. [PMID: 37557063 DOI: 10.1016/j.jpba.2023.115617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
The influence of metal complexation of two polar β-lactam antibiotics was investigated using surface enhanced Raman spectroscopy (SERS) technique. SERS method was applied to track the structural changes and the degradation behaviour of the studied compounds upon Zinc (II) ions-complexation. In situ laser-induced coral reefs-like photomicroclusters have been utilized as a SERS platform. The produced coral reefs-like photomicroclusters were characterized using scanning electron microscopy (SEM) and transmission electron microscope (TEM). The antibacterial efficiency of the antibiotics was investigated and compared before and after metal complexation using two techniques; agar well diffusion and growth curve. To provide a detailed elucidation of the complexation reaction, mass fragmentation of metal- antibiotics complexes was investigated using liquid chromatography/mass spectrometric (LC/MS) technique. It was found that metal complexation of classical β-lactam antibiotic (Ticarcillin) promoted the rate of its degradation, leading to a decrease of the antibacterial efficiency. On the other side, the antibacterial activity of the newly developed β-lactam (Faropenem) has been greatly enhanced via metal-complexation reaction.
Collapse
Affiliation(s)
- Marwa R El-Zahry
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt; Pharmaceutical Chemistry Department, Badr University in Assiut, 2014101 Assiut, Egypt.
| | - Jenny Jeehan M Nasr
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amer F Mahmoud
- Plant Pathology Department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| |
Collapse
|
13
|
Ding L, Guo X, Du S, Cui F, Zhang Y, Liu P, Ouyang Z, Jia H, Zhu L. Insight into the Photodegradation of Microplastics Boosted by Iron (Hydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17785-17794. [PMID: 36472936 DOI: 10.1021/acs.est.2c07824] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Iron (hydr)oxides as a kind of natural mineral actively participate in the transformation of organic pollutants, but there is a large knowledge gap in their impacts on photochemical processes of microplastics (MPs). This study is the first to examine the degradation of two ordinary plastic materials, polyethylene (PE) and polypropylene (PP), mediated by iron (hydr)oxides (goethite and hematite) under simulated solar light irradiation. Both iron (hydr)oxides significantly promoted the degradation of MPs (particularly PP) with a greater effect by goethite than hematite, related to hydroxyl radical (•OH) produced by iron (hydr)oxides. Under light irradiation, the surface Fe(II) phase catalyzed the production of H2O2 and promoted the release of Fe2+, leading to the subsequent light-driven Fenton reaction which produced a large amount of •OH. As the iron (hydr)oxides were modified with NaF at various concentrations, the activity of the surface Fe(II) as well as the release of Fe2+ were greatly reduced, and thus the •OH formation and MP degradation were depressed remarkably. It is worth noting that the surface hydroxyl groups (especially ≡FeOH) affected the reaction kinetics of •OH by regulating the activity of Fe species. These findings unveil the distinct impacts and intrinsic mechanisms of iron (hydr)oxides in influencing the photodegradation of MPs.
Collapse
Affiliation(s)
- Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Shengwen Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fengyi Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yaping Zhang
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
14
|
Zhang Q, Niu D, Ni S, An W, Li C, Huhe T, Wang C, Jiang X, Ren J. Effects of pH and Metal Ions on the Hydrothermal Treatment of Penicillin: Kinetic, Pathway, and Antibacterial Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191710701. [PMID: 36078417 PMCID: PMC9517829 DOI: 10.3390/ijerph191710701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 05/02/2023]
Abstract
Antibiotic residues lead to the risk of resistance gene enrichment, which is the main reason why penicillin mycelial dreg (PMD) is defined as hazardous waste. Hydrothermal treatment (HT) is an effective method to treat penicillin mycelial dreg, but the degradation mechanism of penicillin is unclear. In the study, we researched the effects of pH (4-10) at 80-100 °C and metal ions (Mn2+, Fe2+, Cu2+, and Zn2+) at several concentrations on the HT of penicillin, identified the degradation products (DPs) under different conditions, and evaluated the antibacterial activity of hydrothermally treated samples. The results show that penicillin degradation kinetics highly consistent with pseudo-first-order model (R2 = 0.9447-0.9999). The degradation rates (k) at pH = 4, 7, and 10 were 0.1603, 0.0039, and 0.0485 min-1, indicating acidic conditions were more conducive to penicillin degradation. Among the four tested metal ions, Zn2+ had the most significant catalytic effect. Adding 5 mg·L-1 Zn2+ caused 100% degradation rate at pH = 7 after HT for 60 min. Six degradation products (DPs) with low mass-to-charge (m/z ≤ 335) were detected under acidic condition. However, only two and three DPs were observed in the samples catalyzed by Zn2+ and alkali, respectively, and penilloic acid (m/z = 309) was the main DPs under these conditions. Furthermore, no antibacterial activity to Bacillus pumilus was detected in the medium with up to 50% addition of the treated samples under acidic condition. Even though acid, alkali, and some metal ions can improve the degradation ability of penicillin, it was found that the most effective way for removing its anti-bacterial activity was under the acidic condition. Therefore, resistance residue indicates the amount of additive in the process of resource utilization, and avoids the enrichment of resistance genes.
Collapse
Affiliation(s)
- Qiaopan Zhang
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Dongze Niu
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Shensheng Ni
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Wenying An
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Chunyu Li
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Taoli Huhe
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
- Correspondence: (T.H.); (J.R.)
| | - Chongqing Wang
- Beijing General Station of Animal Husbandry, Beijing 100101, China
| | - Xingmei Jiang
- Bijie Institute of Animal Husbandry and Veterinary Sciences, Bijie 551700, China
| | - Jianjun Ren
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
- Correspondence: (T.H.); (J.R.)
| |
Collapse
|
15
|
Hao Y, Deng S, Wang R, Xia Q, Zhang K, Wang X, Liu H, Liu Y, Huang M, Xie M. Development of dual-enhancer biocatalyst with photothermal property for the degradation of cephalosporin. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128294. [PMID: 35065309 DOI: 10.1016/j.jhazmat.2022.128294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The abuse of cephalosporins poses a serious threat to human health and the ecological environment. In this work, cephalosporinase (AmpC enzyme) and Prussian blue (PB) crystals were encapsulated into ZIF-8 metal-organic frameworks (MOFs), and a photothermal AmpC/PB@ZIF-8 MOFs (APZ) nanocatalyst was prepared for the catalytic degradation of cephalosporin. The temperature of the APZ catalytic degradation system can be regulated by irradiation with near infrared light due to the photothermal effect of PB, and then, the activity of the APZ biocatalyst is significantly enhanced. Thereby, the degradation efficiency of cefuroxime can reach to 96%, and the degradation kinetic rate of cefuroxime augmented 4.5-fold comparing with that catalyzed by free enzyme. Moreover, encapsulation of the enzyme and PB can increase the affinity and charge transfer efficiency between APZ and substrate molecules, which can also improve the degradation efficiency of cephalosporins. Catalytic degradation pathways for three generations of cephalosporins were proposed based on their degradation products. The dual-enhancer biocatalyst based on the photothermal effect and immobilization of the PB and enzyme can significantly enhance the activity and stability of the enzyme, and it can also be recycled. Therefore, the biocatalyst has potential applications for the effective degradation of cephalosporins in the environment.
Collapse
Affiliation(s)
- Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Ruoxin Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Qianshu Xia
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Kaina Zhang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Min Huang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
16
|
Zhang L, Sun Y, Xu Z, Liu F. Transformation kinetics and mechanism of gibberellic acid with ferrihydrite: Building a novel adsorption-transformation multi-step kinetic model. CHEMOSPHERE 2022; 292:133194. [PMID: 34914958 DOI: 10.1016/j.chemosphere.2021.133194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/07/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Gibberellic acid (GA3), a widely used phytohormone, is easily transformed into more toxic products. The soil and groundwater environment are an important sink for GA3, but its transformation catalyzed by soil minerals has not been studied. In this study, the transformation kinetics and mechanism of GA3 with ferrihydrite (Fh) were examined through kinetic batch experiments, microscopic-spectroscopic investigation and mathematical modeling. The results showed that rapid adsorption of GA3 on Fh occurred in the first 4 h, followed by a catalytic pseudo-first-order transformation of the parent compound and products generation (4 h-30 d). Fh predominantly enhanced the transformation of GA3 into Iso-GA3 which was further hydrolyzed into OH-GA3, in which adsorption was a prerequisite for transformation. The catalytic transformation likely resulted from the surface hydroxy of Fh, which not only stabilized the transformation intermediates by forming surface complexes with the carboxyl group of GA3 and its products, but also served as a powerful nucleophile to attack the γ-lactone of GA3 and Iso-GA3. Based on the catalytic isomerization and hydrolysis mechanism of GA3 with Fh, a novel adsorption-transformation multi-step kinetic conceptual model and mathematical model were developed. This model fitted the measured data well (R2 > 0.97) and the fitted parameters suggested that the transformation rate constants of the transformation of GA3 into Iso-GA3 and the transformation of Iso-GA3 into OH-GA3 were facilitated with Fh by ∼26 and ∼9 times, respectively. The multi-step kinetic model has great potential in simulating GA3 fate in soil and groundwater to assess its environmental health risk.
Collapse
Affiliation(s)
- Li Zhang
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China; Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China.
| | - Yajun Sun
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Zhimin Xu
- School of Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Fei Liu
- Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing, 100083, China.
| |
Collapse
|
17
|
Luo T, Xu J, Cheng W, Zhou L, Marsac R, Wu F, Boily JF, Hanna K. Interactions of Anti-Inflammatory and Antibiotic Drugs at Mineral Surfaces Can Control Environmental Fate and Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2378-2385. [PMID: 34910456 DOI: 10.1021/acs.est.1c06449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various pharmaceutical compounds often coexist in contaminated soils, yet little is known about how their interactions impact their mobility. We here show that two typical antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) commonly form dimers at several representative soil- and sediment-building minerals of contrasting composition and structure. Cobinding occurs in the form of a NFA-NA dimer stabilized by hydrogen bonding and van der Waals interactions. Using dynamic column experiments containing goethite-coated sand, we then demonstrated that presorbed NA effectively captured the otherwise weakly binding NFA from solution. Simultaneously injecting NA and NFA to presorbed NA enhanced even further both NA and NFA loadings, thereby altering their transport under flow-through conditions. We also showed that environmental level amounts of natural organic matter can reduce the overall retention in column experiments, yet it does not suppress dimer formation. These environmentally relevant scenarios can be predicted using a new transport model that accounts for kinetics and cobinding reactions of NFA onto NA bound to goethite through metal-bonded, hydrogen-bonded, and outer-sphere complexes. These findings have important implications on assessing the fate of coexisting pharmaceutical compounds under dynamic flow conditions in contaminated soils.
Collapse
Affiliation(s)
- Tao Luo
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Univ Rennes, ISCR-UMR 6226, F-35000 Rennes, France
| | - Jing Xu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, P. R. China
| | - Wei Cheng
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Lian Zhou
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Univ Rennes, ISCR-UMR 6226, F-35000 Rennes, France
| | - Rémi Marsac
- CNRS, Univ Rennes, Géosciences Rennes - UMR 6118, F-35000 Rennes, France
| | - Feng Wu
- Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, P. R. China
| | | | - Khalil Hanna
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, Univ Rennes, ISCR-UMR 6226, F-35000 Rennes, France
- Institut Universitaire de France (IUF), MESRI, 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
18
|
Wang C, Liang S, Bai L, Gu X, Jin X, Xian Z, Wu B, Ok YS, Li K, Wang R, Zhong H, Gu C. Structure-dependent surface catalytic degradation of cephalosporin antibiotics on the aged polyvinyl chloride microplastics. WATER RESEARCH 2021; 206:117732. [PMID: 34637972 DOI: 10.1016/j.watres.2021.117732] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) have been recognized as a global concern due to their potential health effect, as MPs could adsorb and carry various pollutants in aquatic environment. In the present study, a new environmental behavior related to polyvinyl chloride microplastics (PVC-MPs) and the underlying mechanism were described. Our results showed that the photo-aged PVC-MPs could affect the transformation of cephalosporin antibiotics. For instance, the presence of altered PVC-MPs significantly accelerated the hydrolysis of cefazolin (CFZ), but exhibited negligible effect on the degradation of cephalexin (CFX). As indicated by in situ Fourier transform infrared spectra and theoretical calculations, hydrogen bonds could be formed between β-lactam carbonyl of CFZ and the oxygen-containing moieties on the aged PVC-MP surfaces. The hydrogen-bonding was able to significantly increase the positive atomic Mulliken charge on the β-lactam carbonyl carbon, thus narrowing the energy gap of CFZ hydrolysis and subsequently enhancing the disruption of β-lactam ring. While for CFX, instead of the β-lactam carbonyl, the amide amino group was involved in the hydrogen-bonding due to the structural difference. Therefore, in addition to increasing the adsorption capacity, the aged PVC-MPs could act as the catalyst to mediate the transformation of antibiotics. Our study would help improve the understanding for interactions between contaminants and MPs in natural environments.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Sijia Liang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lihua Bai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xinyue Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zeyu Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Kan Li
- Yixing Environmental Research Institute of Nanjing University, Yixing 214200, PR. China
| | - Rui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
19
|
Wu D, Huang S, Zhang X, Ren H, Jin X, Gu C. Iron Minerals Mediated Interfacial Hydrolysis of Chloramphenicol Antibiotic under Limited Moisture Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9569-9578. [PMID: 33740378 DOI: 10.1021/acs.est.1c01016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iron minerals are important soil components; however, little information is available for the transformation of antibiotics on iron mineral surfaces, especially under limited moisture conditions. In this study, we investigated the catalytic performance of four iron minerals (maghemite, hematite, goethite, and siderite) for the hydrolysis of chloramphenicol (CAP) antibiotic at different moisture conditions. All the iron oxides could efficiently catalyze CAP hydrolysis with the half-lives <6 days when the surface water content was limited, which was controlled by the atmospheric relative humidity of 33-76%. Different minerals exhibited distinctive catalytic processes, depending on the surface properties. H-bonding or Lewis acid catalysis was proposed for surface hydrolytic reaction on iron oxides, which however was almost completely inhibited when the surface water content was >10 wt % due to the competition of water molecules for surface reactive sites. For siderite, the CAP hydrolysis was resistant to excessive surface water. A bidentate H-bonding interaction mechanism would account for CAP hydrolysis on siderite. The results of this study highlight the importance of surface moisture on the catalytic performance of iron minerals. The current study also reveals a potential degradation pathway for antibiotics in natural soil, which has been neglected before.
Collapse
Affiliation(s)
- Dingding Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Shuhan Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing 210023, Jiangsu, China
| |
Collapse
|
20
|
Yang L, Hu D, Liu H, Wang X, Liu Y, Xia Q, Deng S, Hao Y, Jin Y, Xie M. Biodegradation pathway of penicillins by β-lactamase encapsulated in metal-organic frameworks. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125549. [PMID: 33676260 DOI: 10.1016/j.jhazmat.2021.125549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 05/18/2023]
Abstract
The pollution caused by the abuse of antibiotics has posed a serious threat to the ecological environment and human health, so development of effective strategies for degradation and disposal of antibiotic residues is urgently needed. In this work, penicillinase, a kind of β-lactamase, was immobilized into zeolitic imidazolate framework-8 (ZIF-8) by self-assembly method and the catalytic performance of the β-lactamase@ZIF-8 porous materials for degradation of penicillins has been investigated by high performance liquid chromatography coupled with mass spectrometry. The results illustrated that the catalytic activity of the encapsulated enzyme was significantly enhanced comparing with that of free enzyme. Meanwhile, the β-lactamase@ZIF-8 exhibited excellent stability under denaturing conditions including high temperature, organic solvent and the enzyme inhibitor. The catalytic degradation mechanism of the β-lactamase@ZIF-8 for penicillins has been probed and verified, and it has been found that the Zn (II) ion on ZIF-8 frameworks could form the complex with the target molecule, which weakened the bond of the four-membered β-lactam ring in the penicillin molecule, and thus enhanced the degradation efficiency of the enzyme. This work provided a promising strategy for eliminating the penicillin residues in water environment.
Collapse
Affiliation(s)
- Lina Yang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Dehua Hu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Hailing Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Xiangfeng Wang
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuan Liu
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Qianshu Xia
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Suimin Deng
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yun Hao
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Yuhao Jin
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China
| | - Mengxia Xie
- Analytical and Testing Center of Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
21
|
Li J, Zhao L, Zhang R, Teng HH, Padhye LP, Sun P. Transformation of tetracycline antibiotics with goethite: Mechanism, kinetic modeling and toxicity evaluation. WATER RESEARCH 2021; 199:117196. [PMID: 33975086 DOI: 10.1016/j.watres.2021.117196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Tetracycline antibiotics (TCs) are a group of the top selling and widely used antibiotics that have been frequently detected in various environments. The interaction between TCs and goethite (α-FeOOH), one of the most common crystalline oxide minerals in aqueous environment and soil, is unclear. Apart from adsorption, this study firstly demonstrated that transformation of tetracycline (TTC) occurred in the presence of goethite. The transformation kinetics and mechanism of TTC with goethite were investigated to gain a better understanding of the fate of TCs in the natural environment. The results showed that the transformation of TCs by goethite explicitly exhibited two-stage kinetics, wherein an initial period of fast transformation was followed by a continuous slow transformation. Hydroxyl groups on goethite were identified as major reactive sites, among which singly coordinated hydroxyls (FeOH) were more reactive than doubly coordinated hydroxyls (Fe2OH) towards the transformation of TTC. On the basis of transformation rates, speciation of TTC and functional groups on goethite surface, a kinetic model was established successfully describing the transformation of TTC by goethite under conditions of varying reactant concentration and pH. The transformation of TTC by goethite mainly resulted in a N,N-dedimethylation product that did not show antimicrobial properties towards Escherichia coli. This study indicates that Fe(III)-(hydro)oxides in soils and sediments may play an important role in the natural attenuation of tetracycline antibiotics and their bioactivity.
Collapse
Affiliation(s)
- Jingchen Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ruochun Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - H Henry Teng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, The University of Auckland, Auckland 999030, New Zealand
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
22
|
Zhao P, Zhao Y, Cui L, Tian Y, Zhang Z, Zhu Q, Zhao W. Multiple antibiotics distribution in drinking water and their co-adsorption behaviors by different size fractions of natural particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:145846. [PMID: 33631569 DOI: 10.1016/j.scitotenv.2021.145846] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
In recent years, natural particles in drinking water have attracted attention due to their carry of toxic organic matter. However, the adsorption behavior of multiple antibiotics at very low concentrations on different sized particles has not been revealed. Here, the content of 17 antibiotics in water samples collected from four process stages of the water supply plant was detected. Results showed the concentration of antibiotics in water plant was in the range of 0-69.24 ng L-1. Characterization of natural particles obtained directly from raw water of waterworks showed that the surface of large particles (>1 μm) was rougher and the composition was more complex than that of small particles (0.05-1 μm). Besides, the adsorption experiments of four antibiotics (nalidixic acid (NAL), trimethoprim (TMP), roxithromycin (ROX), and penicillin G potassium salt (PG)) on small (0.05-1 μm) and large (>1 μm) natural particles were studied. The results indicated that in the binary antibiotic system, the competition and synergy between antibiotics made a greater proportion of antibiotics soluble in water comparing with single systems, and the particle-water partition coefficient (kp-w) of the total antibiotics ranged from 1.13-1.78 was reduced to 0.57-0.84. The competitive adsorption of antibiotics appeared in the binary system showed that ROX and PG had a higher adsorption capacity than NAL and TMP. Furthermore, in the binary antibiotic systems, small particles played an important role in adsorption, suggesting the urgency of their removing. This work could help predict the possible risks of drinking water and provide some insights into future drinking water treatment.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yuwei Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Limin Cui
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yimei Tian
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhe Zhang
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiqi Zhu
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Weigao Zhao
- Department of Environmental Engineering, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
23
|
Wang P, Shen C, Cong Q, Xu K, Lu J. Enzyme-catalyzed biodegradation of penicillin fermentation residues by β-lactamase OtLac from Ochrobactrum tritici. Microb Cell Fact 2021; 20:117. [PMID: 34120587 PMCID: PMC8201694 DOI: 10.1186/s12934-021-01606-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/05/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Biodegradation of antibiotics is a promising method for the large-scale removal of antibiotic residues in the environment. However, the enzyme that is involved in the biodegradation process is the key information to be revealed. RESULTS In this study, the beta-lactamase from Ochrobactrum tritici that mediates the biodegradation of penicillin V was identified and characterized. When searching the proteins of Ochrobactrum tritici, the β-lactamase (OtLac) was identified. OtLac consists of 347 amino acids, and predicted isoelectric point is 7.0. It is a class C β-lactamase according to BLAST analysis. The coding gene of OtLac was amplified from the genomic DNA of Ochrobactrum tritici. The OtLac was overexpressed in E. coli BL21 (DE3) and purified with Ni2+ column affinity chromatography. The biodegradation ability of penicillin V by OtLac was identified in an in vitro study and analyzed by HPLC. The optimal temperature for OtLac is 32 ℃ and the optimal pH is 7.0. Steady-state kinetics showed that OtLac was highly active against penicillin V with a Km value of 17.86 μM and a kcat value of 25.28 s-1 respectively. CONCLUSIONS OtLac demonstrated biodegradation activity towards penicillin V potassium, indicating that OtLac is expected to degrade penicillin V in the future.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, 050018, China.
- Hebei Province Pharmaceutical Chemical Engineering Technology Research Center, Shijiazhuang, 050018, China.
| | - Chen Shen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Qinqin Cong
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Kaili Xu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jialin Lu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
24
|
Jin X, Wu D, Chen Z, Wang C, Liu C, Gu C. Surface catalyzed hydrolysis of chloramphenicol by montmorillonite under limited surface moisture conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144843. [PMID: 33736360 DOI: 10.1016/j.scitotenv.2020.144843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Phyllosilicates possess high surface acidity under limited surface moisture conditions and are thus able to mediate the abiotic transformation of antibiotics. This route of abiotic transformation has long been ignored given that most of the studies carried out in aqueous phase. In this study, the catalytic performance of cation-exchanged montmorillonites (Mn+-Mts) to the hydrolysis of chloramphenicol (CAP) was investigated under different moisture conditions. Montmorillonite exchanged with Fe3+ and Al3+ show the greatest catalytic activities. Multiple spectroscopic techniques and theoretical calculations indicate that the surface Brønsted- and Lewis-acid properties are sensitive to surface wetting. At lower moisture level (<10%, wt/wt), the strong Brønsted-acid catalysis predominates the hydrolysis of CAP. Attributing to the strong Lewis-acidities, Fe3+-Mt and Al3+-Mt could perform high catalytic activities over a wider moisture range (10- 100%, wt/wt). However, such hydrolysis reaction was almost suppressed at water content >400%. In addition, the presence of natural organic matter (NOM, 1%, wt/wt) had little impact on the catalytic activities of Fe3+-Mt and Al3+-Mt. The results of this study highlight the environmental significance of dry surface reaction by clay minerals as an effective abiotic transformation pathway to the elimination of antibiotics in natural field soil, which is commonly partly hydrated.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Dingding Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Zeyou Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, China
| | - Chao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, China.
| |
Collapse
|