1
|
Sun B, Hu C, Chen L. Fish Skin Mucus Vitellogenin as a Noninvasive, Sensitive Biomarker for Aquatic Xenoestrogens. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:414-424. [PMID: 40270534 PMCID: PMC12012661 DOI: 10.1021/envhealth.4c00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/02/2025] [Accepted: 01/05/2025] [Indexed: 04/25/2025]
Abstract
Environmental estrogens (EEs) can induce vitellogenin (VTG) in fish skin mucosa. However, the applicability of mucus VTG in aquatic xenoestrogen monitoring warrants comprehensive exploration. Here, we employed different estrogen exposure scenarios to compare the applicability of mucus VTG and other conventional biomarkers in zebrafish for EE monitoring. After acute exposure to 17α-ethynylestradiol (EE2) at various concentrations, mucus VTG demonstrated higher sensitivity in male zebrafish than in female zebrafish. Mucus VTG change patterns were similar to liver and blood VTG change patterns in males. Time-course exposure experiments revealed that male mucus VTG responded to EE2 much earlier than male liver and blood VTG, underlining the promise of mucus VTG as an early warning signal of aquatic estrogenicity. Exposure to multiple EEs further validated the high sensitivity of male mucus VTG. Proteomics analysis revealed that EE2 exposure potently shifted the proteome structure of male mucosa, and the VTG1 isoform was noted to be the most suitable biomarker. Overall, our results refine the roles of mucus VTG1 from male fish as a noninvasive, rapid, and sensitive biomarker of aquatic xenoestrogens, applicable to ecological risk assessment for animal welfare and ecosystem protection. Future ecological studies may only need to sample male fish mucus without sacrificing females.
Collapse
Affiliation(s)
- Baili Sun
- Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School
of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute
of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Ahmad M, Liu M, Yang Z, Zhang H, Nabi G, Hao Y, Chen L. Perfluorooctane sulfonate causes DNA damage and apoptosis via oxidative stress in umbilical cord fibroblast cells of Yangtze finless porpoise. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178030. [PMID: 39662399 DOI: 10.1016/j.scitotenv.2024.178030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Yangtze finless porpoise (YFP) is a critically endangered species in China. It has been found that YFP is constantly exposed to perfluorooctane sulfonate (PFOS) in aquatic environments, leading to significant bioaccumulation. However, the impacts of PFOS on YFP health and survival are still unknown. To circumvent the limitations in YFP research, this study used YFP umbilical cord fibroblast cell line and exposed the cells to PFOS for 48 h, with objectives to uncover the cytotoxicity and mechanisms of PFOS in YFP. A high-throughput proteomics assay showed that PFOS exposure at 50 μM for 48 h perturbed the proteome structure in YFP umbilical cord fibroblast cells. Functional annotation found the high relevance of oxidative stress, mitochondrial oxidative phosphorylation, and DNA damage to PFOS cytotoxic mechanisms. Concordantly, PFOS exposure significantly increased the deposition of reactive oxygen species (ROS) in YFP cells. The potential of mitochondria to produce ATP was also compromised by PFOS, which was accompanied by the higher permeability of mitochondrial membrane. In addition, exposure of YFP umbilical cord fibroblast cells to 50 μM PFOS damaged the DNA assembly as evidenced by the increase in the percentage of DNA fragmentation. Gene transcription and enzymatic activity of caspases were up-regulated by PFOS, subsequently favoring the occurrence of early and late apoptosis. It was notable that ROS scavenger could successfully mitigate the cytotoxicity of PFOS on oxidative stress and apoptosis, thus pinpointing ROS as the molecular initiating event in apoptosis endpoints. To our knowledge, this is the first study that investigates the detrimental effects of PFOS using YFP umbilical cord fibroblast cells. The data will support an accurate assessment of ecological risks imposed by environmental pollutants on the health and sustainability of YFP, which is especially important under the context of sharp decline in YFP population and national initiative in YFP conservation.
Collapse
Affiliation(s)
- Maaz Ahmad
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixie Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haobo Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
3
|
Sun B, Hu C, Li J, Yang Z, Chen L. Interaction between young fecal transplantation and perfluorobutanesulfonate endocrine disrupting toxicity in aged recipients: An estrobolome perspective. ENVIRONMENT INTERNATIONAL 2024; 193:109133. [PMID: 39515036 DOI: 10.1016/j.envint.2024.109133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Transplanting young feces into the aged was found to effectively counteract the endocrine disrupting effects of perfluorobutanesulfonate (PFBS) pollutant, showing promise in the maintenance of healthy aging. However, the interactive mechanisms between young fecal transplantation and PFBS endocrine disruption during aging remain unclear. In this follow-up study, aged zebrafish were administered young donor feces and then exposed to environmentally relevant concentrations of PFBS (0 and 100 μg/L). Alterations in the holistic estrobolome along gut-liver axis were investigated. The results showed that PFBS singular exposure significantly increased blood estradiol concentration in the aged, inducing an estrogenic activity. Concentrations of other estrogen forms, including estrone and estriol, were also disrupted by PFBS. Interestingly, young fecal transplant effectively mitigated the estrogenic toxicity of PFBS and largely restored estrogen equilibrium. After PFBS exposure, the transcriptions of estrogen metabolic genes were consistently upregulated in aged livers, causing the accumulation of 2-methoxyestradiol-3-methylether metabolite. In contrast, aged livers coexposed to young fecal transplant and PFBS enhanced the glucuronidation process, successfully facilitating the elimination and detoxification of estrogen metabolites. In aged gut, PFBS exposure inhibited β-glucuronidase enzyme activity, implying the suppression of estrogen deconjugation and recycle. However, in the combined group, β-glucuronidase activity was significantly stimulated, thus reestablishing estrobolome dynamics. Overall, current findings provide mechanistic insights into the antagonistic interaction between young fecal transplant and PFBS on reproductive endocrinology. Gut microbiota manipulation appears appealing to maintain healthy aging progression albeit the interruption of environmental xenobiotics.
Collapse
Affiliation(s)
- Baili Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixie Yang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Ahmad M, Hu C, Liu M, Zhang H, Shah SAUR, Nabi G, Hao Y, Chen L. Cytotoxicity and mechanisms of perfluorobutane sulfonate (PFBS) in umbilical cord fibroblast cells of Yangtze finless porpoise. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107098. [PMID: 39298911 DOI: 10.1016/j.aquatox.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Yangtze finless porpoises (YFP) accumulate high levels of per- and polyfluoroalkyl substances (PFASs). However, the health impacts of PFASs to YFP are still unknown because it is technically and ethically unfeasible to use the critically endangered YFP in toxicological exposures. To uncover the potential toxicities of PFASs to YFP, this study exposed a YFP umbilical cord fibroblast cell line to perfluorobutane sulfonate (PFBS), an emerging PFASs pollutant in the aquatic environments. After exposure, the cytotoxicity and mechanisms of PFBS were explored. Our preliminary experiments found that PFBS compromised the cell viability in a concentration and duration dependent manner. In an exposure of 48-h duration, the maximum no observed effect concentration (NOEC) of PFBS was determined to be 400 µM. High-throughput proteomics were then conducted to identify the differentially expressed proteins in YFP cells exposed to 400 µM PFBS for 48 h. The results found that PFBS exposure significantly perturbed the proteome fingerprints of YFP umbilical cord fibroblast cells. Functional annotation of differential proteins showed that PFBS had the potential to impair a variety of biological processes associated with the immunity, oxidative stress, metabolism, and proteolysis. Consistently, the intracellular levels of reactive oxygen species (ROS) and proinflammatory cytokine IL-1β were significantly increased by PFBS in YFP umbilical cord fibroblast cells. Overall, this study highlights the toxic effects of emerging PFASs on YFP and provides reference data to evaluate the health risks of aquatic pollution under the context of national YFP protection. To our knowledge, this is the first omics study using YFP umbilical cord fibroblast cells in ecotoxicology of PFASs, which is applicable to various cetacean species and pollutants.
Collapse
Affiliation(s)
- Maaz Ahmad
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haobo Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Syed Ata Ur Rahman Shah
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ghulam Nabi
- Department of Zoology, Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Yujiang Hao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Wu Q, Gong A, Liu X, Hou J, Liu H, Yang Z, Zhu Y. Probiotics Alleviate Microcystin-LR-Induced Developmental Toxicity in Zebrafish Larvae. TOXICS 2024; 12:527. [PMID: 39058179 PMCID: PMC11280922 DOI: 10.3390/toxics12070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Microcystin-LR (MCLR) poses a significant threat to aquatic ecosystems and public health. This study investigated the protective effects of the probiotic Lactobacillus rhamnosus against MCLR-induced developmental toxicity in zebrafish larvae. Zebrafish larvae were exposed to various concentrations of MCLR (0, 0.9, 1.8, and 3.6 mg/L) with or without L. rhamnosus from 72 to 168 h post-fertilization (hpf). Probiotic supplementation significantly improved survival, hatching, and growth rates and reduced malformation rates in MCLR-exposed larvae. L. rhamnosus alleviated MCLR-induced oxidative stress by reducing reactive oxygen species (ROS) levels and enhancing glutathione (GSH) content and catalase (CAT) activity. Probiotics also mitigated MCLR-induced lipid metabolism disorders by regulating key metabolites (triglycerides, cholesterol, bile acids, and free fatty acids) and gene expression (ppara, pparb, srebp1, and nr1h4). Moreover, 16S rRNA sequencing revealed that L. rhamnosus modulated the gut microbiome structure and diversity in MCLR-exposed larvae, promoting beneficial genera like Shewanella and Enterobacter and inhibiting potential pathogens like Vibrio. Significant correlations were found between gut microbiota composition and host antioxidant and lipid metabolism parameters. These findings suggest that L. rhamnosus exerts protective effects against MCLR toxicity in zebrafish larvae by alleviating oxidative stress, regulating lipid metabolism, and modulating the gut microbiome, providing insights into probiotic-based strategies for mitigating MCLR toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Aoxue Gong
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
| | - Xixia Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Huan Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi 435002, China
- Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Zhi Yang
- Key Laboratory of Ministry of Water Resources for Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystems, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China;
| | - Ya Zhu
- School of Medicine, Taizhou University, Taizhou 318000, China
| |
Collapse
|
6
|
Liu M, Li J, Li J, Zhou B, Lam PKS, Hu C, Chen L. Developmental cardiotoxicity of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in marine medaka (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133176. [PMID: 38070264 DOI: 10.1016/j.jhazmat.2023.133176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 12/02/2023] [Indexed: 02/08/2024]
Abstract
The application of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as an antifouling biocide causes high toxicity to non-target marine organisms. To examine the developmental cardiotoxicity and mechanisms of DCOIT, we concurrently performed sub-chronic exposure and life-cycle exposure experiments using marine medaka embryos. After sub-chronic exposure to DCOIT at 1, 3, 10, and 33 μg/L, cardiac defects were caused by upregulation of cardiac gene transcriptions, decreasing heart size, and accelerating heartbeat. Hyperthyroidism in medaka larvae was identified as the cause of developmental cardiotoxicity of DCOIT sub-chronic exposure. In addition, parental life-cycle exposure to 1, 3, and 10 μg/L DCOIT led to transgenerational impairment of cardiogenesis in offspring medaka. A crossbreeding strategy discriminated a concentration-dependent mechanism of transgenerational cardiotoxicity. At 1 μg/L, the DCOIT-exposed female parent transferred a significantly higher amount of triiodothyronine (T3) hormone to offspring, corresponding to an accelerated heart rate. However, DCOIT at higher exposure concentrations modified the methylome imprinting in larval offspring, which was associated with cardiac dysfunction. Overall, the findings provide novel insights into the developmental cardiotoxicity of DCOIT. The high risks of DCOIT-even at environmentally realistic concentrations-raise concerns about its applicability as an antifoulant in a marine environment.
Collapse
Affiliation(s)
- Mengyuan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K S Lam
- Department of Science, School of Science and Technology, Hong Kong Metropolitan University, Kowloon, Hong Kong, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Salari Joo H, Johari SA, Behzadi Tayemeh M, Handy RD, Abaei H, Clark N, Seyedi J, Jones MA. Reproductive and whole-body toxicity of Ag-doped and -undoped ZIF-8 nanoparticles and the building blocks: An Artemia-based comparative bioassay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123141. [PMID: 38097159 DOI: 10.1016/j.envpol.2023.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/07/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
The present research assessed, for the first time, toxicity of ZIF-8 (1 mg/L) and the building blocks (0.1 mg/L Zn2+ and 0.4 mg/L 2-methylimidazole (2-MIm)), besides that of AgNPs@ZIF-8 (0.25, 0.5, and 1 mg/L) and AgNO3 (0.1 mg/L) to aquatic organisms. Two consecutive generations (F0 & F1) of Artemia salina were exposed to these chemicals. All of the chemical treatments considerably caused mortality in F0, especially AgNPs@ZIF-8 and AgNO3, whereas F1 displayed notable tolerance and survived comparable to the control group, except in the case of AgNO3 treatment. Similarly, growth indices (weight, mainly in ZIF-8, Zn2+, and 2-MIm; length, in Ag-doped ZIF-8 and AgNO3) were significantly retarded in F0 and especially F1 of all treatments, and 2-MIm caused the greatest length retardation in F0. AgNPs@ZIF-8 (0.5 and 1 mg/L), 2-MIm, and AgNO3 postponed the ovary emergence in about 40%-60% of the exposed F0, and ZIF-8 delayed this phenomenon in some individuals of F0 and F1 up to 6 days. This temporal disturbance was also observed in time to first brood of almost all experimental F0 and F1 groups, with being over 80% of F1 exposed to ZIF-8, 2-MIm, and Zn2+, as well as about 50% of F0 treated with 2-MIm, and Zn2+. The highest neonate number was recorded for F0 and F1 exposed to AgNO3 and Zn2+, while ZIF-8 and, importantly, 2-MIm decreased the reproductivity to the lowest levels in both generations. Generally, the reproductive frequency was significantly decreased in all F0 and F1 treatments, especially 2-MIm, ZIF-8, AgNPs@ZIF-8 (0.25 & 1 mg/L). This study highlighted the neglected importance of 2-MIm in assessing overall toxicity of ZIF-8, and even other organic ligands of MOFs, and also filled a gap in the literature by investigating the potential effect of additives such as AgNPs on the toxicity of ZIF-8 and other MOFs.
Collapse
Affiliation(s)
- Hamid Salari Joo
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | | | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.
| | - Hesamoddin Abaei
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Kurdistan, Iran.
| | - Nathaniel Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.
| | - Javad Seyedi
- Research and Development (R&D), Ramooz Fish Farming Co., Bushehr, Iran.
| | - Megan Anne Jones
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK.
| |
Collapse
|
8
|
Sun B, Li J, Bai Y, Zhou X, Lam PKS, Chen L. Hypoxic and temporal variation in the endocrine disrupting toxicity of perfluorobutanesulfonate in marine medaka (Oryzias melastigma). J Environ Sci (China) 2024; 136:279-291. [PMID: 37923438 DOI: 10.1016/j.jes.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/07/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is an emerging pollutant capable of potently disrupting the sex and thyroid endocrine systems of teleosts. However, the hypoxic and temporal variation in PFBS endocrine disrupting toxicity remain largely unknown. In the present study, adult marine medaka were exposed to environmentally realistic concentrations of PFBS (0 and 10 µg/L) under normoxia or hypoxia conditions for 7 days, aiming to explore the interactive behavior between PFBS and hypoxia. In addition, PFBS singular exposure was extended till 21 days under normoxia to elucidate the time-course progression in PFBS toxicity. The results showed that hypoxia inhibited the growth and caused the suspension of egg spawn regardless of PFBS exposure. With regard to the sex endocrine system, 7-day PFBS exposure led to an acute stimulation of transcriptional profiles in females, which, subsequently, recovered after the 21-day exposure. The potency of hypoxia to disturb the sex hormones was much stronger than PFBS. A remarkable increase in estradiol concentration was noted in medaka blood after hypoxia exposure. Changes in sex endocrinology of coexposed fish were largely determined by hypoxia, which drove the formation of an estrogenic environment. PFBS further enhanced the endocrine disrupting effects of hypoxia. However, the hepatic synthesis of vitellogenin and choriogenin, two commonly used sensitive biomarkers of estrogenic activity, failed to initiate in response to the estrogen stimulus. Compared to sex endocrine system, disturbances in thyroidal axis by PFBS or hypoxia were relatively mild. Overall, the present findings will advance our toxicological understanding about PFBS pollutant under the interference of hypoxia.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yachen Bai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangzhen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Sun Y, Wang X, Zhou S, Zhou Y, Hua J, Guo Y, Wang Y, Zhang W, Yang L, Zhou B. Evaluation and Mechanistic Study of Transgenerational Neurotoxicity in Zebrafish upon Life Cycle Exposure to Decabromodiphenyl Ethane (DBDPE). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16811-16822. [PMID: 37880149 DOI: 10.1021/acs.est.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant in the environment, which may evoke imperceptible effects in humans or wild animals. Hence in this study, zebrafish embryos were exposed to DBDPE (0, 0.1, 1, and 10 nM) until sexual maturity (F0), and F1 and F2 generations were cultured without further exposure to study the multi- and transgenerational toxicity and underlying mechanism. The growth showed sex-different changing profiles across three generations, and the social behavior confirmed transgenerational neurotoxicity in adult zebrafish upon life cycle exposure to DBDPE. Furthermore, maternal transfer of DBDPE was not detected, whereas parental transfer of neurotransmitters to zygotes was specifically disturbed in F1 and F2 offspring. A lack of changes in the F1 generation and opposite changing trends in the F0 and F2 generations were observed in a series of indicators for DNA damage, DNA methylation, and gene transcription. Taken together, life cycle exposure to DBDPE at environmentally relevant concentrations could induce transgenerational neurotoxicity in zebrafish. Our findings also highlighted potential impacts on wild gregarious fish, which would face higher risks from predators.
Collapse
Affiliation(s)
- Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Wang J, Ji Z, Fan P, Duan J, Xiong J, Liu Z, Hou Y, Wang N. Effects of inorganic ions with different concentrations on the nanofiltration separation performance of perfluorobutane sulfonic acid (PFBS). CHEMOSPHERE 2023; 337:139334. [PMID: 37379976 DOI: 10.1016/j.chemosphere.2023.139334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Perfluorobutane sulfonic acid (PFBS) is a kind of anthropogenic recalcitrant contaminant that has posed a threat to drinking water safety and brought widespread public health concerns. Nanofiltration (NF) is an effective way to remove PFBS from drinking water, while the removal is influenced by coexisting ions. To investigate the effects and intrinsic mechanisms of coexisting ions on the rejection of PFBS, poly(piperazineamide) NF membrane was utilized in this work. Results showed that most cations and anions in the feedwater could effectively improve PFBS rejection and simultaneously reduce NF membrane permeability. In most cases, the decrease in NF membrane permeability corresponded to an increase in the valence of cations or anions. When cations (Na+, K+, Ca2+, and Mg2+) were present, the rejection of PFBS was effectively improved from 79% to more than 91.07%. Under these conditions, electrostatic exclusion was the dominant NF rejection mechanism. This was also the leading mechanism for 0.1 mmol/L Fe3+ coexisted condition. As the concentration of Fe3+ increased to 0.5-1 mmol/L, intensified hydrolyzation would accelerate the formation of the cake layers. The differences in the cake layer characteristics led to the different rejection trends of PFBS. For anions (SO42- and PO43-), both sieving effects and electrostatic exclusion were enhanced. As anionic concentration raised, the NF rejection of PFBS increased to above 90.15%. By contrast, the effect of Cl- on PFBS rejection was also affected by coexisting cations in the solution. The dominant NF rejection mechanism was electrostatic exclusion. Accordingly, it is suggested that the usage of negatively charged NF membranes could facilitate the efficient separation of PFBS under ionic coexisting conditions, thereby ensuring the safety of drinking water.
Collapse
Affiliation(s)
- Jiaxuan Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China; Shaanxi Yulin Changjialiang Shengli Coal Mine Co., Ltd., Niujialiang Town, Yulin, 719000, China; Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China.
| | - Zhengxuan Ji
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China
| | - Peiru Fan
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China
| | - Jiaqi Duan
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China
| | - Jiaqing Xiong
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhe Liu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture & Technology, Yan Ta Road, No. 13, Xi'an, 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Yulin Ecological Environment Monitoring Station, High-tech Zone Xingda Road, Yulin, 719000, China
| | - Yushi Hou
- Shaanxi Architectural Design and Research Institute (Group) Co., Ltd., Wen Jing Road, No. 58, Xi'an, 710018, China
| | - Na Wang
- School of Architecture & Civil Engineering, Xi'an University of Science and Technology, Yan Ta Road, No. 58, Xi'an, 710054, China
| |
Collapse
|
11
|
Zhang JG, Shi W, Ma DD, Lu ZJ, Li SY, Long XB, Ying GG. Chronic Paternal/Maternal Exposure to Environmental Concentrations of Imidacloprid and Thiamethoxam Causes Intergenerational Toxicity in Zebrafish Offspring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13384-13396. [PMID: 37651267 DOI: 10.1021/acs.est.3c04371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidacloprid (IMI) and thiamethoxam (THM) are ubiquitous in aquatic ecosystems. Their negative effects on parental fish are investigated while intergenerational effects at environmentally relevant concentrations remain unclear. In this study, F0 zebrafish exposed to IMI and THM (0, 50, and 500 ng L-1) for 144 days post-fertilization (dpf) was allowed to spawn with two modes (internal mating and cross-mating), resulting in four types of F1 generations to investigate the intergenerational effects. IMI and THM affected F0 zebrafish fecundity, gonadal development, sex hormone and VTG levels, with accumulations found in F0 muscles and ovaries. In F1 generation, paternal or maternal exposure to IMI and THM also influenced sex hormones levels and elevated the heart rate and spontaneous movement rate. LncRNA-mRNA network analysis revealed that cell cycle and oocyte meiosis-related pathways in IMI groups and steroid biosynthesis related pathways in THM groups were significantly enriched in F1 offspring. Similar transcriptional alterations of dmrt1, insl3, cdc20, ccnb1, dnd1, ddx4, cox4i1l, and cox5b2 were observed in gonads of F0 and F1 generations. The findings indicated that prolonged paternal or maternal exposure to IMI and THM could severely cause intergenerational toxicity, resulting in developmental toxicity and endocrine-disrupting effects in zebrafish offspring.
Collapse
Affiliation(s)
- Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wenjun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
12
|
Sun B, Li J, Hu C, Giesy JP, Lam PKS, Chen L. Toxicity of perfluorobutanesulfonate on gill functions of marine medaka (Oryzias melastigma): A time course and hypoxia co-exposure study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162297. [PMID: 36801345 DOI: 10.1016/j.scitotenv.2023.162297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/05/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Perfluorobutanesulfonate (PFBS) is found in hypoxia regions. Results of previous studies have shown that hypoxia was capable of altering the inherent toxicity of PFBS. However, regarding gill functions, hypoxic influences and time course progression of toxic effects of PFBS remain unclear. In this study, with the aim to reveal the interaction behavior between PFBS and hypoxia, adult marine medaka Oryzias melastigma were exposed for 7 days to 0 or 10 μg PFBS/L under normoxic or hypoxic conditions. Subsequently, to explore the time-course transition in gill toxicity, medaka were exposed to PFBS for 21 days. The results showed that hypoxia dramatically increased the respiratory rate of medaka gill, which was further enhanced by exposure to PFBS; although exposure to PFBS under normoxic conditions for 7 days did not alter respiration, exposure to PFBS for 21 days significantly accelerated the respiration rate of female medaka. Concurrently, both hypoxia and PFBS were potent to interrupt the gene transcriptions and Na+, K+-ATPase enzymatic activity that play pivotal roles in the osmoregulation in gills of marine medaka, consequently disrupting homeostasis of major ions in blood, such as Na+, Cl-, and Ca2+. In addition, composition and diversity of the microbiome residing on surfaces of the gill were profiled by using amplicon sequencing. Acute exposure to hypoxia for only 7 days caused a significant decrease in diversity of the bacterial community of gill whatever the presence of PFBS, while PFBS exposure for 21 days increased the diversity of gill microbial community. Principal component analysis revealed that, compared with PFBS, hypoxia was the predominant driver of gill microbiome dysbiosis. Depending on duration of exposure, a divergence was caused in the microbial community of gill. Overall, the current findings underline the interaction between hypoxia and PFBS on gill function and demonstrate the temporal variation in PFBS toxicity.
Collapse
Affiliation(s)
- Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China.
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Paul K S Lam
- Office of the President, Hong Kong Metropolitan University, 30 Good Shepherd Street, Kowloon, Hong Kong
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
13
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
14
|
Sun L, Zhang P, Liu F, Ju Q, Xu J. Molecular and genetic analyses revealed the phytotoxicity of perfluorobutane sulfonate. ENVIRONMENT INTERNATIONAL 2022; 170:107646. [PMID: 36410239 DOI: 10.1016/j.envint.2022.107646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/18/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Perfluorobutane sulfonate (PFBS) has oily and hydrophobic characteristics similar to those of perfluorooctane sulfonic acid (PFOS), which is an environmental organic pollutant and has gradually become the main substitute for PFOS in industry. Several studies have revealed the potential toxicity of PFBS in animals. PFBS can be taken up and accumulate in plants; however, whether and how PFBS affects plant growth remain largely unclear. A low concentration of PFBS did not affect plant growth, indicating that it had higher environmental safety than other perfluorinated compounds; however, a high concentration of PFBS (>1 mM) markedly inhibited primary root growth in Arabidopsis thaliana. Subsequently, we investigated the molecular mechanisms underlying plant growth mediated by high concentrations of PFBS. First, a genome-wide transcriptomic analysis revealed that PFBS altered the expression of genes associated with phytohormone signaling pathways. Combining physio-biochemical and genetic analyses, we next demonstrated that PFBS reduced the contents of indole-3-acetic acid (IAA) and abscisic acid (ABA), and disrupted the two signaling pathways in plants, finally inhibiting root growth. Moreover, a high concentration of PFBS also inhibited photosynthesis by comprehensively repressing the expression of genes related to the Calvin cycle and the photosynthetic apparatus. Such an understanding is helpful for elucidating the phytotoxicity of PFBS and provides a new strategy for toxicology research on organic pollutants in plants.
Collapse
Affiliation(s)
- Liangliang Sun
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Ping Zhang
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Fei Liu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Qiong Ju
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
15
|
Jiao F, Ma Y, Hu T, Qiao K, Jiang Y, Zhu W, Jin Q, Gui W. Prolonged exposure of azocyclotin induced inter- and transgenerational endocrine disruption on Danio rerio linked to transcriptomic and DNA methylomic alterations. CHEMOSPHERE 2022; 302:134847. [PMID: 35526687 DOI: 10.1016/j.chemosphere.2022.134847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
The transgenerational effect assessment linked to epigenetic analysis of environmental pollutants on eco (toxico)logical relevant species is regarded as a potential future risk-assessment tool. As an organotin acaricide widely used in China, azocyclotin can lead to endocrine disrupting effect on directly exposed environmental organisms, but whether it has transgenerational negative impact remains unknown. In order to illustrate this issue, in the present study, zebrafish, an aquatic model animal, was exposed to azocyclotin at less than μg/L level in a time span of embryonic stage to adult stage. Subsequently, the developmental and reproductive endocrine disrupting effects of azocyclotin on exposed F0 and unexposed offspring (F1 and F2) were evaluated. Result indicated that parentally exposed to 0.36 μg/L azocyclotin induced embryonic toxicity to unexposed offspring, and significantly (p < 0.05) reduced body weight (by 8.5%-13.9%), whole body length (by 4.8%-14.3%), hepatosomatic index (by 15.6%-24.3%), gonadosomatic index (by 5.3%-17.1%), egg production (by 19.5%-25.4%), estradiol content (47.0%-65.0%) and proportion of mature germ cells (by 29.3%-41.0% and 39.2%-47.7% for late oocytes and spermatozoa, respectively) in adults of F0 and offspring. Additionally, azocyclotin decreased the contents of 5-methycytosine in gonads of unexposed offspring (by 9.9%-38.6%, p < 0.05), led to genome-wide gene up-regulated expression bias and genomic DNA hypomethylation tendency in unexposed offspring. Moreover, based on the level of differentially methylated cytosine in promoter regions/gene body regions, it was found totally 5331/11,170 (in F1) and 3808/7507 (in F2) differentially expressed genes were closely related with differentially methylated genes (r > 0.6). The present study provided a primary evidence that prolonged exposure to low dose azocyclotin induced inter- and transgenerational endocrine disrupting effects on zebrafish probably linked to transcriptomic and DNA methylomic alterations.
Collapse
Affiliation(s)
- Fang Jiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Tiantian Hu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Zhu
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China; Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, PR China.
| | - Quan Jin
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310021, PR China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
16
|
Salahinejad A, Attaran A, Meuthen D, Rachamalla M, Chivers DP, Niyogi S. Maternal exposure to bisphenol S induces neuropeptide signaling dysfunction and oxidative stress in the brain, and abnormal social behaviors in zebrafish (Danio rerio) offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154794. [PMID: 35341835 DOI: 10.1016/j.scitotenv.2022.154794] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Recent studies show that bisphenol S (BPS) induces multiple adverse effects in exposed organisms; however, the maternal effects of BPS exposure remain poorly understood. Here, we expose adult female zebrafish to environmentally relevant concentrations of BPS (0, 1, 10, 30 μg/L) and 1 μg/L of 17-β-estradiol (E2) as a positive control for 60 days. Females were then paired with BPS-unexposed males and their offspring were raised in control water for 6 months. Maternal exposure to BPS was found to alter social behavior and anxiety response in a dose-specific manner in male offspring. Group preferences and social cohesion were significantly reduced by maternal exposure to 1 and 10 μg/L BPS, respectively. Additionally, maternal exposure to 1 and 30 μg/L BPS and E2 decreased offspring stress responses during the novel tank test. The impaired social behavior was associated with elevated arginine-vasotocin (AVT) level as well as with the altered expression of genes involved in AVT signaling pathway (AVT, avpr1aa) and enzymatic antioxidant genes (cat and Mn-sod) in the brain. Collectively, these results suggest that maternal exposure to environmentally relevant concentrations of BPS alters social behavior in zebrafish offspring, which is likely mediated by oxidative stress and disruption of neuropeptide signaling pathways in the brain.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
17
|
Hao L, Ru S, Qin J, Wang W, Zhang J, Wei S, Wang J, Zhang X. Transgenerational effects of parental bisphenol S exposure on zebrafish (Danio rerio) reproduction. Food Chem Toxicol 2022; 165:113142. [PMID: 35595038 DOI: 10.1016/j.fct.2022.113142] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Bisphenol S (BPS) is extensively used for production of polycarbonates and other commodities, and is often detected in environment and biota. Parental BPS exposure has been reported to interfere with reproductive development of offspring, but limited information is available on its multigenerational reproductive toxicity. In our present study, zebrafish (Danio rerio) were exposed to BPS (1 and 100 μg/L) from 3 hpf to 120 dpf, and the effects on reproduction, sex steroid hormones, DNA methylation levels and gene transcription involved in steroidogenesis and DNA methylation were investigated in unexposed F1-2 offspring. The results showed that 100 μg/L BPS exposure increased DNA methylation in F1 testes, and 1 μg/L BPS led to DNA methylation in F2 ovaries. The increased DNA methylation levels led to decreased expression of steroidogenic enzymes, including cyp11a, cyp17 and 3βhsd, which might be a main reason for the elevated plasma 17β-estradiol and decreased testosterone levels. In addition, sex ratio indicated a female dominance trend, and reproductive capacity of male fish was severely impaired. Overall, these findings suggest that parental BPS exposure impairs reproductive development of unexposed offspring via DNA methylation and BPS-induced epigenetic modification inheritance has a long-term effect on the fitness and sustainability of fish populations.
Collapse
Affiliation(s)
- Liping Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jingyu Qin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuhui Wei
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
18
|
Zhou R, Lu G, Yan Z, Jiang R, Sun Y, Zhang P. Epigenetic mechanisms of DNA methylation in the transgenerational effect of ethylhexyl salicylate on zebrafish. CHEMOSPHERE 2022; 295:133926. [PMID: 35150701 DOI: 10.1016/j.chemosphere.2022.133926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, a 120-day whole-life cycle exposure and oviposition experiment on zebrafish with maternal and paternal mixed mating strategy was conducted to investigate the epigenetic mechanism of DNA methylation in ethylhexyl salicylate (EHS, 1, 10, 100 μg/L)-induced transgenerational effects. Results showed that EHS could induce the decrease of DNA methyltransferase 1 (DNMT1) activity and average global DNA methylation level in maternal parents and the increase of the above indexes in paternal parents, while the change of glycine N-methyltransferase activity was opposite to DNMT1. The average global DNA methylation levels were significantly increased in the offsprings of both parents exposed and father-only exposed to EHS, suggesting that EHS-induced epigenetic modifications may be stable and heritable. Hierarchical clustering analysis of promoter at different methylation sites showed that the DNA methylation pattern of offsprings were similar to that of the paternal parents, meaning that the offsprings may have inherited paternal DNA methylation pattern with eya2, pcdh2g5 and pcdh2g1 as key genes and lead to high locomotor activity in offsprings. KEGG pathway analysis showed that parental exposure to EHS may interfere with the central nervous system, insulin function system, melanogenesis system and the normal development of somatic axis of offsprings.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing, 211816, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yu Sun
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
19
|
Salahinejad A, Attaran A, Meuthen D, Chivers DP, Niyogi S. Proximate causes and ultimate effects of common antidepressants, fluoxetine and venlafaxine, on fish behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150846. [PMID: 34626640 DOI: 10.1016/j.scitotenv.2021.150846] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Antidepressant (AD) drugs are widely prescribed for the treatment of psychiatric disorders, including depression and anxiety disorders. The continuous use of ADs causes significant quantities of these bioactive chemicals to enter the aquatic ecosystems mainly through wastewater effluent discharge. This may result in many aquatic organisms being inadvertently affected by these drugs. Fluoxetine (FLX) and venlafaxine (VEN) are currently among the most widely detected ADs in aquatic systems. A growing body of experimental evidence demonstrates that FLX and VEN have a substantial capacity to induce neurotoxicity and cause behavioral dysfunctions in a wide range of teleost species. At the same time, these studies often report seemingly contradictory results that are confounding in nature. Hence, we clearly require comprehensive reviews that attempt to find overarching patterns and establish possible causes for these variable results. This review aims to explore the current state of knowledge regarding the neurobehavioral effects of FLX and VEN on fishes. This study also discusses the potential mechanistic linkage between the neurotoxicity of ADs and behavioral dysfunction and identifies key knowledge gaps and areas for future research.
Collapse
Affiliation(s)
- Arash Salahinejad
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Denis Meuthen
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Evolutionary Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
20
|
Hu C, Liu M, Tang L, Liu H, Sun B, Chen L. Probiotic intervention mitigates the metabolic disturbances of perfluorobutanesulfonate along the gut-liver axis of zebrafish. CHEMOSPHERE 2021; 284:131374. [PMID: 34217933 DOI: 10.1016/j.chemosphere.2021.131374] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/19/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Probiotic supplementation is effective to modulate the metabolic disorders caused by perfluorobutanesulfonate (PFBS). However, the underlying mechanisms remain unclear. To this end, the present study exposed adult zebrafish to PFBS (0 and 10 μg/L), probiotics, or their binary combinations for 40 days. After the exposure, the nutritional stores, intestinal organization, and metabolic activities along the gut-liver axis were investigated. The results showed that PFBS exposure decreased the nutrient reserves significantly, especially the lipid content, which was alleviated by the probiotic administration. Intestinal mucus secretion was promoted remarkably in the presence of the probiotic, which enhanced epithelial protection against PFBS damage. Metagenomic analysis showed that PFBS alone induced gut microbial dysbiosis, which was efficiently antagonized by the probiotic bacteria. Intestinal metabolomic profiling revealed that ferroptosis occurred because of the unrestricted lipid peroxidation following PFBS exposure. However, probiotic administration prevented the ferroptotic symptoms induced by PFBS, further highlighting the beneficial effects of the probiotic on the host. In PFBS-exposed livers, high levels of bile acid metabolites (e.g., taurochenodeoxycholic acid) accumulated, implying the induction of cholestasis. Notably, probiotic addition recovered the metabolomic homeostasis under PFBS stress, probably resulting from the activation of detoxification pathways based on the pentose and glucuronate interconversion. Overall, the present study provides systematic evidence of the antagonistic interaction between PFBS and the probiotic regarding the metabolic activities along the microbe, gut and liver axis, highlighting the application values of probiotic recipe in aquaculture industry and ecological reservation.
Collapse
Affiliation(s)
- Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
21
|
Liu M, Tang L, Hu C, Sun B, Huang Z, Chen L. Interaction between probiotic additive and perfluorobutanesulfonate pollutant on offspring growth and health after parental exposure using zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112107. [PMID: 33667734 DOI: 10.1016/j.ecoenv.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Perfluorobutanesulfonate (PFBS) pollutant and probiotic bacteria can interact to affect the reproductive outcomes of zebrafish. However, it is still unexplored how the growth and health of offspring are modulated by the combination of PFBS and probiotic. In the present study, adult zebrafish were exposed to 0 and 10 μg/L PFBS for 40 days, with or without dietary supplementation of probiotic Lactobacillus rhamnosus. After parental exposure, the development, growth and viability of offspring larvae were examined, with the integration of molecular clues across proteome fingerprint, growth hormone/insulin-like growth factor (GH/IGF) axis, calcium homeostasis, hypothalamic-pituitary-adrenal (HPA) axis and nutrient metabolism. Parental probiotic supplementation significantly increased the body weight and body length of offspring larvae. Despite the spiking of PFBS, larvae from the combined exposure group still had longer body length. RNA processing and ribosomal assembly pathways may underlie the enhancement of offspring growth by probiotic bacteria. However, the presence of PFBS remarkably increased the concentrations of cortisol hormone in offspring larvae as means to cope with the xenobiotic stress, which required more energy production. As evidenced by the proteomic analysis, the addition of probiotic bacteria likely alleviated the energy metabolism disorders of PFBS, thus allocating more energy for the larval offspring growth from the combined group. It was noteworthy that multiple molecular disturbances caused by PFBS were antagonized by probiotic additive. Overall, the present study elucidated the intergenerational interaction between PFBS and probiotic on offspring growth and health after parental exposure.
Collapse
Affiliation(s)
- Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Baili Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zileng Huang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
Tang L, Liu M, Hu C, Zhou B, Lam PKS, Lam JCW, Chen L. Binary exposure to hypoxia and perfluorobutane sulfonate disturbs sensory perception and chromatin topography in marine medaka embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115284. [PMID: 32781212 DOI: 10.1016/j.envpol.2020.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Perfluorobutane sulfonate (PFBS), an environmental pollutant of emerging concern, is previously shown to dynamically interact with hypoxia on aquatic developmental toxicities. However, the molecular mechanisms underlying the interaction remain unknown. In this follow-up study, marine medaka embryos were exposed to 0 and 3.3 mg/L of PFBS under normoxia (6.9 mg/L) or hypoxia (1.7 mg/L) condition till 15 days post-fertilization. High-throughput transcriptomic sequencing was employed to filter differentially expressed genes and provide mechanistic insight into interactive action between hypoxia and PFBS. The results showed that hypoxia alone and the coexposure paradigm were similarly potent to modify transcriptional profiles, with the majority of genes significantly down-regulated. In contrast, transcriptional toxicity of PFBS was relatively milder. Functional annotation analyses found that hypoxia and coexposure groups mainly impacted phototransduction signaling by decreasing the transcriptions of cyclic nucleotide-gated (CNG) cation channels and retinol transport genes. However, this study demonstrated the first toxicological evidence that toxic effects of PFBS targeted the perception of chemical stimulus through olfactory and gustatory receptors. The addition of PFBS moderately exacerbated the toxic actions of hypoxia, which largely shaped the transcriptional pattern of coexposure group. In addition, gene interactive networks were constructed for hypoxia and coexposure groups, underlining the increased chromatin deacetylation and methylation to epigenetically repress genome-wide transcriptional initiation. Overall, PFBS and hypoxia interact to interrupt the embryonic development of sensory systems, which may compromise the individual fitness and survival, especially during early life stages when precocious perception of food and escape from predators are essential.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, SAR, Hong Kong, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, SAR, Hong Kong, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
23
|
Tang L, Song S, Hu C, Liu M, Lam PKS, Zhou B, Lam JCW, Chen L. Parental exposure to perfluorobutane sulfonate disturbs the transfer of maternal transcripts and offspring embryonic development in zebrafish. CHEMOSPHERE 2020; 256:127169. [PMID: 32464364 DOI: 10.1016/j.chemosphere.2020.127169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 05/27/2023]
Abstract
Parental exposure to perfluorobutane sulfonate (PFBS), an aquatic pollutant of emerging concern, is previously found to impair the embryonic development of offspring. However, the impairing mechanisms remain to clarify. In the present study, adult zebrafish were exposed to 0, 10 and 100 μg/L PFBS for 28 d, after which disturbances in maternal transcript transfer and offspring embryogenesis were investigated. Prior to zygotic genome activation, high-throughput transcriptomic sequencing revealed that parental PFBS exposure significantly altered the transcript profile of maternal origin in offspring eggs, while toxic actions varied as a function of PFBS concentrations. In offspring eggs derived from 10 μg/L exposure group, differential transcripts were mainly associated with the histone-DNA interaction of nucleosome, which would modify the compacted chromatin configuration and accessibility of transcriptional factors to DNA sequences. In this regard, the timing of zygotic genome activation was presumably disrupted. Parental exposure to 100 μg/L PFBS primarily interrupted the maternal transfer of adherens junction transcripts, which was supposed to dysregulate the cell-cell adhesion during early embryo formation. Development and growth of offspring embryos were significantly compromised by parental PFBS exposure, as exemplified by higher mortality, delayed hatching, slower heart rate, reduced body weight and neurobehavioral disorders. Overall, the present study presented the first toxicological evidence about the disturbances of PFBS in maternal transcript transfer, although the inherent linkage between maternal transcript modifications and offspring development defects still needs future works to construct.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwen Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
24
|
Chen L, Lam JCW, Tang L, Hu C, Liu M, Lam PKS, Zhou B. Probiotic Modulation of Lipid Metabolism Disorders Caused by Perfluorobutanesulfonate Pollution in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7494-7503. [PMID: 32459962 DOI: 10.1021/acs.est.0c02345] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To determine whether and how probiotic supplement can alter gut microbiota dysbiosis and lipid metabolism disorders caused by perfluorobutanesulfonate (PFBS), the present study exposed adult zebrafish to 0, 10, and 100 μg/L PFBS for 28 days, with or without dietary administration of probiotic Lactobacillus rhamnosus. Regarding intestinal health and gut microbiota, probiotic supplement altered the innate toxicities of PFBS, depending on exposure concentration and the sex of the fish. Lactobacillus genus correlated positively (P < 0.001; r > 0.5) with other beneficial bacteria in the gut microbiota, thereby indirectly regulating host metabolic activities. In female fish, the PFBS and probiotic combination enhanced fatty acid synthesis and β-oxidation, but mitigated the accumulation of cholesterol in the blood compared with PFBS single exposure, highlighting the benefits of the probiotic to host health. In male zebrafish, probiotic administration antagonized the PFBS-induced disturbances of bile acid metabolism, presumably via farnesoid X receptor signaling. However, coexposure to PFBS and probiotic caused significant accumulation of triglyceride in male livers (2.6-fold relative to the control), implying the induction of hepatic steatosis. Overall, the present study underlined the potential of probiotics to modulate gut microbial dysbiosis and lipid metabolism disorders caused by PFBS exposure, which could provide implications to the application of probiotics in aquaculture.
Collapse
Affiliation(s)
- Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, P. R. China
| | - Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, P. R. China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P. R. China
| |
Collapse
|
25
|
Tang L, Song S, Hu C, Lam JCW, Liu M, Zhou B, Lam PKS, Chen L. Unexpected Observations: Probiotic Administration Greatly Aggravates the Reproductive Toxicity of Perfluorobutanesulfonate in Zebrafish. Chem Res Toxicol 2020; 33:1605-1608. [DOI: 10.1021/acs.chemrestox.0c00139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwen Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - James C. W. Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Paul K. S. Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
26
|
Tang L, Liu M, Song S, Hu C, Lam PKS, Lam JCW, Chen L. Interaction between hypoxia and perfluorobutane sulfonate on developmental toxicity and endocrine disruption in marine medaka embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105466. [PMID: 32172180 DOI: 10.1016/j.aquatox.2020.105466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/22/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
The co-occurrence of hypoxia and xenobiotics is extremely common in natural environments, highlighting the necessity to elicit their interaction on aquatic toxicities. In the present study, marine medaka embryos were exposed to various concentrations (nominal 0, 1, 3.3 and 10 mg/L) of perfluorobutane sulfonate (PFBS), an environmental pollutant of emerging concern, under either normoxia (6.9 mg/L) or hypoxia (1.7 mg/L) condition. After acute exposure till 15 days post-fertilization, single or combined toxicities of PFBS and hypoxia on embryonic development (e.g., mortality, hatching and heartbeat) and endocrine systems were investigated. Sex and thyroid hormones were measured by enzyme-linked immunosorbent assay. Transcriptional changes of endocrine genes were determined by quantitative real-time PCR assays. Co-exposure to 10 mg/L PFBS and hypoxia caused a further reduction in survival rate and heart beat compared to single exposure. PFBS induced a precocious hatching, while no larvae hatched under hypoxia condition. By disturbing the balance of sex hormones, either PFBS or hypoxia single exposure produced an anti-estrogenic activity in medaka larvae. However, PFBS and hypoxia combinations reversed to estrogenic activity in co-exposed larvae. Variation in disrupting pattern may be attributed to the interactive effects on steroidogenic pathway involving diverse cytochrome P450 enzymes. Regarding thyroid system, PFBS exposure caused detriments of multiple processes along thyroidal axis (e.g., feedback regulation, synthesis and transport of thyroid hormones, receptor-mediated signaling and thyroid gland development), while hypoxia potently impaired the development and function of thyroid gland. Combinations of PFBS and hypoxia interacted to dysregulate the function of thyroid endocrine system. In summary, the present study revealed the dynamic interaction of PFBS pollutant and hypoxia on aquatic developmental toxicities and endocrine disruption. Considering the frequent co-occurrence of xenobiotics and hypoxia, current results would be beneficial to improve our understanding about their interactive mechanisms and provide baseline evidences for accurate ecological risk evaluation.
Collapse
Affiliation(s)
- Lizhu Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiwen Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430072, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - James C W Lam
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong Special Administrative Region
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|