1
|
Liu H, Zhang C, Li S, Wang S, Xiao L, Chen J, Xia C, Dai X. Overexpression Bcl-2 alleviated ferroptosis induced by molybdenum and cadmium co-exposure through inhibiting mitochondrial ROS in duck kidneys. Int J Biol Macromol 2025; 291:139118. [PMID: 39719230 DOI: 10.1016/j.ijbiomac.2024.139118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are environmental pollutants with serious nephrotoxicity. B-cell lymphoma 2 (Bcl-2) plays a critical role in modulating mitochondrial ROS (Mito-ROS). Ferroptosis is a form of cell death dependent on lipid peroxidation. However, the impacts of Mo and Cd co-exposure on ferroptosis in duck kidneys and the function of Bcl-2 in the process are still unclear. Ducks and duck primary renal tubular epithelial cells exposed to different doses of Mo and/or Cd were used as the research target. Our work suggested that Mo and/or Cd significantly decreased Bcl-2 protein level and induced ferroptosis with the increase of ferrous ion, lipid peroxidation, TF protein level and the decrease of GPX4, FT protein levels. The Bcl-2 inhibitor HA14-1 exacerbated the changes of these indexes, but Bcl-2 overexpression had the opposite effect. Mito-ROS inhibitor ROS-IN-1 alleviated ferroptosis induced by Mo and Cd. Besides, Bcl-2 was involved in mitochondrial dysfunction induced by Mo and Cd, accompanied by disturbing Mito-ROS, ATP level, mitochondrial complex IV activity, Bcl-2 and COX-2 co-localization, lipid peroxidation, mitochondrial membrane potential (MMP) and mitochondrial structure. These findings substantiated that overexpression Bcl-2 alleviated ferroptosis co-induced by Mo and Cd through reducing Mito-ROS level in duck kidneys.
Collapse
Affiliation(s)
- Hang Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Caiying Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Shanxin Li
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Sunan Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Li Xiao
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jirong Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chenjie Xia
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Xueyan Dai
- College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
2
|
Li M, Huang Y, Shen C, Wang Y, Lin Y, Wang Z, Chen N, Luo Y. Application of quantum dots in cancer diagnosis and treatment: Advances and perspectives. NANO RESEARCH 2025; 18:94907163. [DOI: 10.26599/nr.2025.94907163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
3
|
Gao Y, Zhou L, Ouyang S, Sun J, Zhou Q. Environmental applications and risks of engineered nanomaterials in removing petroleum oil in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174165. [PMID: 38925379 DOI: 10.1016/j.scitotenv.2024.174165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Oil-contaminated soil posed serious threats to the ecosystems and human health. The unique and tunable properties of engineered nanomaterials (ENMs) enable new technologies for removing and repairing oil-contaminated soil. However, few studies systematically examined the linkage between the change of physicochemical properties and the removal efficiency and environmental functions (e.g., potential risk) of ENMs, which is vital for understanding the ENMs environmental sustainability and utilization as a safety product. Thus, this review briefly summarized the environmental applications of ENMs to removing petroleum oil from complex soil systems: Theoretical and practical fundamentals (e.g., excellent physicochemical properties, environmental stability, controlled release, and recycling technologies), and various ENMs (e.g., iron-based, carbon-based, and metal oxides nanomaterials) remediation case studies. Afterward, this review highlights the removing mechanism (e.g., adsorption, photocatalysis, oxidation/reduction, biodegradation) and the impact factor (e.g., nanomaterials species, natural organic matter, and soil matrix) of ENMs during the remediation process in soil ecosystems. Both positive and negative effects of ENMs on terrestrial organisms have been identified, which are mainly derived from their diverse physicochemical properties. In linking nanotechnology applications for repairing oil-contaminated soil back to the physical and chemical properties of ENMs, this critical review aims to raise the research attention on using ENMs as a fundamental guide or even tool to advance soil treatment technologies.
Collapse
Affiliation(s)
- Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Letao Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Shaohu Ouyang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jing Sun
- Center of Eco-environmental Monitoring and Scientific Research, Administration of Ecology and Environment of Haihe River Basin and Beihai Sea Area, Ministry of Ecology and Environment of People's Republic of China, Tianjin 300170, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
4
|
Jiang X, Zhang R, Yao Y, Tang C, Wang B, Wang Z. Effects of Steaming on Chemical Composition of Different Varieties of Purple-Fleshed Sweetpotato. Foods 2024; 13:3168. [PMID: 39410203 PMCID: PMC11475826 DOI: 10.3390/foods13193168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Purple-fleshed sweetpotatoes (PFSPs) are rich in anthocyanins and are one of the health foods of interest. In this study, the effects of steaming on the anthocyanin, starch, soluble sugar, volatile organic compounds (VOCs) and pasting properties of nine PFSPs from China were investigated. The anthocyanin content of raw PFSP ranged from 9 to 185 mg/100 g. The total starch content decreased and soluble sugar content increased in all purple potatoes after steaming. Among the nine PFSPs varieties, Guangshu20 showed the greatest decrease in starch content (30.61%) and the greatest increase in soluble sugar content (31.12%). The pasting properties affected the taste of the PFSPs, with Shuangpihuang having the lowest peak viscosity (720.33 cP) and Guangzishu12 having the highest peak viscosity (2501.67 cP). Correlation studies showed that the anthocyanin content and pasting properties were negatively correlated with most of the sensory indicators, whereas the soluble sugar content of steamed PFSPs was significantly positively correlated with sweetness. A total of 54 VOCs were identified in this study, and aldehydes and terpenoids were the major VOCs in PFSPs. This study provides a theoretical basis for the processing of different PFSP varieties.
Collapse
Affiliation(s)
- Xia Jiang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Rong Zhang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Yanqiang Yao
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Chaochen Tang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| | - Bin Wang
- School of Food Science and Technology, Shihezi University, Shihezi 832000, China;
| | - Zhangying Wang
- Guangdong Province Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.J.); (R.Z.); (Y.Y.); (C.T.)
| |
Collapse
|
5
|
Fu X, Yang C, Su Y, Liu C, Qiu H, Yu Y, Su G, Zhang Q, Wei L, Cui F, Zou Q, Zhang Z. Machine Learning Enables Comprehensive Prediction of the Relative Protein Abundance of Multiple Proteins on the Protein Corona. RESEARCH (WASHINGTON, D.C.) 2024; 7:0487. [PMID: 39324017 PMCID: PMC11423712 DOI: 10.34133/research.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
Understanding protein corona composition is essential for evaluating their potential applications in biomedicine. Relative protein abundance (RPA), accounting for the total proteins in the corona, is an important parameter for describing the protein corona. For the first time, we comprehensively predicted the RPA of multiple proteins on the protein corona. First, we used multiple machine learning algorithms to predict whether a protein adsorbs to a nanoparticle, which is dichotomous prediction. Then, we selected the top 3 performing machine learning algorithms in dichotomous prediction to predict the specific value of RPA, which is regression prediction. Meanwhile, we analyzed the advantages and disadvantages of different machine learning algorithms for RPA prediction through interpretable analysis. Finally, we mined important features about the RPA prediction, which provided effective suggestions for the preliminary design of protein corona. The service for the prediction of RPA is available at http://www.bioai-lab.com/PC_ML.
Collapse
Affiliation(s)
- Xiuhao Fu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Chao Yang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Yunyun Su
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Chunling Liu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Haoye Qiu
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Qingchen Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Leyi Wei
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, Macao SAR, China
- School of Informatics, Xiamen University, Xiamen, China
| | - Feifei Cui
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zilong Zhang
- School of Computer Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
6
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
7
|
Liu J, Wang L, Lin J, Yuan W, Li L, Peng YK, Xiong X, Cao H, Wei X, Ouyang Q, Lippold H, Wang J, Lin K. Applying thallium isotopic compositions as novel and sensitive proxy for Tl(I)/Tl(III) transformation and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169542. [PMID: 38141990 DOI: 10.1016/j.scitotenv.2023.169542] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Thallium is a rare metal known for its highly toxic nature. Recent research has indicated that the precise determination of Tl isotopic compositions using Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP MS) provides new opportunities for understanding Tl geochemical behavior. While isotopic fractionation of Tl derived from anthropogenic activities (e.g., mining, smelting) have been reported, there is limited information regarding Tl influenced by both natural weathering processes and anthropogenic origins. Herein, we investigated, for the first time, the Tl isotopic compositions in soils across a representative Tl-rich depth profile from the Lanmuchang (LMC) quicksilver mine (southwest China) in the low-temperature metallogenesis zone. The results showed significant variations in Tl isotope signatures (ε205Tl) among different soil layers, ranging from -0.23 to 3.79, with heavier isotope-205Tl enrichment observed in the bottom layers of the profile (ε205Tl = 2.18-3.79). This enrichment of 205Tl was not solely correlated with the degree of soil weathering but was also partially associated with oxidation of Tl(I) by Fe (hydr)oxide minerals. Quantitative calculation using ε205Tl vs. 1/Tl data further indicated that the Tl enrichment across the soil depth profile was predominantly derived from anthropogenic origins. All these findings highlight that the robustness and reliability of Tl isotopes as a proxy for identifying both anthropogenic and geogenic sources, as well as tracing chemical alterations and redox-controlled mineralogical processes of Tl in soils. The nascent application of Tl isotopes herein not only offers valuable insights into the behavior of Tl in surface environments, but also establishes a framework for source apportionment in soils under similar circumstances.
Collapse
Affiliation(s)
- Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Lulu Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jingfen Lin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wenhuan Yuan
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Liangzhong Li
- CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xinni Xiong
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Huimin Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qi'en Ouyang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Holger Lippold
- Helmholtz-Zentrum Dresden-Rossendorf e.V. (HZDR) Institut für Ressourcenökologie Forschungsstelle, Leipzig, Germany
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore.
| |
Collapse
|
8
|
Song J, Zheng C, Qiu M, Zhan XP, Zhang Z, Zhang H, Shi N, Zhang L, Yu Y, Nicolaisen M, Xu L, Fang H. Mechanisms Underlying the Overlooked Chiral Fungicide-Driven Enantioselective Proliferation of Antibiotic Resistance in Earthworm Intestinal Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2931-2943. [PMID: 38306257 DOI: 10.1021/acs.est.3c07761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.
Collapse
Affiliation(s)
- Jiajin Song
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Zihan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Luqing Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse 4200, Denmark
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hua Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Dai Y, Sun S, Cao R, Zhang H, Chen J, Geng N. Residual levels and health risk assessment of trace metals in Chinese resident diet. J Environ Sci (China) 2024; 136:451-459. [PMID: 37923455 DOI: 10.1016/j.jes.2022.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2023]
Abstract
Large-scale metal contamination across the food web is an intractable problem due to increasing pollutant emissions, atmospheric transport, and dry and wet deposition of elements. The present study focus on several trace metals that are rarely studied but have special toxicity, including tin (Sn), antimony (Sb), gold (Au), hafnium (Hf), palladium (Pd), platinum (Pt), ruthenium (Ru), tellurium (Te) and iridium (Ir). We investigated trace metals residues and distribution characteristics, and further evaluated the potential health risks from major daily food intakes in 33 cities in China. Sn, Sb, Ir, Hf, and Au were frequently detected in food samples with the concentrations ranged from ND (not detected) to 24.78 µg/kg ww (wet weight). Eggs exhibited the highest residual level of all detected metals (13.70 ± 14.70 µg/kg ww in sum), while the lowest concentrations were observed in vegetables (0.53 ± 0.17 µg/kg ww in sum). Sn accounting for more than 50% of the total trace metals concentration in both terrestrial and aquatic animal origin foods. In terrestrial plant origin foods, Sn and Ir were the most abundant elements. Hf and Au were the most abundant elements in egg samples. In addition, Sb and Ir showed a clear trophic dilution effect in terrestrial environments, while in aquatic ecosystems, Sn, Hf, and Au exhibited obvious trophic amplification effects. The calculated average estimated daily intake (EDI) via food consumption in five regions of China was 0.09 µg/(kg·day), implying the health risk of aforementioned elements was acceptable.
Collapse
Affiliation(s)
- Yubing Dai
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuai Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
10
|
Lin Y, Li X, Zhang S, Yang Q, Zhang R, Zhang X. Congener Variation of Genetic Dependent-Developmental Toxicology in Two Emerging Classes of Dioxin-like Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21650-21661. [PMID: 38078857 DOI: 10.1021/acs.est.3c05622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Emerging classes of dioxin-like compounds (DLCs) like hydroxylated/methoxylated polybrominated diphenyl ethers (HO-/MeO-PBDEs) and polychlorinated diphenyl sulfides (PCDPSs) could lead to diverse adverse outcomes in humans and wildlife, yet knowledge gaps exist in their molecular mechanisms associated with different structures following early life environmental exposure. This study integrated a genetic knockout technique and concentration-dependent reduced zebrafish transcriptome approach (CRZT) to unravel the toxicological pathways underpinning developmental toxicity of four HO-/MeO-PBDEs and five PCDPSs at environmentally relevant doses. Generally, the dependence of aryl hydrocarbon receptor (AhR) on the embryotoxicity and transcriptomic potencies induced by the HO-PBDEs and PCDPSs varied across different congeners. The knockout of the ahr2 gene led to 1.02- to 76.48-fold decreases of DLC-induced embryotoxicities and reduced the transcriptome-based potencies ranging from 1.38 to 2124.74 folds in the CRZT test. The fold changes denoting AhR-mediated potentials significantly increased with the increasing chlorination degrees of MeO-PBDEs and PCDPSs (p < 0.05). Moreover, ahr2 knockout primarily affected the DLC-induced early molecular responses relevant to DNA damage, enzyme activation, and organ development. Our integrated approach revealed the differential role of AhR in mediating the developmental toxicity of emerging DLCs possessing varied structures at environmentally relevant doses.
Collapse
Affiliation(s)
- Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xueyi Li
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shaoqing Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qinyu Yang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
- Jiangsu Province Ecology and Environment Protection Key Laboratory of Chemical Safety and Health Risk, Nanjing 210023, China
| |
Collapse
|
11
|
Naguib GH, Abd El-Aziz GS, Kayal RA, Mira AI, Hajjaj MS, Mously HA, Hamed MT. Cytotoxic effects of dose dependent inorganic magnesium oxide nanoparticles on the reproductive organs of rats. Ann Med 2023; 55:2258917. [PMID: 37769030 PMCID: PMC10540660 DOI: 10.1080/07853890.2023.2258917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Magnesium oxide nanoparticles (MgO NPs) have a variety of applications that have contributed to their elevated popularity, however, the safety and toxic effects on humans are also of concern with these increased applications. There is insufficient data regarding the effect of MgO NPs on reproductive organs, which are crucial aspects to the body's vital physiological functions. The present study was undertaken in male and female rats to assess the reproductive toxicological potential of two doses (low versus high) of MgO NPs on testicular and ovarian tissues. The toxicity was evaluated using histological, hormonal, and oxidative parameters. MATERIAL AND METHODS In this work, magnesium oxide nanoparticles (MgO NPs) were synthesized by the sol-gel route and were characterized by X ray diffraction analysis (XRD) and Fourier transform infra-red spectroscopy (FTIR). Forty-eight adult Wister albino rats were used in this experiment which were divided into groups of male and female, and then further into control, low dose MgO NPs, and high dose MgO NPs. The low dose used was 131.5 mg/kg b.w. (1/10 LD50) while the high dose used was 263 mg/kg b.w. (1/5 LD50). All doses were given orally by gastric tube. After 4 weeks, blood samples were collected to investigate the level of sex hormones and both ovarian and testicular tissues were examined for variable oxidative parameters and histopathological changes by light microscopy. RESULTS The obtained findings showed that high dose of MgO NPs produced considerable changes in sex hormones and stress parameters in both male and female rats in comparison to the low dose and control groups. Histomorphometric analysis demonstrated the presence of histopathological alterations in the testicular and ovarian tissues. CONCLUSION The results of this study showed dose-dependent adverse effects of MgO NPs on the testis and ovary both functionally and histopathologically as compared to the control rats.
Collapse
Affiliation(s)
- Ghada H. Naguib
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Oral Biology, Cairo University School of Dentistry, Cairo, Egypt
| | - Gamal S. Abd El-Aziz
- Department of Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rayyan A. Kayal
- Department of Oral Basic and Clinical Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulghani I. Mira
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maher S. Hajjaj
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hisham A. Mously
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed T. Hamed
- Department of Oral and Maxillofacial Prosthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Fixed Prosthodontics, Cairo University School of Dentistry, Cairo, Egypt
| |
Collapse
|
12
|
Xue C, Li L, Guo C, Gao Y, Yang C, Deng X, Li X, Tai P, Sun L. Understanding the role of graphene oxide in affecting PAHs biodegradation by microorganisms: An integrated analysis using 16SrRNA, metatranscriptomic, and metabolomic approaches. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131811. [PMID: 37307733 DOI: 10.1016/j.jhazmat.2023.131811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Graphene oxide (GO)-promoted microbial degradation technology is considered an important strategy to eliminate polycyclic aromatic hydrocarbons (PAHs) in the environment; however, the mechanism by which GO affects microbial degradation of PAHs has not been fully studied. Thus, this study aimed to analyze the effect of GO-microbial interaction on PAHs degradation at the microbial community structure, community gene expression, and metabolic levels using multi-omics combined technology. We treated PAHs-contaminated soil samples with different concentrations of GO and analyzed the soil samples for microbial diversity after 14 and 28 days. After a short exposure, GO reduced the diversity of soil microbial community but increased potential degrading microbial abundance, promoting PAHs biodegradation. This promotion effect was further influenced by the GO concentration. In a short period of time, GO upregulated the expression of genes involved in microbial movement (flagellar assembly), bacterial chemotaxis, two-component system, and phosphotransferase system in the soil microbial community and increased the probability of microbial contact with PAHs. Biosynthesis of amino acids and carbon metabolism of microorganisms were accelerated, thereby increasing the degradation of PAHs. With the extension of time, the degradation of PAHs stagnated, which may be due to the weakened stimulation of GO on microorganisms. The results showed that screening specific degrading microorganisms, increasing the contact area between microorganisms and PAHs, and prolonging the stimulation of GO on microorganisms were important means to improve the biodegradation efficiency of PAHs in soil. This study elucidates how GO affects microbial PAHs degradation and provides important insights for the application of GO-assisted microbial degradation technology.
Collapse
Affiliation(s)
- Chenyang Xue
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmei Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Guo
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Yingmei Gao
- Shenyang Agricultural University, Shenyang 110016, China
| | - Caixia Yang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Deng
- Yunnan Institute of Eco-environmental Science, Kunming, Yunnan 650034, China
| | - Xiaojun Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Peidong Tai
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lizong Sun
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Lab of Eco-restoration of Reginal Contaminated Environmental, Shenyang University, Ministry of Education, Shenyang 110044, China.
| |
Collapse
|
13
|
Zhang M, Xiao C, Ding L, Wang T, Guo X. Probing the aging process and mechanism of microplastics under reduction conditions. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131185. [PMID: 36921419 DOI: 10.1016/j.jhazmat.2023.131185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/28/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) are becoming a class of pollutants with high global concerns. Research on the aging of MPs has focused on oxidative environments, it is of great interest to study the aging of MPs under reduction conditions. In this study, a reduction environment was constructed by purging nitrogen and adding reducing agents (NaBH4, VC, Na2S, C2Na2O4) to understand the aging behavior and mechanism of MPs. The results proved that PVC occurred aging under four reduction conditions, and the aging degree was the strongest under NaBH4 reduction condition. The aged PVC became broken, particle size decreased, and dechlorination phenomenon was observed. These phenomena were more obvious under the reduction condition in light, which was the superposition of photo-aging and reduction aging. The functional group components of PVC changed (C-C/CC increased, and oxygen-containing functional groups decreased) under reduction conditions, but photo-aging was dominant in the light system. Electron transfer occurred during the reduction process, and the EDC of PVC aged increased and EAC decreased. This study may shed light on a highly efficient aging pathway of MPs that is often overlooked in nature, contributing to understanding the aging behavior of MPs in complex environments.
Collapse
Affiliation(s)
- Mengwei Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chuanqi Xiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Ullah H, Lun L, Rashid A, Zada N, Chen B, Shahab A, Li P, Ali MU, Lin S, Wong MH. A critical analysis of sources, pollution, and remediation of selenium, an emerging contaminant. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1359-1389. [PMID: 35972610 PMCID: PMC9379879 DOI: 10.1007/s10653-022-01354-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/09/2022] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential metalloid and is categorized as emerging anthropogenic contaminant released to the environment. The rise of Se release into the environment has raised concern about its bioaccumulation, toxicity, and potential to cause serious damages to aquatic and terrestrial ecosystem. Therefore, it is extremely important to monitor Se level in environment on a regular basis. Understanding Se release, anthropogenic sources, and environmental behavior is critical for developing an effective Se containment strategy. The ongoing efforts of Se remediation have mostly emphasized monitoring and remediation as an independent topics of research. However, our paper has integrated both by explaining the attributes of monitoring on effective scale followed by a candid review of widespread technological options available with specific focus on Se removal from environmental media. Another novel approach demonstrated in the article is the presentation of an overwhelming evidence of limitations that various researchers are confronted with to overcome achieving effective remediation. Furthermore, we followed a holistic approach to discuss ways to remediate Se for cleaner environment especially related to introducing weak magnetic field for ZVI reactivity enhancement. We linked this phenomenal process to electrokinetics and presented convincing facts in support of Se remediation, which has led to emerge 'membrane technology', as another viable option for remediation. Hence, an interesting, innovative and future oriented review is presented, which will undoubtedly seek attention from global researchers.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Lu Lun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655 China
| | - Audil Rashid
- Faculty of Sciences, Department of Botany, University of Gujrat, Gujrat, 50700 Pakistan
| | - Noor Zada
- Department of Chemistry, Government Post Graduate College, Lower Dir, Timergara, 18300 Pakistan
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058 Zhejiang China
- Zhejiang Provincial Key Laboratory of Organic Pollutant Process and Control, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science, Guiyang, 550081 China
- CAS Center for Excellence in Quaternary Science and Global Change in XI’an, Xi’an, 710061 China
| | - Siyi Lin
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077 China
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Cao J, Guo Z, Ran H, Xu R, Anaman R, Liang H. Risk source identification and diffusion trends of metal(loid)s in stream sediments from an abandoned arsenic-containing mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121713. [PMID: 37105463 DOI: 10.1016/j.envpol.2023.121713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/25/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Stream sediments from mine area are a converging source of water and soil pollution. The risk and development trends of metal(loid)s pollution in sediments from an abandoned arsenic-containing mine were studied using modelling techniques. The results showed that the combined techniques of geographic information system (GIS), random forest (RF), and numerical simulation (NS) could identify risk sources and diffusion trends of metal(loid)s in mine sediments. The median values of As, Cd, Hg, and Sb in sediments were 5.01, 3.02, 5.67, and 3.20 times of the background values of stream sediments in China, respectively. As (14.09%) and Hg (18.64%) pollution in mine stream sediments were severe while As is the main potential risk source with a strong spatial correlation. High-risk blocks were concentrated in the landfill area, with the surrounding pollution shows a decreasing trend of "step-type" pollution. The risk correlation between Hg and As (55.37%) in the landfill area is high. As a case of arsenic, the diffusion capacity of As within 500m is strong and stabilizes at 1 km when driven by the flows of 0.05, 0.5, and 5 m3/s, respectively. With the worst-case scenario flow (86 m3/s), it would take only 147 days for the waters within 3 km to become highly polluted. The high pollution levels in a stream under forecast of different distance intervals (500, 1500, 2000 m) within 6.5 km is arrived at approximate 344, 357, and 384 days, respectively. The study suggested the combined technique of GIS, RF, and NS can serve the risk source identification of contaminated sites and risk forecast of toxic element diffusion in emergency situations.
Collapse
Affiliation(s)
- Jie Cao
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
| | - Hongzhen Ran
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Rui Xu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Huizhi Liang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
16
|
Zhang H, Song J, Zheng Z, Li T, Shi N, Han Y, Zhang L, Yu Y, Fang H. Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation. WATER RESEARCH 2023; 233:119789. [PMID: 36863279 DOI: 10.1016/j.watres.2023.119789] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Co-pollution of soil with pesticide residues and antibiotic resistance genes (ARGs) is increasing due to the substantial usage of pesticides and organic fertilizers in greenhouse-based agricultural production. Non-antibiotic stresses, including those from agricultural fungicides, are potential co-selectors for the horizontal transfer of ARGs, but the underlying mechanism remains unclear. Intragenus and intergenus conjugative transfer systems of the antibiotic resistant plasmid RP4 were established to examine conjugative transfer frequency under stress from four widely used fungicides: triadimefon, chlorothalonil, azoxystrobin, and carbendazim. The mechanisms were elucidated at the cellular and molecular levels using transmission electron microscopy, flow cytometry, RT-qPCR, and RNA-seq techniques. The conjugative transfer frequency of plasmid RP4 between Escherichia coli strains increased with the rising exposure concentrations of chlorothalonil, azoxystrobin, and carbendazim, but was suppressed between E. coli and Pseudomonas putida by a high fungicide concentration (10 µg/mL). Triadimefon did not significantly affect conjugative transfer frequency. Exploration of the underlying mechanisms revealed that: (i) chlorothalonil exposure mainly promoted generation of intracellular reactive oxygen species, stimulated the SOS response, and increased cell membrane permeability, while (ii) azoxystrobin and carbendazim primarily enhanced expression of conjugation-related genes on the plasmid. These findings reveal the fungicide-triggered mechanisms associated with plasmid conjugation and highlight the potential role of non-bactericidal pesticides on the dissemination of ARGs.
Collapse
Affiliation(s)
- Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China; College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR. China
| | - Jiajin Song
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China
| | - Zhiruo Zheng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China
| | - Tongxin Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine CA 92697, United States
| | - Yuling Han
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, PR. China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, PR. China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR. China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, PR. China.
| |
Collapse
|
17
|
Nie Y, Zhang Y, Nie X, Tian X, Dai C, Shi J. Colloidal iron species driven enhanced H 2O 2 decomposition into hydroxyl radicals for efficient removal of methylene blue from water. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130949. [PMID: 36860077 DOI: 10.1016/j.jhazmat.2023.130949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Colloids are wide-spread in natural waters and colloid-facilitated transport via adsorption was established as the most important mechanism for the mobilization of aqueous contaminants. This study reports another possible, but reasonable, role of colloids for the contaminants driven by redox reactions. Under the same conditions (pH 6.0, 0.3 ml 30% H2O2, and 25 °C), the degradation efficiencies of methylene blue (MB) at 240 min over Fe colloid, Fe ion, Fe oxide and Fe(OH)3 were 95.38%, 42.66%, 4.42% and 9.40%. We suggested that, Fe colloid can promote the H2O2 based in-situ chemical oxidation process (ISCO) compared with other iron species such as Fe(Ⅲ) ion, Fe oxide and Fe(OH)3 in natural water. Furthermore, the MB removal via adsorption by Fe colloid was only 1.74% at 240 min. Hence, the occurrence, behavior and fate of MB in Fe colloid containing natural water system mainly depends on the reduction-oxidation rather than adsorption-desorption process. Based on the mass balance of colloidal iron species and characterization of iron configurations distribution, Fe oligomers were the active and dominant components for Fe colloid-driven enhanced H2O2 activation among three types of Fe species. The quick and steady conversion of Fe(III) to Fe(II) was proven to be reason why Fe colloid can efficiently react with H2O2 to produce hydroxyl radicals.
Collapse
Affiliation(s)
- Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yuge Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xueyu Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Chu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, PR China
| | - Jianbo Shi
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
18
|
Zou W, Zhao C, Chen J, Wang Y, Jin C, Zhang X. Systematic stress persistence and recovery patterns of rice (Oryza sativa L.) roots in response to molybdenum disulfide nanosheets. CHEMOSPHERE 2023; 321:138166. [PMID: 36804254 DOI: 10.1016/j.chemosphere.2023.138166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The increasing application of engineered nanomaterials (ENMs) unavoidably leads to environmental release and biological exposure. Understanding the potential hazards of ENMs on crops is essential for appropriate utilization and management. Herein, rice seedlings were hydroponically exposed to molybdenum sulfide (MoS2, a typical ENM) nanosheets at 5-20 mg/L for 7 days and then depurated for another 7 days in a fresh culture medium. Exposure to MoS2 triggered irreversible reductions in root length (by 26.3%-69.9%) and tip number (by 22.2%-66.0%). Integration of biochemical assays, transcriptomic and metabolomics found that oxidative stress induced by MoS2 in roots was persistent, whereas the activation of aquaporins, ionic transportation, and energy synthesis was normalized due to the recovery of nutrient uptake. The down-regulated levels of genes and metabolites associated with peroxidases, hemicellulose synthesis, expansins, and auxins caused persistent structural damages (sclerosis and rupture) of root cell walls. Approximately 64.5%-84.8% of internalized MoS2 nanosheets were degraded, and the successive up-regulation of genes encoding cytochrome P450s and glutathione S-transferases reflected the biotransformation and detoxification of MoS2 in the depuration period. These findings provide novel insights into the persistence and recovery of MoS2 phytotoxicity, which will help advance the risk assessment of MoS2 application on environment.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China.
| | - Chenxu Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Jiayi Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Yihan Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
19
|
Samrot AV, Noel Richard Prakash LX. Nanoparticles Induced Oxidative Damage in Reproductive System and Role of Antioxidants on the Induced Toxicity. Life (Basel) 2023; 13:life13030767. [PMID: 36983922 PMCID: PMC10059981 DOI: 10.3390/life13030767] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Nanotechnology is used in a variety of scientific, medical, and research domains. It is significant to mention that there are negative and severe repercussions of nanotechnology on both individuals and the environment. The toxic effect of nanoparticles exerted on living beings is termed as nanotoxicity. Nanoparticles are synthesized by various methods such as chemical, biological, physical, etc. These nanoparticles’ nanotoxicity has been observed to vary depending on the synthesis process, precursors, size of the particles, etc. Nanoparticles can enter the cell in different ways and can cause cytotoxic effects. In this review, the toxicity caused in the reproductive system and the role of the antioxidants against the nanotoxicity are briefly explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jalan SP2, Bandar Saujana Putra, Jenjarom 42610, Malaysia
- Correspondence:
| | - Lawrence Xavier Noel Richard Prakash
- Department of Biotechnology, School of Bio and Chemical Engineering Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| |
Collapse
|
20
|
Olatunji KO, Madyira DM, Ahmed NA, Ogunkunle O. Experimental evaluation of the influence of combined particle size pretreatment and Fe 3O 4 additive on fuel yields of Arachis Hypogea shells. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:467-476. [PMID: 36128600 PMCID: PMC9925899 DOI: 10.1177/0734242x221122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
A smart energy recovery process can achieve maximum energy recovery from organic wastes. Pretreatment of feedstock is essential to biogas and methane yields during the anaerobic digestion process. This work combined particle size reduction with Fe3O4 nanoparticles to investigate their influence on biogas and methane yields from anaerobic digestion of Arachis hypogea shells. Twenty milligrams per litre of Fe3O4 nanoparticles was implemented with 2, 4, 6 and 8 mm particle sizes and a single treatment of Fe3O4 for 35 days. The treatments were compared with each other and were discovered to significantly (p < 0.05) enhance biogas yield by 37.40%, 50.10%, 54.40%, 51.40% and 35.50% compared with control, respectively. Specific biogas yield recorded was 966.2, 1406, 1552.7, 1317.4, 766.2 and 413 mL g-1 volatile solid. This study showed the combination of Fe3O4 with 6 mm particle size of Arachis hypogea shells produced the optimum biogas and methane yields. The addition of Fe3O4 to particle sizes below 6 mm resulted in over-accumulation of volatile fatty acids and lowered the gas yield. This can be applied on an industrial scale.
Collapse
Affiliation(s)
- Kehinde O Olatunji
- Kehinde O Olatunji, Department of
Mechanical Engineering Science, Faculty of Engineering and the Built
Environment, University of Johannesburg, B3 Lab 22, Johannesburg 200, South
Africa.
| | | | | | | |
Collapse
|
21
|
Guo Z, Zhang Y, Xu R, Xie H, Xiao X, Peng C. Contamination vertical distribution and key factors identification of metal(loid)s in site soil from an abandoned Pb/Zn smelter using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159264. [PMID: 36208763 DOI: 10.1016/j.scitotenv.2022.159264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Soil heterogeneity makes the vertical distribution of metal(loid)s in site soil vary considerably and poses a challenge for identifying the key factors of metal(loid)s migration in site soil profiles. In this study, a machine learning (ML) model was developed to study a typical abandoned Pb/Zn smelter using 267 site soils from 46 drilling points. Results showed that a well-trained ML model could be used to identify the key factors in determining the contamination vertical distribution and predict the metal(loid)s contents in subsurface soil. As, Cd, Pb, and Zn were the primary pollutants and their vertical migration depth arrived to 4-6 m. Based on the predictive performance of different ML algorithms, the extreme gradient boosting (XGB) was selected as the best model to produce accurate predictions for the most metal(loid)s content. Contents of As, Cd, Pb, and Zn in the heavily contaminated zones declined with an increase of soil depth. The metal(loid) contents in surface soil of 0-2 m could be readily used to predict the content of Cd, Cr, Hg, and Zn in subsurface soil from 2 m to 10 m. Based on the metal-specific XGB models, sulfur content, functional area, and soil texture were identified as key factors affecting the vertical distribution of As, Cd, Pb, and Zn in site soil. Results suggested the ML method is helpful to manage the potential environmental risks of metal(loid)s in Pb/Zn smelting site.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Yunxia Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| | - Huimin Xie
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xiyuan Xiao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| |
Collapse
|
22
|
Tang R, Zhu D, Luo Y, He D, Zhang H, El-Naggar A, Palansooriya KN, Chen K, Yan Y, Lu X, Ying M, Sun T, Cao Y, Diao Z, Zhang Y, Lian Y, Chang SX, Cai Y. Nanoplastics induce molecular toxicity in earthworm: Integrated multi-omics, morphological, and intestinal microorganism analyses. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130034. [PMID: 36206716 DOI: 10.1016/j.jhazmat.2022.130034] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of nanoplastics (NPs) at relatively low concentrations to soil fauna at different organismal levels is poorly understood. We investigated the responses of earthworm (Eisenia fetida) to polystyrene NPs (90-110 nm) contaminated soil at a relatively low concentration (0.02 % w:w) based on multi-omics, morphological, and intestinal microorganism analyses. Results showed that NPs accumulated in earthworms' intestinal tissues. The NPs damaged earthworms' digestive and immune systems based on injuries of the intestinal epithelium and chloragogenous tissues (tissue level) and increased the number of changed genes in the digestive and immune systems (transcriptome level). The NPs reduced gut microorganisms' diversity (Shannon index) and species richness (Chao 1 index). Proteomic, transcriptome, and histopathological analyses showed that earthworms suffered from oxidative and inflammatory stresses. Moreover, NPs influenced the osmoregulatory metabolism of earthworms as NPs damaged intestinal epithelium (tissue level), increased aldosterone-regulated sodium reabsorption (transcriptome level), inositol phosphate metabolism (proteomic level) and 2-hexyl-5-ethyl-furan-3-sulfonic acid, and decreased betaine and myo-inositol concentrations (metabolic level). Transcriptional-metabolic and transcriptional-proteomic analyses revealed that NPs disrupted earthworm carbohydrate and arachidonic acid metabolisms. Our multi-level investigation indicates that NPs at a relatively low concentration induced toxicity to earthworms and suggests that NPs pollution has significant environmental toxicity risks for soil fauna.
Collapse
Affiliation(s)
- Ronggui Tang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Dong Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Defu He
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Haibo Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ali El-Naggar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt
| | - Kumuduni Niroshika Palansooriya
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Keyi Chen
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yan Yan
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinghang Lu
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Minshen Ying
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tao Sun
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuntao Cao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhihan Diao
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuxin Zhang
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yichen Lian
- College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Scott X Chang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Department of Renewable Resources, University of Alberta, Edmonton T6G2E3, Canada.
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
23
|
Li Q, Yuan M, Chen Y, Jin X, Shangguan J, Cui J, Chang S, Guo M, Wang Y. The neglected potential source of microplastics from daily necessities: A study on protective mobile phone cases. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129911. [PMID: 36103764 DOI: 10.1016/j.jhazmat.2022.129911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) pollution has become a serious global environment problem. It is therefore of practical significance to investigate the MP pollution caused by using plastic materials on a daily basis. In this study, different protective mobile phone cases (PMPCs) were selected as a representative plastic commodity that are in contact with the human body for long periods to explore the generation and transportation of MPs during 3 months of actual use. The average abundances were 1122 particles cm-2 on the PMPC and 314 particles cm-2 on the palm, respectively. There were four main kinds of MPs produced during the use of different PMPCs, which indicated that waste plastics may be recycled and used as raw materials, resulting in a complex PMPC composition. The median sizes of MPs on the surfaces of PMPCs and palms were 28 and 32 µm, respectively, which were smaller than the sizes reported in other studies. The combined effect of ultraviolet ageing and friction was the main reason for MP generation during daily PMPC use. Based on the results of a fitted regression equation and Monte Carlo simulation, the sharply generation of MPs may occur when PMPC was used for approximately 33 days.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China.
| | - Meng Yuan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yuan Chen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Xinjie Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Jinle Cui
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Shixiang Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Mengran Guo
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Iftikhar M, Noureen A, Jabeen F, Uzair M, Rehman N, Sher EK, Katubi KM, Américo-Pinheiro JHP, Sher F. Bioinspired engineered nickel nanoparticles with multifunctional attributes for reproductive toxicity. CHEMOSPHERE 2023; 311:136927. [PMID: 36273609 DOI: 10.1016/j.chemosphere.2022.136927] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Nickel nanoparticles (Ni-NPs) have potential applications in high-tech sectors such as battery manufacturing, catalysis, nanotube printing and textile. Apart from their increasing utilisation in daily life, there are concerns about their hazardous nature as they are highly penetrable in biological systems. The carcinogenic and mutagenic ability of Ni-NPs is evident but the research gaps are still there concerning the safety evaluation of Ni-NPs regarding male reproductive ability. This controlled randomized research was planned to assess the male reproductive toxicity of Ni-NPs in Sprague Dawley rats. Ni-NPs of spherical shape and mean particle size of 56 nm were used in the study, characterized by SEM, EDS and XRD. The twenty-five healthy rats (200-220 g) were used for toxicity investigation of Ni-NPs and divided into five groups; negative control (0 Ni-NPs), placebo group (0.9% saline) and three Ni-NPs treated groups (@ 15, 30 and 45 mg/kg BW). The results of 14 days of intraperitoneal exposure to Ni-NPs revealed that a higher dose (45 mg/kg BW) of Ni-NPs caused a significant reduction in body weight, serum testosterone, daily sperm production while the testis index and Ni accumulation and histological changes (necrosis in basement membrane and seminiferous tubules, vacuole formation) in testicular tissues increased with increasing dose of Ni-NPs. It can be concluded from the study that Ni-NPs have potential reproductive toxicity. This study provided the baseline data of Ni-NPs toxicity for the male reproductive system and can be applied for risk assessment in Ni-NPs based products.
Collapse
Affiliation(s)
- Mehwish Iftikhar
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Aasma Noureen
- Department of Biology, Virtual University of Pakistan, Faisalabad, 38000, Pakistan; Department of Zoology, Government College for Women University, Faisalabad, 38000, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Uzair
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nagina Rehman
- Department of Zoology, Government College University, Faisalabad, 38000, Pakistan
| | - Emina Karahmet Sher
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom
| | - Khadijah Mohammedsaleh Katubi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
25
|
You X, Chen C, Yang L, Xia X, Zhang Y, Zhou X. Physiological and morphological responses of Chlorella pyrenoidosa to different exposure methods of graphene oxide quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158722. [PMID: 36108851 DOI: 10.1016/j.scitotenv.2022.158722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide quantum dots (GOQDs) can convert the ultraviolet (200- 380 nm) into available wavelength (400- 700 nm) for microalgae cultivation. However, it has not been applied in large-scale microalgae culture due to its high cost and difficulties in recovery. This study proposed a new strategy for the sustainable use of GOQDs, namely, GOQDs solution was added to the outer sandwich of the reactor. Herein, the effects of direct and indirect exposure of different GOQDs concentrations (0, 100, and 1000 mg/L) on the microalgae culture were compared. When microalgae were directly exposed to the GOQDs, 100 mg/L of GOQDs increased the biomass production of microalgae by 24.0 %, while 1000 mg/L of GOQDs decreased biomass production by 31 %. High concentration of GOQDs (direct exposure) could cause extra oxidative stress in the microalgae cells and result in a significant reduction of pigment content. When microalgae were indirectly exposed to the GOQDs, the increased concentration of GOQDs enhanced the growth of microalgae. Compared to the blank group, 1000 mg/L of GOQDs increased the microalgae biomass production and bioenergy by 14.1 % and 40.17 %, respectively. The indirect exposure of GOQDs can effectively avoid photo-oxidation and organelle damage to the microalgae cells. Overall, the indirect exposure of GOQDs is a sustainable way for effectively promoting microalgae growth and reducing the application cost.
Collapse
Affiliation(s)
- Xiaogang You
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Can Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Libin Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China.
| | - Xuefen Xia
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
| |
Collapse
|
26
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
27
|
Feng Y, Lao J, Zou J, Zhu Z, Li D, Liu G, Mao L. Interaction of Graphitic Carbon Nitride with Cell Membranes: Probing Phospholipid Extraction and Lipid Bilayer Destruction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17663-17673. [PMID: 36456188 DOI: 10.1021/acs.est.2c05560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding how nanomaterials interact with cell membranes has important implications for ecotoxicology and human health. Here, we investigated the interactions between graphitic carbon nitride (g-C3N4, CN) and red blood cells, a plausible contact target for nanoparticles when they enter the bloodstream. Through a hemolysis assay, the cytotoxicity of CN derived from different precursors was quantitatively assessed, which is highly related to the surface area of CN. Reactive oxygen species (ROS) generation and lipid peroxidation detection confirmed that CN causes rapid cell membrane rupture by a physical interaction mechanism rather than ROS-related chemical oxidation. Dye leakage assay and theoretical simulation indicated that the less-layered CN is prone to folding inward to wrap and extract lipid molecules from cell membranes. The electron-rich inherent pores of CN play a dominant role in capturing the headgroups of phospholipids, whereas the hydrophobic interaction is critical for the anchoring of lipid tails. Our further experimental evidence demonstrated that the destructive extraction of phospholipids from cell membranes by CN occurs primarily in the outer leaflet, and phosphatidylcholine is the most easily extracted lipid. Moreover, the formation of protein corona on CN was found to decrease the nonspecific interactions but increase steric repulsion, thus mitigating CN cytotoxicity. Overall, our data provide a molecular basis for CN's cytotoxicity.
Collapse
Affiliation(s)
- Yiping Feng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiayong Lao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Jiale Zou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Zhiyu Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Daguang Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou510006, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
28
|
Zhang C, Yang B, Wang H, Xu X, Shi J, Qin G. Metal tolerance capacity and antioxidant responses of new Salix spp. clones in a combined Cd-Pb polluted system. PeerJ 2022; 10:e14521. [PMID: 36545381 PMCID: PMC9762249 DOI: 10.7717/peerj.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
To investigate the physiochemical characteristics of two new clones, Salix matsudana 'J172' (A7) and Salix matsudana 'Yankang1' (A64) in combined Cd-Pb contaminated systems, a hydroponic experiment was designed. The plant biomass, photosynthesis, antioxidant responses and the accumulation of metals in different plant parts (leaf, stem, and root) were measured after 35-day treatments with Cd (15, 30 µM) and Pb (250, 500 µM). The results showed that exposure to Cd-Pb decreased the biomass but increased the net photosynthetic rate for both A7 and A64, demonstrating that photosynthesis may be one of the metabolic processes used to resist Cd-Pb stress. Compared with control, roots exposed to Cd-Pb had higher activity of superoxide dismutase and more malondialdehyde concentrations, which indicated the roots of both clones were apt to be damaged. The concentrations of soluble protein were obviously higher in the roots of A64 than A7, indicating the roles of the antioxidative substance were different between two willow clones. Soluble protein also had significant relationship with translocation factors from accumulation in roots of A64, which illustrated it played important roles in the tolerance of A64 roots to heavy metals. The roots could accumulate more Pb rather than transport to the shoots compared with Cd. The tolerance index was more than 85% on average for both clones under all the treatments, indicating their tolerance capacities to the combined stress of Cd and Pb are strong under the tested metal levels. Both clones are the good candidates for phytoremediation of Cd and Pb by the root filtration in the combined contamination environment.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China,Shaanxi Key Laboratory of Land Consolidation, Xi’an, Chian,Chang’an University, Xi’an, China
| | - Xiaohan Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu province, China
| | - Jiaxing Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong province, China
| | - Guanghua Qin
- Shandong Academy of Forestry, Jinan, Shandong province, China
| |
Collapse
|
29
|
Wang Y, Shi H, Li T, Yu L, Qi Y, Tian G, He F, Li X, Sun N, Liu R. Size-dependent effects of nanoplastics on structure and function of superoxide dismutase. CHEMOSPHERE 2022; 309:136768. [PMID: 36223827 DOI: 10.1016/j.chemosphere.2022.136768] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The ubiquitous existence of nano-plastics (NPs) has attracted widespread concern. Currently, the uptake of NPs by organisms and cells has been reported. However, knowledge about the interaction between NPs and protein is still limited, and there is a gap in research on the size-dependent toxicity of NPs toward protein. In this study, multi-spectroscopic techniques and enzyme activity determination were used to explore the structure and function changes of the main antioxidant enzyme superoxide dismutase (SOD), caused by the binding of NPs with different particle sizes. Results indicated NPs with different sizes can directly interact with SOD. NPs with smaller sizes result in looser skeletons of SOD, while the larger lead to tighter peptide chains. In addition, NPs can bind with SOD to form complexes, and the smaller the NPs are easier to be induced to coalesce by SOD. The surface curvature of 100 nm NPs was more conducive to varying the secondary structure of SOD. NPs of 100 nm and 500 nm can cause greater sensitization of SOD endogenous fluorescence, and increase the polarity around tyrosine residue. The enzyme activity assay further revealed the functional differences caused by the size-dependent effects of NPs. NPs of 100 nm and 20 nm induced a more significant change in SOD activity (increased by 20% and 8%, respectively), while NPs of 500 nm and 1000 nm had a little impact on it. Together, smaller NPs have a greater impact on the structure and function of SOD. This study revealed the size-dependent toxicity of NPs to protein, which provided a rationale for the necessary avoidance and substitution of NPs in engineering applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Huijian Shi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Tao Li
- Shandong Agricultural Technology Extension Center, Shandong Province, 21# Minziqian Road, Jinan, Shandong, 250014, PR China
| | - Lei Yu
- Shandong Agricultural Technology Extension Center, Shandong Province, 21# Minziqian Road, Jinan, Shandong, 250014, PR China
| | - Yuntao Qi
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Guang Tian
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Ning Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China.
| |
Collapse
|
30
|
Li J, Liu K, Li W, Zhang M, Li P, Han J. Removal mechanisms of erythromycin by microalgae Chlorella pyrenoidosa and toxicity assessment during the treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157777. [PMID: 35926608 DOI: 10.1016/j.scitotenv.2022.157777] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microalgae-based biotechnology for antibiotic removal has received increasing attention as an economical and green method. This study investigated the removal mechanism of erythromycin by Chlorella pyrenoidosa and its correlation with the ecotoxic responses of microalgae. The degradation products (DPs) were identified, and their toxicity was predicted. The results indicated that only 4.04 %, 6.28 % and 23.53 % of erythromycin were left after 21-day microalgae treatment in 0.1, 1.0 and 10 mg/L treatments, respectively. Biodegradation contributed 48.62-67.01 %, 16.67-52.32 % and 6.42-24.82 %, while abiotic degradation contributed 8.76-29.61 %, 5.19-41.39 %, and 16.55-51.22 % to erythromycin attenuation in 0.1, 1.0, and 10 mg/L treatments, respectively. The growth and physiological-biochemical parameters of microalgae were slightly affected in low concentration treatment, which may be the main reason that biodegradation was the prominent removal mechanism. By contrast, oxidative damage in high concentration treatment inhibited the cell growth and chlorophyll content of microalgae, which hindered erythromycin biodegradation. In addition, eleven erythromycin degradation products (DPs) were identified during microalgae treatment of 21 days. Seven DPs including DP717, DP715, DP701A, DP701B, DP657, DP643, and DP557, represented higher toxicity to aquatic organisms than erythromycin.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Kai Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Meng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
31
|
Yue Z, Zhou R, Li Q, Ouyang S, Liu L, Zhou Q. Pulmonary Fibrosis Induced by CdSe Nanorods and the Therapy with Modified Procyanidinere. TOXICS 2022; 10:673. [PMID: 36355964 PMCID: PMC9693992 DOI: 10.3390/toxics10110673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The CdSe nanorod as a one-dimensional nanostructure has an excellent performance in many fields, such as healthcare, new energy, and environmental protection. Thus, it is crucial to investigate its potential adverse health effects prior to their wide exposure. The lung tissue would be the main target organ after CdSe nanorods enter living systems. Here, we showed that pulmonary instillation of CdSe nanorods could decrease the vitality of T-SOD and T-AOC in lung tissues of a rat, increase MDA and hydroxyproline levels and lipid peroxidation products, induce mitochondrial cristae breakage and vacuolization, cause inflammatory responses, and finally induce pulmonary fibrosis. The oral administration of modified procyanidinere could significantly increase the content of antioxidant enzymes, scavenge free radicals, reduce lipid peroxidation, and have protective effects on CdSe nanorods-induced pulmonary fibrosis. The benefit is not only in the early inflammatory stage but also in the later stages of the CdSe nanorods-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Zongkai Yue
- Laboratory of Environmental Protection in Water Transport Engineering, Tianjin Research Institute for Water Transport Engineering, Ministry of Transport of the People’s Republic of China, Tianjin 300456, China
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ruiren Zhou
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843-2117, USA
| | - Qingzhao Li
- Preventive Medicine Department and Department of Biological Science, Hebei United University, Tangshan 063000, China
| | - Shaohu Ouyang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Mou A, Yu N, Sun H, Liu Y. Spatial distributions of granular activated carbon in up-flow anaerobic sludge blanket reactors influence methane production treating low and high solid-content wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127995. [PMID: 36150426 DOI: 10.1016/j.biortech.2022.127995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The impacts of granular activated carbon (GAC) spatial distributions in up-flow anaerobic sludge blanket (UASB) reactors treating different solid-content wastewater were evaluated in the present study. When treating high solid-content wastewater, the highest methane yield was observed for UASB supplemented with self-floating GAC (74.2 ± 3.7 %), which was followed by settled + self-floating GAC reactor (65.1 ± 3.8 %), then settled GAC reactor (58.3 ± 1.4 %). When treating low solid-content wastewater, all UASBs achieved improved methane yield, and settled + self-floating GAC reactor achieved the highest methane yield (83.4 ± 3.3 %). Self-floating GAC amended reactor showed the best performance for treating high solid-content wastewater, while settled + self-floating GAC amended reactor was optimal for treating medium and low solid-content wastewater. The spatial distributions of microbial communities differed in the reactors with settled GAC and floating GAC. This study underlines the importance of considering feedwater characteristics when adopting GAC-based UASB processes.
Collapse
Affiliation(s)
- Anqi Mou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
33
|
Huang J, Dong G, Liang M, Wu X, Xian M, An Y, Zhan J, Xu L, Xu J, Sun W, Chen S, Chen C, Liu T. Toxicity of micro(nano)plastics with different size and surface charge on human nasal epithelial cells and rats via intranasal exposure. CHEMOSPHERE 2022; 307:136093. [PMID: 36029863 DOI: 10.1016/j.chemosphere.2022.136093] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023]
Abstract
Micro (nano)plastics (MNPs) have become emerging environmental contaminants, yet their toxicity and systemic effects via intranasal exposure remain unclear. This study investigated the in vitro toxicity of thirteen polystyrene MNPs with different surface functionalization (carboxylic (C-PS), amino (A-PS), and bare (PS)) and sizes (20-2000 nm) on human nasal epithelial cells (HNEpCs) at 10-1250 μg/mL as well as their in vivo toxicity to rats via intranasal administration at 125 μg/mL. The in vitro study showed that PS20, PS50, A-PS50, PS500, and A-PS500 significantly inhibited cell viability, which was dependent on particle concentration. A-PS induced higher cytotoxicity than C-PS and PS, and most MNPs inhibited cell proliferation after 24-h. Flow cytometry analysis suggested that PS induced cell apoptosis, while A-PS caused cell necrosis. MNPs were phagocytosed by HNEpCs and entered nucleus. The in vivo study showed that MNPs inhibited dietary behaviors of rats. Histological analysis indicated that PS20, PS200, and A-PS50 thinned out nasal mucosa. Immunohistochemical analysis revealed that exposure to PS20, PS200, and A-PS50 enhanced expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8). Systemic effects including hepatocyte cytoplasmic vacuolation and renal tubule dilatation were observed. The results suggested that nasal inhalation of MNPs may disturb energy metabolism and damage upper respiratory tract, liver, and kidneys.
Collapse
Affiliation(s)
- Jiayu Huang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Shantou University Medical College, Shantou, Guangdong, 515063, China
| | - Guangyuan Dong
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Shantou University Medical College, Shantou, Guangdong, 515063, China
| | - Miaoting Liang
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Device, Nanchang, Jiangxi, 330029, China
| | - Mingjian Xian
- Department of Neurology, The People's Hospital of Dianbai District, Maoming, Guangdong, 525499, China
| | - Yunsong An
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Jiandong Zhan
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Lingling Xu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jindong Xu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, 808 Tianyuan Road, Guangzhou, Guangdong, 510650, China
| | - Shaohua Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
34
|
Wang S, Zhou Q, Tian Y, Hu X. The Lung Microbiota Affects Pulmonary Inflammation and Oxidative Stress Induced by PM 2.5 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12368-12379. [PMID: 35984995 DOI: 10.1021/acs.est.1c08888] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes respiratory diseases by inducing inflammation and oxidative stress. However, the correlation between the pulmonary microbiota and the progression of pulmonary inflammation and oxidative stress caused by PM2.5 is poorly understood. This study tested the hypothesis that the lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Mice were exposed to PM2.5 intranasally for 12 days. Then, pulmonary microbiota transfer and antibiotic intervention were performed. Histological examinations, biomarker index detection, and transcriptome analyses were conducted. Characterization of the pulmonary microbiota using 16S rRNA gene sequencing showed that its diversity decreased by 75.2% in PM2.5-exposed mice, with increased abundance of Proteobacteria and decreased abundance of Bacteroidota. The altered composition of the microbiota was significantly correlated with pulmonary inflammation and oxidative stress-related indicators. Intranasal transfer of the pulmonary microbiota from PM2.5-exposed mice affected pulmonary inflammation and oxidative stress caused by PM2.5, as shown by increased proinflammatory cytokine levels and dysregulated oxidative damage-related biomarkers. Antibiotic intervention during PM2.5 exposure alleviated pulmonary inflammation and oxidative damage in mice. The pulmonary microbiota also showed substantial changes after antibiotic treatment, as reflected by the increased microbiota diversity, decreased abundance of Proteobacteria and increased abundance of Bacteroidota. These results suggest that pulmonary microbial dysbiosis can promote and affect pulmonary inflammation and oxidative stress during PM2.5 exposure.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
35
|
Maciejewski R, Radzikowska-Büchner E, Flieger W, Kulczycka K, Baj J, Forma A, Flieger J. An Overview of Essential Microelements and Common Metallic Nanoparticles and Their Effects on Male Fertility. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191711066. [PMID: 36078782 PMCID: PMC9518444 DOI: 10.3390/ijerph191711066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/17/2023]
Abstract
Numerous factors affect reproduction, including stress, diet, obesity, the use of stimulants, or exposure to toxins, along with heavy elements (lead, silver, cadmium, uranium, vanadium, mercury, arsenic). Metals, like other xenotoxins, can cause infertility through, e.g., impairment of endocrine function and gametogenesis or excess production of reactive oxygen species (ROS). The advancement of nanotechnology has created another hazard to human safety through exposure to metals in the form of nanomaterials (NMs). Nanoparticles (NPs) exhibit a specific ability to penetrate cell membranes and biological barriers in the human body. These ultra-fine particles (<100 nm) can enter the human body through the respiratory tract, food, skin, injection, or implantation. Once absorbed, NPs are transported to various organs through the blood or lymph. Absorbed NPs, thanks to ultrahigh reactivity compared to bulk materials in microscale size, disrupt the homeostasis of the body as a result of interaction with biological molecules such as DNA, lipids, and proteins; interfering with the functioning of cells, organs, and physiological systems; and leading to severe pathological dysfunctions. Over the past decades, much research has been performed on the reproductive effects of essential trace elements. The research hypothesis that disturbances in the metabolism of trace elements are one of the many causes of infertility has been unquestionably confirmed. This review examines the complex reproductive risks for men regarding the exposure to potentially harmless xenobiotics based on a series of 298 articles over the past 30 years. The research was conducted using PubMed, Web of Science, and Scopus databases searching for papers devoted to in vivo and in vitro studies related to the influence of essential elements (iron, selenium, manganese, cobalt, zinc, copper, and molybdenum) and widely used metallic NPs on male reproduction potential.
Collapse
Affiliation(s)
| | | | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kinga Kulczycka
- Institute of Health Sciences, John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81448-7182
| |
Collapse
|
36
|
Vineeth Kumar CM, Karthick V, Kumar VG, Inbakandan D, Rene ER, Suganya KSU, Embrandiri A, Dhas TS, Ravi M, Sowmiya P. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation. ENVIRONMENTAL RESEARCH 2022; 212:113202. [PMID: 35398077 DOI: 10.1016/j.envres.2022.113202] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The presence and longevity of nanomaterials in the ecosystem, as well as their properties, account for environmental toxicity. When nanomaterials in terrestrial and aquatic systems are exposed to the prevailing environmental conditions, they undergo various transformations such as dissociation, dissolution, and aggregation, which affects the food chain. The toxicity of nanomaterials is influenced by a variety of factors, including environmental factors and its physico-chemical characteristics. Bioaccumulation, biotransformation, and biomagnification are the mechanisms that have been identified for determining the fate of nanomaterials. The route taken by nanomaterials to reach living cells provides us with information about their toxicity profile. This review discusses the recent advances in the transport, transformation, and fate of nanomaterials after they are released into the environment. The review also discusses how nanoparticles affect lower trophic organisms through direct contact, the impact of nanoparticles on higher trophic organisms, and the possible options for remediation.
Collapse
Affiliation(s)
- C M Vineeth Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - V Karthick
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India.
| | - V Ganesh Kumar
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - D Inbakandan
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - K S Uma Suganya
- Department of Biotechnology and Biochemical Engineering, Sree Chitra Thirunal College of Engineering, Pappanamcode, Thiruvananthapuram, 695018, Kerala, India
| | - Asha Embrandiri
- Department of Environmental Health, College of Medicine and Health Sciences, Wollo University, P. O. Box 1145, Dessie, Amhara, Ethiopia
| | - T Stalin Dhas
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - M Ravi
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| | - P Sowmiya
- Centre for Ocean Research, Col. Dr. Jeppiaar Research Park, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, 600119, Tamilnadu, India
| |
Collapse
|
37
|
Chen J, Yang J, Zhao K, Wu Y, Wang X, Zhang Y, Zhao Y, Wang R, Yang Y, Liu Y. Enhancing bioelectrochemical performance of two-dimensional material attached by covalent/metal organic frameworks as cathode catalyst for microbial fuel cells. BIORESOURCE TECHNOLOGY 2022; 360:127537. [PMID: 35777647 DOI: 10.1016/j.biortech.2022.127537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
In this study, covalent/metal organic framework and two-dimensional material (COF-300/ZIF-8@Ti3AlC2) were composited by a three-step distributed feed method for cathode catalyst in microbial fuel cells (MFCs). The growth of irregular cube-like COF-300/ZIF-8 on the Ti3AlC2 substrate was observed. Al, Zn, Ti, N, C and O elements were observed uniformly and more active sites were offered through it. The external output voltage of COF-300/ZIF-8@Ti3AlC2-MFC was 576 mV and this could be almost unchanged for 9 days. The external output power density was 587.01 mW/m2, and that was 1.25 times of COF-300@Ti3AlC2-MFC (469.30 mW/m2) and 1.67 times of COF-300/ZIF-8-MFC (352.09 mW/m2). Ti3AlC2 enhanced the electrical conductivity of the composite by its rich surface functional groups and much more surface active sites. COF-300/ZIF-8 mixture improved the instability and disorder of the monomer. This study would supply technical support for the expanded request of composite materials in microbial electrochemistry.
Collapse
Affiliation(s)
- Junfeng Chen
- School of Life Science, Qufu Normal University, Qufu 273165, PR China.
| | - Jiaqi Yang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Kunqi Zhao
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yiqun Wu
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Xuemei Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yiwen Zhang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yongyue Zhao
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yuewei Yang
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- School of Life Science, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
38
|
Li B, Zhang T, Tang M. Toxicity mechanism of nanomaterials: Focus on endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155417. [PMID: 35472346 DOI: 10.1016/j.scitotenv.2022.155417] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Over the years, although the broad application of nanomaterials has not brought convenience to people's life, growing concern surrounds their safety. Recently, much emphasis has been placed on exploring the toxicity mechanism of nanoparticles. Currently established toxic mechanisms include oxidative stress, inflammatory response, autophagy, and DNA damage. In recent years, endoplasmic reticulum stress (ERS) has gained widespread attention as another toxic mechanism of nanomaterials. It is widely acknowledged that the endoplasmic reticulum (ER) is an important site for protein synthesis, and lipids and Ca+ storage, playing an esseential role in the normal operation of the body functions. When the body's internal environment is damaged, the structure and function of the endoplasmic reticulum are destroyed, leading to a series of biological reactions called endoplasmic reticulum stress (ERS.) This paper reviews the mechanism of ERS in nanomaterial-associated toxicity. The process of ERS and its related unfolded protein response were briefly introduced, summarizing the factors affecting the nanoparticle ability to induce ERS and expounding on the changes of ER morphology after exposure to nanoparticles. Finally, the specific role and molecular mechanism of ERS under the action of different nanoparticles were comprehensively analyzed, including the relationship between ERS and inflammation, oxidative stress, lipid metabolism and apoptosis. This review provides a foothold for future studies on the toxic mechanism of nanoparticles, and provides novel insights into the safe application of nanoparticles and the treatment of diseases.
Collapse
Affiliation(s)
- Binjing Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
39
|
Zou W, Liu Z, Chen J, Zhang X, Jin C, Zhang G, Cao Z, Jiang K, Zhou Q. Impact of sulfhydryl ligands on the transformation of silver ions by molybdenum disulfide and their combined toxicity to freshwater algae. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128953. [PMID: 35462190 DOI: 10.1016/j.jhazmat.2022.128953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The transformation of silver ions (Ag+) mediated by engineered nanomaterials (ENMs) influences the biosafety of Ag-containing products in natural environments. Actually, modification of biomolecules to ENMs in aquatic ecosystems alters their interactions with Ag+. This study discovered that surface functionalization of glutathione (GSH, a sulfhydryl compound ubiquitous in natural waters) on molybdenum disulfide (MoS2) nanoflakes suppressed the redox reaction between 1 T components and Ag+, inhibiting the MoS2-mediated reduction of Ag+ to Ag nanoparticles (AgNPs) in aqueous phase in the dark. However, AgNPs formation (from 2.32 ± 0.35-3.25 ± 0.29 mg/L per day, pH 7.0) and oxidation of MoS2 were remarkably accelerated after GSH binding under light conditions. The dominant electron donator of MoS2 to Ag+ was transformed from the electron-hole pairs to surface ligands driven by the introduction of chromophoric groups was authenticated as the cause for the elevated Ag+ reduction. These processes also occurred between Ag+ and MoS2 at low levels (50 μg/L). Additionally, the joint algal toxicity of GSH-modified MoS2 with Ag+ was weaker than that of pristine MoS2 due to increased retention of free Ag+ and AgNPs formation. Our findings improve the understanding of the interaction between ENMs and Ag+ in aquatic ecosystems.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zhenzhen Liu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Jiayi Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China.
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Kai Jiang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
40
|
Qu J, Liu Y, Meng J, Bi F, Ma S, Zhang G, Wang Y, Tao Y, Jiang Z, Zhang Y. Pinecone-derived magnetic porous hydrochar co-activated by KHCO 3 and K 2FeO 4 for Cr(VI) and anthracene removal from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119457. [PMID: 35561795 DOI: 10.1016/j.envpol.2022.119457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Herein, magnetic porous pinecone-derived hydrochar (MPHCMW) co-activated by KHCO3 and K2FeO4 through one-step microwave-assisted pyrolysis was innovatively synthesized for hexavalent chromium (Cr(VI)) and anthracene (ANT) removal from water. The analyses of characterization consequences and co-activation mechanisms not merely proved the high specific surface area (703.97 m2/g) and remarkable microporous structures of MPHCMW caused by the synergistic chemical activation of KHCO3 and K2FeO4, but also testified successful loading of Fe0 and Fe3O4 on MPHCMW by the process of carbothermal reduction between K2FeO4 and carbon matrix of hydrochar. The resultant MPHCMW possessed pH-dependence for Cr(VI), while adsorption for ANT was hardly impacted by the pH of solution. Moreover, the adsorption processes of MPHCMW could attain equilibrium within 60 min for Cr(VI) and 30 min for ANT with multiple kinetics, and the corresponding adsorption capacity for Cr(VI) and ANT was 128.15 and 60.70 mg/g, respectively. Additionally, the adsorption percentages of MPBCMW for Cr(VI)/ANT was maintained at 87.87/82.64% after three times of adsorption-desorption cycles. Furthermore, pore filling, complexation, electrostatic interaction, reduction and ion exchange were testified to enhance the removal of Cr(VI), while the ANT removal was achieved via π-π stacking, complexation, pore filling and hydrogen bonding force.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiao Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shouyi Ma
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Guangshan Zhang
- Colleg of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China.
| |
Collapse
|
41
|
Wang Y, Sha W, Zhang C, Li J, Wang C, Liu C, Chen J, Zhang W, Song Y, Wang R, Gao P. Toxic effect of triphenyl phosphate (TPHP) on Cyprinus carpio and the intestinal microbial community response. CHEMOSPHERE 2022; 299:134463. [PMID: 35367484 DOI: 10.1016/j.chemosphere.2022.134463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Triphenyl phosphate (TPHP) is a kind of organophosphorus flame retardants, and its use is increasing annually. However, the toxic effect associated with exposure to it has not been adequately investigated. Therefore, in this study, we determined the toxic dose of TPHP in the economic fish species, Cyprinus carpio. Acute and subacute toxicity tests were conducted, and the enrichment of TPHP in the gills, brain, intestines, and liver were determined by Liquid Chromatography-Mass Spectrometry, and the response of carp gut microbial community to TPHP stress was determined using 16 S rRNA gene high-throughput sequencing. Results showed that the 96-h LC50 of TPHP in carp was 7 mg/L. At the 7 d, the order of TPHP absorption was as follows (from highest to lowest): gills > intestine > liver > brain, but at the 28 d and the purification period, the order of TPHP absorption was brain > gills > intestine > liver. TPHP exposure at 3.5 mg/L decreased α-diversity of the intestinal microbial community (p < 0.05), and altered community composition, in particular the relative abundance of dominant microbial populations. Functional profiles of the microbial communities predicted based on 16 S rRNA gene data showed upregulation in the degradation of exogenous substances and energy metabolism of the TPHP-treated groups (p < 0.05), suggesting that intestinal microbial taxa play a role in reducing TPHP toxicity. The results provide insights that could facilitate risk assessments of TPHP pollutants in aquatic environments and the management of associated water pollution.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Weilai Sha
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Chen Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Jiayu Li
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Chao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Chunchen Liu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Junfeng Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Yuhao Song
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| | - Peike Gao
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, 273165, PR China.
| |
Collapse
|
42
|
Sun F, Wang X, Zhang P, Chen Z, Guo Z, Shang X. Reproductive toxicity investigation of silica nanoparticles in male pubertal mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36640-36654. [PMID: 35064498 DOI: 10.1007/s11356-021-18215-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNPs), one of the most produced nanoparticles (NPs) in the world, are used in all aspects of life. The increased application of SiNPs, especially in medicine, has raised considerable concern regarding their toxicological impact. Previous studies have shown that SiNPs can pass through the reproductive barrier and cause reproductive organ dysfunction by destroying Sertoli cells, Leydig cells, and germ cells. However, little is known about the mechanism of SiNPs-induced reproductive toxicity. In the present study, 5-week-old male mice were intraperitoneally administered SiNPs per day for 1 week at a dose of 0.2 mg per mouse. The results showed that SiNPs could cause damage to the structure of the testis and the epididymis and change the reproductive organ coefficients, leading to decreases of 56.1% and 55.3% in the rates of sperm concentration and motility and an increase of 168.8% in the rate of sperm abnormality. Moreover, the serum testosterone level obviously decreased from 18.77 to 5.23 µg/ml after exposure, and the transcription statuses of some key genes involved in the synthesis and transport of testosterone in the testis were also affected. Additional experiments showed that SiNPs exposure during puberty induced oxidative stress and an inflammatory response, as shown by the changed activity of superoxide dismutase (SOD), increased contents of malondialdehyde (MDA), and excess expression of proinflammatory factors, including TNF-α and IL-1β. Furthermore, the administration of SiNPs caused DNA damage and cell apoptosis, which were presented by the increased apoptotic cells in the sections of testis and epididymis and activation of the TNF-α/TNFR I-mediated pro-apoptotic pathway. In conclusion, these results indicate that SiNPs exposure during puberty significantly damaged the structure and function of the testis and epididymis by inducing oxidative stress and cell apoptosis. This study provides novel insight into SiNPs-induced reproductive toxicity during puberty, which warrants a more careful assessment of SiNPs before their application in juvenile supplies.
Collapse
Affiliation(s)
- Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
43
|
Zhou Q, Li D, Zhang S, Wang S, Hu X. Quantum dots bind nanosheet to promote nanomaterial stability and resist endotoxin-induced fibrosis and PM 2.5-induced pneumonia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113420. [PMID: 35298970 DOI: 10.1016/j.ecoenv.2022.113420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Endotoxin lipopolysaccharide (LPS) is a harmful substance commonly found in various environments that causes lung fibrosis. Exposure to PM2.5 also increases the risk of respiratory diseases. Through sulfur-carbon bonds and the edge S effect, GOQDs were used to bind in single-layer molybdenum disulfide (SLMoS2) nanosheets to synthesize SLMoS2@GOQDs heterojunction structures. GOQDs doping greatly increased the water solubility and stabilized of SLMoS2. SLMoS2@GOQDs with catalase-like activity protected cells from ultrastructural and cytomembrane damage and apoptosis induced by LPS. Moreover, the doping of GOQDs enhanced the escape of SLMoS2@GOQDs from cellular uptake and suppressed the release of Mo ions. Nanosheet-cell interface interactions that were regulated by quantum dots supported these positive effects. Immunofluorescence analysis and cell imaging confirmed that the nanomaterial protected against cell injury by regulating the canonical Wnt/β-catenin pathway and the secretion of relevant cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Moreover, SLMoS2@GOQDs also mitigated pneumonia caused by PM2.5 in vivo. Collectively, our findings not only provide a simple and effective approach to control lung diseases (caused by LPS or PM2.5), but also reveal the potential value of heterojunction materials in the fields of toxicology and human health, boosting the application of nanotechnology in the fields of ecotoxicology and environmental safety.
Collapse
Affiliation(s)
- Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dandan Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Suyan Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
44
|
Mo F, Li H, Li Y, Ma C, Wang M, Li Z, Deng N, Zhang C, Xing B, Xu J, Li G, Wang L, Zheng Y, Yang Y. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151380. [PMID: 34780825 DOI: 10.1016/j.scitotenv.2021.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
This present study investigated detoxification mechanisms of leguminous forage Trifolium pratense L. (red clover) seedlings upon exposure to Ag ions (Ag+) on an atomic level. Depressed plant growth (maximum inhibition rate: 46.57%) and significantly altered antioxidase/antioxidant substances levels (maximum inhibition rate: 65.45%/55.41%) revealed that the physiological metabolism was disturbed. Notable lesions were observed in both leaf and root cells at 588 μM Ag+ treatment. All differentially expressed genes (DEGs) were remarkably mapped to biological metabolism related pathways. Red clover seedlings were speculated to initially transform and immobilize Ag+ in the culture medium, then transporting and fixing them inside the cell, mainly as unreduced Ag+ bound to oxygen-, nitrogen-, sulfur-, chloride-containing biological molecules. A portion of Ag+ was reduced to Ag0 and aggregated to form crystalline argentiferous nanoparticles. Effective reducing agents such as alcohols, carboxylic acid, and etc, which are capable of coordinating heavy metals to reduce and stabilize them, were assumed to play a role in Ag+ reduction. The research results are of great value to understand the defense and tolerance mechanisms of red clover to Ag+ and explore the main existing forms of Ag+ in vivo and in vitro, which could indicate contamination condition in regional ecological environment such as mining area and its potential effects.
Collapse
Affiliation(s)
- Fan Mo
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Haibo Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yinghua Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Chuanxin Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Mingshuai Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Zhe Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Ningcan Deng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Chenxi Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| | - Jianing Xu
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Geng Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Lixin Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| | - Yaqin Zheng
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China.
| | - Yue Yang
- School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
45
|
Yang H, Wang H, Wen C, Bai S, Wei P, Xu B, Xu Y, Liang C, Zhang Y, Zhang G, Wen H, Zhang L. Effects of iron oxide nanoparticles as T 2-MRI contrast agents on reproductive system in male mice. J Nanobiotechnology 2022; 20:98. [PMID: 35236363 PMCID: PMC8889634 DOI: 10.1186/s12951-022-01291-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Iron oxide nanoparticles (IONPs)-based contrast agents are widely used for T2-weighted magnetic resonance imaging (MRI) in clinical diagnosis, highlighting the necessity and importance to evaluate their potential systematic toxicities. Although a few previous studies have documented the toxicity concerns of IONPs to major organs, limited data are available on the potential reproductive toxicity caused by IONPs, especially when administrated via intravenous injection to mimic clinical use of MRI contrast agents. Our study aimed to determine whether exposure to IONPs would affect male reproductive system and cause other related health concerns in ICR mice. The mice were intravenously injected with different concentrations IONPs once followed by routine toxicity tests of major organs and a series of reproductive function-related analyses at different timepoints. As a result, most of the contrast agents were captured by reticuloendothelial system (RES) organs such as liver and spleen, while IONPs have not presented adverse effects on the normal function of these major organs. In contrast, although IONPs were not able to enter testis through the blood testicular barrier (BTB), and they have not obviously impaired the overall testicular function or altered the serum sex hormones levels, IONPs exposure could damage Sertoli cells in BTB especially at a relative high concentration. Moreover, IONPs administration led to a short-term reduction in the quantity and quality of sperms in a dose-dependent manner, which might be attributed to the increase of oxidative stress and apoptotic activity in epididymis. However, the semen parameters have gradually returned to the normal range within 14 days after the initial injection of IONPs. Collectively, these results demonstrated that IONPs could cause reversible damage to the reproductive system of male mice without affecting the main organs, providing new guidance for the clinical application of IONPs as T2-MRI contrast agents.
Collapse
Affiliation(s)
- Heyu Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, China
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, China
| | - Chenghao Wen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, China
| | - Shun Bai
- Reproductive and Genetic Hospital, Department of Radiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Pengfei Wei
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Bo Xu
- Reproductive and Genetic Hospital, Department of Radiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Yunjun Xu
- Reproductive and Genetic Hospital, Department of Radiology, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, China
| | - Yunjiao Zhang
- School of Medicine and Institutes for Life Sciences, South China University of Technology, Guangzhou, 510006, China
| | - Guilong Zhang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China.
| | - Huiqin Wen
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, 230022, China. .,Center for Scientific Research of the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China. .,Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
46
|
Guo Z, Wang X, Zhang P, Sun F, Chen Z, Ma W, Meng F, Hao H, Shang X. Silica nanoparticles cause spermatogenesis dysfunction in mice via inducing cell cycle arrest and apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113210. [PMID: 35051769 DOI: 10.1016/j.ecoenv.2022.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The widespread use of silica nanoparticles (SiNPs) has increased the risk of human exposure, which raised concerns about their adverse effects on human health, especially the reproductive system. Previous studies have shown that SiNPs could cause damage to reproductive organs, but the specific mechanism is still unclear. In this study, to investigate the underlying mechanism of male reproductive toxicity induced by SiNPs, 40 male mice at the age of 8 weeks were divided into two groups and then intraperitoneally injected with vehicle control or 10 mg/kg SiNPs per day for one week. The results showed that SiNPs could damage testicular structure, perturb spermatogenesis and reduce serum testosterone levels, leading to a decrease in sperm quality and quantity. In addition, the ROS level in the testis of exposed mice was significantly increased, followed by imbalance of the oxidative redox status. Further study revealed that exposure to SiNPs led to cell cycle arrest and apoptosis, as shown by downregulation of the expression of positive cell cycle regulators and the activation of TNF-α/TNFR Ⅰ-mediated apoptotic pathway. The results demonstrated that SiNPs could cause testicles injure via inducing oxidative stress and DNA damage which led to cell cycle arrest and apoptosis, and thereby resulting in spermatogenic dysfunction.
Collapse
Affiliation(s)
- Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China; Hebei Key Laboratory for Chronic Diseases, People's Republic of China
| | - Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Wendong Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Fangyu Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Huiyu Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, People's Republic of China.
| |
Collapse
|
47
|
Chen Y, Li J, Yuan P, Wu Z, Wang Z, Wu W. Graphene oxide promoted chromium uptake by zebrafish embryos with multiple effects: Adsorption, bioenergetic flux and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149914. [PMID: 34474293 DOI: 10.1016/j.scitotenv.2021.149914] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The increasing production and application of graphene oxide (GO, a popular carbon nanomaterial), makes their release into aqueous environment inevitably. The capability of GO to enhance the toxicity of background contaminants has been widely concerned. However, the effect of GO on heavy metal accumulation in fish embryos remains unclear. Here, we show that GO-promoted chromium (Cr) uptake by zebrafish embryos with multiple effects. The adsorption accelerated the aggregation and settlement of Cr6+-adsorbed GO and decreased the Cr6+ concentration in the upper water, which enhanced the interaction of chorions and contaminants (Cr6+, GO and Cr6+-adsorbed GO). In the presence of GO, the Cr content in chorions and intra-chorion embryos was increased by four times and 57% respectively, compared to that of the single Cr6+ exposure. Furthermore, GO+Cr6+ increased the oxygen consumption rates, embryonic acid extrusion rates and ATP production, induced more serious oxidative stress, and disturbed amino acid metabolism, fatty acid metabolism and TCA cycle. These findings provide new insights into the effect of GO on heavy metal bioaccumulation and toxicity during embryogenesis.
Collapse
Affiliation(s)
- Yuming Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jitong Li
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases/Henan Neural Development Engineering Research Center for Children, Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China.
| | - Zhineng Wu
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhaoxin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weidong Wu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
48
|
He Y, Zhang B, Wu Y, Ouyang J, Huang M, Lu S, Sun H, Zhang T. A pilot nationwide baseline survey on the concentrations of Neonicotinoid insecticides in tap water from China: Implication for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118117. [PMID: 34534832 DOI: 10.1016/j.envpol.2021.118117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/21/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NEOs) have become the most widely used insecticides in the world. However, information on the NEO concentrations in tap water based on nationwide surveys is limited in China. In this study, the levels of six NEOs were measured in tap water samples collected from 38 cities in China. Across all sampling locations, the overall frequency of detection for at least one NEO was 100%, indicating that NEOs are ubiquitous in tap water from China. Imidacloprid was the most abundant NEO (median: 7.59 ng/L), followed by (in decreasing order) clothianidin (5.46 ng/L), dinotefuran (4.55 ng/L), thiamethoxam (4.50 ng/L), acetamiprid (2.72 ng/L), and thiacloprid (0.38 ng/L). Significantly positive correlations (r = 0.655-0.902, p < 0.001) among all pairs of NEOs were observed, which showed that the sources of NEOs in tap water were common or related. Across all sampling locations, regional differences in concentrations (ΣNEOs; sum of six NEOs varied from 0.79 ng/L to 415 ng/L) were observed within China, showing an increasing trend from northern to southern China. Although the estimated daily intake of NEOs were much lower than the reference dose, the potential health risk of NEOs via tap water consumption should raise more public concern considering the high detection rates of NEOs in tap water.
Collapse
Affiliation(s)
- Yuan He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Yili Wu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Jiping Ouyang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China
| | - Mingzhi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, 510275, China.
| |
Collapse
|
49
|
Zhou L, Zhang C, Qiang Y, Huang M, Ren X, Li Y, Shao J, Xu L. Anthocyanin from purple sweet potato attenuates lead-induced reproductive toxicity mediated by JNK signaling pathway in male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112683. [PMID: 34438266 DOI: 10.1016/j.ecoenv.2021.112683] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The present work aimed to explore the protective effect of APSP on Pb-induced reproductive toxicity and possible mechanism. APSP (100 mg/kg) was administered to Pb-intoxicated (0.2% lead acetate) male Kunming mice once daily by oral gavage for 6 weeks. Our results showed that APSP exerted male reproductive protection effects as showed by attenuated Pb-induced testicular injury, improved sperm count and motility, and reduced sperm abnormality rate. APSP also restored Pb-induced decrease in both enzymatic and non-enzymatic antioxidants, and GSH/GSSG ratio, but inhibited lipid peroxidation in serum and testes. Moreover, APSP downregulated Pb-induced Bax mRNA and protein expressions, suppressed activation of caspase-3, upregulated Bcl-2 protein expression, and prevented Pb-induced DNA damage. APSP treatment also interfered with Pb-induced testicular JNK signaling through inhibition of JNK mRNA expression and phosphorylation, resulting in inhibition of c-Jun expression. These effects of APSP were abolished by Pb. In conclusion, APSP represents a potential therapeutic agent for preventing Pb-caused reproductive toxicity, which is attributed to its antioxidant and anti-apoptotic properties, as well as, modulation of JNK signaling pathway.
Collapse
Affiliation(s)
- Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yu Qiang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Min Huang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jihong Shao
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Lichun Xu
- Department of Hygiene, School of Public Health, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
50
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|