1
|
Zhang Y, Wang L, Bian Q, Zhong C, Chen Y, Jiang L. Enhanced Ionic Power Generation via Light-Driven Active Ion Transport Across 2D Semiconductor Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311379. [PMID: 38829150 DOI: 10.1002/smll.202311379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/04/2024] [Indexed: 06/05/2024]
Abstract
2D semiconductor heterostructures exhibit broad application prospects. However, regular nanochannels of heterostructures rarely caught the researcher's attention. Herein, a metal-organic framework (i.e., Cu3(HHTP)2) and transition metal dichalcogenides (i.e., MoS2)-based multilayer van der Waals heterostructure (i.e., Cu3(HHTP)2/MoS2) realized band alignment-dominated light-driven ion transport and further light-enhanced ionic energy generation. High-density channels of the heterostructure provide high-speed pathways for ion transmembrane transport. Upon light illumination, a net ionic flow occurs at a symmetric concentration, suggesting a directional cationic transport from Cu3(HHTP)2 to MoS2. This is because Cu3(HHTP)2/MoS2 heterostructures containing type-II band alignment can generate photovoltaic motive force through light-induced efficient charge separation to drive ion transport. After introducing into the ionic power generation system, the maximum power density under illumination can achieve notable improvement under different concentration differences. In addition to the photovoltaic motive force, type-II band alignment and material defect capture-induced surface charge increase also raise ion selectivity and flux, greatly facilitating ionic energy generation. This work demonstrates that 2D semiconductor heterostructures with rational band alignment can not only be a potential platform for optimizing light-enhanced ionic energy harvesting but also provide a new thought for biomimetic iontronic devices.
Collapse
Affiliation(s)
- Yuhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Qing Bian
- Analysis and Testing Central Facility of Anhui University of Technology, Maanshan, 243032, China
| | - Chengcheng Zhong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yupeng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lei Jiang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| |
Collapse
|
2
|
Li Z, Mehraj A, Sun Z, Fu W, Wang S. Advanced integrated nanochannel membrane with oppositely-charged bacterial cellulose and functionalized polymer for efficient salinity gradient energy generation. Int J Biol Macromol 2024; 277:133975. [PMID: 39029819 DOI: 10.1016/j.ijbiomac.2024.133975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Reverse electrodialysis (RED) systems employing charged nanochannels have gained prominence for harvesting salinity gradient energy. Nevertheless, fabricating nanochannel membranes with optimal ion selectivity and high energy conversion efficiency remains a significant challenge. In this study, we develop oppositely charged bacterial cellulose (BC)/polymer composite nano-channel membranes with precisely designed nanochannel architectures by integrating chemical modification with composite material technology. Initially, BC undergoes chemical modifications, including 2,2,6,6-Tetramethylpiperidine 1-oxy radical (TEMPO) oxidation and quaternisation. Subsequently, a polymer network is integrated into the modified BC network through a polymer synthesis technique. This approach successfully yields negatively charged BC/poly(sodium p-styrene sulfonate) (NBC/PSS) composite double-networked nanochannel membranes and positively charged BC/poly(dopamine) (PBC/PDA) composite double-networked nanochannel membranes. Notably, these membranes exhibit significantly enhanced ionic conductivities, with values of 0.0008 and 0.0014 S cm-1 for the NBC/PSS and PBC/PDA composites, respectively, while also demonstrating superior ion selectivity with cation transfer numbers of 0.9 and 0.1 respectively. Furthermore, a series connection of 30 BCE/charged polymer-based RED devices successfully powers an electronic calculator. This work offers novel insights into the design of BC-based RED devices by integrating chemical modification and polymeric composite strategies for efficient salinity gradient energy generation.
Collapse
Affiliation(s)
- Zhouyue Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ahmad Mehraj
- Department of Food Science and Engineering, College of Light Industry and Food, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wenkai Fu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Sha Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Keneshbekova A, Smagulova G, Kaidar B, Imash A, Ilyanov A, Kazhdanbekov R, Yensep E, Lesbayev A. MXene/Carbon Nanocomposites for Water Treatment. MEMBRANES 2024; 14:184. [PMID: 39330525 PMCID: PMC11434601 DOI: 10.3390/membranes14090184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
One of the most critical problems faced by modern civilization is the depletion of freshwater resources due to their continuous consumption and contamination with different organic and inorganic pollutants. This paper considers the potential of already discovered MXenes in combination with carbon nanomaterials to address this problem. MXene appears to be a highly promising candidate for water purification due to its large surface area and electrochemical activity. However, the problems of swelling, stability, high cost, and scalability need to be overcome. The synthesis methods for MXene and its composites with graphene oxide, carbon nanotubes, carbon nanofibers, and cellulose nanofibers, along with their structure, properties, and mechanisms for removing various pollutants from water, are described. This review discusses the synthesis methods, properties, and mechanisms of water purification using MXene and its composites. It also explores the fundamental aspects of MXene/carbon nanocomposites in various forms, such as membranes, aerogels, and textiles. A comparative analysis of the latest research on this topic shows the progress in this field and the limitations for the practical application of MXene/carbon nanocomposites to solve the problem of drinking water scarcity. Consequently, this review demonstrates the relevance and promise of the material and underscores the importance of further research and development of MXene/carbon nanocomposites to provide effective water treatment solutions.
Collapse
Affiliation(s)
- Aruzhan Keneshbekova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
| | - Gaukhar Smagulova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Bayan Kaidar
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Aigerim Imash
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Akram Ilyanov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Ramazan Kazhdanbekov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Eleonora Yensep
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Aidos Lesbayev
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| |
Collapse
|
4
|
Kumar P, Singh G, Guan X, Roy S, Lee J, Kim IY, Li X, Bu F, Bahadur R, Iyengar SA, Yi J, Zhao D, Ajayan PM, Vinu A. The Rise of Xene Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403881. [PMID: 38899836 DOI: 10.1002/adma.202403881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Xenes, mono-elemental atomic sheets, exhibit Dirac/Dirac-like quantum behavior. When interfaced with other 2D materials such as boron nitride, transition metal dichalcogenides, and metal carbides/nitrides/carbonitrides, it enables them with unique physicochemical properties, including structural stability, desirable bandgap, efficient charge carrier injection, flexibility/breaking stress, thermal conductivity, chemical reactivity, catalytic efficiency, molecular adsorption, and wettability. For example, BN acts as an anti-oxidative shield, MoS2 injects electrons upon laser excitation, and MXene provides mechanical flexibility. Beyond precise compositional modulations, stacking sequences, and inter-layer coupling controlled by parameters, achieving scalability and reproducibility in hybridization is crucial for implementing these quantum materials in consumer applications. However, realizing the full potential of these hybrid materials faces challenges such as air gaps, uneven interfaces, and the formation of defects and functional groups. Advanced synthesis techniques, a deep understanding of quantum behaviors, precise control over interfacial interactions, and awareness of cross-correlations among these factors are essential. Xene-based hybrids show immense promise for groundbreaking applications in quantum computing, flexible electronics, energy storage, and catalysis. In this timely perspective, recent discoveries of novel Xenes and their hybrids are highlighted, emphasizing correlations among synthetic parameters, structure, properties, and applications. It is anticipated that these insights will revolutionize diverse industries and technologies.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Soumyabrata Roy
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - In Young Kim
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Xiaomin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Fanxing Bu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Sathvik Ajay Iyengar
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, P. R. China
| | - Pulickel M Ajayan
- Department of Materials Science and Nano Engineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), University of Newcastle, University Drive, Callaghan, New South Wales, 2308, Australia
| |
Collapse
|
5
|
Yan J, Kong H, Li Y, Wang Q, Liu X, Wang Y. In Situ MXene Anchored Structure for Highly Durable Solar Steam Generation. NANO LETTERS 2024; 24:3515-3524. [PMID: 38457287 DOI: 10.1021/acs.nanolett.4c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
As a promising fresh water harvesting technology, interfacial solar steam generation has attracted growing interest. Efficient solar absorption and long-term operational performance are critical requirements of this technology. However, developing robust evaporators to promote practical applications under extreme conditions is still a grand challenge. Herein, we propose a light-assisted strategy to in situ prepare a Ti3C2Tx MXene anchored structure (MXAS) for enhanced solar evaporation with superior mechanical properties (compressive strength of 78.47 MPa, which can withstand a pressure of 3.92 × 106 times its own weight). Light irradiation enlarges the interlayer spacing of MXene and improves the solar absorption capability. Under one sun, the three-dimensional MXAS evaporator exhibits a steam generation rate of 2.48 kg m-2 h-1and an evaporation efficiency of 89.3%, and it demonstrates long-term durability when testing in seawater. This strategy provides valuable insights into the potential application of a high-performance water evaporation system.
Collapse
Affiliation(s)
- Jin Yan
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Haoran Kong
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuting Li
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qinhuan Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiang Liu
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yu Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
6
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
7
|
Shi J, Sun X, Zhang Y, Niu S, Wang Z, Wu Z, An M, Chen L, Li J. Molecular self-assembled cellulose enabling durable, scalable, high-power osmotic energy harvesting. Carbohydr Polym 2024; 327:121656. [PMID: 38171677 DOI: 10.1016/j.carbpol.2023.121656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
In recent years, renewable cellulose-based ion exchange membranes have emerged as promising candidates for capturing green, abundant osmotic energy. However, the low power density and structural/performance instability are challenging for such cellulose membranes. Herein, cellulose-molecule self-assembly engineering (CMA) is developed to construct environmentally friendly, durable, scalable cellulose membranes (CMA membranes). Such a strategy enables CMA membranes with ideal nanochannels (∼7 nm) and tailored channel lengths, which support excellent ion selectivity and ion fluxes toward high-performance osmotic energy harvesting. Finite element simulations also verified the function of tailored nanochannel length on osmotic energy conversion. Correspondingly, our CMA membrane shows a high-power density of 2.27 W/m2 at a 50-fold KCl gradient and super high voltage of 1.32 V with 30-pair CMA membranes (testing area of 22.2 cm2). In addition, the CMA membrane demonstrates long-term structural and dimensional integrity in saline solution, due to their high wet strength (4.2 MPa for N-CMA membrane and 0.5 MPa for P-CMA membrane), and correspondingly generates ultrastable yet high power density more than 100 days. The self-assembly engineering of cellulose molecules constructs high-performance ion-selective membranes with environmentally friendly, scalable, high wet strength and stability advantages, which guide sustainable nanofluidic applications beyond the blue energy.
Collapse
Affiliation(s)
- Jianping Shi
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuhui Sun
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yu Zhang
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shengyue Niu
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zequn Wang
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhuotong Wu
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Meng An
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Lihui Chen
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jianguo Li
- College of Material Engineering, National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
9
|
Qie H, Liu M, Fu X, Tan X, Zhang Y, Ren M, Zhang Y, Pei Y, Lin A, Xi B, Cui J. Interfacial Charge-Modulated Multifunctional MoS 2/Ti 3C 2T x Penetrating Electrode for High-Efficiency Freshwater Production. ACS NANO 2022; 16:18898-18909. [PMID: 36278901 DOI: 10.1021/acsnano.2c07810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Freshwater production is critical in terms of solving the global water shortage. Aiming at improving freshwater production capability and ensuring its quality, an interfacial charge-modulated MoS2/Ti3C2Tx-modified carbon fiber (CF/MoS2/Ti3C2Tx) penetrating electrode is designed. To maximize the desalination and degradation efficiencies of CF/MoS2/Ti3C2Tx, a photocatalytic component is introduced into the membrane capacitive deionization (PMCDI) device. High desalination capability is derived from the lamellar architecture structure of MoS2/Ti3C2Tx. Meanwhile, excellent degradation performance is due to the formation of two photoelctrocatalytic activity centers, directionally generating singlet oxygen (1O2) and hydroxyl radical (•OH). The intercalated Cl- (desalination) as the electron transfer bridge optimizes the charge distribution of MoS2/Ti3C2Tx, reinforcing the photoelectrocatalytic activity (degradation). The formation of the electron-deficient (desalination) and electron-rich (regeneration) regions at the terminated O atom of Ti3C2Tx accelerate the generations of •OH and 1O2, respectively. In perspective, a mutual promotion process of desalination and degradation is achieved for high-efficiency production of high-quality freshwater.
Collapse
Affiliation(s)
- Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xinping Fu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yu Zhang
- School of Environment, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yinjie Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Yuansheng Pei
- School of Environment, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing Normal University, Beijing100875, People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Beidou Xi
- Chinese Research Academy of Environmental Sciences, Beijing100012, People's Republic of China
| | - Jun Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| |
Collapse
|
10
|
Zhou Z, Seif A, Pourhashem S, Silvestrelli PL, Ambrosetti A, Mirzaee M, Duan J, Rashidi A, Hou B. Experimental and Theoretical Studies toward Superior Anti-corrosive Nanocomposite Coatings of Aminosilane Wrapped Layer-by-Layer Graphene Oxide@MXene/Waterborne Epoxy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51275-51290. [PMID: 36321761 DOI: 10.1021/acsami.2c14145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, layer-by-layer MXene/graphene oxide nanosheets wrapped with 3-aminopropyltriethoxy silane (abbreviated as F-GO@MXene) are proposed as an anti-corrosion promoter for waterborne epoxies. The GO@MXene nanohybrid is synthesized by a solvothermal reaction to produce a multi-layered 2D structure without defects. Then, the GO@MXene is modified by silane wrapping under a reflux reaction, in order to achieve chemical stability and to create active sites on the nanohybrid surface for reaction with the polymer matrix of the coating. The organic coating modified with 0.1 wt % F-GO@MXene has revealed superior corrosion protection efficiency than the organic coatings modified with either F-GO or F-MXene nanosheets. The impedance modulus at low frequency for the pure epoxy, epoxy/F-MXene, epoxy/F-GO, and epoxy/F-GO@MXene coatings is 4.17 × 105, 5.5 × 108, 4.46 × 108, and 1.14 × 1010 Ω·cm2 after 30 days of immersion in the corrosive media, respectively. The remarkable anti-corrosion property is assigned to the intense effect of the nanohybrid on the barrier performance, surface roughness, and adhesion strength of the epoxy coating. The complemental analysis based on first-principles density functional theory reveals that the adhesion strength related to the silane functional groups in its complexes follows the order F-GO@MXene > F-MXene > F-GO. The enhanced stabilization predicted on the GO@MXene nanohybrid ultimately stems from the combined role of the electrostatic and van der Waals forces, suggesting an increase in the penetration path of the corrosive media.
Collapse
Affiliation(s)
- Ziyang Zhou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- University of Chinese Academy of Sciences, 19 (Jia) Yuquan Road, 100049 Beijing, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
| | - Abdolvahab Seif
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Sepideh Pourhashem
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China
| | - Pier Luigi Silvestrelli
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Alberto Ambrosetti
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Majid Mirzaee
- Non-Metallic Materials Research Group, Niroo Research Institute, P.O. Box 14665517 Tehran, Iran
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Entrance Blvd., Olympic Village, P.O. Box 14857-33111 Tehran, Iran
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, China
- Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, 266237 Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China
| |
Collapse
|
11
|
Janjhi FA, Janwery D, Chandio I, Ullah S, Rehman F, Memon AA, Hakami J, Khan F, Boczkaj G, Thebo KH. Recent Advances in Graphene Oxide‐Based Membranes for Heavy Metal Ions Separation. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farooque Ahmed Janjhi
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Dahar Janwery
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Imamdin Chandio
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Sami Ullah
- King Fahd University of Petroleum & Mineral (KFUPM) K.A. CARE Energy Research & Innovation Center (ERIC) 31261 Dhahran Saudi Arabia
| | - Faisal Rehman
- University of Virginia Department of Mechanical and Aerospace Engineering 22904 Charlottesville VA USA
| | - Ayaz Ali Memon
- University of Sindh National Centre of Excellence in Analytical Chemistry (NCEAC) 76080 Jamshoro Pakistan
| | - Jabir Hakami
- Jazan University Department of Physics, College of Science P.O. Box 114 45142 Jazan Saudi Arabia
| | - Firoz Khan
- King Fahd University of Petroleum & Minerals (KFUPM) Interdiscipliary Research Center for Renewable Energy and Power Systems (IRC–REPS), Research Institute 31261 Dhahran Saudi Arabia
| | - Grzegorz Boczkaj
- Gdansk University of Technology Faculty of Civil and Environment Engineering, Department of Sanitary Engineering G. Narutowicza St. 11/12 80-233 Gdansk Poland
| | - Khalid Hussain Thebo
- Chinese Academy of Science Institute of Metal Research (IMR) Wenhua Road Shenynag China
| |
Collapse
|
12
|
Wang F, Wang Z, Wang S, Meng X, Jin Y, Yang N, Sunarso J, Liu S. Mechanically intensified and stabilized MXene membranes via the combination of graphene oxide for highly efficient osmotic power production. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Liu Y, Ping J, Ying Y. Anion-Selective Layered Double Hydroxide Composites-Based Osmotic Energy Conversion for Real-Time Nutrient Solution Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103696. [PMID: 34989168 PMCID: PMC8867156 DOI: 10.1002/advs.202103696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Nanofluidic channels based on 2D nanomaterials are promising to harvest osmotic energy for their high ion selectivity and osmotic conductivity. However, anion-selective nanofluidic channels are rare and chemical modification is necessary through fabrication. Here, a naturally anion-selective composite membrane is reported, that is, NiAl-Layered double hydroxide (LDH) coated anodic aluminum oxide (LDH@AAO), using a simple precipitant-free in situ growth technique. Positively charged LDH plates growing in channels of AAO function as screening layers for anions. Both experiments and theoretical simulations are enforced to certify the vital role of LDH growth in ion distribution and salinity gradient energy conversion. The composite membrane achieves high output performance and long-term stability. Furthermore, novel applications of nanofluidic channels are explored in hydroponic production and design a real-time detecting system based on LDH@AAO composite membranes for nutrient solution. This work provides insights into naturally anion-selective nanofluidic channels for osmotic energy harvesting and broadens the application in agricultural information sensing.
Collapse
Affiliation(s)
- Yaqian Liu
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
14
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
15
|
Sun PF, Yang Z, Song X, Lee JH, Tang CY, Park HD. Interlayered Forward Osmosis Membranes with Ti 3C 2T x MXene and Carbon Nanotubes for Enhanced Municipal Wastewater Concentration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13219-13230. [PMID: 34314168 DOI: 10.1021/acs.est.1c01968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Forward osmosis (FO) hybrid systems have the potential to simultaneously recover nutrients and water from wastewater. However, the lack of membranes with high permeability and selectivity has limited the development and scale-up of these hybrid systems. In this study, we fabricated a novel thin-film nanocomposite membrane featuring an interlayer of Ti3C2Tx MXene intercalated with carbon nanotubes (M/C-TFNi). Owing to the enhanced confinement effect on interfacial degassing and increased amine monomer sorption by the interlayer, the resulting M/C-TFNi FO membrane has a greater degree of cross-linking and roughness. In comparison with the thin-film composite (TFC) membrane without an interlayered structure, the M/C-TFNi membrane attained a water flux that was four times higher and a lower specific salt flux. Notably, the M/C-TFNi membrane exhibited excellent concentration efficiency for real municipal wastewater and enhanced rejection of ammonia nitrogen, which breaks the permeability-selectivity upper bound. This study provides a new avenue for the rational design and development of high-performance FO membranes for environmental applications.
Collapse
Affiliation(s)
- Peng-Fei Sun
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science & Technology, Ocean College, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jeong Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea
| |
Collapse
|
16
|
Khatami M, Iravani S. MXenes and MXene-based Materials for the Removal of Water Pollutants: Challenges and Opportunities. COMMENT INORG CHEM 2021. [DOI: 10.1080/02603594.2021.1922396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
17
|
Tong X, Liu S, Crittenden J, Chen Y. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Power Harvesting. ACS NANO 2021; 15:5838-5860. [PMID: 33844502 DOI: 10.1021/acsnano.0c09513] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salinity gradient power (SGP) has been identified as a promising renewable energy source. Reverse electrodialysis (RED) and pressure retarded osmosis (PRO) are two membrane-based technologies for SGP harvesting. Developing nanopores and nanofluidic membranes with excellent water and/or ion transport properties for applications in those two membrane-based technologies is considered viable for improving power generation performance. Despite recent efforts to advance power generation by designing a variety of nanopores and nanofluidic membranes to enhance power density, the valid pathways toward large-scale power generation remain uncertain. In this review, we introduce the features of ion and water transport in nanofluidics that are potentially beneficial to power generation. Subsequently, we survey previous efforts on nanofluidic membrane synthesis to obtain high power density. We also discuss how the various membrane properties influence the power density in RED and PRO before moving on to other important aspects of the technologies, i.e., system energy efficiency and membrane fouling. We analyze the importance of system energy efficiency and illustrate how the delicately designed nanofluidic membranes can potentially enhance energy efficiency. Previous studies are reviewed on fabricating antifouling and antimicrobial membrane for power generation, and opportunities are presented that can lead to the design of nanofluidic membranes with superior antifouling properties using various materials. Finally, future research directions are presented on advancing membrane performance and scaling-up the system. We conclude this review by emphasizing the fact that SGP has the potential to become an important renewable energy source and that high-performance nanofluidic membranes can transform SGP harvesting from conceptual to large-scale applications.
Collapse
Affiliation(s)
- Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Su Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - John Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Brook Byers Institute for Sustainable Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
18
|
Yang G, Liu D, Chen C, Qian Y, Su Y, Qin S, Zhang L, Wang X, Sun L, Lei W. Stable Ti 3C 2T x MXene-Boron Nitride Membranes with Low Internal Resistance for Enhanced Salinity Gradient Energy Harvesting. ACS NANO 2021; 15:6594-6603. [PMID: 33787220 DOI: 10.1021/acsnano.0c09845] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extracting salinity gradient energy through a nanomembrane is an efficient way to obtain clean and renewable energy. However, the membranes with undesirable properties, such as low stability, high internal resistance, and low selectivity, would limit the output performance. Herein, we report two-dimensional (2D) laminar nanochannels in the hybrid Ti3C2Tx MXene/boron nitride (MXBN) membrane with excellent stability and reduced internal resistance for enhanced salinity gradient energy harvesting. The internal resistance of the MXBN membrane is significantly reduced after adding BN in a pristine MXene membrane, due to the small size and high surface charge density of BN nanosheets. The output power density of the MXBN membrane with 44 wt % BN nanosheets reaches 2.3 W/m2, almost twice that of a pristine MXene membrane. Besides, the output power density can be further increased to 6.2 W/m2 at 336 K and stabilizes for 10 h at 321 K, revealing excellent structure stability of the membrane in long-term aqueous conditions. This work presents a feasible method for improving the channel properties, which provides 2D layered composite membranes in ion transport, energy extraction, and other nanofluidic applications.
Collapse
Affiliation(s)
- Guoliang Yang
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Dan Liu
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Cheng Chen
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yijun Qian
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Yuyu Su
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Si Qin
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Liangzhu Zhang
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Lu Sun
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| | - Weiwei Lei
- Deakin University, Institute for Frontier Materials, Waurn Ponds Campus, Locked Bag 20000, Geelong, Victoria 3220, Australia
| |
Collapse
|
19
|
Sun Y, Xu D, Li S, Cui L, Zhuang Y, Xing W, Jing W. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119075] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Gao H, Wang Y, Afolabi MA, Xiao D, Chen Y. Incorporation of Cellulose Nanocrystals into Graphene Oxide Membranes for Efficient Antibiotic Removal at High Nutrient Recovery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14102-14111. [PMID: 33739809 DOI: 10.1021/acsami.0c20652] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) material-based membranes hold great promise in wastewater treatment. However, it remains challenging to achieve highly efficient and precise small molecule/ion separation with pure 2D material-fabricated lamellar membranes. In this work, laminated graphene oxide (GO)-cellulose nanocrystal (CNC) hybrid membranes (GO/CNC) were fabricated by taking advantages of the unique structures and synergistic effects generated from these two materials. The characterization results in physiochemical properties, and the structure of the as-synthesized hybrid membranes displayed enhanced membrane surface hydrophilicity, enhanced crumpling surface structure, and slightly enlarged interlayer-spacing with the incorporation of CNCs. Water permeability increases by two to four times with the addition of different CNC weight ratios in comparison to a pristine GO membrane. The optimal GO/CNC membrane achieved efficient rejection toward three typical antibiotics at 74.8, 90.9, and 97.2% for sulfamethoxazole (SMX), levofloxacin (Levo), and norfloxacin (Nor), respectively, while allowing a high passage of desirable nutrients such as NO3- and H2PO4-. It was found that SMX removal is primarily governed by electrostatic repulsion, while adsorption plays a crucial role in removing Levo and Nor. Moreover, the density functional theory calculations confirmed the increased antibiotic removal in the presence of an organic foulant, humic acid. Such a 2D material-based hybrid membrane offers a new strategy to develop fit-for purpose membranes for resource recovery and water separation.
Collapse
Affiliation(s)
- Haiping Gao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yigui Wang
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Moyosore A Afolabi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
21
|
Jiang S, Xiao S, Chu H, Zhao F, Yu Z, Zhou X, Zhang Y. Intelligent mitigation of fouling by means of membrane vibration for algae separation: Dynamics model, comprehensive evaluation, and critical vibration frequency. WATER RESEARCH 2020; 182:115972. [PMID: 32650150 DOI: 10.1016/j.watres.2020.115972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Vibration membrane filtration has been confirmed as an effective method to improve algae separation from water. However, the fouling evolution process and the antifouling mechanism are not well understood. In this study, a novel hybrid method based on a dynamics model was proposed, a comprehensive evaluation was conducted, and the critical vibration frequency for accurate analysis and prediction of membrane fouling was developed. The dynamics model was studied with an improved collision-attachment model by considering all the concurrent and synergistic effects of the hydrodynamic interactions acting on algae. From the perspective of potential energy, the improved model systematically elucidated the reason why the antifouling performance was enhanced when the vibration frequency varied from 1 Hz to 5 Hz. In addition, the Technique for Order Preference by Similarity to Ideal Solution-grey relational analysis (TOPSIS-GRA) method with combined weights was incorporated for the first time to provide direct comprehensive evaluation evidence to determine the effect of the vibration frequency on membrane fouling. It was found that increasing the vibration frequency could not alleviate membrane fouling caused by extracellular organic matter. Moreover, the concept of a critical vibration frequency was proposed using genetic algorithm optimized back propagation neural network, and the energy consumption was analyzed. This combination could provide an effective means to choose the most appropriate vibration frequency, thereby improving the efficiency of the vibration membrane system in the algae separation process.
Collapse
Affiliation(s)
- Shuhong Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Fangchao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Zhenjiang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China.
| |
Collapse
|