1
|
Kučera I, Sedláček V. Flavin-dependent enzymatic and photochemical interconversions between phenylarsonic and phenylarsonous acids. Biometals 2025:10.1007/s10534-025-00685-7. [PMID: 40240666 DOI: 10.1007/s10534-025-00685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Phenylarsonic acid is the parent compound of a group of derivatives that occur as anthropogenic environmental contaminants in both less toxic As(V) and much more toxic As(III) redox states. To elucidate the mechanisms underlying their enzymatic redox conversions, the activities of two flavin reductases, ArsH and FerA, from the soil bacterium Paracoccus denitrificans were compared. The stopped-flow data demonstrated that PhAs(V) oxidized dihydroflavin mononucleotide bound to ArsH, but not to FerA. This result proves that ArsH has some substrate specificity for organoarsenic compounds. Under aerobic conditions, both enzymes accelerated the oxidation of PhAs(III) in a catalase-sensitive manner, indicating that hydrogen peroxide acts as an intermediate. H2O2 was shown to react with PhAs(III) in a bimolecular (1:1) irreversible reaction. When exposed to blue light, flavin alone mediated rapid oxidation of PhAs(III) by O2. Photooxidation by flavin acted in concert with chemical oxidation by transiently accumulating H2O2. The described processes may be relevant in the context of arsenic ecotoxicology and remediation.
Collapse
Affiliation(s)
- Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic.
| | - Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 267/2, 61137, Brno, Czech Republic
| |
Collapse
|
2
|
Zhao S, Zhang H, Zhu Y, Xing Z, Chen W, Dong B, Zheng Z, Ji C, Xue Y, Liu X. Residual heavy metals and antibiotic pollution in abandoned breeding areas along the northeast coast of Hainan Island, China. MARINE POLLUTION BULLETIN 2025; 212:117518. [PMID: 39799815 DOI: 10.1016/j.marpolbul.2024.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/15/2025]
Abstract
To assess the environmental status of an abandoned aquaculture and breeding area in the northeast coast of the Hainan Island, surface and well water, sediment and surface soils were sampled and analyzed for conventional physicochemical properties, heavy metals and antibiotics. Metagenome tests were also conducted to determine the composition and diversity of the microbial community in typical habitats. Affected by the discharge of wastewater from higher-place pond aquaculture, coastal freshwater rivers have undergone significant salinization, Cl- and Na+ were as high as 4.51 × 103 and 1.42 × 103 mg/L. The 3 hand-pumped wells surveyed were also suffered from varying degrees of salinization and heavy metal pollution, especially the threat of arsenic pollution. Compared with the local background values, significantly higher valves of Cu, Zn, As and Cd were observed in the surface soil and sediment, and the average concentrations for Cu, Zn, As and Cd are 5.71, 17.6, 15.4 and 0.09 mg/kg respectively. For As,the Nemerow index ranges from 7 to 16 and the geoaccumulation index is between 2 and 4, indicating moderate to severe pollution levels in surface soil. 14 antibiotics were detected in the soil and sediment samples, and the highest total amount was 73 μg/kg, with tetracycline being the dominant antibiotic. Sediment and forest soil showed different microbial community and the genetic diversity index of sediment was lower than that of the forest soils. For typical vegetation soil, the genetic diversity followed the order as P. elliottii × P. caribaea > Eucalyptus > C. equisetifolia. Among the soil and sediment samples, the highest abundances of antibiotic resistance genes (ARGs) were associated with elfamycin, peptide, rifamycin, and the most common antibiotic resistance mechanisms were antibiotic target alteration (54.5 %), antibiotic efflux (27.6 %) and antibiotic target replacement (12.1 %). The metal resistance genes (MRGs) for Cu, Fe, and Zn resistance were the main MRGs in the samples. This study identified the potential ecological environment risk factors in the abandoned coastal breeding areas, and suggested continuous monitoring and assessment of the residual pollutant abatement processes in the future.
Collapse
Affiliation(s)
- Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Haiyang Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zhe Xing
- Construction Quality Surveillance Center, Beijing 100143, China
| | - Wei Chen
- Construction Quality Surveillance Center, Beijing 100143, China
| | - Bin Dong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Zhangqin Zheng
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yulu Xue
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Shanmughan A, Balamurugan K, Kalaiarasi G, Chitrarasu K, Shanmugaraju S. Triazine-Containing Pyridinium Organic Polymer Based on 4-Amino-1,8-naphthalimide Tröger's Base for Selective Fluorescent Sensing of Organoarsenic Feed Additives in Water. ACS MEASUREMENT SCIENCE AU 2025; 5:56-62. [PMID: 39991026 PMCID: PMC11843500 DOI: 10.1021/acsmeasuresciau.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 02/25/2025]
Abstract
A new triazine containing pyridinium organic polymer (TB-Py-COP) based on 4-amino-1,8-naphthalimide Tröger's base is developed and employed as a fluorescent chemosensor for selective sensing of organoarsenic feed additives in water. TB-Py-COP was readily synthesized by reacting "V-shaped" bis-[N-(4-pyridyl)methyl)]-9,18-methano-1,8-naphthalimide-[b,f][1,5]diazocine with cyanuric chloride in DMF at 100 °C for 3 days. TB-Py-COP exhibited a strong fluorescence emission in water and displayed selective, reversible fluorescence sensing responses for the roxarsone feed additive at the nanomolar (19 nM) level of sensitivity. The Stern-Volmer quenching constant (K SV) was determined to be 1.4 × 104 M-1. The selective sensing of roxarsone was further demonstrated in competitive environments, lake water, and buffer solutions.
Collapse
Affiliation(s)
- Ananthu Shanmughan
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
| | - Karuppaiya Balamurugan
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
| | - Giriraj Kalaiarasi
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
- Department
of Chemistry, Karpagam Academy of Higher
Education, Coimbatore, 641021 Tamil Nadu, India
| | - Karunya Chitrarasu
- Department
of Chemistry, Indian Institute of Technology
Palakkad, Palakkad, 678557 Kerala, India
| | | |
Collapse
|
4
|
Chaney C, Mansilla L, Kubica M, Pinto-Pacheco B, Dunn K, Bertacchi V, Walker DI, Valeggia C. Contaminant Exposure Profiles Demonstrate Similar Physiological Effects Across Environments Despite Unique Profile Composition in Formosa, Argentina, and Connecticut, USA. Am J Hum Biol 2025; 37:e24178. [PMID: 39463098 DOI: 10.1002/ajhb.24178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE Exposure to environmental contaminants is globally universal. However, communities vary in the specific combination of contaminants to which they are exposed, potentially contributing to variation in human health and creating "locally situated biologies." We investigated how environmental exposures differ across environments by comparing exposure profiles between two contexts that differ markedly across political, economic, and sociocultural factors-Namqom, Formosa, Argentina, and New Haven, Connecticut, United States. METHODS We collected infant urine, maternal urine, and human milk samples from mother-infant dyads in Formosa (n = 13) and New Haven (n = 21). We used untargeted liquid chromatography with high-resolution mass spectrometry (LC-HRMS) to annotate environmental contaminants and endogenous metabolites in these samples, and we analyzed the data using exposome-wide association studies (EWAS) followed by pathway enrichment. RESULTS We found statistically significant differences between the chemical exposure profiles of the Argentinian and US mothers, mostly involving pesticides; however, we observed similarities in the infant urine and human milk environmental contaminant profiles, suggesting that the maternal body may buffer infant exposure through human milk. We also found that infants and mothers were exposed to contaminants that were associated with alterations in amino acid and carbohydrate metabolism. Infants additionally showed alterations in vitamin metabolism, including vitamins B1, B3, and B6. CONCLUSIONS Differences in chemical exposure profiles may be related to structural factors. Despite variation in the composition of exposure profiles between the two study sites, environmental contaminant exposure was associated with similar patterns in human physiology when we considered contaminants comprehensively rather than individually, with implications for metabolic and cardiovascular disease risk as well as infant cognitive development.
Collapse
Affiliation(s)
- Carlye Chaney
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Anthropology, University of Missouri, Columbia, Missouri, USA
- Chaco Area Reproductive Ecology Program, Formosa, Argentina
| | | | - Marcelina Kubica
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brismar Pinto-Pacheco
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kathryn Dunn
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Bertacchi
- Department of Anthropology, Yale University, New Haven, Connecticut, USA
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Claudia Valeggia
- Chaco Area Reproductive Ecology Program, Formosa, Argentina
- Department of Anthropology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
5
|
Wang F, Yu Z, Zhang Y, Ni R, Li Z, Li S, Song N, Liu J, Zong H, Jiao W, Shi H. Source-risk and uncertainty assessment of trace metals in surface sediments of a human-dominated seaward catchment in eastern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135960. [PMID: 39353272 DOI: 10.1016/j.jhazmat.2024.135960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Current total concentration-based methods for source attribution and risk assessment often overestimate metal risks, thereby impeding the formulation of effective risk management strategies. This study aims to develop a framework for source-specific risk assessment based on metal bioavailability in surface river sediments from a human-dominated seaward catchment in eastern China. Metal bioavailability was quantified using chemical fractionation results, and source apportionment was conducted using the positive matrix factorization (PMF) model. Risk assessment integrated these findings using two indices: the Potential Ecological Risk Index (PERI) and the Mean Probable Effect Concentration Quotient (mPEC-Q), with uncertainty addressed via Monte Carlo simulations. Results indicated that average total concentrations of Cu, Pb, Zn, Cr, Hg, Cd, and As exceeded their respective background levels by 1.63 to 15.00 times. The residual fraction constituted the majority, accounting for 53.84 % to 77.79 % of total concentrations, suggesting significant natural origins. However, source apportionment revealed a predominant contribution from anthropogenic activities, including industrial smelting, agricultural practices, and atmospheric deposition. The contributions were found to vary between 5.35 % and 40.03 % when the total concentration was adjusted to bioavailable content. Total concentration-based PERI/mPEC-Q assessments indicated high/moderate risk levels, decreasing to considerable/low risk levels with bioavailability adjustment. Hg and Cd were identified as priority metals. Further incorporating source appointment parameters into the risk assessment, industrial smelting was identified as the primary contributor, accounting for 66.06 % of total risk by total concentration and 65.63 % by bioavailability. This underscores the role of bioavailability in mitigating risk overestimation. Monte Carlo simulations validated industrial smelting as a major risk contributor. This study emphasizes the importance of considering bioavailability in the source-risk assessment of sediment-metals, crucial for targeted risk management in urbanized catchment areas.
Collapse
Affiliation(s)
- Fangli Wang
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Zihan Yu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Yali Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiang Ni
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, China
| | - Zhi Li
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Shaojing Li
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China
| | - Ningning Song
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Jun Liu
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiying Zong
- School of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Jiao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi 276000, China.
| | - Hongtao Shi
- College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Liu W, Zhou F, Yang H, Shi Y, Qin Y, Sun H, Zhang L. CuS enabled efficient Fenton-like oxidation of phenylarsonic acid and inorganic arsenic immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136171. [PMID: 39413521 DOI: 10.1016/j.jhazmat.2024.136171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Herein, copper sulfide (CuS) was introduced to the Fenton-like (Fe(III)/H2O2) system for the efficient removal of phenylarsonic acid (PAA). Results of reactive oxygen and Fe/Cu species showed that CuS preferentially reacted with Fe(III) and H2O2 to generate Cu(I) and superoxide anion (•O2-). These reductive species could efficiently promote the Fe(III)/Fe(II) and Cu(II)/Cu(I) cycles, and are beneficial to the sequential Fenton reaction to generate •OH. The organoic/inorganic arsenic species detected in the CuS/Fe(III)/H2O2 system confirmed that PAA was oxidized by •OH to hydroxylated organoarsenic and phenolic intermediates, which were further mineralized to oxalate and formic acid. Meanwhile, the inorganic As(III)/As(V) released during PAA degradation were efficiently immobilized by CuS. The PAA removal efficiency remained as high as 92.9 % after 5 cycles of the CuS-mediated Fenton-like process. These results demonstrate an innovative method for the treatment of organoarsenic-contaminated water, and provide new insights into the enhanced Fenton-like process utilizing sulfide minerals.
Collapse
Affiliation(s)
- Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Huan Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yunxiao Shi
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Hongwei Sun
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
7
|
Yang Z, Yu J, Yang K, Zhang Q, Chen Y, Qiao S. Source Apportionment and Risk Assessment of Potentially Toxic Elements Based on PCA and PMF Model in Black Soil Area of Hailun City, Northeast China. TOXICS 2024; 12:683. [PMID: 39330611 PMCID: PMC11436113 DOI: 10.3390/toxics12090683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
This study assessed the presence of potentially toxic elements (PTEs) in China's northeastern black soil belt, an area with limited prior research. We collected 304 soil samples (0-20 cm) from Gonghe Town, Hailun City, and analyzed the PTE contamination degree using the single-factor pollution index and Nemerow pollution index. The results demonstrated that the mean concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were 11.16, 0.11, 65.29, 22.56, 0.03, 27.07, 26.09, and 66.01 mg/kg, respectively. Source apportionment was conducted via correlation analysis, principal component analysis, and positive matrix factorization, identifying four main sources: natural (33.2%), irrigation (29.5%), fuel (23.4%), and fertilizer (13.2%). The ecological risk index indicated a slight ecological risk, while the human health risk showed that non-carcinogenic risks were negligible and carcinogenic risks were acceptable. Our findings emphasize the need to prioritize controlling PTEs from fertilizer, particularly cadmium, and to a lesser extent, irrigation and fuel sources, focusing on As, Pband Hg. This research provides critical insights for policymakers aiming to manage PTE contamination in black soils.
Collapse
Affiliation(s)
- Zhiwei Yang
- Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
- Observation and Research Station of Earth Critical Zone in Black Soil, Ministry of Natural Resources, Harbin 150086, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Junbo Yu
- Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
- Observation and Research Station of Earth Critical Zone in Black Soil, Ministry of Natural Resources, Harbin 150086, China
| | - Ke Yang
- Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
- Observation and Research Station of Earth Critical Zone in Black Soil, Ministry of Natural Resources, Harbin 150086, China
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
| | - Qipeng Zhang
- Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
- Observation and Research Station of Earth Critical Zone in Black Soil, Ministry of Natural Resources, Harbin 150086, China
| | - Yangyang Chen
- Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
- Observation and Research Station of Earth Critical Zone in Black Soil, Ministry of Natural Resources, Harbin 150086, China
| | - Shaozhong Qiao
- Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
- Observation and Research Station of Earth Critical Zone in Black Soil, Ministry of Natural Resources, Harbin 150086, China
| |
Collapse
|
8
|
Cheng GM, Cheng H. Overcoming China's animal waste disposal challenge brought by elevated levels of veterinary antimicrobial residues and antimicrobial resistance. ENVIRONMENT INTERNATIONAL 2024; 191:109009. [PMID: 39278046 DOI: 10.1016/j.envint.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Direct application of animal waste on farmlands was banned in China recently, rendering organic fertilizer production a sound solution for disposing of animal manures and recycling their materials and nutrients. Due to the overuse of antimicrobials in livestock and poultry farms, manure-based organic fertilizers often contain elevated residues of antimicrobials and abundant antimicrobial resistance genes. Land application of such products has caused significant concerns on the environmental pollution of antimicrobials, and the transmission and development of antimicrobial resistance (AMR), which is a major global health challenge. China's recent attempt to restrict the contents of antimicrobial residues in organic fertilizers encountered strong resistance from the industry as it would hinder the utilization of animal manures as a raw material. Reducing and even eliminating the use of antimicrobials in animal farms is the ultimate solution to the challenge of manure disposal posed by the elevated levels of antimicrobial residues and AMR. Phasing out the non-therapeutic use of antimicrobials, developing substitutes of antimicrobials, enhancing animal welfare in farms, promoting diversification of animal farms, and developing antimicrobial removal and disinfection technologies for animal waste are recommended to improve the veterinary antimicrobial stewardship and manure management in China's animal agriculture. These concerted measures would enhance the sustainability of crop and animal farming systems in China and mitigate the impact of antimicrobials and AMR to agro-environmental quality and human health.
Collapse
Affiliation(s)
- Grace M Cheng
- The Affiliated High School of Peking University, Beijing 100190, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Shi X, He C, Jiang L, Liang H, Zhang X, Yuan R, Yang X. Mo-doped Co LDHs as Raman enhanced substrate for detection of roxarsine. Anal Chim Acta 2024; 1318:342947. [PMID: 39067925 DOI: 10.1016/j.aca.2024.342947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Roxarsone (ROX) is widely used as a feed additive, which is indigestible after ingestion by poultry, and most of it can only be excreted into the natural environment and degraded into highly toxic and carcinogenic inorganic arsenic compounds, which pose a hazard to the ecosystem and human health. However, for roxarsone, traditional detection methods require complex and time-consuming procedures, so it is urgent to find a new fast detection method for detection of ROX. RESULTS In this work, we developed a novel Raman enhancement material and utilized the Surface-enhanced Raman scattering (SERS) technique to achieve rapid and sensitive detection of roxarsone. Specifically, Mo-doped cobalt layered double hydroxides (Co-LDHs) semiconductor material (abbreviated as CMM-100) was prepared by a simple method of using ion-assisted MOF etching. Under laser excitation at a wavelength of 532 nm, the CMM-100 showed excellent SERS property to various organic dye molecules such as methylene blue (MB), Toluidine Blue(TB), and Crystal Violet (CV). Especially, an enhancement factor (EF) of 1.4 × 106 was achieved for MB. Compared with the traditional method, this work utilized the fast and non-destructive SERS technology, which achieved a rapid detection of ROX. The detection limit was as low as 9.73 × 10-10 M, and the detection range was from 10-9 M to 10-3 M. SIGNIFICANCE In this work, SERS technology was adopted for the rapid and sensitive detection of ROX. This study provides a Raman-enhanced substrate named CMMs for detection of food additives, pesticides, biomolecules, etc., which also broadens the application areas of SERS materials.
Collapse
Affiliation(s)
- Xichen Shi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chaoqin He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Lingling Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Huan Liang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xinli Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Xia Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Wen M, Zhang Q, Li Y, Cui Y, Shao J, Liu Y. Influence of dissolved organic matter on the anaerobic biotransformation of roxarsone accompanying microbial community response. CHEMOSPHERE 2024; 362:142606. [PMID: 38876324 DOI: 10.1016/j.chemosphere.2024.142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
Roxarsone (ROX), commonly employed as a livestock feed additive, largely remains unmetabolized and is subsequently excreted via feces. ROX could cause serious environmental risks due to its rapid transformation and high mobility in the anaerobic subsurface environment. Dissolved organic matter (DOM) is an important constituent of fecal organics in livestock waste and could affect the ROX biotransformation. Nonetheless, the underlying mechanisms governing the interaction between DOM and ROX biotransformation have not yet been elucidated in the anaerobic environment. In this study, the changes of ROX, metabolites, and microbial biomass in the solutions with varying DOM concentrations (0, 50, 100, 200, and 400 mg/L) under anaerobic environments were investigated during the ROX (200 mg/L) degradation. EEM-PARAFAC and metagenomic sequencing were combined to identify the dynamic shifts of DOM components and the functional microbial populations responsible for ROX degradation. Results indicated that DOM facilitated the anaerobic biotransformation of ROX and 200 mg/L ROX could be degraded completely in 28 h. The tryptophan-like within DOM functioned as a carbon source to promote the growth of microorganisms, thus accelerating the degradation of ROX. The mixed microflora involved in ROX anaerobic degrading contained genes associated with arsenic metabolism (arsR, arsC, acr3, arsA, nfnB, and arsB), and arsR, arsC, acr3 exhibited high microbial diversity. Variations in DOM concentrations significantly impacted the population dynamics of microorganisms involved in arsenic metabolism (Proteiniclasticum, Exiguobacterium, Clostridium, Proteiniphilum, Alkaliphilus, and Corynebacterium spp.), which in turn affected the transformation of ROX and its derivatives. This study reveals the mechanism of ROX degradation influenced by the varying concentrations of DOM under anaerobic environments, which is important for the prevention of arsenic contamination with elevated levels of organic matter.
Collapse
Affiliation(s)
- Mengtuo Wen
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China; Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, MNR, Zhengzhou, 450016, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen, 361000, China
| | - Qiulan Zhang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yasong Li
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen, 361000, China
| | - Yali Cui
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jingli Shao
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yaci Liu
- Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, MNR, Zhengzhou, 450016, China; Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Xiamen, 361000, China.
| |
Collapse
|
11
|
Zheng R, Xu Z, Qiu Q, Sun S, Li J, Qiu L. Iron-doped carbon nanotubes with magnetic enhanced Fe(VI) degradation of arsanilic acid and inorganic arsenic: Role of intermediate iron species and electron transfer. ENVIRONMENTAL RESEARCH 2024; 244:117849. [PMID: 38061591 DOI: 10.1016/j.envres.2023.117849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Arsanilic acid (p-AsA), a prevalently used feed additive, is frequently detected in environment posing a great threat to humans. Potassium ferrate (Fe(VI)) was an efficient way to tackle arsenic contamination under acid and neutral conditions. However, Fe(VI) showed a noneffective removal of p-AsA under alkaline conditions due to its oxidation capacity attenuation. Herein, a magnetic iron-doped carbon nanotubes (F-CNT) was successfully prepared and further catalyzed Fe(VI) to remove p-AsA and total As species. The Fe(VI)/F-CNT system showed an excellent capability to oxidize p-AsA and adsorb total As species over an environment-related pH range of 6-9. The high-valent iron intermediates Fe(V)/Fe(IV) and the mediated electron-transfer played a significant part in the degradation of p-AsA according to the probes/scavengers experiments and galvanic oxidation process. Moreover, the situ formed iron hydroxide oxide and F-CNT significantly improved the adsorption capacity for total As species. The electron-donating groups (semiquinone and hydroquinone) and high graphitization of F-CNT were responsible for activating Fe(VI) based on the analysis of X-ray photoelectron spectroscopy (XPS). Density functional theory calculations and the detected degradation products both indicated that the amino group and the C-As bond of p-AsA were main reactive sites. Notably, Fe(VI)/F-CNT system was resistant to the interference from Cl-, SO42-, and HCO3-, and could effectively remove p-AsA and total As species even in the presence of complex water matrix. In summary, this work proposed an efficient method to use Fe(VI) for degrading pollutants under alkaline conditions and explore a new technology for livestock wastewater advanced treatment.
Collapse
Affiliation(s)
- Ruibin Zheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Zujun Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Qi Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China; School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Jialong Li
- School of Rehabilitation Medicine, Weifang Medical University, Jinan, 261053, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
12
|
Chen W, Guo G, Huang L, Ouyang L, Shuai Q. Facet-dependent adsorption of aromatic organoarsenicals on hematite: The mechanism and environmental impact. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132976. [PMID: 37976861 DOI: 10.1016/j.jhazmat.2023.132976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/11/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Aromatic organoarsenic feed additives have been extensively used in poultry and livestock farming; however, a risk of releasing toxic inorganic arsenic exists when they are exposed to the environment. An in-depth understanding of the adsorption -migration behavior of aromatic organoarsenicals on environmental media is limited. In this study, p-arsanilic acid (p-ASA) and roxarsone (ROX) were considered as examples to systematically study their adsorption behaviors on the surface of hematite, a representative iron oxide in soil. By comparing the adsorption abilities and adsorption kinetics of hematite exposed with different facets (hexagonal nanoplates, HNPs, mainly exposed with {001} facets and hexagonal nanocubes, HNCs, exposed with {012} facets), combined with in situ shell-isolated nanoparticle enhanced Raman spectroscopy characterization and density functional theory simulation, the facet-dependent adsorption performance was observed and the mechanism revealed. The results showed that p-ASA formed a bidentate binuclear complex on HNCs and HNPs, whereas ROX formed monodentate mononuclear and bidentate binuclear configurations on the {001} and {012} facets, respectively. These differences not only lead to facet-dependent adsorption capacities but also affect their stability, as verified by sequential extraction experiments, affecting the environmental behavior and fate of aromatic organoarsenicals. This study not only provides insights into the environmental behavior of aromatic organoarsenicals but also offers theoretical support for the development of functional adsorbents and remediation strategies.
Collapse
Affiliation(s)
- Wenxuan Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Guibin Guo
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lei Ouyang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Qin Shuai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
13
|
Khan Khanzada A, Al-Hazmi HE, Śniatała B, Muringayil Joseph T, Majtacz J, Abdulrahman SAM, Albaseer SS, Kurniawan TA, Rahimi-Ahar Z, Habibzadeh S, Mąkinia J. Hydrochar-nanoparticle integration for arsenic removal from wastewater: Challenges, possible solutions, and future horizon. ENVIRONMENTAL RESEARCH 2023; 238:117164. [PMID: 37722579 DOI: 10.1016/j.envres.2023.117164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.
Collapse
Affiliation(s)
- Aisha Khan Khanzada
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Hussein E Al-Hazmi
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland.
| | - Bogna Śniatała
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Tomy Muringayil Joseph
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Joanna Majtacz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| | - Sameer A M Abdulrahman
- Department of Chemistry, Faculty of Education and Sciences-Rada'a, Albaydha University, Albaydha, Yemen
| | - Saeed S Albaseer
- Department of Evolutionary Ecology & Environmental Toxicology, Biologicum, Goethe University Frankfurt, 60438, Frankfurt Am Main, Germany
| | | | - Zohreh Rahimi-Ahar
- Department of Chemical Engineering, Engineering Faculty, Velayat University, Iranshahr, Iran
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology, Tehran, 1599637111, Iran
| | - Jacek Mąkinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk, 80-233, Poland
| |
Collapse
|
14
|
Ferreira LMC, Martins PR, Silva CG, Marcolino-Junior LH, Bergamini MF, Vicentini FC. Electrochemical determination of Roxarsone using preconcentration-based signal amplification on modified screen-printed electrode. Food Chem 2023; 437:137698. [PMID: 39491248 DOI: 10.1016/j.foodchem.2023.137698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024]
Abstract
A lab-made screen-printed electrode based on poly(ethylene terephthalate) (PET) substrate modified with a hybrid film containing gold nanoparticles-decorated graphene (AuNPs-GRA/PET-SPE) was employed for the voltammetric determination of Roxarsone (ROX) in chicken purge and river water samples. The electrode exhibited an increased electroactive area and enhanced charge transfer due to the nanostructured matrix. The electrochemical determination involved a preconcentration approach with a reduction step of ROX at a constant potential of -0.6 V, followed by voltammetric sweep towards the oxidation of the adsorbed hydroxylamine at 0.32 V. The methodology achieved a limit of detection of 60 nM and 97 nM for ROX in diluted river water and chicken purge samples, respectively. This effective methodology offers a promising tool for monitoring ROX levels in environmental and food samples.
Collapse
Affiliation(s)
- Luís M C Ferreira
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil; Laboratory of Electrochemical Sensors (LabSensE) - Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Paulo R Martins
- Institute of Chemistry, Federal University of Goiás, Av. Esperança, Goiania, GO 74690-900, Brazil
| | - Cristiane G Silva
- Institute of Chemistry, Federal University of Goiás, Av. Esperança, Goiania, GO 74690-900, Brazil
| | - Luiz H Marcolino-Junior
- Laboratory of Electrochemical Sensors (LabSensE) - Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Marcio F Bergamini
- Laboratory of Electrochemical Sensors (LabSensE) - Department of Chemistry, Federal University of Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Fernando C Vicentini
- Center of Nature Sciences, Federal University of São Carlos, Rod. Lauri Simões de Barros km 12, 18290-000 Buri, SP, Brazil.
| |
Collapse
|
15
|
Mondal R, Shanmughan A, Murugeswari A, Shanmugaraju S. Recent advances in fluorescence-based chemosensing of organoarsenic feed additives using luminescence MOFs, COFs, HOFs, and QDs. Chem Commun (Camb) 2023; 59:11456-11468. [PMID: 37674461 DOI: 10.1039/d3cc03125j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Organoarsenics are low-toxicity compounds that are used widely as feed additives to promote livestock growth, enhance meat pigmentation, and fight against intestinal parasites. The organoarsenic compounds are commonly found in poultry waste and the degradation of organoarsenic produces the toxic carcinogen inorganic arsenic such as As(V) and As(III), which results in severe arsenic pollution of soil and groundwater. As a consequence, there exists a high necessity to develop suitable sensing methods for the trace detection and quantification of organoarsenic feed additives in wastewater. Among various detection methods, in particular, fluorescence-based sensing has become a popular and efficient method used extensively for sensing water contaminants and environmental contaminants. In the recent past, a wide variety of fluorescence chemosensors have been designed and employed for the efficient sensing and quantification of the concentration of organoarsenic feed additives in different environmental samples. This review article systematically highlights various fluorescence chemosensors reported to date for fluorescence-based sensing of organoarsenic feed additives. The fluorescence sensors discussed in this review are classified and grouped according to their structures and functions, and in each section, we provide a detailed report on the structure, photophysics, and fluorescence sensing properties of different chemosensors. Lastly, the future perspectives on the design and development of practically useful sensor systems for selective and discriminative sensing of organoarsenic compounds have been stated.
Collapse
Affiliation(s)
- Rajdeep Mondal
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - Ananthu Shanmughan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
| | - A Murugeswari
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678557, Kerala, India.
- Department of Physics, Anna University, Chennai 600025, India.
| | | |
Collapse
|
16
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Liu H, Baghayeri M, Amiri A, Karimabadi F, Nodehi M, Fayazi M, Maleki B, Zare EN, Kaffash A. A strategy for As(III) determination based on ultrafine gold nanoparticles decorated on magnetic graphene oxide. ENVIRONMENTAL RESEARCH 2023; 231:116177. [PMID: 37201707 DOI: 10.1016/j.envres.2023.116177] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
In this work, a new dendrimer modified magnetic graphene oxide (GO) was used as a substrate for electrodeposition of Au nanoparticles. The modified magnetic electrode was employed for sensitive measuring of As(III) ion as a well-established human carcinogen. The prepared electrochemical device exhibits excellent activity towards As(III) detection using the square wave anodic stripping voltammetry (SWASV) protocol. At optimum conditions (deposition potential at -0.5 V for 100 s in 0.1 M acetate buffer with pH 5.0), a linear range from 1.0 to 125.0 μgL-1 with a low detection limit (calculated by S/N = 3) of 0.47 μg L-1 was obtained. In addition to the simplicity and sensitivity of the proposed sensor, its high selectivity against some major interfering agents, such as Cu(II) and Hg(II) makes it an appreciable sensing tool for the screening of As(III). In addition, the sensor revealed satisfactory results for detection of As(III) in different water samples, and the accuracy of obtained data were confirmed by inductively coupled plasma atomic emission spectroscopy (ICP-AES) setup. Accounting for the high sensitivity, remarkable selectivity and good reproducibility, the established electrochemical strategy has great potential for analysis of As(III) in environmental matrices.
Collapse
Affiliation(s)
- Huazhong Liu
- Department of Basic Courses, Wuhan Donghu University, Wuhan, China; School of Physics and Telecommunications, Huanggang Normal University, Huanggang, China; Artificial Intelligence School, Wuchang University of Technology, Wuhan, China
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| | - Amirhasan Amiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fatemeh Karimabadi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Marziyeh Nodehi
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran
| | - Maryam Fayazi
- Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Behrooz Maleki
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | | | - Afsaneh Kaffash
- Department of Internal Medicine, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
18
|
Tyszczuk-Rotko K, Gorylewski D, Olchowski R, Dobrowolski R. Diclofenac-Impregnated Mesoporous Carbon-Based Electrode Material for the Analysis of the Arsenic Drug Roxarsone. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5420. [PMID: 37570122 PMCID: PMC10419715 DOI: 10.3390/ma16155420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
This paper describes a novel electrode material, diclofenac-impregnated mesoporous carbon modified with a cationic surfactant, cetyltrimethylammonium bromide (DF-CMK-3/CTAB), for ultratrace analysis of the arsenic drug roxarsone (ROX). DF-CMK-3 amorphous carbon is a material with a high specific surface area and well-defined, hexagonally ordered, thin mesopores. The functional groups attached to the carbonaceous surface, such as chromene and pyron-like oxygen groups, lactam, and aromatic carbon rings, have the basic character and they can donate electrons. Modification of DF-CMK-3 with a CTAB layer significantly increases the analytical signal due to electrostatic interactions between the cationic surfactant and the anion form of ROX in the acidic medium. The voltammetric procedure at the glassy carbon sensor modified with DF-CMK-3/CTAB exhibited excellent sensitivity (limit of detection of 9.6 × 10-11 M) with a wide range of linearity from 5.0 × 10-10 to 1.0 × 10-4 M. Analysis of real samples (treated municipal wastewater and river water) showed recoveries from 96 to 102% without applying the complicated sample pretreatment step. The sensor demonstrated excellent sensitivity in the analysis of the arsenic drug ROX in the presence of interferences in environmental water samples.
Collapse
Affiliation(s)
- Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Damian Gorylewski
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| | - Rafał Olchowski
- Department of Pharmacology, Toxicology and Environmental Protection, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland
| | - Ryszard Dobrowolski
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland
| |
Collapse
|
19
|
Ma JW, Wu YQ, Xu CL, Luo ZX, Yu RL, Hu GR, Yan Y. Inhibitory effect of polyethylene microplastics on roxarsone degradation in soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131483. [PMID: 37116328 DOI: 10.1016/j.jhazmat.2023.131483] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/19/2023]
Abstract
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.
Collapse
Affiliation(s)
- Jie-Wen Ma
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Ya-Qing Wu
- Instrumental Analysis Center of Huaqiao University, Huaqiao University, Xiamen 361021, China
| | - Chen-Lu Xu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhuan-Xi Luo
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Rui-Lian Yu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Gong-Ren Hu
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
20
|
Paul NP, Galván AE, Yoshinaga-Sakurai K, Rosen BP, Yoshinaga M. Arsenic in medicine: past, present and future. Biometals 2023; 36:283-301. [PMID: 35190937 PMCID: PMC8860286 DOI: 10.1007/s10534-022-00371-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/05/2022] [Indexed: 12/17/2022]
Abstract
Arsenicals are one of the oldest treatments for a variety of human disorders. Although infamous for its toxicity, arsenic is paradoxically a therapeutic agent that has been used since ancient times for the treatment of multiple diseases. The use of most arsenic-based drugs was abandoned with the discovery of antibiotics in the 1940s, but a few remained in use such as those for the treatment of trypanosomiasis. In the 1970s, arsenic trioxide, the active ingredient in a traditional Chinese medicine, was shown to produce dramatic remission of acute promyelocytic leukemia similar to the effect of all-trans retinoic acid. Since then, there has been a renewed interest in the clinical use of arsenicals. Here the ancient and modern medicinal uses of inorganic and organic arsenicals are reviewed. Included are antimicrobial, antiviral, antiparasitic and anticancer applications. In the face of increasing antibiotic resistance and the emergence of deadly pathogens such as the severe acute respiratory syndrome coronavirus 2, we propose revisiting arsenicals with proven efficacy to combat emerging pathogens. Current advances in science and technology can be employed to design newer arsenical drugs with high therapeutic index. These novel arsenicals can be used in combination with existing drugs or serve as valuable alternatives in the fight against cancer and emerging pathogens. The discovery of the pentavalent arsenic-containing antibiotic arsinothricin, which is effective against multidrug-resistant pathogens, illustrates the future potential of this new class of organoarsenical antibiotics.
Collapse
Affiliation(s)
- Ngozi P Paul
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Adriana E Galván
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
21
|
Lashani E, Amoozegar MA, Turner RJ, Moghimi H. Use of Microbial Consortia in Bioremediation of Metalloid Polluted Environments. Microorganisms 2023; 11:microorganisms11040891. [PMID: 37110315 PMCID: PMC10143001 DOI: 10.3390/microorganisms11040891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Metalloids are released into the environment due to the erosion of the rocks or anthropogenic activities, causing problems for human health in different world regions. Meanwhile, microorganisms with different mechanisms to tolerate and detoxify metalloid contaminants have an essential role in reducing risks. In this review, we first define metalloids and bioremediation methods and examine the ecology and biodiversity of microorganisms in areas contaminated with these metalloids. Then we studied the genes and proteins involved in the tolerance, transport, uptake, and reduction of these metalloids. Most of these studies focused on a single metalloid and co-contamination of multiple pollutants were poorly discussed in the literature. Furthermore, microbial communication within consortia was rarely explored. Finally, we summarized the microbial relationships between microorganisms in consortia and biofilms to remove one or more contaminants. Therefore, this review article contains valuable information about microbial consortia and their mechanisms in the bioremediation of metalloids.
Collapse
Affiliation(s)
- Elham Lashani
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14178-64411, Iran;
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| | - Raymond J. Turner
- Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada;
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14178-64411, Iran
- Correspondence: (M.A.A.); (H.M.); Tel.: +98-21-66415495 (H.M.)
| |
Collapse
|
22
|
Tyszczuk-Rotko K, Gorylewski D. Glassy Carbon Modified with Cationic Surfactant (GCE/CTAB) as Electrode Material for Fast and Simple Analysis of the Arsenic Drug Roxarsone. MATERIALS (BASEL, SWITZERLAND) 2022; 16:345. [PMID: 36614684 PMCID: PMC9822056 DOI: 10.3390/ma16010345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
For the fast and simple sensing of the arsenic drug roxarsone (ROX), the development of a glassy carbon electrode (GCE) modified with cationic surfactant (cetyltrimethylammonium bromide, CTAB) material is critical. The CTAB-modified glassy carbon electrode, in contrast to the unmodified one, showed excellent behavior for electrochemical reduction of ROX using cyclic voltammetry (CV) and square-wave adsorptive stripping voltammetry (SWAdSV) techniques. CV studies reveal an irreversible reduction process of NO2 to NH-OH in the ROX molecule in NaAc-HAc buffer (pH = 5.6). The electrode material was characterized using CV and electrochemical impedance spectroscopy. The experiments show that the surfactant-modified material has faster electron transfer and a higher active surface area, and permits a diffusion-adsorption-controlled process. After optimization, the SWAdSV procedure with GCE/CTAB has linear ranges of 0.001-0.02 and 0.02-20 µM, and a detection limit of 0.13 nM. Furthermore, the procedure successfully determined roxarsone in river water samples.
Collapse
|
23
|
Wei S, Zhou C, Zhang G, Zheng H, Chen Z, Zhang S. Effects of a redox-active diketone on the photochemical transformation of roxarsone: Mechanisms and environmental implications. CHEMOSPHERE 2022; 308:136326. [PMID: 36084835 DOI: 10.1016/j.chemosphere.2022.136326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. Dicarbonyl is a typical redox-active moiety in DOM. However, the knowledge on the photoconversion of organoarsenics by DOM, especially the contributions of dicarbonyl moieties is still limited. Here, we systematically investigated the photochemical transformation of three organoarsenics with the simplest β-diketone, acetylacetone (AcAc), as a model dicarbonyl moiety of DOM. The presence of AcAc significantly enhanced the photochemical conversion of roxarsone (ROX), whereas only minor effects were observed for 3-amino-4-hydroxyphenylarsonic acid (HAPA) and arsanilic acid (ASA), because the latter two (with an amino (-NH2) group) are more photoactive than ROX (with a nitro (-NO2) group). The results demonstrate that AcAc was a potent photo-activator and the reduction of -NO2 to -NH2 might be a rate-limiting step in the phototransformation of ROX. At a 1:1 M ratio of AcAc to ROX, the photochemical transformation rate of ROX was increased by 7 folds. In O2-rich environment, singlet oxygen, peroxide radicals, and ·OH were the main reactive species that led to the breakage of the C-As bond in ROX and the oxidation of the released arsono group to arsenate, whereas the triplet-excited state of AcAc (3AcAc*) and carbon-centered radicals from the photolysis of AcAc dominated in the reductive transformation of ROX. In anoxic environment, 3-amino-4-hydroxyphenylarsonic acid was one of the main reductive transformation intermediates of ROX, whose photolysis rate was about 35 times that of ROX. The knowledge obtained here is of great significance to better understand the fate of organoarsenics in natural environment.
Collapse
Affiliation(s)
- Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Chang Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhihao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Wang J, Wu H, Wei W, Xu C, Tan X, Wen Y, Lin A. Health risk assessment of heavy metal(loid)s in the farmland of megalopolis in China by using APCS-MLR and PMF receptor models: Taking Huairou District of Beijing as an example. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155313. [PMID: 35476951 DOI: 10.1016/j.scitotenv.2022.155313] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 04/12/2022] [Indexed: 05/09/2023]
Abstract
The quality of agricultural soils is important for agricultural production and food safety. The contamination of agricultural soils by heavy metal(loid)s (HMs) has aroused global attention. Fifty-two topsoil samples with 8 HMs were gathered to assess the health risks of farmland soil in Huairou District, Beijing. As a significantly enriched pollutant, the results revealed that Hg had greater ecological risks relative to other HMs. We found that the positive matrix factorization (PMF) model appears to be more physically plausible in identifying complex pollution sources compared to the absolute principal components score-multiple linear regression (APCS-MLR) model, which had a higher fit coefficient (r2 = 0.69-0.99). Five HMs from pollution sources, including agricultural activities, traffic source, natural source, fuel burning, and industrial production, were identified by integrating the PMF model with Pearson's correlation analysis, revealing corresponding contribution rates of 29.40%, 22.54%, 20.16%, 15.20%, and 12.70%, respectively. The probabilistic health risk evaluation results showed an absence of non-carcinogenic risks in all populations, but the carcinogenic risk could not be ignored, especially in children. In addition, the source-oriented health risks showed that agricultural activities made the largest contribution to the health risks of all populations. This research provides scientific evidence for preventing HMs contamination and control of farmland.
Collapse
Affiliation(s)
- Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Wenxia Wei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing 100089, PR China
| | - Congbin Xu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yi Wen
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
25
|
Zhou Y, Jiang D, Ding D, Wu Y, Wei J, Kong L, Long T, Fan T, Deng S. Ecological-health risks assessment and source apportionment of heavy metals in agricultural soils around a super-sized lead-zinc smelter with a long production history, in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119487. [PMID: 35597487 DOI: 10.1016/j.envpol.2022.119487] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Smelting activities are considered as the primary cause of heavy metal (HM) accumulation in soils, and the human health around the smelter has been a great concern worldwide. In this study, a total of 242 agricultural soil samples were collected around a large scale Pb/Zn smelter in China, and eight HMs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) were analyzed to assess HMs status, ecological -health risks, and identify source. Monte Carlo simulation was utilized to evaluate the probabilistic health risks, and positive matrix factorization (PMF) was employed to identify sources. The results revealed the average contents of five heavy metals (Cd 5.28 mg/kg, Pb 203.36 mg/kg, Hg 0.39 mg/kg, Zn 293.45 mg/kg, Cu 37.14 mg/kg) are higher than their background values in Hunan province. Cd had the highest mean pollution index (PI) of 41.8 and the greatest average ecological risk index (Er) of 1256.34, indicating that Cd was the primary enriched pollutant and had a higher ecological risk than other HMs. The mean hazard index (HI) through exposure to eight HMs was 2.95E-01 and 9.74E-01 for adults and children, respectively, with 35.94% of HI values for children exceeding the risk threshold of 1. Moreover, the mean total cancer risks (TCR) were 2.75E-05 and 2.37E-04 for adults and children, respectively, with 75.48% of TCR values for children exceeding the guideline value of 1E-04. In addition, the positive matrix factorization results showed smelting activities, natural sources, agricultural activities and atmospheric deposition were the three sources in soils, with the contribution rate of 48.62%, 22.35%, and 29.03%, respectively. The uncertainty analysis of the PMF indicated that the three-factor solution is reliable. This work will provide scientific reference for the comprehensive prevention of soil HM pollution adjacent to the large smelter.
Collapse
Affiliation(s)
- Yan Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Dengdeng Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Da Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Yunjing Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jing Wei
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lingya Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Tao Long
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Tingting Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shaopo Deng
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China; State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
26
|
Environmental Behavior and Remediation Methods of Roxarsone. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Roxarsone (ROX) is used extensively in the broiler chicken industry, and most is excreted in poultry litter. ROX degradation produces inorganic arsenic, which causes arsenic contamination of soil and aquatic environment. Furthermore, elevated arsenic concentrations are found in livers of chickens fed ROX. Microorganisms, light, and ions are the main factors that promote ROX degradation in the environment. The adsorption of ROX on different substances and its influencing factors have also been studied extensively. Additionally, the remediation method, combining adsorption and degradation, can effectively restore ROX contamination. Based on this, the review reports the ecological hazards, discussed the transformation and adsorption of ROX in environmental systems, documents the biological response to ROX, and summarizes the remediation methods of ROX contamination. Most previous studies of ROX have been focused on identifying the mechanisms involved under theoretical conditions, but more attention should be paid to the behavior of ROX under real environmental conditions, including the fate and transport of ROX in the real environment. ROX remediation methods at real contaminated sites should also be assessed and verified. The summary of previous studies on the environmental behavior and remediation methods of ROX is helpful for further research in the future.
Collapse
|
27
|
Zurek M, Hebinck A, Selomane O. Climate change and the urgency to transform food systems. Science 2022; 376:1416-1421. [PMID: 35737771 DOI: 10.1126/science.abo2364] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Without rapid changes to agriculture and food systems, the goals of the 2015 Paris Agreement on climate change will not be met. Food systems are one of the most important contributors to greenhouse gas (GHG) emissions, but they also need to be adapted to cope with climate change impacts. Although many options exist to reduce GHG emissions in the food system, efforts to develop implementable transformation pathways are hampered by a combination of structural challenges such as fragmented decision-making, vested interests, and power imbalances in the climate policy and food communities, all of which are compounded by a lack of joint vision. New processes and governance arrangements are urgently needed for dealing with potential trade-offs among mitigation options and their food security implications.
Collapse
Affiliation(s)
- Monika Zurek
- Food Systems Transformation Group, Environmental Change Institute, University of Oxford, Oxford, UK
| | - Aniek Hebinck
- Dutch Research Institute for Transitions (DRIFT), Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Odirilwe Selomane
- Centre for Sustainability Transitions, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
28
|
Dang X, Yu Z, Yang M, Woo MW, Song Y, Wang X, Zhang H. Sustainable electrochemical synthesis of natural starch-based biomass adsorbent with ultrahigh adsorption capacity for Cr(VI) and dyes removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Yao G, Tang R, Luo H, Yuan S, Wang W, Xiao L, Chu X, Hu ZH. Zero-valent iron mediated alleviation of methanogenesis inhibition induced by organoarsenic roxarsone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:152080. [PMID: 34856273 DOI: 10.1016/j.scitotenv.2021.152080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/02/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Zero-valent iron (ZVI) can enhance anaerobic digestion, and has great potential to alleviate/eliminate methanogenesis inhibition. Little is known about the feasibility of utilizing ZVI to alleviate methanogenesis inhibition that is caused by typical animal feed additive roxarsone in livestock wastewater. In this study, the role of ZVI on alleviating roxarsone-induced methanogenic inhibition and its mechanisms were investigated. With the increase of roxarsone concentration from 5 to 50 mg/L, the inhibition of methanogenesis increased from 3.0% to 65.7%. This inhibition was alleviated by 80.7% and 57.2% when 1.0 and 10.0 g/L ZVI were added, respectively. Due to ZVI addition, an efficient arsenic immobilization onto ZVI (45.4-85.8%) was achieved mainly through the formation of FeAsO4 precipitate and adsorption by ZVI. Under the function of ZVI, hydrogenotrophic methanogenic activity was obviously restored. The microbial community analysis indicates that the ZVI-regulated alleviation on the methanogenesis inhibition was attributed to the enrichment of Methanobacterium and Methanosarcina. The findings from this study demonstrate that ZVI addition is an effective way for treatment of organoarsenic-contaminated wastewater.
Collapse
Affiliation(s)
- Guanbao Yao
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liwen Xiao
- Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Xiangqian Chu
- School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei 230024, China
| |
Collapse
|
30
|
Heavy Metal Pollution and Its Prior Pollution Source Identification in Agricultural Soil: A Case Study in the Qianguo Irrigation District, Northeast China. SUSTAINABILITY 2022. [DOI: 10.3390/su14084494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Heavy metals are the primary pollutants in agricultural soil and have hindered the sustainable development of agriculture. To control heavy metal pollution, it is essential to identify the pollution sources, particularly the prior source, in agricultural soils. In the current study, Qianguo Irrigation District, a typical agricultural region in Northeast China, was selected to be investigated for the source apportionment of soil heavy metals and identify the prior pollution source. The results showed that the study area was at a moderate pollution level with considerable ecological risk, while Hg and Cd were the main pollutants. Human-health risk assessment indicated that the non-carcinogenic risk for all populations was acceptable (HI < 1), and the carcinogenic risk was not negligible (10−6 < TCR < 10−4). The main pollution sources were concluded to be of lithogenic origin (35.5%), livestock manure (25.4%), coal combustion (21.5%), and chemical fertilizers (17.7%). Coal combustion was identified as the prior pollution source, accounting for 47.69% of the RI contribution. This study can provide scientific support for environmental management and pollution control of soil heavy metals in agricultural regions.
Collapse
|
31
|
Jalali M, Meyari A. Heavy metal contents, soil-to-plant transfer factors, and associated health risks in vegetables grown in western Iran. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
32
|
Atta AH, Atta SA, Nasr SM, Mouneir SM. Current perspective on veterinary drug and chemical residues in food of animal origin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:15282-15302. [PMID: 34981398 DOI: 10.1007/s11356-021-18239-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The marked increase in the demand for animal protein of high quality necessitates protecting animals from infectious diseases. This requires increasing the use of veterinary therapeutics. The overuse and misuse of veterinary products can cause a risk to human health either as short-term or long-term health problems. However, the biggest problem is the emergence of resistant strains of bacteria or parasites. This is in addition to economic losses due to the discarding of polluted milk or condemnation of affected carcasses. This paper discusses three key points: possible sources of drug and chemical residues, human health problems, and the possible method of control and prevention of veterinary drug residues in animal products.
Collapse
Affiliation(s)
- Attia H Atta
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Shimaa A Atta
- Immunology Department, Theodor Bilharz Research Institute, Giza, 12411, Egypt
| | - Soad M Nasr
- Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza, 12622, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
33
|
Ye C, Deng J, Huai L, Cai A, Ling X, Guo H, Wang Q, Li X. Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150379. [PMID: 34571222 DOI: 10.1016/j.scitotenv.2021.150379] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Organoarsenic contaminants existing in water body threat human health and ecological environment due to insufficient bifunctional treatment technologies for organoarsenic degradation and inorganic arsenic immobilization. In order to safely and efficiently treat organoarsenic contaminants discharged into the aquatic environment, Co-Mn-Fe layered double hydroxide (CoMnFe-LDH) and Co-Mn-Fe layered double oxide (CoMnFe-LDO) were fabricated and employed as peroxymonosulfate (PMS) activator for organoarsenic degradation and inorganic arsenic immobilization, and p-arsanilic acid (p-ASA) was selected as target pollutant. Results demonstrated that the satisfactory removal of p-ASA (100.0%) in both CoMnFe-LDH/PMS and CoMnFe-LDO/PMS systems was obtained within 30 min, and substantial inorganic arsenic adsorption could be achieved (below 0.5 mg/L) in two systems with converting major inorganic arsenic species to arsenate. As XPS, ESR and quenching experiment revealed, the existence and generation of surface-bound radicals in two systems were identified. Based on density functional theory calculation and XPS analysis, the catalytic mechanism of CoMnFe-LDO/PMS system that PMS could be activated via direct electron transfer from adsorbed p-ASA was clarified, which differed from PMS activation via coupling with surface hydroxyl groups in CoMnFe-LDH/PMS system. Catalytic performance assessment under various critical operation parameters indicated that CoMnFe-LDH presented more stable ability of p-ASA removal in a wide pH range and complex aquatic environment. The recycle experiment demonstrated the excellent stability and reusability of CoMnFe-LDH(LDO). Besides, seven degradation products of p-ASA in CoMnFe-LDH/PMS system including phenolic compounds, azophenylarsonic acid, nitrobenzene and benzoquinne were identified by UV-Vis spectra and LC-TOF-MS analysis, and the corresponding degradation pathway was proposed. In summary, compared to CoMnFe-LDO/PMS, CoMnFe-LDH/PMS holds great promise for the development of an oxidation-adsorption process for efficient control of organoarsenic pollutant.
Collapse
Affiliation(s)
- Cheng Ye
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Lingyi Huai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Anhong Cai
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiao Ling
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hongguang Guo
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Qiongfang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201600, China
| | - Xueyan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
34
|
Wu S, Yang T, Mai J, Tang L, Liang P, Zhu M, Huang C, Li Q, Cheng X, Liu M, Ma J. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126820. [PMID: 34418831 DOI: 10.1016/j.jhazmat.2021.126820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effective removal of organoarsenic by the combined process of "chlorination + Fe(II)" was achieved. Chlorine could effectively degrade roxarsone (ROX) over pH from 5 to 10. The fitting results of acid-base protonation model proved that the degradation of ROX was mainly attributed to the reaction of HOCl and deprotonated ROX. The transformation of arsenic species conformed to the fitting results of two-channel kinetic model, in which 32.4% of ROX was oxidized to As(V) via electron transfer pathway (ii) and the rest was converted into monochloro-ROX via electrophilic substitution pathway (i). Humic acid inhibited the degradation of ROX due to the competitive consumption of chlorine and the restraint on the pathway ii. Subsequently, an enhanced removal of total arsenic achieved after chlorination, due to that the generating As(V) and monochloro-ROX were easier adsorbed compared with ROX, over 97.8% of total arsenic was removed by ferric (oxyhydr)oxides which in-situ formed from the oxidation of Fe(II). Additionally, toxicity studies indicated that the acute toxicity was significantly eliminated by adding Fe(II) after chlorination, likely due to the removal of As(V) and chlorinated products. Furthermore, organoarsenic was also effectively removed by the combined process of "chlorination + Fe(II)" in real water.
Collapse
Affiliation(s)
- Sisi Wu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Tao Yang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China.
| | - Jiamin Mai
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Liuyan Tang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Ping Liang
- School of Applied and Physics Materials, Wuyi University, Jiangmen 529020, China
| | - Mengyang Zhu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Cui Huang
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Qiuhua Li
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Xiaoxiang Cheng
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Minchao Liu
- School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
35
|
Piracha MA, Ashraf M, Shahzad SM, Imtiaz M, Arif MS, Rizwan MS, Aziz A, Tu S, Albasher G, Alkahtani S, Shakoor A. Alteration in soil arsenic dynamics and toxicity to sunflower (Helianthus annuus L.) in response to phosphorus in different textured soils. CHEMOSPHERE 2022; 287:132406. [PMID: 34597649 DOI: 10.1016/j.chemosphere.2021.132406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Being analogue to arsenic (As), phosphorus (P) may affect As dynamics in soil and toxicity to plants depending upon many soil and plant factors. Two sets of experiments were conducted to determine the effect of P on As fractionation in soils, its accumulation by plants and subsequent impact on growth, yield and physiological characteristics of sunflower (Helianthus annuus L.). Experimental plan comprised of two As levels (60 and 120 mg As kg-1 soil), four P (0-5-10-20 g phosphate rock kg-1 soil) and three textural types (sandy, loamy and clayey) with three replications. Among different As fractions determined, labile, calcium-bound, organic matter-bound and residual As increased while iron-bound and aluminum-bound As decreased with increasing P in all the three textural types. Labile-As percentage increased in the presence of P by 16.9-48.0% at As60 while 36.0-68.1% at As120 in sandy, 19.1-64.0% at As60 while 11.5-52.3% at As120 in loamy, and 21.8-58.2% at As60 while 22.3-70.0% at As120 in clayey soil compared to respective As treatment without P. Arsenic accumulation in plant tissues at both contamination levels declined with P addition as evidenced by lower bioconcentration factor. Phosphorus mitigated the As-induced oxidative stress expressed in term of reduced hydrogen peroxide, malondialdehyde while increased glutathione, and consequently improved the achene yield. Although, P increased As solubility in soil but restricted its translocation to plant, leading to reversal of oxidative damage, and improved sunflower growth and yield in all the three soil textural types, more profound effect at highest P level and in sandy texture.
Collapse
Affiliation(s)
- Muhammad Awais Piracha
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Ashraf
- Department of Soil Science, Bahauddin Zakariya University, Multan, Pakistan.
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Imtiaz
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences & Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Shahid Rizwan
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ahsan Aziz
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Shuxin Tu
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Awais Shakoor
- Department of Environment and Soil Sciences, University of Lleida, Avinguda Alcalde Rovira Roure 191, 25198, Lleida, Spain.
| |
Collapse
|
36
|
Fabrication of thulium metal–organic frameworks based smartphone sensor towards arsenical feed additive drug detection: Applicable in food safety analysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139487] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Kokulnathan T, Rajagopal V, Wang TJ, Huang SJ, Ahmed F. Electrochemical Behavior of Three-Dimensional Cobalt Manganate with Flowerlike Structures for Effective Roxarsone Sensing. Inorg Chem 2021; 60:17986-17996. [PMID: 34747616 DOI: 10.1021/acs.inorgchem.1c02583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rational design and construction of the finest electrocatalytic materials are important for improving the performance of electrochemical sensors. Spinel bioxides based on cobalt manganate (CoMn2O4) are of particular importance for electrochemical sensors due to their excellent catalytic performance. In this study, three-dimensional CoMn2O4 with the petal-free, flowerlike structure is synthesized by facile hydrothermal and calcination methods for the electrochemical sensing of roxarsone (RXS). The effect of calcination temperature on the characteristics of CoMn2O4 was thoroughly studied by in-depth electron microscopic, spectroscopic, and analytical methods. Compared to previous reports, CoMn2O4-modified screen-printed carbon electrodes display superior performance for the RXS detection, including a wide linear range (0.01-0.84 μM; 0.84-1130 μM), a low limit of detection (0.002 μM), and a high sensitivity (33.13 μA μM-1 cm-2). The remarkable electrocatalytic performance can be attributed to its excellent physical properties, such as good conductivity, hybrid architectures, high specific surface area, and rapid electron transportation. More significantly, the proposed electrochemical sensor presents excellent selectivity, good stability, and high reproducibility. Besides, the detection of RXS in river water samples using the CoMn2O4-based electrochemical sensor shows satisfactory recovery values in the range of 98.00-99.80%. This work opens a new strategy to design an electrocatalyst with the hybrid architecture for high-performance electrochemical sensing.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Veeramanikandan Rajagopal
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei 106, Taiwan
| | - Song-Jeng Huang
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, P.O. Box 400, Hofuf, Al-Ahsa 31982, Kingdom of Saudi Arabia
| |
Collapse
|
38
|
Zhao YP, Cui JL, Fang LP, An YL, Gan SC, Guo PR, Chen JH. Roxarsone transformation and its impacts on soil enzyme activity in paddy soils: A new insight into water flooding effects. ENVIRONMENTAL RESEARCH 2021; 202:111636. [PMID: 34245733 DOI: 10.1016/j.envres.2021.111636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/25/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The aromatic arsenical roxarsone (ROX) has been used as feed additive for decades worldwide. The past or present application of animal manure containing ROX in paddy fields results in arsenic (As) accumulation in rice grain. However, the degradation and transformation mechanisms of ROX in paddy soil which determine As bioavailability and uptake by rice are still unclear. The current study investigated the variation of As speciation and soil enzyme activities in ROX-treated soils under flooded and non-flooded conditions for six months. Our results showed that 70.2% of ROX persisted in non-flooded paddy soils after 180 d while ROX degraded completely within 7 d in flooded soils. The rapid degradation of ROX under flooded conditions owed to the enhanced biotic transformation that was caused by the low Eh and the predominant presence of Clostridium spp. and Bacillus spp. ROX was not only transformed to As(III) and As(V) in non-flooded soils but also to 3-amino-4-hydroxyphenylarsonic acid and methyl arsenicals in flooded soils. The degradation products significantly inhibited soil enzyme activities for 7-30 d, but the inhibition effects disappeared after 90 d due to the sorption of transformed As products to amorphous Fe oxides. This study provides new insights into the flooding effect on ROX fate in paddy fields, which is important for the management of animal waste and risk control on polluted sites.
Collapse
Affiliation(s)
- Yan-Ping Zhao
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Jin-Li Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Li-Ping Fang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Ya-Li An
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Shu-Chai Gan
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Peng-Ran Guo
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China.
| | - Jiang-Han Chen
- Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China.
| |
Collapse
|
39
|
Peng Q, Xu W, Qi W, Hu C, Liu H, Qu J. Removal of p-arsanilic acid and phenylarsonic acid from water by Fenton coagulation process: influence of substituted amino group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63319-63329. [PMID: 34227010 DOI: 10.1007/s11356-021-15157-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phenylarsonic acid compounds, which were widely used in poultry and swine production, are often introduced to agricultural soils with animal wastes. Fenton coagulation process is thought as an efficient method to remove them. However, the substituted amino group could apparently influence the removal efficiency in Fenton coagulation process. Herein, we investigated the optimal conditions to treat typical organoarsenic contaminants (p-arsanilic acid (p-ASA) and phenylarsonic acid (PAA)) in aqueous solution based on Fenton coagulation process for oxidizing them and capturing the released inorganic arsenic, and elucidated the influence mechanism of substituted amino group on removal. Results showed that the pH value and the dosage of H2O2 and Fe2+ significantly influenced the performance of the oxidation and coagulation processes. The optimal conditions for removing 20 mg L-1-As in this research were 40mg L-1 Fe2+ and 60mg L-1 H2O2 (the mass ratio of Fe2+/H2O2 = 1.5), initial solution pH of 3.0, and final solution pH of 5.0 adjusting after 30-min Fenton oxidation reaction. Meanwhile, the substituted amino group made p-ASA much more easily be attacked by ·OH than PAA and supply one more binding sites for forming complexes with Fe3+ hydrolysates, resulting in 36% higher oxidation rate and 7% better coagulation performance at the optimal conditions.
Collapse
Affiliation(s)
- Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenze Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Chengzhi Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijuan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Tang R, Luo H, Prommer H, Yue Z, Wang W, Su K, Hu ZH. Response of anaerobic granular sludge to long-term loading of roxarsone: From macro- to micro-scale perspective. WATER RESEARCH 2021; 204:117599. [PMID: 34481285 DOI: 10.1016/j.watres.2021.117599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of organoarsenic feed additives such as roxarsone has caused organoarsenicals to occur in livestock wastewater and further within anaerobic wastewater treatment systems. Currently, information on the long-term impacts of roxarsone on anaerobic granular sludge (AGS) activity and the underlying mechanisms is very limited. In this study, the response of AGS to long-term loading of roxarsone was investigated using a laboratory up-flow anaerobic sludge blanket reactor spiked with 5.0 mg L-1 of roxarsone. Under the effect of roxarsone, methane production decreased by ∼40% due to the complete inhibition on acetoclastic methanogenic activity on day 260, before being restored eventually. Over 30% of the influent arsenic was accumulated in the AGS and the capability of AGS to prevent intracellular As(III) accumulation increased with time. The AGS size was reduced by ∼30% to 1.20‒1.26 mm. Based on morphology and confocal laser scanning microscopy analysis, roxarsone exposure stimulated the excretion of extracellular polymeric substances and the surface spalling of AGS. High-throughput sequencing analysis further indicated roxarsone initially altered the acidogenic pathway and severely inhibited the acetoclastic methanogen Methanothrix. Acetogenic bacteria and Methanothrix were finally enriched and became the main contributor for a full restoration of the initial methane production. These findings provide a deeper understanding on the effect of organoarsenicals on AGS, which is highly beneficial for the effective anaerobic treatment of organoarsenic-bearing wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kuizu Su
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
41
|
Liu Y, Tian X, Cao S, Li Y, Dong H, Li Y. Pollution characteristics and health risk assessment of arsenic transformed from feed additive organoarsenicals around chicken farms on the North China Plain. CHEMOSPHERE 2021; 278:130438. [PMID: 34126682 DOI: 10.1016/j.chemosphere.2021.130438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/20/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
Arsenic is frequently found in poultry waste, most of which is transformed from feed additive organoarsenicals, resulting in arsenic pollution of soils and water around poultry farms. The North China Plain, an important area for livestock breeding of China, was chosen to investigate the pollution characteristics and assess the health risk of arsenic around chicken farms. Among the 138 chicken farms sampled, almost no roxarsone, a common organoarsenical, was detected in chicken feeds, manure, and surface soils, while the detectable rate of other arsenic species was high. Because of long-term enrichment, the concentrations of arsenic species in manure were generally higher than that in feed. As(III) was the main inorganic arsenic species in the manure, where is reducing environment. In surface soils beneath the accumulated manure, As(V) was the predominant arsenic species with 100% detectable rate. The detectable rate and average concentrations at 0 cm were generally higher than those at 25 cm depth, indicating that arsenic accumulated in the surface soils. In addition, a typical conceptual diagram of arsenic was developed to clarify the pollution process from feed to soil. Through health risk assessment of inorganic arsenic, the carcinogenic risk (CR) and non-carcinogenic risk (non-CR) were both negligible. The city of Jiaozuo had the highest CR and non-CR, which was 11 times higher than that of the city with the lowest risks. This study presents a clear picture and evaluation of arsenic pollution on chicken farms, inspiring future studies assessing arsenic pollution after the ban of organoarsenicals.
Collapse
Affiliation(s)
- Yaci Liu
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, PR China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, Hebei, 050061, PR China
| | - Xia Tian
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, PR China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, Hebei, 050061, PR China
| | - Shengwei Cao
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, PR China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, Hebei, 050061, PR China
| | - Yi Li
- Hebei Geological Environment Monitoring, Shijiazhuang, Hebei, 050061, PR China
| | - Huijun Dong
- Hebei Geological Environment Monitoring, Shijiazhuang, Hebei, 050061, PR China
| | - Yasong Li
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, Hebei, 050061, PR China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, Hebei, 050061, PR China.
| |
Collapse
|
42
|
Spatial Distribution and Source Apportionment of Soil Heavy Metals in Pearl River Delta, China. SUSTAINABILITY 2021. [DOI: 10.3390/su13179651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The contents of ten heavy metals (HMs) (Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, and Mn) in 80 surface soil samples (0–20 cm) were investigated in the Pearl River Delta (PRD), Guangdong Province, China. The average contents of Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, Co, and Mn were 16.45, 40.20, 45.10, 0.09, 12.93, 47.93, 0.13, 14.44, 5.68, and 199.66 mg/kg, respectively. The soil quality was generally good, though slightly higher levels (1.17, 1.61, 1.67, and 1.62 times) of soil Pb, Cd, Hg, and As contents were observed compared with the soil background values. The spatial distribution of soil HM pollution in the PRD showed that 36% of sample sites were evaluated as sites without soil pollution, 32% as sites with slight pollution, 20% as sites with nearly moderate pollution, 9% as sites with moderate pollution, and 3% as site with serious pollution. Source apportionment analysis showed that the source of 64.33% of soil HMs in the PRD could be explained by natural and industrial sources, 24.80% by transportation, and 10.87% by agricultural activities.
Collapse
|
43
|
Chai L, Wang Y, Wang X, Ma L, Cheng Z, Su L, Liu M. Quantitative source apportionment of heavy metals in cultivated soil and associated model uncertainty. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112150. [PMID: 33756290 DOI: 10.1016/j.ecoenv.2021.112150] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
To estimate spatial distribution, source analysis and uncertainty of heavy metals (Pb, Cd, Cr, Hg, As, Cu, Zn, and Ni) based on geographic information system (GIS), positive matrix factorization model (PMF) and bootstrap (BS) using 382 soil samples collected from cultivated soils in Lanzhou. The mean contents of Cd, Hg, Cu, Zn and Ni were high as 1.7,1.7, 2.1, 1.5 and 1.3 times local background values, mean contents of Pb, Cr and As were lower than local background values. However, the mean contents of eight heavy metals were lower environmental quality risk control standard for soil contamination of agricultural soil. Proportions of four sources were identified: Cr was predominantly contributed by natural sources (29.14%), Cu, Zn and Ni was primarily from industrial sources (25.26%), Hg and As were mainly of agricultural sources (27.49%), Pb and Cd mainly came from traffic source and smelting-related activities (18.09%). Uncertainties analysis contained three aspects: bootstrap runs, factor contributions in the PMF solution, and coefficient of variation (CV) values. By combining the four pollution source factors with bootstrap runs, the accuracy of the four pollution source factors were reliable based on PMF model. The median values in the BS runs was considered the most true factor contribution, and the 5th-95th quartile interval represents the variability of each factor, Factor 4 (traffic source) R2 was 0.70 and lower variability. The highest CV value usually means a significantly deviation degree. In this study, the CV values of Cr in Factor 1, Cu, Zn, and Ni in Factor 2, Hg, and As in Factor 3, Pb, and Cd in Factor 4 were lower, indicates a lower deviation degree. and with the lowest content among heavy metals usually was also with the greatest uncertainties. In this study improves understanding of the reduction of heavy metal pollution in cultivated soil, and also serves as reference for pollution source apportionment in other regions.
Collapse
Affiliation(s)
- Lei Chai
- Collage of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China
| | - Yuhong Wang
- Collage of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China; Lanzhou Center for Disease Control and Prevention, Lanzhou 730030, China.
| | - Xin Wang
- Lanzhou Center for Disease Control and Prevention, Lanzhou 730030, China
| | - Liang Ma
- Lanzhou Center for Disease Control and Prevention, Lanzhou 730030, China
| | - Zhenxiang Cheng
- Lanzhou Center for Disease Control and Prevention, Lanzhou 730030, China
| | - Limin Su
- Lanzhou Center for Disease Control and Prevention, Lanzhou 730030, China
| | - Minxia Liu
- Collage of Geography and Environmental Sciences, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
44
|
Meng M, Yang L, Wei B, Cao Z, Yu J, Liao X. Plastic shed production systems: The migration of heavy metals from soil to vegetables and human health risk assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112106. [PMID: 33756293 DOI: 10.1016/j.ecoenv.2021.112106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Plastic shed production system (PSPS) provide abundant vegetable products for human consumption. Comprehensive and accurate heavy metal (HM) risk assessment of soil and vegetable under plastic sheds is crucial for human health. Pollution assessment, bioavailability and mobility evaluation and health risk assessment of Cd, Cr, Cu, Zn Ni, Pb, and As were performed in a presentative Plastic shed production system. The concentrations of the Cd, Cu and Zn exceeded their background value. Positive Igeo values suggested that soil under plastic sheds was widely contaminated with Cd. The bioavailability of heavy metals in soils was evaluated using DTPA extraction and DGT methods. The results of both methods demonstrated that Cd, Cu, and Zn have high bioavailability, especially Cd. Analogically, the results of mobility assignment based on DIFS showed that Cd has a high migration risk due to the large available pool. Based on specific cultivation and management patterns of plastic shed production system, pH reduction and salt and nutrient accumulation may increase the heavy metals migration risk in soil under plastic sheds, while a high organic matter content may reduce the heavy metals migration risk. The average concentrations of Cd, Cr, Cu, Zn, Ni, Pb, and As in vegetables were 0.023, 0.226, 0.654, 2.984, 0.329, 0.041, and 0.010 mg/kg, respectively. All samples were well below the threshold. The order of target hazard quotient of different heavy metals caused by vegetable consumption was Cd > Cr > As > Cu, Ni, Pb, Zn, and the average total hazard index value was below 1, which demonstrated that risk of vegetable consumption in the study area. However, due to its high concentration and transfer coefficient in spinach, Cd might pose a health risk to humans, which requires special attention. In this study, Cd caused a significant issue than other HMs, whether pollution level, health risk and migration risk. DGT and DIFS can be used as an effective evaluation tool in the research of controlling heavy metals migration in soil-crop systems.
Collapse
Affiliation(s)
- Min Meng
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Linsheng Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binggan Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhiqiang Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangping Yu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| |
Collapse
|
45
|
Tang R, Wang Y, Yuan S, Wang W, Yue Z, Zhan X, Hu ZH. Organoarsenic feed additives in biological wastewater treatment processes: Removal, biotransformation, and associated impacts. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124789. [PMID: 33310328 DOI: 10.1016/j.jhazmat.2020.124789] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Aromatic organoarsenicals are widely used in animal feeding operations and cause arsenic contamination on livestock wastewater and manure, thereby raising the risk of surface water pollution. Biological wastewater treatment processes are often used for livestock wastewater treatment. Organoarsenic removal and biotransformation under aerobic and anaerobic conditions, and the associated impacts have received extensive attention due to the potential threat to water security. The removal efficiency and biotransformation of organoarsenicals in biological treatment processes are reviewed. The underlying mechanisms are discussed in terms of functional microorganisms and genes. The impacts associated with organoarsenicals and their degradation products on microbial activity and performance of bioreactors are also documented. Based on the current research advancement, knowledge gaps and potential research in this field are discussed. Overall, this work delivers a comprehensive understanding on organoarsenic behaviors in biological wastewater treatment processes, and provides valuable information on the control of arsenic contamination from the degradation of organoarsenicals in biological wastewater treatment processes.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yulan Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xinmin Zhan
- Civil Engineering, College of Engineering and Informatics, National University of Ireland, Galway, Ireland
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
46
|
Xie X, Cheng H. Adsorption and desorption of phenylarsonic acid compounds on metal oxide and hydroxide, and clay minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143765. [PMID: 33229094 DOI: 10.1016/j.scitotenv.2020.143765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Adsorption and desorption of p-arsanilic acid (p-ASA) and roxarsone (ROX) on six soil minerals, including hematite (α-Fe2O3), goethite (α-FeOOH), ferrihydrite (Fe(OH)3), aluminum oxide (α-Al2O3), manganese oxide (γ-MnO2), and kaolinite, were studied, and the impact of solution matrices on their adsorption was systematically evaluated. Adsorption of p-ASA/ROX on the metal (hydro)oxide and clay minerals occurred quickly (mostly within 2 h), and could be well described by the pseudo second-order kinetic model. The apparent maximum adsorption capacities of α-Fe2O3, α-FeOOH, Fe(OH)3, α-Al2O3, γ-MnO2, and kaolinite (at an initial pH of 7.0) for p-ASA were 1.7, 0.9, 2.5, 0.08, 1.1, and 0.02 μmol/m2, while those for ROX were 1.6, 0.7, 2.4, 0.1, 0.5, and 0.05 μmol/m2, respectively. Besides adsorbing p-ASA/ROX, γ-MnO2 also caused their oxidation. Experimental results suggest that formation of inner-sphere complexes through the arsonic acid group is the primary mechanism for adsorption of p-ASA/ROX on iron (hydro)oxides and γ-MnO2, while outer-sphere complexation plays a critical role in their adsorption on α-Al2O3 and kaolinite. Adsorption of p-ASA/ROX on the metal (hydro)oxide and clay minerals was affected by solution pH, co-existing metal ions (Ca2+, Mg2+, Al3+, Cu2+, Fe3+, and Zn2+), oxyanions (H2PO4-, HCO3-, and SO42-), and humic acid. The solid-to-liquid partition coefficients of p-ASA during the desorption from α-Fe2O3, α-FeOOH, Fe(OH)3, α-Al2O3, γ-MnO2, and kaolinite were 0.47, 2.69, 4.38, 0.03, 30.4, and 0.1 L/g, while those of ROX were 0.28, 1.68, 3.48, 0.02, 4.0, and 0.02 L/g, respectively. Agricultural soils with lower contents of organic carbon exhibited higher adsorption capacities towards p-ASA/ROX, which indicates that soil minerals play a key role in the adsorption of phenylarsonic acid compounds while organic matter could have strong inhibitory effect. These findings could help better understand and predict the transport and fate of p-ASA/ROX in surface soils with low contents of organic matter.
Collapse
Affiliation(s)
- Xiande Xie
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
47
|
Tang R, Prommer H, Yuan S, Wang W, Sun J, Jamieson J, Hu ZH. Enhancing Roxarsone Degradation and In Situ Arsenic Immobilization Using a Sulfate-Mediated Bioelectrochemical System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:393-401. [PMID: 33301302 DOI: 10.1021/acs.est.0c06781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Roxarsone (ROX) is widely used in animal farms, thereby producing organoarsenic-bearing manure/wastewater. ROX cannot be completely degraded and nor can its arsenical metabolites be effectively immobilized during anaerobic digestion, potentially causing arsenic contamination upon discharge to the environment. Herein, we designed and tested a sulfate-mediated bioelectrochemical system (BES) to enhance ROX degradation and in situ immobilization of the released inorganic arsenic. Using our BES (0.5 V voltage and 350 μM sulfate), ROX and its metabolite, 4-hydroxy-3-amino-phenylarsonic acid (HAPA), were completely degraded within 13-22 days. In contrast, the degradation efficiency of ROX and HAPA was <85% during 32-day anaerobic digestion. In a sulfate-mediated BES, 75.0-83.2% of the total arsenic was immobilized in the sludge, significantly more compared to the anaerobic digestion (34.1-57.3%). Our results demonstrate that the combination of sulfate amendment and voltage application exerted a synergetic effect on enhancing HAPA degradation and sulfide-driven arsenic precipitation. This finding was further verified using real swine wastewater. A double-cell BES experiment indicated that As(V) and sulfate were transported from the anode to the cathode chamber and coprecipitated as crystalline alacranite in the cathode chamber. These findings suggest that the sulfate-mediated BES is a promising technique for enhanced arsenic decontamination of organoarsenic-bearing manure/wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- National Centre for Groundwater Research and Training, Adelaide, South Australia 5001, Australia
| | - Shoujun Yuan
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - James Jamieson
- CSIRO Land and Water, Private Bag No. 5, Wembley, Western Australia 6913, Australia
- School of Earth Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
48
|
Li T, Castañeda CD, Miotto J, McDaniel C, Kiess AS, Zhang L. Effects of in ovo probiotic administration on the incidence of avian pathogenic Escherichia coli in broilers and an evaluation on its virulence and antimicrobial resistance properties. Poult Sci 2020; 100:100903. [PMID: 33518345 PMCID: PMC7936151 DOI: 10.1016/j.psj.2020.11.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, which has been traditionally controlled by the prophylactic in-feed supplementation of antibiotics. However, antibiotics are being removed from poultry diets owing to the emergence of multidrug-resistant (MDR) bacteria. Therefore, alternatives to control APEC are required. This study aimed to evaluate the effects of in ovo inoculation of probiotics on the incidence of APEC in broilers and evaluate the virulence and antimicrobial resistance properties of the APEC isolates. On embryonic day 18, 4 in ovo treatments (T) were applied: T1 (Marek's vaccine [MV]), T2 (MV and Lactobacillus animalis), T3 (MV and Lactobacillus reuteri), and T4 (MV and Lactobacillus rhamnosus). A total of 180 male broilers per treatment were randomly placed in 10 pens. The heart, liver, spleen, and yolk sac were collected on day 0, 14, 28, and 42. Presumptive E. coli isolates were confirmed by real-time PCR. The positive isolates were screened for the APEC-related genes (iroN, ompT, hlyF, iss, and iutA), and E. coli isolates containing one or more of these genes were identified as APEC-like strains. A total of 144 APEC-like isolates were isolated from 548 organ samples. No differences (P > 0.05) among treatments were observed for the incidence of APEC-like strains in all organs when averaged over sampling days. However, when averaged over treatments, the incidence in the heart, liver, and yolk sac was different among sampling days; a significant increase was observed in these organs on day 14 compared with day 0. Twenty-five antimicrobial resistance genes were evaluated for all APEC-like isolates, and 92.4% of the isolates carried at least one antimicrobial resistance gene. Thirty-seven isolates were then selected for antimicrobial susceptibility testing; MDR strains accounted for 37.8% of the isolates. In conclusion, the in ovo inoculation of a single probiotic strain did not confer protection against APEC strains in broilers. The high prevalence of MDR isolates indicates that further research on antibiotic alternatives is required to prevent APEC infections in broilers.
Collapse
Affiliation(s)
- Tianmin Li
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Claudia D Castañeda
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Julio Miotto
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Chris McDaniel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Aaron S Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
49
|
Making good use of arsenic’s toxicity to control pests and diseases. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00122-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Yuanan H, He K, Sun Z, Chen G, Cheng H. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122244. [PMID: 32058225 DOI: 10.1016/j.jhazmat.2020.122244] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal(loid)s are natural constituents of the Earth's crust, and apportionment of their sources in surface soils is a challenging task. This study evaluated the application of positive matrix factorization (PMF) model, assisted with regression modeling and geospatial mapping, in the quantitative source apportionment of heavy metal(loid)s in the agricultural soils of Handan, a region covering >12,000 km2. Obvious enrichment of As, Cd, Cu, Pb, and Zn was found in the surface soils, with Cd alone accounted for 73 % of the overall potential ecological risk. PMF model revealed that Cd (56.9 %) and Pb (47.8 %) in the region's agricultural soils were predominantly contributed by industrial sources, Fe (71.8 %), Cr (60.0 %), V (52.9 %), Cu (50.7 %), Ni (42.2 %), and Mn (41.4 %) were primarily of lithogenic origin, while Co (54.1 %), As (42.9 %), and Zn (40.0 %) mainly came from the mixed sources of natural background, agricultural sources, and vehicle emissions. Uncertainty analysis showed that the contributions of pollution sources to the soil heavy metal(loid)s estimated by PMF model had considerable variations. While quantitative source apportionment of heavy metal(loid)s in soils could be achieved with PMF based on their spatial distributions, combination with emission inventory and reactive transport are probably necessary to obtain more accurate results.
Collapse
Affiliation(s)
- Hu Yuanan
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Kailing He
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zehang Sun
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gang Chen
- Department of Civil & Environmental Engineering, Florida A&M University-Florida State University, Tallahassee, FL 32310, United States
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|