1
|
Wang Z, Li X, Liu H, Mou J, Khan SJ, Lin CSK, Wang Q. Evaluating energy balance and environmental footprint of sludge management in BRICS countries. WATER RESEARCH X 2024; 25:100255. [PMID: 39286461 PMCID: PMC11404187 DOI: 10.1016/j.wroa.2024.100255] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Climate change is driving global endeavours to achieve carbon neutrality and renewable energy expansion. Sludge, a nutrient-rich waste, holds energy potential yet poses environmental challenges that need proper management. We conducted a comprehensive life cycle assessment to evaluate the energy balance and environmental footprint of the most commonly used sludge management scenarios in BRICS countries, namely Brazil, Russia, India, China, and South Africa. Technologies such as incineration and anaerobic digestion with energy recovery units (i.e., cogeneration unit) maximize energy balance and minimize the environmental footprint, with incineration showing a superior performance. Shifting sludge management scenarios from the worst to the best can boost energy production by 1.4-98.4 times and cut the environmental footprint by 1.5-21.4 times. In 2050, these improvements could lead to a 98-fold boost in energy generation and a 25-fold drop in carbon emissions, according to the Announced Pledges Scenarios. Optimizing parameters such as volatile solids and anaerobic digestion efficiency further boosts energy output and minimizes the environmental footprint. This study offers robust evidence to support sustainable sludge management and thus promote energy recovery and carbon neutrality goals, guide technological transitions, and inform policymaking for sustainable development.
Collapse
Affiliation(s)
- Zhenyao Wang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Ultimo, NSW, 2007, Australia
| | - Xuan Li
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Ultimo, NSW, 2007, Australia
| | - Huan Liu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Ultimo, NSW, 2007, Australia
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
| | - Stuart J Khan
- School of Civil Engineering, University of Sydney, NSW 2006, Australia
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, PR China
| | - Qilin Wang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Ultimo, NSW, 2007, Australia
| |
Collapse
|
2
|
Wang F, Ma S, Han X, Liu S, Sun K. Enhancing Phosphorus Release from Sewage Sludge in Anaerobic Digestion via Thermal Hydrolysis Pretreatment: Insights from Phosphorus Speciation and Molecular Biological Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10828-10838. [PMID: 38831418 DOI: 10.1021/acs.est.4c01287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This study explores the mechanisms enhancing phosphorus (P) release from sludge in anaerobic digestion (AD) with thermal hydrolysis pretreatment (THP) using sequential chemical extraction, X-ray absorption near-edge structure spectroscopy (XANES), 31P NMR, and multiomics. THP-treated sludge notably increased liquid-phase P by 53.8% over 3 days compared to sewage sludge (SS), identifying solid-phase Fe-P as the primary P source. The THP+AD also provided a higher abundance of bacteria that contributed to P release through multiple pathways (MPRPB), whereas SS+AD enriched some microbial species with single P release pathway. Moreover, species co-occurrence network analysis underlined the pivotal role of P-releasing bacteria in THP+AD, with 8 out of 16 keystones being P-releasers. Among the 63 screened genes that were related to P transformations and release, the poly beta-hydroxybutyrate (PHB) synthesis genes associated with polyphosphate bacteria-mediated P release were more abundant in THP+AD than in SS+AD. Furthermore, the upregulation of genes involved in methyl phosphonate metabolism in the THP-treated sludge enhanced the methane production potential of the AD process. These findings suggested that MPRPB were indeed the main contributors to P release, and enrichment in the THP+AD process enhanced their capability for P liberation.
Collapse
Affiliation(s)
- Fei Wang
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Shuai Ma
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xiaomin Han
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuhu Liu
- Laboratory of Synchrotron Radiation, Institute of High Energy Physics, The Chinese Academy of Sciences, Beijing 100039, China
| | - Ke Sun
- School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
3
|
Sun T, Cai S, Zhang X, Wang D, Zhang W. Leaching hazards of tire wear particles in hydrothermal treatment of sludge: Exploring molecular composition, transformation mechanism, and ecological effects of tire wear particle-derived compounds. WATER RESEARCH 2024; 257:121669. [PMID: 38728786 DOI: 10.1016/j.watres.2024.121669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/31/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Tire wear particles (TWPs) are considered a significant contributor of microplastics (MPs) in the sludge during heavy rainfall events. Numerous studies have shown that hydrothermal treatment (HT) of sludge can accelerate the leaching of MP-derived compound into hydrothermal liquid, thus impairing the performance of subsequent anaerobic digestion and the quality of the hydrothermal liquid fertilizer. However, the leaching behavior of TWPs in the HT of sludge remains inadequately explored. This study examined the molecular composition of TWP-derived compounds and transformation pathways of representative tire-related additives under different hydrothermal temperatures using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with mass difference analysis. The acute toxicity and phytotoxicity of TWP leachates were assessed using Vibrio qinghaiensis Q67 and rice hydroponics experiments. The results indicated that elevating the hydrothermal temperature not only amplified the leaching behavior of TWPs but also enhanced the chemical complexity of the TWP leachate. Utilizing both suspect and non-target screenings, a total of 144 compounds were identified as additives, including N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PDD), hexa(methoxymethyl)melamine (HMMM), dibutyl phthalate (DBP). These additives underwent various reactions, such as desaturation, acetylation, and other reactions, leading to the formation of different transformation products (TPs). Moreover, certain additives, including caprolactam and 2,2,6,6-tetramethyl-4-piperidinol, demonstrated the potential to form conjugate products with amino acids or Maillard products. Meanwhile, TWP-derived compounds showed significant acute toxicity and detrimental effects on plant growth. This study systematically investigated the environmental fate of TWPs and their derived compounds during the HT of sludge, offering novel insights into the intricate interactions between the micropollutants and dissolved organic matter (DOM) in sludge.
Collapse
Affiliation(s)
- Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Wu LJ, Li XX, Ye F, Liu YX, Yang F, Zhou Q, Lyu YK. Ammonia stripping by in situ biogas self-circulation to upgrade continuous thermophilic and mesophilic digestion of hydrothermal high-solid sludge. BIORESOURCE TECHNOLOGY 2024; 402:130797. [PMID: 38705214 DOI: 10.1016/j.biortech.2024.130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
High-solid anaerobic digestion of hydrothermal sewage sludge has been developed. In order to upgrade the process by focusing on ammonia inhibition, a simply-equipped stripping system without additional alkali or heat supply was introduced by in situ biogas self-circulation. As the determined limit of total ammonia nitrogen at 1500 mg/L and 1000 mg/L for the mesophilic (MAD) and thermophilic anaerobic digestion (TAD) respectively and stripping rate at 5 L/min, continuous MAD and TAD was conducted in parallel. The stripping system successfully polished up the ammonia inhibition, and methanogenic capability of the TAD was promoted to approximately 90.0 % of the potential. Intermittent stripping mode proved usable. More frequent stripping was inevitable for the TAD as compared to the MAD. Hydraulic retention time below 20 d resulted in failure of the stripping mode due to rapid ammonia generation. Overall, this technology was practical in upgrading high-solid sludge digestion by effective ammonia control.
Collapse
Affiliation(s)
- Li-Jie Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| | - Xiao-Xiao Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China
| | - Fei Ye
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yu-Xiang Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, Shanxi, China
| | - Fan Yang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Quan Zhou
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yong-Kang Lyu
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China; Key Laboratory of Coal Science and Technology of Ministry of Education, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
5
|
Xiao Y, Yan T, Yao P, Xiang W, Wu Y, Li J. Co-pyrolysis of sewage sludge and phosphate tailings: Synergistically enhancing heavy metal immobilization and phosphorus availability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 181:44-56. [PMID: 38583272 DOI: 10.1016/j.wasman.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Phosphate tailings (PT) was used to reduce the release of heavy metals (HMs) during pyrolysis and the leachable rate of residual HMs, and simultaneously improve the bioavailability of phosphorus in the sludge-based biochar. The concentration of heavy metals and the fractions determined by BCR method was used to investigate the release and the transformation of Zn, Pb, Mn, Ni and Cu during pyrolysis involved with the effects of temperature and the addition of PT. The respective pyrolysis experiments shows that the release of Zn and Pb increases with temperature for both sewage sludge (SS) and PT, and the bioavailable fractions (F1 + F2) of Mn, Ni, and Cu increases with temperature for PT. During co-pyrolysis, blended samples released lower quantities of Zn and Pb and presented lower bioavailability of HMs than the individual SS or PT. A synergistic effect of co-pyrolysis was evident for volatile Zn and Pb. The decomposition of CaMg (CO3)2 from PT produced CaO, by which the volatile ZnCl2 and PbCl2 were transformed into ZnO and PbO with less volatility and higher reactivity with SiO2 and Al2O3 than the chlorides. Then SiO2 and Al2O3 from SS acted as the final stabilizer to immobilize the oxides. The final product combined with SiO2 and Al2O3, such as ZnSiO4 and ZnAl2O4, were detected. The addition of PT also introduced more Ca and P into sludge to produce biochar with higher concentration of apatite phosphorus with higher bioavailability.
Collapse
Affiliation(s)
- Ya Xiao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Tinggui Yan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China; Collaborative Innovation Center of Guizhou Province for Efficient Utilization of Phosphorus and Fluorine Resources, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Pin Yao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Weixue Xiang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yunqi Wu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jiang Li
- School of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Liu C, Yue Z, Ma D, Li K, Xie Z, Zhang T, Wang J. Effect of hydrothermal carbonization on pyrolysis behavior, nutrients and metal species distribution in municipal sludge. BIORESOURCE TECHNOLOGY 2024; 399:130524. [PMID: 38492652 DOI: 10.1016/j.biortech.2024.130524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
In this study, the effect of hydrothermal carbonation (HTC) on the pyrolysis behavior and the distribution of nutrients and metal species of waste-activated sludge (WAS) was investigated. Results showed that the pyrolysis activation energy range of WAS decreased from 11 to 57 kJ/mol to 10-36 kJ/mol when the hydrothermal carbonization was at 160 °C. As indicated by thermodynamic parameters, the hydrothermal carbonization process reduces the pyrolysis reaction activity of the hydrochar. The results of the chemical analysis indicate that hydrothermal carbonization significantly enhances the release of phosphorus and nitrogen, with maximum recovery at a temperature of 200 °C. The standard measurement and testing protocol revealed that hydrothermal carbonization increased the content of non-apatite inorganic P fraction in hydrochar and enhanced the availability of P. Heavy metal analysis shows that hydrothermal carbonization can strengthen the stability of heavy metals in WAS.
Collapse
Affiliation(s)
- Changhao Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Keyu Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhilin Xie
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Tianqin Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| |
Collapse
|
7
|
Nan H, Yang F, Wang C, Xu X, Qiu H, Cao X, Zhao L. Phosphorus Footprint in the Whole Biowaste-Biochar-Soil-Plant System: Reservation, Replenishment, and Reception. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:166-175. [PMID: 38109361 DOI: 10.1021/acs.jafc.3c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two phosphorus (P)-rich biowastes, sewage sludge (SS) and bone dreg (BD), were selected to clarify P footprints among biowaste, biochar, soil, and plants by introducing a novel "3R" concept model. Results showed that pyrolysis resulted in P transformation from an unstable-organic amorphous phase to a stable-inorganic crystalline phase with a P retention rate of 70-90% in biochar (P reservation). In soil, SSBC released more P in acid red soil and alkaline yellow soil than BDBC, while the opposite result appeared in neutral paddy soil. The P released from SSBC formed AlPO4 by combining with Al in soil, whereas P from BDBC transformed into Ca5(PO4)3F(or Cl) in conjunction with Ca in the soil (P replenishment). Various plants exhibited an uptake of approximately 2-6 times more P from biochar-amended soil than from the original soil (P reception). This study can guide the application of biochar in various soil-plant systems for effective nutrient reclamation.
Collapse
Affiliation(s)
- Hongyan Nan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Fan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200240, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200093, China
| |
Collapse
|
8
|
Luo C, He T, Wang G, Tian M, Dai L, Pu T, Tian G. Up-flow anaerobic sludge blanket treatment of swine wastewater: Effect of heterologous and homologous inocula on anaerobic digestion performance and the microbial community. BIORESOURCE TECHNOLOGY 2023; 386:129463. [PMID: 37429557 DOI: 10.1016/j.biortech.2023.129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/12/2023]
Abstract
The effects of heterogenous (anaerobic sludge from treating distillery sewage, ASDS) and homologous (anaerobic sludge from treating swine wastewater, ASSW) inocula on anaerobic digestion and the microbial community in an up-flow anaerobic sludge blanket treating swine wastewater were compared. The highest chemical oxygen demand removal efficiencies with ASDS (84.8%) and ASSW (83.1%) were obtained with an organic loading rate of 15 kg COD/m3/d. For ASSW compared with ASDS, methane production efficiency was 15.3% higher and excess sludge production was 73.0% lower. The abundance of the cellulose hydrolyzing bacterium Clostridium sensu stricto_1 with ASDS (36.1%) was 1.5 times that with ASSW, while that of Methanosarcina with ASSW (22.9%) was > 100 times that with ASDS. ASDS reduced the content of pathogenic bacteria by 88.0%, while ASSW maintained a low level of pathogenic bacteria. ASSW greatly improved the methane production efficiency of wastewater and is more suitable for treating swine wastewater.
Collapse
Affiliation(s)
- Can Luo
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), China College of Agriculture, Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Tenbing He
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), China College of Agriculture, Institute of New Rural Development, Guizhou University, Guiyang 550025, China
| | - Guoying Wang
- Agricultural Ecology and Resource Protection Station of Guizhou Province, Guiyang 550001, China
| | - Maoyuan Tian
- Agricultural Ecology and Resource Protection Station of Guizhou Province, Guiyang 550001, China
| | - Liangyu Dai
- Agricultural Ecology and Resource Protection Station of Guizhou Province, Guiyang 550001, China
| | - Tianyun Pu
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), China College of Agriculture, Institute of New Rural Development, Guizhou University, Guiyang 550025, China; Soil Fertilizer Work Station of Guizhou Province, Guiyang 550001, China
| | - Guangliang Tian
- Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), China College of Agriculture, Institute of New Rural Development, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Yang L, Guo X, Liang S, Yang F, Wen M, Yuan S, Xiao K, Yu W, Hu J, Hou H, Yang J. A sustainable strategy for recovery of phosphorus as vivianite from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization. WATER RESEARCH 2023; 233:119769. [PMID: 36841170 DOI: 10.1016/j.watres.2023.119769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
A sustainable strategy for P recovery from sewage sludge via alkali-activated pyrolysis, water leaching and crystallization was proposed, and a high value-added product of vivianite was recovered. Effects of the type and dose of alkali activator on P transformation during sludge pyrolysis were investigated. 50 wt% dose of KHCO3 was determined as the alkali-activated pyrolysis condition. The content of water-soluble P (referred to as Water-P) in biochar derived from raw sludge (referred to as RS) and ferric sludge (Fenton's reagent conditioned sludge, referred to as FS) by KHCO3-activated pyrolysis at different temperatures was compared. The Fe element in the Fenton's reagent enhanced the content of Fe-bound P in the dewatered sludge, which was readily transformed into potassium phosphate during KHCO3-activated pyrolysis, thus increasing the Water-P content in the biochar derived from FS. The proportions of Water-P to total P in the biochar samples obtained by KHCO3-activated pyrolysis of RS and FS at 600 °C were 72.5% and 96.2%, respectively, which were notably higher than those in the biochar samples obtained by direct pyrolysis of RS and FS (3.5% and 0.5%), respectively. The water leaching solution of biochar obtained by KHCO3-activated pyrolysis of FS at 600 °C was purified to remove impurity elements, and vivianite with high purity was finally recovered by crystallization. A total P recovery efficiency of 88.08% was achieved throughout the process from sewage sludge to the final vivianite product. This study proposes a promising and sustainable approach for realizing the recovery of high value-added product vivianite from sewage sludge.
Collapse
Affiliation(s)
- Liang Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Xiao Guo
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China.
| | - Fan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Mingxuan Wen
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei 430074, China; Hubei Provincial Research Center of Water Quality Safety and Water Pollution Control Engineering Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
10
|
Mohanakrishna G, Modestra JA. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128386. [PMID: 36423757 DOI: 10.1016/j.biortech.2022.128386] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Bioenergy production is the most sought-after topics at the crunch of energy demand, climate change and waste generation. In view of this, lignocellulosic biomass (LCB) rich in complex organic content has the potential to produce bioenergy in several forms following the pretreatment. Hydrothermal pretreatment that employs high temperatures and pressures is gaining momentum for organics recovery from LCB which can attain value-addition. Diverse bioprocesses such as dark fermentation, anaerobic digestion etc. can be utilized following the pretreatment of LCB which can result in biohydrogen and biomethane production. Besides, integration approaches for LCB utilization that enhance process efficiency and additional products such as biohythane production as well as application of solid residue obtained after LCB pretreatment were discussed. Importance of hydrothermal pretreatment as one of the suitable strategies for LCB utilization is emphasized suggesting its future potential in large scale energy recovery.
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- School of Advanced Sciences, KLE Technological University, Hubballi 580031, Karnataka, India.
| | - J Annie Modestra
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971-87 Luleå, Sweden
| |
Collapse
|
11
|
Zhang C, Hu P, Liu Q, Lu Z, Cao B, Tang Y, Hao T. Biopolymer recovery from waste activated sludge toward self-healing mortar crack. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160107. [PMID: 36370773 DOI: 10.1016/j.scitotenv.2022.160107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Activated sludge (AS) offers great potential for resource recovery considering its high organic and nutrient content. However, low recovery efficiency and high costs are directing the focus toward the high-valuable resource recovery. This study extracted 71.5 ± 5.9 mg/g VSS of alginate-like exopolysaccharides from AS (ALE/AS) and applied it to mortar as a novel biopolymer agent for crack self-healing. With a mortar crack of 120 μm, addition of 0.5 wt% ALE/AS yielded a high crack closure ratio of 86.5 % within 28 days. In comparison to commercial healing agents, marginal flexural strength reduction with ALE/AS addition (17.9 % vs 30.2-50.5 %) was demonstrated. The abundance of COO- group in GG blocks of ALE/AS resulted in a higher cross-link capacity with Ca2+, while the reduction of hydrophilic residues (e.g., COO- and OH) after complexation engendered a lower swelling capacity, which facilitated self-healing and flexural strength maintenance. Molecular dynamics (MD) revealed that lower Ca2+ diffusivity, arising from the stronger electrostatic interactions between the COO- groups and Ca2+, resulted in a high Ca2+ concentration around the cracks, leading to CaCO3 deposition and healed cracks. The outcomes of this study provided light on ALE-based mortar crack healing and presented a possibility for multi-level AS resource recovery.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Peng Hu
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Qing Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau
| | - Zeyu Lu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Benyi Cao
- Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Yuxin Tang
- Institute of Molecule Catalysis and In-Situ/Operando Studies College of Chemistry Fuzhou University, Fuzhou 350116, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau.
| |
Collapse
|
12
|
Kakar FL, Liss SN, Elbeshbishy E. Impact of solid content on hydrothermal pretreatment of municipal sludge prior to fermentation and anaerobic digestion. CHEMOSPHERE 2022; 308:136363. [PMID: 36087725 DOI: 10.1016/j.chemosphere.2022.136363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the impact of the solid sludge content concentrations (SC) on hydrothermal pretreatment (HTP) before fermentation and anaerobic digestion. Five different SC of 3.5%, 7%, 10%, 12%, and 16% were investigated in two different scenarios. The first scenario entailed using only the pretreated samples as substrates, whereas in scenario two, the substrates included pretreated samples combined with the supernatant. Results revealed that the highest overall pCOD solubilization (considering HTP and fermentation) of 64% was achieved for the sample with 12% SC combined with supernatant. The maximum volatile fatty acids production of 2.8 g COD/L occurred with 10% SC without supernatant. The maximum methane yield of 291 mL CH4/g VSS added was attained at 7% SC without supernatant. Furthermore, the results indicated that increasing the SC beyond 7% in scenario 1 and 10% in scenario two led to a decrease in methane yield. Additionally, optimizing for all desired endpoints may be difficult, and there are limits on the increase in SC concerning methane production.
Collapse
Affiliation(s)
- Farokh Laqa Kakar
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Steven N Liss
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada; School of Environmental Studies, Queen's University, Kingston, ON, K7L 3N6, Canada; Department of Microbiology, Stellenbosch University, Private Bag, XI, Matieland, 7602, Stellenbosch, South Africa
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada.
| |
Collapse
|
13
|
Kim HH, Saha S, Hwang JH, Hosen MA, Ahn YT, Park YK, Khan MA, Jeon BH. Integrative biohydrogen- and biomethane-producing bioprocesses for comprehensive production of biohythane. BIORESOURCE TECHNOLOGY 2022; 365:128145. [PMID: 36257521 DOI: 10.1016/j.biortech.2022.128145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The production of biohythane, a combination of energy-dense hydrogen and methane, from the anaerobic digestion of low-cost organic wastes has attracted attention as a potential candidate for the transition to a sustainable circular economy. Substantial research has been initiated to upscale the process engineering to establish a hythane-based economy by addressing major challenges associated with the process and product upgrading. This review provides an overview of the feasibility of biohythane production in various anaerobic digestion systems (single-stage, dual-stage) and possible technologies to upgrade biohythane to hydrogen-enriched renewable natural gas. The main goal of this review is to promote research in biohythane production technology by outlining critical needs, including meta-omics and metabolic engineering approaches for the advancements in biohythane production technology.
Collapse
Affiliation(s)
- Hoo Hugo Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae-Hoon Hwang
- Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450, USA
| | - Md Aoulad Hosen
- Department of Microbiology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Yong-Tae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
14
|
Low-Temperature Pretreatment of Biomass for Enhancing Biogas Production: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Low-temperature pretreatment (LTPT, Temp. < 100 °C or 140 °C) has the advantages of low input, simplicity, and energy saving, which makes engineering easy to use for improving biogas production. However, compared with high-temperature pretreatment (>150 °C) that can destroy recalcitrant polymerized matter in biomass, the action mechanism of heat treatment of biomass is unclear. Improving LTPT on biogas yield is often influenced by feedstock type, treatment temperature, exposure time, and fermentation conditions. Such as, even when belonging to the same algal biomass, the response to LTPT varies between species. Therefore, forming a unified method for LTPT to be applied in practice is difficult. This review focuses on the LTPT used in different biomass materials to improve anaerobic digestion performance, including food waste, sludge, animal manure, algae, straw, etc. It also discusses the challenge and cost issues faced during LTPT application according to the energy balance and proposes some proposals for economically promoting the implementation of LTPT.
Collapse
|
15
|
Liu Y, Yuan H, Zhu N. Accelerated stabilization of high solid sludge by thermal hydrolysis pretreatment in autothermal thermophilic aerobic digestion (ATAD) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115615. [PMID: 35772274 DOI: 10.1016/j.jenvman.2022.115615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Autothermal thermophilic aerobic digestion (ATAD) is a rapid biological treatment technology for sludge stabilization. To improve digestion efficiency and shorten stabilization time, thermal hydrolysis pretreatment was employed before ATAD of high solid sludge. The results showed that accelerated stabilization of high solid sludge (total solid = 10.1%) was achieved by thermal hydrolysis pretreatment with volatile solid removal efficiency of 40.3% after 8 days of ATAD, 11 days earlier than unpretreated sludge. The enhanced release and hydrolysis of intracellular organics resulted in a solubilization degree of 45.3%. The reduced sludge viscosity and improved fluidity after thermal hydrolysis facilitated mixing, aeration and organics degradation during ATAD. Excitation emission matrix analysis indicated that the fluorescence intensity of soluble microbial byproduct and tyrosine-like protein increased markedly after thermal hydrolysis and decreased after ATAD. The proportion of high molecular weight (MW > 10 kDa) substances in the supernatant increased significantly after thermal hydrolysis, while the low MW (MW < 1 kDa) substances decreased after ATAD. The significant difference in microbial composition between the pretreatment and control groups elucidated the accelerated sludge stabilization under thermal hydrolysis. This work provides an efficient and practical strategy to achieve rapid stabilization of high solid sludge.
Collapse
Affiliation(s)
- Yangyang Liu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haiping Yuan
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Nanwen Zhu
- Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Jiang C, Ni BJ, Zheng X, Lu B, Chen Z, Gao Y, Zhang Y, Zhang S, Luo G. The changes of microplastics' behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment. WATER RESEARCH 2022; 221:118744. [PMID: 35728495 DOI: 10.1016/j.watres.2022.118744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Waste activated sludge (WAS) contains high concentrations of microplastics (MPs), which could serve as vectors of various organic pollutants and heavy metals, causing synergistic transportation and pollution. The application of combined hydrothermal pretreatment (HTP) and anaerobic digestion (AD) has raised growing concerns since the low-temperature hydrothermal treatment could enhance the biogas production of WAS. However, the changes in physicochemical properties, adsorption performances, and effects on AD of MPs by HTP have not been studied. The study used three typical MPs in WAS, and it was found that the HTP (170°C & 30min) increased MPs' specific surface area and carbonyl index (CI) while decreasing the relative crystallinity. The adsorption capacity to Cd increased through the carbonylation for polyethylene microplastic (PE-MP) and polystyrene microplastic (PS-MP) while decreasing by the dechlorination for polyvinyl chloride microplastic (PVC-MP). Meanwhile, increased hydrophilicity reduced the adsorption capacities of all three typical MPs for ofloxacin. The above results indicated that the HTP could be worth blocking the adsorption of polar MPs for polar pollutants. For the pristine MPs, only PVC-MP at the highest concentration (0.5 g kg-1 VS) significantly (p < 0.05) reduced methane production by 16.2 ± 3.3% of WAS without the HTP. However, the HTP resulted in significant (p < 0.05) inhibition of methane production of WAS at high concentrations of PE-MP and PVC-MP (e.g., 0.1 and 0.5 g kg-1 VS), which was due to the acceleration of the released toxic plastic additives (dibutyl phthalate, dimethyl phthalate, and bisphenol-A). Microbial analysis showed the abundances of vital anaerobes, such as acid-producing bacteria (Acetoanerrobium and Mesotoga), proteolytic bacteria (Proteiniborus), and methanogens (Methanosaeta) clearly decreased with the PE-MP and PVC-MP after the HTP, which might result in the decreased methane production. The study provided deep-insight of MPs' behaviors during the combined HTP-AD process.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Xiaowei Zheng
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Bei Lu
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Zheng Chen
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Yang Gao
- Bruker (Beijing) Scientific Technology Co. Ltd., Shanghai 200233, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Fudan University, Shanghai 200438, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
17
|
Xing R, Chen Z, Sun H, Liao H, Qin S, Liu W, Zhang Y, Chen Z, Zhou S. Free radicals accelerate in situ ageing of microplastics during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128405. [PMID: 35236030 DOI: 10.1016/j.jhazmat.2022.128405] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Composting is the last "barrier" for microplastics (MPs) in the entry of organic solid wastes into the environment. The transformation of MPs is thought to be mainly driven by microorganisms during composting, whereas the contribution of abiotic processes that involve free radicals is often overlooked. Herein, we provide initial evidence for the generation of free radicals during sludge composting, including environmental persistent free radicals and reactive oxygen species, which accelerate the oxidative degradation of MPs. The ·OH yield of composting fluctuated greatly from 23.03 to 277.18 μmol/kg during composting, which was closely related to the dynamic changes in Fe(II) (R2 = 0.926). Analyses of the composted MPs physicochemical properties indicated that MPs were aged gradually with molecular weights decrease from 18% to 27% and carbonyl index value increase from 0.23 to 0.52. Further investigation suggested that the microbially-mediated redox transformation of iron oxides could occur on the MPs surface accompanied by the production of abundant free radicals, thereby leading to the damage of MPs during composting. These results reveal the critical role of free radicals in MPs ageing under oxic/anoxic alternation conditions of composting and provide new insights into the bio-chemical mechanism of contaminant removal or transformation during sludge composting.
Collapse
Affiliation(s)
- Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zewei Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanyue Sun
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuping Qin
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weizhen Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yan Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Witek-Krowiak A, Gorazda K, Szopa D, Trzaska K, Moustakas K, Chojnacka K. Phosphorus recovery from wastewater and bio-based waste: an overview. Bioengineered 2022; 13:13474-13506. [PMID: 36700471 PMCID: PMC9275867 DOI: 10.1080/21655979.2022.2077894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorus is one of the most important macronutrients needed for the growth of plants. The fertilizer production market uses 80% of natural, non-renewable phosphorus resources in the form of phosphate rock. The depletion of those deposits forces a search for other alternatives, including biological waste. This review aims to indicate the most important ways to recover phosphorus from biowaste, with particular emphasis on wastewater, sewage sludge, manure, slaughter or food waste. A comparison of utilized methods and directions for future research based on the latest research is presented. Combining biological, chemical, and physical methods with thermal treatment appears to be the most effective way for the treatment of wastewater sludge in terms of phosphorus recovery. Hydrothermal, thermochemical, and adsorption on thermally treated adsorbents are characterized by a high phosphorus recovery rate (over 95%). For animal by-products and other biological waste, chemical methods seems to be the most optimal solution with a recovery rate over 96%. Due to its large volume and relatively low phosphorus content, wastewater is a resource that requires additional treatment to recover the highest possible amount of phosphorus. Pretreatment of wastewater with combined methods seems to be a possible way to improve phosphorus recovery. A compressive evaluation of combined methods is crucial for future research in this area.
Collapse
Affiliation(s)
- Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Katarzyna Gorazda
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland
| | - Daniel Szopa
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland,CONTACT Daniel Szopa Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wrocław50-372, Poland
| | - Krzysztof Trzaska
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
19
|
Wang X, Wei-Chung Chang V, Li Z, Song Y, Li C, Wang Y. Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 141:231-239. [PMID: 35149479 DOI: 10.1016/j.wasman.2022.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Food waste digestate (FWD) is a desirable additive in sewage sludge (SS)-based biochar preparation owing to its high contents of intrinsic inorganic minerals and lignocellulosic compounds. In this study, we investigated the co-pyrolysis of SS with FWD at different mixing ratios (4:0, 3:1, 2:2, 1:3, and 0:4; SS:FWD w/w) at 550 °C to synergistically improve the biochar characteristics and immobilize the heavy metals in the SS. The results showed that co-pyrolysis of SS with FWD greatly increased the aromaticity and pH (by 13.22-26.56%) of the blended biochar, and significantly reduced the contents of total and bioavailable heavy metals. The addition of FWD effectively enhanced the conversion of heavy metals from less stable fractions to more stable forms, but led to the transformation of Cr from the residual fraction (F4) to the oxidizable fraction (F3) when the FWD:SS ratio was ≥ 3:1. Overall, the formation of co-crystal compounds, stable kaolinite, and metal oxides together with the enhancement of biochar characteristics during co-pyrolysis significantly reduced the heavy metal-associated ecological risk (potential ecological risk index lower than 15.51) and phytotoxicity (germination index higher than 139.41%) of the blended biochar. These findings suggest that high levels of mineral components in FWD greatly immobilize more heavy metals in biochar.
Collapse
Affiliation(s)
- Xingdong Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Department of Civil Engineering, 23 College Walk, Monash University, Victoria 3800, Australia
| | - Victor Wei-Chung Chang
- Department of Civil Engineering, 23 College Walk, Monash University, Victoria 3800, Australia
| | - Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yang Song
- Resources and Environmental Innovation Institute, Shandong Jianzhu University, Jinan 250101, China
| | - Chunxing Li
- Department of Chemical and Biochemical, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
20
|
Rani P, Bansal M, Pathak VV, Ahmad S. Experimental and kinetic studies on co-digestion of agrifood and sewage sludge for biogas production. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2035928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Punam Rani
- Department of Chemistry, Manav Rachna University, Faridabad, India
- Government College for Women, Faridabad, India
| | - Megha Bansal
- Department of Chemistry, Manav Rachna University, Faridabad, India
| | | | - Shamshad Ahmad
- Department of Energy and Environmental Science, Babasaheb Bhimrao Ambedkar University, Luknow, India
| |
Collapse
|
21
|
Yang L, Jin J, Wang Y, An W, Zhao Y, Cui C, Han L, Wang X. The removal of uranium (VI) from aqueous solution by the anaerobically digested sewage sludge with hydrothermal pretreatment. CHEMOSPHERE 2022; 288:132644. [PMID: 34688715 DOI: 10.1016/j.chemosphere.2021.132644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Anaerobic digestion (AD) with hydrothermal (HT) pretreatment (sequential HT-AD treatment) is a novel technology for sludge management. HT-AD sludge is rich in functional groups and its applications as pollutant sorbents might be a win-win strategy. This study investigated the removal of uranium (VI) from water using HT-AD sludge as affected by solution pH, temperature, and ion strength. The reusability and heavy metal risk of HT-AD sludge were also assessed. The batch sorption experiments demonstrated that even at an acidic initial pH of 3.2, the maximum adsorption of HT-AD sludge for uranium (VI) reached 117.13 mg/g, higher than that of most carbon-based materials. The inner-sphere and out-sphere complexation between uranium (VI) and the HT-AD sludge dominated the adsorption when pH was in the range of 2-6 and 6-11, respectively. The FTIR and XPS analysis indicated that the primary mechanisms of uranium (VI) adsorption by the HT-AD sludge were the surface complexation and the electric attraction between uranium (VI) and the functional groups (e.g. -COO-) on HT-AD sludge. The removal rate of uranium (VI) by HT-AD sludge only decreased by ∼7% after 3 consecutive adsorption cycles. Leaching experiment showed that less than 5% of the total heavy metal were released from HT-AD sludge. Our research proved that HT-AD sludge can be used as an efficient uranium (VI) adsorbent with good reusability and environmental safety.
Collapse
Affiliation(s)
- Lu Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Jie Jin
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yichu Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Weiqi An
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yunao Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Chao Cui
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
22
|
Zhu K, Liu Q, Dang C, Li A, Zhang L. Valorization of hydrothermal carbonization products by anaerobic digestion: Inhibitor identification, biomethanization potential and process intensification. BIORESOURCE TECHNOLOGY 2021; 341:125752. [PMID: 34419878 DOI: 10.1016/j.biortech.2021.125752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Integrating hydrothermal carbonization (HTC) and anaerobic digestion for biorefinery-oriented full utilization of wet organic wastes is a promising emerging technology. The objectives of this study were to identify the potential inhibitory substances, evaluate the biomethane potential of mixed and aqueous products and explore process intensifying strategies. The results indicated that the high HTC temperature of 240 °C resulted in a significantly low methane yield of 60 ± 5 mL/g COD and a high Short chain fatty acid (SCFAs) accumulation of 4174 ± 76 mg/L. GC-MS analysis showed that the contents of inhibitory pyrazines, pyridines and ketones in aqueous fraction at 240 °C substantially increased from 13.14%, 0.4%, 0.55% at 180 °C to 23.34%, 2.89%, 5.13%, respectively. When the aqueous products obtained from 240 °C-HTC was supplemented or pretreated by carbonaceous material, the methane yields were greatly improved and increased to 1.3-fold and 1.8-fold, respectively. These finding could provide some valuable technical information for HTC based biorefinery of organic waste.
Collapse
Affiliation(s)
- Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Qiutong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chao Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| |
Collapse
|
23
|
Wang X, Yuan H, Song X, Li X, Zuo X. Lower temperature hydrothermal pretreatment improves the anaerobic digestion performance of spent cow bedding. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Feng Y, He H, Li D, He S, Yang B, Xue L, Chu Q. Biowaste hydrothermal carbonization aqueous product application in rice paddy: Focus on rice growth and ammonia volatilization. CHEMOSPHERE 2021; 277:130233. [PMID: 34384170 DOI: 10.1016/j.chemosphere.2021.130233] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 06/13/2023]
Abstract
Hydrothermal carbonization (HTC) is known as a green biomass conversion technology. However, it often suffers from the issue of disposing hydrothermal carbonization aqueous products (HCAP). Based on the characterization and composition of acidic HCAP, a rice paddy soil column experiment was conducted to observe the effects of HCAP on ammonia (NH3) volatilization form paddy soil and rice yield. The experiment was designed with five treatments. HCAPs were produced at 220 °C and (SHC220-L) and 260 °C (SHC260-L) derived from poplar sawdust, HCAP produced at 220 °C (WHC220-L) and 260 °C (WHC260-L) derived from wheat straw, and a control group without HCAP application (termed CKU hereafter). The results showed that HCAP treatments increased the rice yield by 4.30%-26.0% compared to CKU. HACPs prepared at lower temperatures (SHC220-L and WHC220-L) mitigated the cumulative NH3 volatilization by 11.2% and 7.6%, respectively, and mitigated yield-scale NH3 volatilization (cumulative NH3 volatilization/total yield) by 14.2% ∼ 22.4%. HCAP significantly improved the N use efficiency of rice. We found that the NH3 volatilization was related to NH4+-N concentration and pH of surface water, soil TOC and NH4+-N oxidation functional genes. This study implied that HCAP could be potentially used as a liquid fertilizer, which will be a potential substitute for chemical N fertilizers. There is still a long way before HCAP can be applied in full-scale for N fertilizer reduction and waste recycle.
Collapse
Affiliation(s)
- Yanfang Feng
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Huayong He
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China
| | - Detian Li
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan, 232001, China
| | - Shiying He
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bei Yang
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihong Xue
- Key Laboratory of Agro-Environment in downstream of Yangze Plain, Ministry of Agriculture and Rural Affairs of the People's Republic of China / Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212001, China.
| | - Qingnan Chu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
25
|
Kakar FL, Purohit N, Okoye F, Liss SN, Elbeshbishy E. Combined hydrothermal and free nitrous acid, alkali and acid pretreatment for biomethane recovery from municipal sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:376-385. [PMID: 34246034 DOI: 10.1016/j.wasman.2021.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/09/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
This study focused on investigating the effect of combined chemical and hydrothermal pretreatment (HTP) on the anaerobic digestibility of thickened waste activated sludge (TWAS). Three different combined pretreatment conditions of HTP + free nitrous acid (FNA), HTP + Acid, and HTP + Alkaline were applied to TWAS. To control and compare the effect of combined pretreatments and a single pretreatment, Acid, Alkaline, FNA and HTP pretreatments were applied done prior to AD. The results of this study revealed that combined pretreatments have higher potential to improve methane production yield and rate but not in the solubilization of COD. The highest methane yield of 275 mL CH4/g TCOD added was achieved for the combined pretreatment with FNA and HTP. HTP + FNA pretreatment was found to produce higher methane yields compared to the combination of other typical acid and alkaline reagents with hydrothermal pretreatment. Methane yields of 594, 527, and 544 L CH4/g VSS added, were achieved for HTP + FNA, HTP + ALK, and HTP + ACID pretreatments, respectively. The preliminary economic analysis showed that out of the combined pretreatment, only combining HTP with FNA is economically feasible.
Collapse
Affiliation(s)
- Farokh Laqa Kakar
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Neha Purohit
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Frances Okoye
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - Steven N Liss
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada; Department of Microbiology, Stellenbosch University, Private Bag, XI, Matieland, 7602 Stellenbosch, South Africa
| | - Elsayed Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
26
|
Zhang C, Liu X, Wang Q, Tang Y, Pavlostathis SG. Comparative assessment of pre- and inter-stage hydrothermal treatment of municipal sludge for increased methane production. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:1126-1137. [PMID: 33523520 DOI: 10.1002/wer.1523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/01/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hydrothermal treatment (HT) is a promising technology to enhance anaerobic digestion (AD) of municipal sludge. However, the capacity of pre- and inter-stage HT (i.e., HT-AD and AD-HT-AD, respectively) to enhance the digestibility of municipal sludge has not been sufficiently explored. This study compared the efficacy of pre- and inter-stage HT performed from 90 to 185°C to enhance methane production from a mixture of primary sludge and waste activated sludge using mesophilic (35°C) biochemical methane potential tests. In both configurations, sludge solubilization increased with HT temperature. HT-AD, and to a greater extent AD-HT-AD, increased the release of ammonium nitrogen. Even though HT at 185°C dramatically increased sludge solubilization, the overall specific methane yield with HT at 185°C was lower than or comparable to that at lower HT temperatures in the HT-AD and AD-HT-AD configurations, respectively. Up to 155°C HT, the overall specific methane yield with the HT-AD configuration was higher by 4.9%-8.3% compared to the AD-HT-AD configuration. However, when the HT energy was considered, compared to the control (i.e., AD of sludge without HT), the net energy gain (ΔE) decreased as the HT temperature increased, becoming negative at an HT of 185°C. The AD-HT-AD configuration resulted in a higher overall volatile solids destruction (by 8.1 to 20.1%). In conclusion, for municipal sludge with a relatively high ultimate digestibility, as was the case in this study, HT-AD is preferable as it has a smaller footprint and is easier to operate than the AD-HT-AD configuration. However, given the significantly higher volatile solids destruction in the AD-HT-AD configuration, compared to the HT-AD configuration, AD-HT-AD may be more beneficial considering post-AD sludge handling processes. PRACTITIONER POINTS: Hydrothermal treatment (HT) increased the rate and extent of methane production from municipal sludge mixture. 155°C was the optimal temperature for either pre- or inter-stage HT to increase biogas production. Pre- and inter-stage HT resulted in comparable ultimate methane production. Pre-stage HT is preferable to inter-stage HT (smaller footprint, easier to operate). AD-HT-AD resulted in significantly higher volatile solids destruction compared to the HT-AD configuration.
Collapse
Affiliation(s)
- Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xiaoguang Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
27
|
Zhu C, Zhu B, Gu X, Li M, Ji R, Zhou Q. Technology and Concept of Wastewater Treatment: Differences Between the Rhine Basin and the Yangtze Basin. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:1059-1064. [PMID: 33963875 DOI: 10.1007/s00128-021-03217-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Based on field visits and literature research, the situations of several typical wastewater treatment plants (WWTPs) in the Rhine basin and the Yangtze basin were investigated, to compare the technology and concept of wastewater treatment in these two areas. Our results showed that WWTPs in the Rhine performed well in pollutant removal, and have shifted their focus to energy production and nutrient recovery; While in the Yangtze basin, most WWTPs still operate on the sole concept of pollution treatment. Though China's WWTPs attach importance to water reclamation, the related technologies are still under development. In years to come, the construction of New Concept WWTPs is expected by Chinese famous experts, to integrate sustainable wastewater treatment and energy/nutrient recovery. To better plan its future avenue in wastewater treatment, China is suggested to learn from the successful practice of energy production and nutrient recovery of WWTPs in the Rhine.
Collapse
Affiliation(s)
- Chenyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Boyang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, 210023, China.
| |
Collapse
|
28
|
Chen Z, Xing R, Yang X, Zhao Z, Liao H, Zhou S. Enhanced in situ Pb(II) passivation by biotransformation into chloropyromorphite during sludge composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124973. [PMID: 33385728 DOI: 10.1016/j.jhazmat.2020.124973] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 05/06/2023]
Abstract
Composting is an effective technology for the disposal and utilization of solid biowastes. However, conventional composting is inefficient for the passivation of heavy metals in solid biowastes, thus limiting the applications of compost derived from solid biowaste. Here, a thermophilic biomineralization strategy was proposed and demonstrated during sludge composting for in situ heavy metals passivation via thermophiles inoculation. It was found that Thermus thermophilus could promote the transformation of Pb(II) into the most stable chloropyromorphite [Pb5(PO4)3Cl, Ksp = 10-84.4] during composting. After 40 days of composting with T. thermophilus FAFU013, the most insoluble residual fractions of Pb increased by 16.0% (from 76.5% to 92.5%), which was approximately 3 times higher than that of the uninoculated control. The DTPA-extractable Pb decreased to 11.5%, which was 14.4% less compared with the uninoculated control, indicating a significant Pb passivation by inoculation of T. thermophilus FAFU013. A series of batch experiments revealed that Pb(II) could be rapidly accumulated by selective biosorption and gradually transformed into chloropyromorphite through the biomineralization of T. thermophilus FAFU013. This study provides new insight into the mechanism of heavy metal passivation during composting and the problem associated with the disposal of Pb-contaminated solid biowastes through the biomineralization of thermophiles.
Collapse
Affiliation(s)
- Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruizhi Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinggui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziqiang Zhao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
29
|
Wang Q, Zhang C, Jung H, Liu P, Patel D, Pavlostathis SG, Tang Y. Transformation and Mobility of Cu, Zn, and Cr in Sewage Sludge during Anaerobic Digestion with Pre- or Interstage Hydrothermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1615-1625. [PMID: 33461291 DOI: 10.1021/acs.est.0c05164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.e., HT-AD or AD-HT-AD, respectively). Complementary sequential chemical extraction and X-ray absorption spectroscopy were used to characterize the speciation and mobility of metals. For the HT-AD system, both Cu and Zn predominantly occur as sulfides in HT hydrochars. Subsequent AD favors the formation of Cu2S and partial transformation of nano-ZnS to adsorbed and organo-complexed Zn species. HT favors the formation of Cr-bearing silicates in hydrochars, whereas Fe(III)-Cr(III)-hydroxide and Cr(III)-humic complex are the predominant Cr species in AD solids. Similar reaction pathways occur in the AD-HT-AD system with some minor differences in metal species and contents, as the first-stage AD changed the sludge matrix. These findings have important implications for understanding the fate and mobility of heavy metals in sludge-derived hydrochars and AD solids.
Collapse
Affiliation(s)
- Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Haesung Jung
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Pan Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Dhara Patel
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
30
|
Wang Q, Zhang C, Patel D, Jung H, Liu P, Wan B, Pavlostathis SG, Tang Y. Coevolution of Iron, Phosphorus, and Sulfur Speciation during Anaerobic Digestion with Hydrothermal Pretreatment of Sewage Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8362-8372. [PMID: 32539353 DOI: 10.1021/acs.est.0c00501] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion (AD) with hydrothermal (HT) pretreatment is an emerging technology for enhanced resource recovery from sewage sludge. This study investigates the speciation of Fe, P, and S during sequential HT-AD treatment of sewage sludge using sequential chemical extraction, X-ray diffraction, and X-ray absorption spectroscopy. Results suggest strong correlations between Fe and P species as well as Fe and S species, affecting the solubility and bioavailability of each other. For instance, much vivianite formed in the hydrochars after HT treatment at low temperature, while more strengite precipitated at higher HT temperature. During the subsequent AD process, microbial reduction of strengite and other Fe(III) species led to the formation of more vivianite, with concurrent P release into the solution and adsorption onto other minerals. HT pretreatment of sewage sludge had a weak effect on the sulfidation of Fe during the AD process. This work has important implications for understanding the nutrient speciation and availability in sludge-derived hydrochars and AD solids. It also provides fundamental knowledge for the selection and optimization of HT pretreatment conditions for enhanced resource recovery through sequential HT-AD process.
Collapse
Affiliation(s)
- Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0512, United States
| | - Dhara Patel
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Haesung Jung
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Pan Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Biao Wan
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0512, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0340, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0512, United States
| |
Collapse
|