1
|
Shao Y, Chen S, Tao X, Yang W, Liu T, Wang B, Wang Y, Wang S, Xu D, Guo J, Li J. Simultaneously enhance nutrient removal and sludge settleability through hydrocyclone-based technology in a full-scale high-inert containing activated sludge process. WATER RESEARCH 2025; 280:123531. [PMID: 40138862 DOI: 10.1016/j.watres.2025.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Sludge densification technology through hydrocyclone is a promising solution to address the challenge related to increasing loading rate in existing municipal wastewater treatment plants (WWTPs). Although previous studies have investigated the positive effects of hydrocyclone on improving nutrient removal and sludge settleability, little is known if sludge densification technology is still function into the high inert containing activated sludge process in China. This study investigated technical feasibility and revealed underlying mechanisms to simultaneously enhance nitrogen and phosphorus removal and sludge settleability through installing a hydrocyclone-based sludge densification module in a full-scale WWTP with a designed capacity of 4 × 104 m3/d. Compared to the control line without hydrocyclone, the hydrocyclone installation helped improve total nitrogen and total phosphorus removal efficiency by 16.9 % and 29.4 % (p < 0.05), with the effluent concentrations of 4.86 ± 1.08 mg/L and 0.077 ± 0.035 mg/L, respectively. The strategy of "hydrocyclone treating only half of the wasted activated sludge (WAS) to produce densified activated sludge (DAS)" successfully prevented the accumulation of inerts in the mainstream. Meanwhile, sludge settleability after densification was improved, as evidenced by a reduced sludge volume index (SVI30) by 7.6 mL/g (53.2 ± 7.30 mL/g) and an increased settling velocity by 2 m/h (4.04 ± 0.60 m/h) compared to control line. Beyond selecting few large-sized DAS, the hydrocyclone also targeted small, densified flocs containing ballasting inerts (primarily Fe/Al-based hydroxides and phosphates) within high-inert containing activated sludge, further enhancing sludge settleability. The hydraulic shear forces of the hydrocyclone promoted the release of active sites from metal hydroxides, further enhancing phosphorus removal in mainstream. Meanwhile, shear forces lead to the disruption of DAS and ordinary flocs but also promoted the binding of flocs and inerts, forming densified flocs. The anoxic zones formed within DAS enabled denitrifying phosphorus-accumulating organisms (DPAOs) and denitrifiers to preferentially utilize polysaccharides of extracellular polymeric substances (EPS) for nutrient removal, thereby enhancing functional enzyme activity. These findings provide an important basis for the application of sludge densification technology in high-inert containing activated sludge process.
Collapse
Affiliation(s)
- Yanjun Shao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sisi Chen
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Xiang Tao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Weilan Yang
- Jiangsu Wuxi Shuiwu Company Limited, Wuxi, 214122, China
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Binzheng Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Yan Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China
| | - Dongdong Xu
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Ji Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi, 214122, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China.
| |
Collapse
|
2
|
Seddaoui N, Di Gregorio C, Gullo L, Argiriadis E, Arduini F. A paper-based screen-printed electrochemical sensor combined with a 3D printed extracting cartridge for analysis of phosphorus in Antarctic lacustrine sediments. Talanta 2025; 289:127749. [PMID: 39987618 DOI: 10.1016/j.talanta.2025.127749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Here, we present a novel fully printed electrochemical sensing tool for determining phosphorus levels in sediment samples. The integrated electrochemical device is composed of an office paper-based sensor combined with a customized 3D printing cube-shaped holder used for the extraction of phosphorus from sediment samples. The extracted phosphorus was trapped on a filter pad placed over the sensor and preloaded with acidic ammonium molybdate, allowing for the formation of the phosphomolybdate complex, which is electroactive. The use of carbon black as a nanomodifier of office paper-based electrode together with square wave voltammetry enabled the detection of phosphorus with a detection limit of 0.011 ppm within a broad linear range of 0.039-20 ppm. Furthermore, this sensor demonstrated excellent selectivity towards phosphate ions among the several ions studied, namely NO3-, NO2-, F-, SO42-, CH3COO-, Cl-, CO23-, Mg2+, K+, Zn2+, Ca2+, Na+, Cu2+, and Ni2+. The precision of the analytical platform was evaluated using eight distinct sensors, yielding a relative standard deviation below 5 %. The reliability of the paper-based integrated sensor was assessed by determining phosphorus levels in sediment samples obtained from various seasonal shallow coastal lakes situated in Northern Victoria Land, Antarctica, by comparing the data obtained with both the novel printed integrated device and the colorimetric reference method. The agreement of the data with a coefficient of correlation equal to 0.86 (r = 0.86) demonstrated the great potential of the developed sensing tool for use in real-world applications.
Collapse
Affiliation(s)
- Narjiss Seddaoui
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Chiara Di Gregorio
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Ludovica Gullo
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Elena Argiriadis
- Institute of Polar Sciences CNR-ISP, Via Torino, 155, 30172, Venice, Italy; Department of Environmental Sciences, Informatics and Statistics, Via Torino, 155, 30172, Venice, Italy
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
3
|
Steiger BGK, Solgi M, Wilson LD. Biopolymers to composite adsorbents for sulfate removal: From conventional to sustainable systems. Adv Colloid Interface Sci 2025; 340:103440. [PMID: 40020548 DOI: 10.1016/j.cis.2025.103440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/02/2025] [Accepted: 02/08/2025] [Indexed: 03/03/2025]
Abstract
Addressing elevated water salinity is a global water security issue listed among the UN's Sustainable Development Goals (UN-SDGs). Sulfate is a contributor to water salinity due to its high solubility and is a pollutant of increasing global concern. While various water treatment technologies are currently available, the high capital infrastructure and operational costs of such advanced methods have sustainability limits for their widespread adoption. By contrast, adsorption science and technology offers facile treatment and a sustainable mitigation strategy for the removal of oxyanions such as sulfate. A key challenge in adsorption science and technology relates to the molecular selective uptake of sulfate. This has catalysed significant effort towards achieving improved adsorption properties and the development of sustainable adsorbent technology. This review provides coverage of recent literature on synthetic adsorbents to current research on biosorbents that contain chitosan due to its multifunctional colloid and interface properties. The shift from conventional synthesis to green synthetic strategies are highlighted by the preparation of advanced biocomposite materials with unique sulfate adsorption properties. Diverse types of materials from inorganic minerals to polymer-based adsorbents (e.g., polycaprolactones, waste-based materials from fly ash, etc.) is described to highlight their sulfate adsorption properties. Specifically, chitosan and agricultural biomass waste in the form of lignocellulose materials are abundant and promising renewable platforms for the preparation of sulfate adsorbents. In particular, the adsorption properties of chitosan biocomposites are highlighted by its efficacy for adsorption-based remediation of sulfate oxyanions that reveal its promising utility as sulfate adsorbents with unique colloidal and interface properties.
Collapse
Affiliation(s)
- Bernd G K Steiger
- Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Mostafa Solgi
- Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
4
|
Zhu H, Hu C, Jiang R, Xiao M, Fu Y, Wang Q, Zhao K. Sustainable chitosan-based adsorbents for phosphorus recovery and removal from wastewater: A review. Int J Biol Macromol 2025; 313:144160. [PMID: 40373908 DOI: 10.1016/j.ijbiomac.2025.144160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/30/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
Phosphates are considered one of the main nutrient pollutants causing eutrophication and deterioration of water quality. Among those commonly used removal technologies, adsorption has shown effectiveness in removing phosphate from polluted water. Over the past decade, various chitosan-based materials (CSMats) have been widely developed and applied in desalination treatment of phosphate-containing wastewater due to their biocompatibility, nontoxicity, high phosphate adsorption capacities, and low-cost. This review summarized systematically the research progress on preparation and modification strategies of CSMats to accelerate the adsorption rate and enhance adsorption capacities of phosphate removal. Moreover, insights into the effect of experimental parameters (such as pH and coexisting ions) are also outlined. The desorption, regeneration and reutilization of exhausted CSMats has been discussed and analyzed. The contribution mechanisms (hydrogen bonding, electrostatic attraction, Lewis acid-base interaction, ligand/ion exchange, surface precipitation) of phosphate adsorption on CSMats are also summarized. Finally, present research gaps and challenges in the removal of phosphate adsorption on CSMats have been highlighted. In summary, the main purpose of this review is to provide the latest information helpful for preparing novel CSMats with better adsorption properties and promoting practical applications for desalination of phosphate-containing wastewater in future.
Collapse
Affiliation(s)
- Huayue Zhu
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, PR China.
| | - Chundan Hu
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China
| | - Ru Jiang
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, PR China.
| | - Mei Xiao
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China
| | - Yongqian Fu
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China
| | - Kai Zhao
- College of Life Science, Taizhou University, Taizhou 318000, Zhejiang, PR China; Zhejiang Key Laboratory for Restoration of Damaged Coastal Ecosystems, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China; Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Zhejiang, Taizhou 318000, PR China.
| |
Collapse
|
5
|
Moezzi SA, Rastgar S, Faghani M, Ghiasvand Z, Javanshir Khoei A. Optimization of carbon membrane performance in reverse osmosis systems for reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. CHEMOSPHERE 2025; 376:144304. [PMID: 40090114 DOI: 10.1016/j.chemosphere.2025.144304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/18/2025]
Abstract
This study investigates the performance of various types of carbon membranes in reverse osmosis systems aimed at reducing salinity, nitrates, phosphates, and ammonia in aquaculture wastewater. As sustainable aquaculture practices become increasingly essential, effective treatment solutions are needed to mitigate pollution from nutrient-rich effluents. The research highlights several carbon membranes types, including carbon molecular sieves, activated carbon membranes, carbon nanotube membranes, and graphene oxide membranes, all of which demonstrate exceptional filtration capabilities due to their unique structural properties. Findings reveal that these carbon membranes can achieve removal efficiencies exceeding 90 % for critical pollutants, thereby significantly improving water quality and supporting environmental sustainability. The study also explores the development of hybrid membranes and nanocomposites, which enhance performance by combining the strengths of different materials, allowing for customized solutions tailored to the specific requirements of aquaculture wastewater treatment. Additionally, operational parameters such as pH, temperature, and feed water characteristics are crucial for maximizing membrane efficiency. The integration of real-time monitoring technologies is proposed to enable prompt adjustments to treatment processes, thereby improving system performance and reliability. Overall, this research emphasizes the importance of interdisciplinary collaboration among researchers and industry stakeholders to drive innovation in advanced filtration technologies. The findings underscore the substantial potential of carbon membranes in tackling the pressing water quality challenges faced by the aquaculture sector, ultimately contributing to the sustainability of aquatic ecosystems and ensuring compliance with environmental standards for future generations.
Collapse
Affiliation(s)
- Sayyed Ali Moezzi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Monireh Faghani
- Water Science and Engineering-Irrigation and Drainage, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| | - Zahra Ghiasvand
- Faculty of Agriculture, Department of Animal Sciences and Aquaculture, Dalhousie University, Halifax, Canada
| | - Arash Javanshir Khoei
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
6
|
Flores FT, Nair G, Guzman JA, Chu M, Singh A. Enhancing corn leaf fiber as phosphorus adsorbent material. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2025; 97:e70071. [PMID: 40298823 PMCID: PMC12039883 DOI: 10.1002/wer.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/03/2024] [Accepted: 01/09/2025] [Indexed: 04/30/2025]
Abstract
The contribution of dissolved phosphorus (P) from tile drain systems in agricultural lands is significant, leading to water impairment and promoting algae bloom development in water bodies. Hence, there is an urgent need for sustainable and efficient technology, such as absorbent material, that can effectively remove P at low concentrations in these systems. This study aimed to evaluate fiber extraction from corn leaves and its potential for reducing dissolved P. Corn fibers were extracted from corn leaves using alkali treatment by varying the concentration of sodium hydroxide (5-15%w/w), extraction temperature (85-95°C), and time (60-120 min Results of the alkali extraction showed that the highest fiber recovery of 45.18 ± 0.39% g g-1 was achieved at 10% NaOH at 85°C for 60 min condition. To enhance the phosphorus adsorption capacity of the extracted corn fibers, kaolinite clay (0-30% w/w) and calcium carbonate (0-50% w/w) were incorporated into the leaf fiber. Adsorption tests revealed that corn leaf fiber alone reduced phosphate concentration by 8.75 ± 1.49% within 60 minutes. However, when enhanced with 30% w/w kaolinite clay and 35% w/w calcium carbonate, the phosphate concentration in the solution decreased by 79.40 ± 11.90%. Energy-dispersive X-ray fluorescence analysis confirmed the presence of phosphorus in the enhanced adsorbent material following treatment. This study demonstrates the potential of enhancing agricultural wastes like corn leaf fiber as a low-cost alternative for phosphorus removal in agricultural tile drain systems that can later disposed of as fertilizer in a circular economy scheme. PRACTITIONER POINTS: Corn leaf fiber, extracted using alkali treatment, shows potential as a sustainable, low-cost adsorbent material for phosphorus removal Enhancing corn leaf fiber with kaolinite clay and calcium carbonate significantly improves phosphate reduction Converting agricultural waste like corn leaf as adsorbent material can help manage phosphorus levels in agricultural tile drains.
Collapse
Affiliation(s)
- Fidelina T. Flores
- Department of Agricultural and Biological Engineering, College of Agricultural, Consumer and Environmental Sciences, The Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Institute of Agricultural and Biosystems EngineeringUniversity of the Philippines Los BañosLagunaPhilippines
| | - Gopu Nair
- Department of Agricultural and Biological Engineering, College of Agricultural, Consumer and Environmental Sciences, The Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Jorge A. Guzman
- Department of Agricultural and Biological Engineering, College of Agricultural, Consumer and Environmental Sciences, The Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Maria Chu
- Department of Agricultural and Biological Engineering, College of Agricultural, Consumer and Environmental Sciences, The Grainger College of EngineeringUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Ashutosh Singh
- School of EngineeringUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
7
|
Zhou Z, Liu T, Ouyang X, Tang J, Fan X, Liao Y, Zhu X, Zhang Z, Tang L. Highly Selective and Instant Ratio Fluorescence-Scattering Sensor for Phosphate Detection in a Water Environment by a Stable Eu 3+/Y 3+-Modified Nitrogen-Doped Carbon Quantum Dot. ACS Sens 2025; 10:2861-2871. [PMID: 40117134 DOI: 10.1021/acssensors.4c03627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Developing an accurate sensor for the detection of phosphate ions (Pi, a crucial indicator of water quality) in water environments is of great significance. Fluorescence-scattering ratiometric probes with great promise to achieve sensitive and selective detection are still hindered by the poor solubility and stability and complex construction of fluorescence composites. In this paper, a simple ratio fluorescence-scattering sensor based on Eu3+- and Y3+-modified nitrogen-doped carbon quantum dots (NCQDs) was developed for Pi rapid detection. It is found that Eu3+ can specifically recognize Pi and form ternary ion chelates with Pi and NCQDs, resulting in decreased fluorescence signals of NCQDs at 420 nm and increased second-order scattering (SOS) signals at 640 nm. Y3+ as the sensitizer of Eu3+ promotes the aggregation of NCQDs, thereby enhancing the sensitivity of the sensor. The ratio fluorescence-scattering probe based on NCQDs-Eu3+-Y3+ shows a high sensitivity, a low detection limit of 0.08 μM, a rapid response time of within 2 s, and a wide detection range from 1 to 150 μM. Moreover, the proposed probe showed excellent selectivity and stability, and the relative standard deviation (RSD) of seven cycles of Pi detection is only 0.559%. Furthermore, the accurate detection of Pi (RSD < 5%) in real environmental water samples confirmed the practicality of the proposed sensor. This ratio fluorescence-scattering sensor provides a novel method for the detection of Pi with a simple preparation process and excellent detection performance, having great application potential for the fast on-site detection of Pi.
Collapse
Affiliation(s)
- Zheping Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Tianhao Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xinya Fan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Ziling Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| |
Collapse
|
8
|
Li Z, Zhang H, Deng Q, Han C, Zhang C. Phosphate-adsorbed metal organic framework as a recycled material for catalytic degradation of ceftriaxone sodium via peroxymonosulfate activation. J Colloid Interface Sci 2025; 684:390-402. [PMID: 39799622 DOI: 10.1016/j.jcis.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
In this study, the zirconium-based metal organic framework (Zr-MOF) was applied as the adsorbent for phosphorus (P) pollution in water. Then the phosphate-adsorbed metal organic frameworks (MOFs) were used as a recycled raw material and calcined to obtain P-doped MOFs-derived carbon material (ZrP@Zr-BTC). Next, the ZrP@Zr-BTC was used for peroxymonosulfate (PMS) activation for the ceftriaxone sodium degradation. The doping of P species in the MOFs-derived carbon material led to a 31 % increase in the degradation rate compared to the material without P doping (ZrO2@Zr-BTC). The characterization results confirmed that ZrP@Zr-BTC contained zirconium phosphate, ZrP and ZrO2 in addition to inorganic carbon. P doping could affect the morphology of zirconium species and the bonding state of oxygen element in the catalyst. The degradation of ceftriaxone sodium by the ZrP@Zr-BTC/PMS system could reach 96 ± 0.82 %. The ZrP@Zr-BTC material also had strong resistance to water quality interference and reusability. The electron spin resonance spectrometer (ESR) analysis indicated singlet oxygen (1O2) played an important role and other free radicals (SO4-•, •OH, O2-•) were auxiliary. The Fukui function calculated by density functional theory explained the sites susceptible to attack by reactive species, and liquid chromatography-mass spectrometry (LC-MS) results allowed for the inference of the degradation pathway of ceftriaxone sodium. This study not only provides a simple and effective method for the disposal and recycling of waste adsorbents but also offers valuable insights into the role of MOF-derived carbon in activating PMS for pollutant degradation.
Collapse
Affiliation(s)
- Zaimei Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| | - Hongmei Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| | - Qiangyi Deng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| | - Che Han
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| | - Conglu Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| |
Collapse
|
9
|
Shi J, Li Y, Wei Q, Zhu X, Cao S, Xie W, Guo Y, Wei J, Li Z, Long T. Interaction between 6PPD/6PPD-Q and natural Fe-Mn nodules: Performance and mechanism of adsorption and oxidative transformation. ENVIRONMENT INTERNATIONAL 2025; 198:109438. [PMID: 40220692 DOI: 10.1016/j.envint.2025.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
The widely used rubber antioxidant N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its ozonated product, 6PPD-quinone (6PPD-Q), are highly toxic to aquatic life, yet understanding on their environmental behaviors is limited. This study comprehensively investigated their adsorption and transformation processes on natural Fe-Mn nodules (NFMN), which commonly exist in sediments and soils through a combination of diverse experimental and computational methods. The maximum adsorption capacity of 6PPD-Q (719.2 μg·g-1) is significantly higher than that of 6PPD (133.8 μg·g-1) at 293 K, and it is more difficult to desorb. They follow different kinetic and isothermal adsorption models, and environmental conditions (including temperature, pH, and anions) exert distinct influences on the adsorption of the two substances. Adsorption mechanisms involving electrostatic attraction, charge transfer, hydrogen bonding, and Lewis acid-base complexation were unveiled. For 6PPD, electrostatic adsorption and Lewis acid-base complexation contribute significantly to its adsorption. Conversely, for 6PPD-Q, the contribution of Lewis acid-base complexation outweighs that of hydrogen bonding, while the effect of electrostatic adsorption is relatively negligible. The stronger electrostatic attraction, more efficient charge transfer, and a greater number of binding sites for hydrogen bonding and Lewis acid-base complexation with NFMN results in more robust adsorption of 6PPD-Q. Furthermore, 6PPD can transform into 6PPD-Q on NFMN, facilitated by dissolved Mn(III). This study advances understanding of the adsorption behavior and mechanism of 6PPD and 6PPD-Q, and highlights a new pathway for 6PPD-Q formation, which provides valuable reference for assessing the water body exposure risks and formulating environmental remediation strategies for such pollutants. ENVIRONMENTAL IMPLICATION: This study offers the first comprehensive insight into the interactions between 6PPD/6PPD-Q and NFMN, illuminating their environmental behavior in water and soil systems. It reveals the adsorption discrepancy between 6PPD and 6PPD-Q, and elucidates the mechanisms underlying the difference in adsorption. Additionally, it uncovers a novel pathway for 6PPD-Q formation, offering valuable implications for risk assessment and environmental remediation strategies.
Collapse
Affiliation(s)
- Jiaqi Shi
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Yan Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qi Wei
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xin Zhu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Shaohua Cao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Wenyi Xie
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Yang Guo
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| | - Zekai Li
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China.
| |
Collapse
|
10
|
Luo Y, Peng Y, Yan P, Wang M, Zhang Z, Qu G, Ali EF, Hooda PS, Rinklebe J, Li M, Shaheen SM, Li R. Green synthesized MgO combined with dielectric barrier discharge plasma enhanced phosphorus (P) recovery from livestock wastewater: A dual approach for management of wastewater and P resources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124799. [PMID: 40064090 DOI: 10.1016/j.jenvman.2025.124799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Phosphorus (P) recovery from wastewater using integrated techniques i.e., adsorption combined with advanced oxidation technologies is a novel approach for cleaning wastewater and preventing eutrophication. This approach, however, has not been extensively studied, particularly in the context of real wastewater applications. In this study, a green biomass-based sol-gel method was developed using potato starch (PS) and MgCl2·6H2O to synthesize MgO (PS-MgO). The unique synthesis method resulted in PS-MgO composed predominantly of spherical particles with an average size of about 103 nm and exhibited superior P adsorption performance compared to commercial MgO materials (GH-MgO and AD-MgO). The Langmuir maximum P adsorption capacity (mg/g) of the PS-MgO was 429.4, while that of the commercial GH-MgO and AD-MgO was 341.3 and 421.7, respectively, at the solution pH 7.0. The kinetic model fitting demonstrated that the adsorption rate of PS-MgO was faster than the two commercial MgOs. Importantly, PS-MgO can maintain a high P adsorption capacity across a wide pH range (425 mg/g at pH 5.0 and 369 mg/g at pH 11.0), whereas the P adsorption capacities of GH-MgO (153 at pH 5.0 and 297 at pH 11.0) and AD-MgO (422 at pH 5.0 and 200 at pH 11.0) were more pH-dependent. In addition, PS-MgO exhibits high selectivity for P capture in solutions containing coexisting ions, and the P-loaded PS-MgO can efficiently release P through acid or base treatment, highlighting its potential for reuse as a fertilizer. To enhance P recovery from real livestock wastewater, the dielectric barrier discharge (DBD) plasma technology was combined with MgO adsorption. The P recovery capacity of MgOs from livestock wastewater increased 1.4-1.7 times after DBD plasma treatment, attributed to the degradation of aromatic proteins and microbial metabolites. These findings provide new insights into the design of efficient and environmentally friendly materials for P recovery, while also demonstrating the potential of integrating advanced oxidation technologies with adsorption processes.
Collapse
Affiliation(s)
- Yuan Luo
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yaru Peng
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Pengcheng Yan
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Miaoqu Wang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Zhibo Zhang
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Guangzhou Qu
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif, 21944, Saudi Arabia
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, Kingston Upon Thames, KT1 2EE, London, UK
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany
| | - Manlin Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Zhao Y, Luo H, Han R, Tao S, Liu M, Tang M, Xing J, Chen L, He BJ. La/Fe-Bimetallic-Modified Red Brick Powder for Phosphate Removal from Wastewater: Characterization, Adsorption, and Mechanism. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1326. [PMID: 40141609 PMCID: PMC11944173 DOI: 10.3390/ma18061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
The use of construction waste red brick powder (RBP) to prepare adsorbents for phosphate removal from wastewater represents a promising technology with substantial research potential. This study investigates the preparation of La-based magnetic red brick powder (La-Fe-RBP) via bimetallic modification to enhance its adsorption performance. The key characteristics, adsorption process, adsorption mechanism, and practical applications of the modified adsorbent were analyzed. The obtained results suggested that the underlying adsorption mechanism of La-Fe-RBP was best described by the Langmuir and pseudo-second-order kinetic models, which suggested that the adsorption mechanism was monolayer chemical adsorption. La-Fe-RBP exhibited rapid kinetics, achieving adsorption saturation in just 40 min, significantly faster than RBP (360 min). Additionally, isotherm experiments determined the highest theoretical adsorption capacity as 42.835 mg/g. More importantly, La-Fe-RBP exhibited efficient phosphate adsorption within a pH ranging from 3 to 8. Furthermore, La-Fe-RBP exhibited high selectivity for phosphate ions in the presence of coexisting ions (SO42-, NO3-, Cl-, HCO3-, Mg2+, and Ca2+), demonstrating its robustness and effectiveness in complex water conditions. FTIR and XPS analyses demonstrated that ligand exchange and electrostatic attraction were the primary mechanisms underlying phosphate adsorption by La-Fe-RBP. Domestic sewage treated with La-Fe-RBP met the Class IV surface water environmental quality standards in China. The findings of this study prove that the La-Fe-RBP composite material, characterized by high adsorption efficiency and strong selectivity, holds significant potential for removing phosphates from real wastewater.
Collapse
Affiliation(s)
- Yunrui Zhao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Hui Luo
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Rubin Han
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Shiheng Tao
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Meng Liu
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Ming Tang
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Jiayao Xing
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Limin Chen
- School of Civil and Ocean Engineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.Z.); (R.H.); (S.T.); (M.L.); (M.T.); (J.X.); (L.C.)
| | - Bao-Jie He
- Entre for Climate–Resilient and Low–Carbon Cities, Key Laboratory of New Technology for Construction of Cities in Mountain Area, School of Architecture and Urban Planning, Ministry of Education, Chongqing University, Chongqing 400045, China
- School of Architecture, Design and Planning, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
12
|
Cardoso CED, Almeida JC, Rocha J, Pereira E. Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6804-6816. [PMID: 40016607 PMCID: PMC11928393 DOI: 10.1007/s11356-025-36152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Phosphorus is essential for all living organisms and limits aquatic plant growth. Pulp mill effluents, particularly from Eucalyptus bleached kraft pulp mills, contain phosphorus concentrations that vary with operational conditions. This variability poses challenges for effective treatment and phosphorus removal. However, uncontrolled release of phosphorus-rich wastewaters causes eutrophication. This study focuses on optimizing phosphorus removal from such effluents using cobalt ferrite nanoparticles, with an emphasis on process optimization to address this variability. Minimizing phosphorus concentrations is crucial in wastewater engineering and surface water management. By employing design of experiments and response surface methodology, we aim to fine-tune the phosphorous removal process and pinpoint the key factors with the most significant impact. Optimal conditions for achieving over 90% removal from an effluent with 5 mg P/L were identified as a sorbent dose greater than 1.3 g/L and a pH range between 5 and 7, all within a contact time of only 15 min. For a contact time of 1 and 24 h, the conditions adjust to a sorbent dose greater than 0.97 and 0.83 g/L, respectively, with the pH range remaining the same. Our results highlight the effectiveness of cobalt ferrite nanoparticles as sorbents in the removal of phosphorus for water treatment purposes. This approach presents a sustainable and proficient strategy for phosphorus recovery from pulp mill effluents, thereby lessening environmental repercussions and offering a valuable resource for future use. This contributes to the maintenance of water quality and ecosystem preservation.
Collapse
Affiliation(s)
- Celso E D Cardoso
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Joana C Almeida
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - João Rocha
- Chemistry Department and CICECO-Aveiro Institute of Materials, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Chemistry Department and LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Cao S, Li J, Shi Y, Guo F, Gao T, Zhang L. Oxalate modification enabled advanced phosphate removal of nZVI: In Situ formed surface ternary complex and altered multi-stage adsorption process. J Environ Sci (China) 2025; 149:79-87. [PMID: 39181680 DOI: 10.1016/j.jes.2024.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 08/27/2024]
Abstract
Nano zero-valent iron (nZVI) is a promising phosphate adsorbent for advanced phosphate removal. However, the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance, accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate. In this study, we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites. As expected, the stronger anti-passivation ability of oxalate modified nZVI (OX-nZVI) strongly favored its phosphate adsorption. Interestingly, the oxalate modification endowed the surface Fe(III) sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites, by in situ forming a Fe(III)-phosphate-oxalate ternary complex, therefore enabling an advanced phosphate removal process. At an initial phosphate concentration of 1.00 mg P/L, pH of 6.0 and a dosage of 0.3 g/L of adsorbents, OX-nZVI exhibited faster phosphate removal rate (0.11 g/mg/min) and lower residual phosphate level (0.02 mg P/L) than nZVI (0.055 g/mg/min and 0.19 mg P/L). This study sheds light on the importance of site manipulation in the development of high-performance adsorbents, and offers a facile surface modification strategy to prepare superior iron-based materials for advanced phosphate removal.
Collapse
Affiliation(s)
- Shiyu Cao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China; State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yanbiao Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Furong Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Xu Z, Chen D, Duan X, Chen Y, Li C, Li S, Ma Y, Huang B, Pan X. Collaboratively removal of phosphate and glyphosate from wastewater by a macroscopic Zr-SA/Ce-UIO-66 adsorbent: Performance, mechanisms and applicability. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136786. [PMID: 39644845 DOI: 10.1016/j.jhazmat.2024.136786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Dissolved inorganic and organic phosphorus is a major factor in triggering the eutrophication of water bodies. At present, a novel Zr4+ cross-linked sodium alginate encapsulated in Ce-UIO-66 microspheres (Zr-SA/Ce-UIO-66) was prepared and systematically characterized. Its ability for capture of phosphate and glyphosate in their single and binary systems has been investigated comprehensively. Results showed that Zr-SA/Ce-UIO-66 exhibits excellent phosphate adsorption, achieving 92 % removal and a maximum adsorption capacity of 125 mg P/g at 313 K. Diversified mechanisms, including electrostatic attraction, ligand exchange and hydrogen bonding, have cooperatively participated in phosphate removal. Interestingly, in phosphate and glyphosate mixed solutions, the presence of phosphate significantly enhanced the removal of glyphosate for the formation of complexes between phosphate ions and the adsorbent. And that was similar to the presence of glyphosate in phosphate adsorption. Simulated wastewater experiments demonstrated the adsorbent's practical application in water contaminated with both organic phosphorus and glyphosate composites and its potential for recycling and reuse.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Dongshan Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xingyu Duan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuning Chen
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Caiqing Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Siyuan Li
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yitao Ma
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Bin Huang
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
15
|
Huang Y, Wu Q, Yan J, Chu F, Xu Y, Li D, Zhang H, Yang S. Efficient removal and recovery of phosphate by biochar loaded with ultrafine MgO nanoparticles. ENVIRONMENTAL RESEARCH 2025; 266:120518. [PMID: 39638027 DOI: 10.1016/j.envres.2024.120518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Biochar loaded with MgO is a promising adsorbent for the removal and recovery of phosphate from aqueous solutions. However, its phosphate adsorption capacity is unsatisfactory, especially at low phosphate concentrations. Loading nanoscale MgO onto biochar is an effective strategy. Here, ultrafine MgO nanoparticles and MgO nanosheets were loaded onto biochar from steam-exploded straw (UMB and SMB) via an impregnation-precipitation-pyrolysis method. The crystal sizes of ultrafine MgO nanoparticles and MgO nanosheets were about 6-8 nm and 10-16 nm, respectively. The phosphate adsorption capacity of UMB at C0 = 100 mg P L-1 was 219.4 mg P g-1, which was higher than that of SMB (164.9 mg P g-1). The results suggest that surface precipitation was the dominant adsorption mechanism and the hydration process and the smaller particle size of MgO may play a key role in the superior phosphate removal by UMB. Removal tests in real low-concentration phosphate water samples showed that 0.05 g L-1 UMB could reduce the phosphate concentration from 0.17 mg P L-1 to 0.01 mg P L-1. In addition, phosphate could be desorbed from UMB in varying environments, and therefore has the potential to be used in fertilizer production or directly as a slow-release fertilizer.
Collapse
Affiliation(s)
- Yanpeng Huang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qiong Wu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingfan Yan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Fumin Chu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuming Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Dongmin Li
- COFCO Nutrition and Health Research Institute, Beijing, 102209, China
| | - Hongjia Zhang
- COFCO Nutrition and Health Research Institute, Beijing, 102209, China
| | - Sen Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Pandey A, Kalamdhad AS, Sharma YC. Deciphering adsorption behaviour and mechanisms of enhanced phosphate removal via optimized cetyltrimethylammonium bromide-modified nanofibrillated cellulose. Int J Biol Macromol 2025; 288:138743. [PMID: 39674465 DOI: 10.1016/j.ijbiomac.2024.138743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
To combat the persistent environmental issues resulting from eutrophication, it is necessary to scavenge excess phosphorous levels from aquatic ecosystems. In response, a cationic adsorbent was prepared by modifying agrowaste-derived natural biomacromolecule; nanofibrillated cellulose (NFC) using cetyltrimethylammonium bromide (CTAB) surfactant. Comprehensive characterization through XRD, FTIR, HR-SEM, SEM-EDX, BET and XPS demonstrated that quaternizing NFC significantly improved its surface chemistry by introducing substantial quaternary ammonium groups. This modification imparted positive ζ potential across broad pH range, underscoring a strong affinity for negatively charged phosphate ions. Enhanced roughness and improved spatial dispersion led to nearly threefold increase in phosphate removal efficiency compared to pristine NFC, attributable to a higher number of available active sites. The adsorption process followed pseudo-second-order kinetic and Sips isotherm model, with a maximum adsorption capacity of 21.78 mg P/g, reaching equilibrium within 120 min. Besides, the prepared adsorbent demonstrated pH-dependent adsorption and displayed stable adsorption capacity particularly at weakly acidic or neutral pH conditions. Furthermore, it exhibited excellent retention capacity with only 12.61 % desorption rates over three cycles. Both XPS and FTIR results revealed that electrostatic adsorption (based on Lewis acid-base principle) and hydrogen bonding were primary adsorption mechanisms.
Collapse
Affiliation(s)
- Archana Pandey
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Ajay S Kalamdhad
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Yogesh Chandra Sharma
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India.
| |
Collapse
|
17
|
Zhang S, Yuan X, Li M, Gong K, Zhou C, Gao X, Li M, Fan F. Three-dimensional, multi-functionalized nanocellulose/alginate hydrogel for efficient and selective phosphate scavenging: Optimization, performance, and in-depth mechanisms. Int J Biol Macromol 2025; 290:138918. [PMID: 39701253 DOI: 10.1016/j.ijbiomac.2024.138918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Challenges in developing adsorbents with sufficient phosphate (P) adsorption capacity, selectivity, and regeneration properties remain to be addressed. Herein, a multi-functionalized high-capacity nanocellulose/alginate hydrogel (La-NCF/SA-PEI [La: lanthanum, NCF: nanocellulose fiber, SA: sodium alginate, PEI: polyethyleneimine]) was prepared through environmentally friendly methods. The La-NCF/SA-PEI hydrogel, featuring a 3D porous structure with interwoven functional groups (amino, quaternary ammonium, and lanthanum), demonstrated a maximum P adsorption capacity of 78.0 mg/g, exceeding most La-based hydrogel adsorbents. The kinetic and isotherm fitting results confirmed the multilayer chemisorption process. Comprehensive experimental results, instrumental analysis, and computational results revealed that the ammonium phosphate complex (NH3+-O-P) and the inner-sphere complex (La-O-P) formed by La(OH)3 dominated the selective P adsorption process. Density-functional theory (DFT) was employed to calculate the bond length between phosphate and each component of the La-NCF/SA-PEI. The calculation results revealed the double-bridge adsorption between the N (apex) atom on La-NCF/SA-PEI and the O (apex) atomic site in phosphate, including electrostatic adsorption and two hydrogen bonds (bond lengths 1.001 and 1.008 Å) between the O of PO43- and the H+ of the protonated amino group. Except the remarkable P adsorption performance (both municipal sewage and aquaculture tail water), the La-NCF/SA-PEI hydrogel's high selectivity toward P, environmental compatibility, and easy separability from water underscore its significant potential for phosphate-contaminated water remediation. The multi-functionalized La-NCF/SA-PEI demonstrate promising potential for P removal applications and advanced the development of sustainable, biomass-based adsorbents design.
Collapse
Affiliation(s)
- Shenghao Zhang
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
| | - Xingyu Yuan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Mingtao Li
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Kaiyuan Gong
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Chunyang Zhou
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Xiangpeng Gao
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
| | - Mingyang Li
- School of Metallurgical Engineering, Anhui University of Technology, Maanshan 243032, Anhui, China
| | - Fuqiang Fan
- Guangdong-Hong Kong Joint Laboratory for Water Security, Beijing Normal University, Zhuhai 519087, China; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China.
| |
Collapse
|
18
|
Fu W, Yao X, Zhang L, Zhou J, Zhang X, Yuan T, Lv S, Yang P, Fu K, Huo Y, Wang F. Design optimization of bimetal-modified biochar for enhanced phosphate removal performance in livestock wastewater using machine learning. BIORESOURCE TECHNOLOGY 2025; 418:131898. [PMID: 39615764 DOI: 10.1016/j.biortech.2024.131898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Mg-modified biochar shows high adsorption performance under weakly acidic and neutral water conditions. However, its phosphate removal efficiency markedly decreases in naturally alkaline wastewater, such as that released in livestock farming (anaerobic wastewater with a high phosphate concentration). This research employed six machine learning models to predict and optimize the phosphate removal performance of bimetal-modified biochar (i.e., Mg-Ca/Al/Fe/La) to develop material design strategies suitable for achieving high removal efficiency in alkaline wastewater. Random forest, gradient boosting regressor, and extreme gradient boosting models achieved high prediction accuracy (R2 > 0.98). Model predictions and experimental validations indicated that Mg-Ca-modified biochar still maintained high adsorption capacity under acidic conditions and could effectively realize phosphate adsorption under alkaline conditions, with a removal rate of 99.33 %. Overall, this research focuses on material performance optimization using machine learning, offering insights and methods for developing biochar materials for practical water-treatment applications.
Collapse
Affiliation(s)
- Weilin Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xia Yao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China
| | - Lisheng Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jien Zhou
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xueyan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Tian Yuan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shiyu Lv
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Pu Yang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Kerong Fu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yingqiu Huo
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Feng Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
19
|
Feng L, Leng T, Qiu Y, Wang C, Ren LF, Sun H, Tang L, Shao J, Wu M. Weak interaction strategy enables enhanced selectivity and reusability of arginine-functionalized imprinted aerogel for phosphate adsorption. BIORESOURCE TECHNOLOGY 2025; 418:131960. [PMID: 39667628 DOI: 10.1016/j.biortech.2024.131960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Efficient phosphate adsorption from eutrophic waters remains challenging, fundamentally due to inherent trade-off in common adsorbents: high-binding energy between adsorbent and phosphate compromises reusability while low-binding energy suppresses selectivity. Herein, an innovative arginine-functionalized imprinted aerogel (AFIA-1:4) was fabricated by click chemistry and imprinting modification for overcoming this trade-off through synergistic weak interactions. Results shown that AFIA-1:4 exhibited high adsorption capacity (Qmax of 40.65 mg/g, 30.44 % higher than phoslock), rapid kinetics (15 min), and broad pH applicability (3-11) at 2 mg P/L solution. Moreover, its selectivity coefficient ranged from 10 to 90 even with 15- to 125-fold excess interfering anions, surpassing common adsorbents. After 10 cycles, AFIA-1:4 still maintained 98.15 % regeneration rate with 99.14 % phosphate desorption. Characterizations and calculations confirmed core roles of multiple hydrogen bonds and shape screening in maintaining selectivity and reusability. These findings advanced development of next-generation of phosphate adsorbents, which contributed to sustainable prevention and management of eutrophication.
Collapse
Affiliation(s)
- Lidong Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Tianxiao Leng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China.
| | - Haoyu Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, Shanghai, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Shanghai Jiao Tong University Yunnan Dali Research Institute, Dali 671006, Yunnan, PR China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, Shanghai, PR China; School of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, PR China
| |
Collapse
|
20
|
Li J, Sun Y, Zhang Q, Liu S, Liu P, Zhang XX. Unveiling the potential role of virus-encoded polyphosphate kinases in enhancing phosphorus removal in activated sludge systems. WATER RESEARCH 2025; 268:122678. [PMID: 39476778 DOI: 10.1016/j.watres.2024.122678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 12/19/2024]
Abstract
While microbial phosphate removal in activated sludge (AS) systems has been extensively studied, the role of viruses in this process remains largely unexplored. In this study, we identified 149 viral auxiliary metabolic genes associated with phosphorus cycling from 2,510 viral contigs (VCs) derived from AS systems. Notably, polyphosphate kinase 1 (ppk1) and polyphosphate kinase 2 (ppk2) genes, which are primarily responsible for phosphate removal, were found in five unclassified VCs. These genes exhibited conserved protein structures and active catalytic sites, indicating a pivotal role of viruses in enhancing phosphorus removal. Phylogenetic analysis demonstrated a close relationship between viral ppk genes and their bacterial counterparts, suggesting the occurrence of horizontal gene transfer. Furthermore, experimental assays validated that viral ppk genes enhanced host phosphate removal capabilities. VCs carrying ppk genes were observed across diverse ecological and geographical contexts, suggesting their potential to bolster host functions in varied environmental and nutrient settings, spanning natural and engineered systems. These findings uncover a previously underappreciated mechanism by which viruses enhance phosphate removal in wastewater treatment plants. Overall, our study highlights the potential for leveraging virus-encoded genes to improve the efficiency of biological phosphorus removal processes, offering new insights into the microbial ecology of AS systems and the role of viruses in biogeochemical cycling.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yuchen Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Qifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shengnan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
21
|
Wang Y, Chen X, Chen J. Advances of the mechanism for copper tolerance in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112299. [PMID: 39455032 DOI: 10.1016/j.plantsci.2024.112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Copper (Cu) is a vital trace element necessary for plants growth and development. It acts as a co-factor for enzymes and plays a crucial role in various physiological processes, including photosynthesis, respiration, antioxidant systems, and hormone signaling transduction. However, excessive amounts of Cu can disrupt normal physiological metabolism, thus hindering plant growth, development, and reducing yield. In recent years, the widespread abuse of Cu-containing fungicides and industrial Cu pollution has resulted in significant soil contamination. Therefore, it is of utmost importance to uncover the adverse effects of excessive Cu on plant growth and delve into the molecular mechanisms employed by plants to counteract the stress caused by excessive Cu. Recent studies have confirmed the inhibitory effects of excess Cu on mineral nutrition, chlorophyll biosynthesis, and antioxidant enzyme activity. This review systematically outlines the ways in which plants tolerate excessive Cu stress and summarizes them into eight Cu-tolerance strategies. Furthermore, it highlights the necessity for further research to comprehend the molecular regulatory mechanisms underlying the responses to excessive Cu stress.
Collapse
Affiliation(s)
- Yamei Wang
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Xueke Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Shenzhen Campus, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
22
|
Yang A, Fu Y, Huang F. Enhanced phosphorus adsorption performance of ZnAl-LDO by fluorine‑chlorine co-doping and synergistic mechanism exploration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177102. [PMID: 39437921 DOI: 10.1016/j.scitotenv.2024.177102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Layered double hydroxides (LDHs) and their calcined products layered double oxides (LDOs) are widely used as adsorbents for pollutant removal. Their adsorption performance are significantly influenced by intercalated ions, while previous studies primarily focusing on the impact of individual ions. For the first time, this paper reports the mechanism of the synergistic enhancement of phosphate adsorption properties of LDO by bicomponent interlayer ions. The ZnAl-LDO by fluorine‑chlorine co-doping (F, Cl-ZnAl-LDO) exhibits excellent adsorption capacity of 158.9 mgP/g, surpassing that of single-component intercalation Cl-ZnAl-LDO and F-ZnAl-LDO, as well as most LDH-based adsorbents. Further research and density functional theory calculations indicate the differential adsorption enhancement mechanism of the interlayer ions. Chlorine functions as the exchanged anion, whereas fluorine facilitates the complete replacement of chloride ions and hydroxyl groups by phosphate. This finding highlights the potential of utilizing the synergistic effects between different interlayer ions to design and synthesize advanced phosphate adsorbent materials.
Collapse
Affiliation(s)
- Anzhou Yang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Zhongke Institute of Strategic Emerging Materials, Yixing 214213, Jiangsu, PR China
| | - Yongping Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Fuqiang Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China; Zhongke Institute of Strategic Emerging Materials, Yixing 214213, Jiangsu, PR China; State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
23
|
Jiang Y, Cao L, Ma G, Xu C, Li L, Wang Z, Xia M, Wang F. Lanthanum-modified sepiolite for real application of phosphate removal from rural sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64796-64806. [PMID: 39556226 DOI: 10.1007/s11356-024-35369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024]
Abstract
Being able to cause eutrophication, a severe ecological problem that leads to the demise of aquatic animals, excessive phosphate in water bodies, has been a threat to the environment. Aiming to remove phosphate from wastewater in rural areas, adsorption is a promising method. In this study, a novel phosphate adsorbent, SEP-La, was synthesized by doping lanthanum into sepiolite. Characterization and batch adsorption experiments were performed. Lanthanum was loaded on sepiolite through hydrogen bond as forms of peroxides, and it greatly enhanced the adsorption capacity of sepiolite, reaching 135.78 mg/g. Pseudo-second-order kinetic model described the adsorption kinetics the best, indicating a chemisorption process. An endothermic yet spontaneous adsorption process was revealed by the fitting of the Langmuir isotherm model. The adsorbent exhibited great tolerance to pH change and interference ions. The remaining 67.82% of the original performance after 6 cycles of adsorption-desorption demonstrated its robust recyclability. Its real application potential was also manifested through column experiments using locally collected real wastewater and was able to treat 2072 mL of water per gram of adsorbent, which represents a significant milestone in translating theory into practice. FT-IR, XRD, and XPS were performed to prove that its mechanism involved electrostatic interaction and ligand exchange. This work provides an affordable while auspicious phosphate adsorptive material with the potential to effectively address the issue of excessive phosphate in water at a low cost.
Collapse
Affiliation(s)
- Yongwei Jiang
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, 210000, China
| | - Lei Cao
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, 210000, China
| | - Genchao Ma
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, 210000, China
| | - Chao Xu
- Jiangsu Environmental Engineering Technology Co., Ltd., Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Synergistic Control of Pollution and Carbon Emissions in Key Industries, Nanjing, 210000, China
- Jiangsu Province Engineering Research Center of Standardized Construction and Intelligent Management of Industrial Parks, Nanjing, 210000, China
| | - Linrui Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhihui Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhu Xia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fengyun Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
24
|
Zhang H, Wang Q, Liu J, Zhang T, Gu H, Wu Z, Wang Z. Deciphering heterojunction layered double hydroxide-polyaniline-carbon nanotubes for phosphorus capture in capacitive deionization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176382. [PMID: 39304155 DOI: 10.1016/j.scitotenv.2024.176382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The capacitive deionization (CDI) has emerged as a robust technology due to its effective performance in removing and recovering phosphate in wastewater. However, there are still challenges in achieving fast charge transfer and high capacity phosphorus storage simultaneously. In this study, a layered double hydroxide-polyaniline-carbon nanotubes composite material (ZnFe-PANI/CNT) with heterojunction and pseudocapacitive characteristics was fabricated via a simple and effective precipitation strategy. The existence of heterojunction and pseudocapacitance of ZnFe-PANI/CNT was confirmed through material performance testing Moreover, with its fast charge transfer and high ion storage performance, it was achieved high phosphate adsorption efficiency (94 %) and sustainable electrode regeneration in low concentration phosphate wastewater. Ultraviolet photoelectron spectroscopy (UPS) and density functional theory revealed the ability to accelerate charge transfer, which was contributed by the heterojunction ZnFe-PANI/CNT. In addition, it was found that the synergies of electrostatic attraction, ligand exchange and surface complexation contributed to the high phosphate capture ability in the acidic environments. The binuclear bidentate or mononuclear bidentate structures dominated the surface configuration of phosphate adsorption at pH 4-9.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jiaxiang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongbo Gu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
25
|
Chen J, Xue J, Liu J, Samaei SHA, Robbins LJ. Near-Complete Phosphorus Recovery from Challenging Water Matrices Using Multiuse Ceramsite Made from Water Treatment Residual (WTR). WATER RESEARCH X 2024; 25:100267. [PMID: 39524567 PMCID: PMC11549993 DOI: 10.1016/j.wroa.2024.100267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Water treatment residual (WTR) is a burden for many water treatment plants due to the large volumes and associated management costs. In this study, we transform aluminum-salt WTR (Al-WTR) into ceramsite (ASC) to recover phosphate from challenging waters. ASC showed remarkably higher specific surface area (SSA, 70.53 m2/g) and phosphate adsorption capacity (calculated 47.2 mg P/g) compared to previously reported ceramsite materials (< 40 m2/g SSA and < 20 mg P/g). ASC recovered over 94.9% of phosphate across a wide pH range (3 - 11) and generally sustained > 90% of its phosphate recovery at high concentrations of competing anions (i.e., Cl-, F-, SO4 2-, or HCO3 -) or humic acid (HA). We challenged the material with real municipal wastewater at 10°C and achieved simultaneous phosphate (>97.1%) and COD removal (71.2%). Once saturated with phosphate, ASC can be repurposed for landscaping or soil amendment. The economic analysis indicates that ASC can be a competitive alternative to natural clay-based ceramsite, biochar, or other useful materials. Therefore, ASC is an eco-friendly, cost-effective adsorbent for phosphate recovery from complex waters, shedding light upon a circular economy in the water sector.
Collapse
Affiliation(s)
- Jianfei Chen
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jinkai Xue
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jinyong Liu
- Department of Chemical & Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Seyed Hesam-Aldin Samaei
- Cold-Region Water Resource Recovery Laboratory (CRWRRL), Environmental Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Leslie J. Robbins
- Department of Geology, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
26
|
Nadagouda MN, Varshney G, Varshney V, Hejase CA. Recent Advances in Technologies for Phosphate Removal and Recovery: A Review. ACS ENVIRONMENTAL AU 2024; 4:271-291. [PMID: 39582759 PMCID: PMC11583102 DOI: 10.1021/acsenvironau.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 11/26/2024]
Abstract
Phosphorus is a nonrenewable resource, yet an essential nutrient in crop fertilizers that helps meet growing agricultural and food demands. As a limiting nutrient for primary producers, an excess amount of phosphorus entering water sources through agricultural runoff can lead to eutrophication events downstream. Therefore, to address global issues associated with the depletion of phosphate rock reserves and minimize the eutrophication of water bodies, numerous studies have investigated the removal and recovery of phosphates in usable forms using various chemical, physical, and biological methods. This review provides a comprehensive and critical evaluation of the literature, focusing on the widely employed adsorption and chemical precipitation for phosphate recovery from various wastewaters. Several experimental performance parameters including temperature, pH, coexisting ions (e.g., NO3 -, HCO3 -, Cl-, SO4 2-), surface area, porosity, and calcination are highlighted for their importance in optimizing adsorption capacity and struvite crystallization/precipitation. Furthermore, the morphological and structural characterization of various selected adsorbents and precipitated struvite crystals is discussed.
Collapse
Affiliation(s)
- Mallikarjuna N. Nadagouda
- Center
for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
| | - Gaiven Varshney
- Center
for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, 26 W. Martin Luther King Drive, Cincinnati, Ohio 45268, United States
- Department
of Engineering Physics, Nuclear Expertise
for Advanced Technology (NEAT) Center, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Vikas Varshney
- Materials
and Manufacturing Directorate, Air Force
Research Laboratory, Wright-Patterson
Air Force Base, Ohio 45433, United States
| | - Charifa A. Hejase
- Department
of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
- Pegasus
Technical Services INC., Cincinnati, Ohio 45219, United States
| |
Collapse
|
27
|
Feng S, Zhang W, Che J, Wang C, Chen Y. Controllable and selective fluoride precipitation from phosphate-rich wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175507. [PMID: 39147050 DOI: 10.1016/j.scitotenv.2024.175507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Industrial wastewater containing high levels of fluoride and phosphate poses significant environmental challenges and results in the waste of non-renewable resources. This study investigates the use of La(OH)3 as a precipitating agent to selectively remove and separate fluoride from phosphate in such wastewater. The findings indicate that fluoride removal efficiency is highly dependent on the pH level and La(OH)3 dosage. Using Response Surface Methodology, the optimal conditions for fluoride precipitation were identified as a pH range of 1.0 to 2.5, a reaction time of 60-80 min, a La/3F molar ratio of 2.0, and reaction temperature of 25 °C. Under these parameters, the fluoride removal efficiency exceeded 96.9 %, while phosphate removal remained around 7.2 %. Further Density Functional Theory calculations and characterization confirmed La(OH)3 has a strong affinity for fluoride than phosphate under acidic conditions, leading to the formation of a LaF3 precipitate without forming LaPO4, effectively separating fluoride from phosphate. These results demonstrate an efficient strategy for treating wastewater with high fluoride and phosphate content, enabling the selective precipitation and recovery of these elements for sustainable management.
Collapse
Affiliation(s)
- Shuyue Feng
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjuan Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Jianyong Che
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengyan Wang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yongqiang Chen
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
28
|
Xiong X, Li Y, Zhang C. Enhanced phosphorus removal from anoxic water using oxygen-carrying iron-rich biochar: Combined roles of adsorption and keystone taxa. WATER RESEARCH 2024; 266:122433. [PMID: 39276477 DOI: 10.1016/j.watres.2024.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Anthropogenic enrichment of phosphorus (P) in water environment can cause eutrophication, harmful algal blooms, and water quality deterioration. Adsorbents are often used for the removal and recovery of P from water, however, P is highly susceptible to re-release in anoxic benthic environments. As a response, this study prepared oxygen-carrying iron-rich biochar (O-Fe-BC) as an effective oxygen micro-nanobubble carrier (Q = 8.7024 cm³/g STP at 1.5 MPa) and P adsorbent (qm = 16.7097 mg P/g, q0.1 = 3.1974 mg P/g). Over the 90-day experimental period with O-Fe-BC, dissolved oxygen (DO) levels in the overlying water could maintain at ∼4 mg/L (peaking at ∼9.5 mg/L), and total phosphorus (TP) and soluble reactive phosphorus (SRP) levels decreased by over 96 %. The higher inorganic phosphorus content in the surface sediment-biochar mixture, along with the lower labile P and Fe concentration in the sediment pore water in the O-Fe-BC group compared to other groups, suggested the enhanced P immobilization. Further mechanism exploration revealed the combined roles of adsorption and microbial response, in which O-Fe-BC achieved efficient phosphate adsorption primarily through inner-sphere complexation via ligand exchange and keystone taxa (particularly Candidatus Electronema) played a crucial role in driving water chemistry divergence. Specially, these cable bacteria could provide large pools of Fe oxides in the surface sediment, binding with P to prevent its release, as supported by significant correlations between Ca. Electronema abundance and oxidation-reduction potential (ORP), TP, SRP, and sediment Fe-P variations. Additionally, a pot experiment with mung bean seedlings showed that the recovered O-Fe-BC significantly promoted the seed germination and growth, indicating its potential as a novel material for removing and recovering P from eutrophic waters. Taken together, our work provided a promising strategy for sustainable anoxia and P pollution mitigation, and also highlighted the indispensable roles of inner-sphere adsorption in P recovery and microbial keystone taxa in P cycling regulation.
Collapse
Affiliation(s)
- Xinyan Xiong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210024, PR China.
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Changzhou 213200, PR China.
| |
Collapse
|
29
|
Li M, Xie Q, Xu F, Zhang Y, Zhuang Z, Xu J, Xiang H, Li Y, Cai Y, Chen Z, Yu B. Screening of metal-modified biochars for practical phosphorus recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177342. [PMID: 39500445 DOI: 10.1016/j.scitotenv.2024.177342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/10/2024]
Abstract
The utilization of metal-modified biochars (MBCs) for practical phosphorus recovery has attracted significant research interest recently. However, the optimal choice of metals and modification methods for MBCs remains unclear. This study addresses this gap by comparing the phosphate adsorption capabilities of various MBCs using real municipal wastewater. The results show that zinc-modified biochar exhibits superior phosphate adsorption compared to biochars modified with calcium, magnesium, aluminum, and iron. Specifically, zinc-modified biochar prepared through metal-mediated biomass pyrolysis with alkaline soaking (ZnBC-OH) demonstrates the highest adsorption capacity, achieving 36.6 mg P/g in wastewater with a phosphate concentration of 5 mg P/L. This performance surpasses that of previously reported non-lanthanide modified biochars and is comparable to lanthanide-modified biochars. Mechanistic investigations reveal that the exceptional performance of ZnBC-OH is due to the presence of highly dispersed ZnO sites, which facilitate the formation of Zn3(PO4)2·4H2O precipitation, effectively retaining phosphate. Furthermore, a techno-economic analysis indicates that using ZnBC-OH in a fixed-bed column system can reduce phosphate levels from 6 mg L-1 to below 0.5 mg L-1 at a cost of 1.834 USD per ton of secondary treated wastewater, underscoring its promising application potential.
Collapse
Affiliation(s)
- Man Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Qian Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Fangxi Xu
- Zhejiang Taizhou Ecological and Environmental Monitoring Center, Taizhou 318000, China
| | - Yan Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiawei Xu
- Jiangsu Key Laboratory of Numerical Simulation of Large Scale Complex Systems and School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hai Xiang
- Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China
| | - Yongfu Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yanjiang Cai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| | - Bing Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; Ecological-Environment & Health College (EEHC), Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
30
|
Halder S, Wang Z, Roy PK, Sedighi M. Improving the adsorption properties of low surface area hardwood biochar for the removal of Fe + and PO₄ 3- from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60936-60958. [PMID: 39397234 DOI: 10.1007/s11356-024-35249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
Biochar produced from wood residues may provide a new method and material for managing the environment, particularly in terms of carbon sequestration and contaminant remediation. Additionally, biochar produced from wood residues is free of chemical fertilizers, likewise in rice straw, wheat straw, corn straw, etc. This study investigated the removal of iron from aqueous solutions by a novel low-cost and eco-friendly biochar made from hardwood trees and modified by adding MgCl2 for effective phosphate removal. Optimal adsorption conditions were determined through studies of adsorption time, pH, and adsorbent dosage. Batch equilibrium isotherm and kinetic experiments and pre/post-adsorption characterizations using FESEM-EDS, XRD, and FTIR suggested that the presence of carboxyl group elements and colloidal and nano-sized MgO (periclase) particles on the biochar surface were the main adsorption sites for aqueous iron and phosphate respectively. In this study, the HW and MgO-HW biochar showed excellent Dubinin-Radushkevich isotherm (D-R) maximum adsorption capacities of 289.45 and 828.82 mg/g for iron and phosphate. The kinetic study for iron and phosphate adsorption was described well by pseudo second-order model and pseudo second-order model respectively. The HW biochar and the prepared MgO-HW biochar exhibited commendable iron adsorption (98.25%) performance at 10 pH units and phosphate (96.22%) at pH 6 respectively. Thus, this research reveals a waste-to-wealth strategy by converting hardwood waste into mineral-biomass biochar with excellent Fe and P adsorption capabilities and environmental adaptability.
Collapse
Affiliation(s)
- Sudipa Halder
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom.
- School of Water Resources Engineering, Jadavpur University, Kolkata, India.
| | - Ziheng Wang
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| | - Pankaj Kumar Roy
- School of Water Resources Engineering, Jadavpur University, Kolkata, India
| | - Majid Sedighi
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Wang J, Wang Y, Yu F, Wang J, Wang X, Luo J, He C, Cui X, Yan B, Chen G. Efficient reclamation of phosphorus from wetland biomass waste via liquid-recirculated hydrothermal carbonization and precipitation. WATER RESEARCH 2024; 265:122278. [PMID: 39173350 DOI: 10.1016/j.watres.2024.122278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Hydrothermal carbonization (HTC) for the recovery of phosphorus (P) from biomass wastes has attracted considerable attention, while migration of P to the liquid phase greatly weakened P recovery efficiency and elevated the environmental risk. Therefore, a systematic scheme was proposed in this work to accomplish the complete reclamation of P from wetland plant (Ceratophyllum demersum) through coupling liquid-recirculated HTC mediated by H2O or H2SO4 with precipitation, and the migration and speciation of P during this process was determined by P K-edge X-ray absorption near edge structure, 31P nuclear magnetic resonance, and the modified sequential extraction. The P concentration in the liquid phase increased with the recirculation of HTC process water, and reached up to 550.6 mg L-1. >98.1 % of P in the recirculated liquid products was recovered in the forms of hydroxyapatite and struvite with the HTC mediums of H2O and H2SO4, respectively, without the addition of exogenous metals. In addition to the production of P compounds, P-enriched hydrochar was simultaneously obtained during this process. The HTC medium and liquid recirculation had profound impact on the hydrochar characteristics and the transformation of P. Hydroxyapatite and magnesium phosphate were the dominant P species in the hydrochars derived from H2O-mediated HTC, while FePO4 and other Ca-P species [Ca3(PO4)2 and Ca(H2PO4)2] dominated the P compounds in the H2SO4-mediated hydrochar. These results suggest that coupling liquid-recirculated HTC and precipitation could be a promising strategy for P reclamation, which could provide new insights into the P recovery from biomass waste.
Collapse
Affiliation(s)
- Junxia Wang
- School of Environmental Science and Engineering Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Yuting Wang
- Tianjin Academy of Eco-Environmental Sciences, Tianjin, 300191, China
| | - Fan Yu
- Institute of Energy and Power Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jiangtao Wang
- School of Environmental Science and Engineering Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xutong Wang
- Nuclear and Radiation Safety Center, MEE, Beijing, 100082, China
| | - Jipeng Luo
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Chao He
- Faculty of Engineering and Natural Sciences, Tampere University, Korkeakoulunkatu 8, 33720, Tampere, Finland
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China.
| | - Beibei Yan
- School of Environmental Science and Engineering Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering Tianjin Key lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
32
|
Sharker T, Gamaethiralalage JG, Qu Q, Xiao X, Dykstra JE, de Smet LCPM, Muff J. Iron-loaded activated carbon cloth as CDI electrode material for selective recovery of phosphate. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63734-63746. [PMID: 39503936 PMCID: PMC11602819 DOI: 10.1007/s11356-024-35444-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
This study investigated the efficacy of oxidised iron-loaded activated carbon cloth (Fe-ACC) for selective recovery of phosphorous. The capacitive deionisation (CDI) technology was employed, for rapid removal of phosphate, with the aim of reducing the reliance on high alkalinity environment for the regeneration of Fe-ACC electrode. Multiple experimental parameters, including applied potential, pH, and co-existing ions, were studied. Additionally, the CDI system was tested on a real water matrix (Lake Ormstrup, Denmark) to elucidate the electrodes' performance on selective recovery of phosphate. About 69 ± 10% of the adsorbed phosphate were released at pH 12 via pure chemical desorption, which was ~ 50% higher than that at pH 9. The CDI system successfully demonstrated the selective removal of phosphate from the lake water. It reduced the concentration of phosphate from 1.69 to 0.49 mg/L with a 71% removal efficiency, while the removal percentages of other anions, namely chloride, sulphate, bromide, nitrite, nitrate, and fluoride, were 10%, 7%, 1%, 1.5%, 4%, and 7%, respectively.
Collapse
Affiliation(s)
- Tanzila Sharker
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
| | - Jayaruwan G Gamaethiralalage
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Qiyang Qu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Xinxin Xiao
- Department Department of Chemistry & Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark
| | - Jouke E Dykstra
- Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Louis C P M de Smet
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Jens Muff
- Department of Chemistry & Bioscience, Aalborg University, Niels Bohrs Vej 8, 6700, Esbjerg, Denmark.
| |
Collapse
|
33
|
Boyer TH, Briese E, Crane L, Bhadha J, Call DF, McLamore ES, Rittmann B, Tuberty S, Westerhoff P, Duckworth OW. Guidance on aqueous matrices for evaluating novel precipitants and adsorbents for phosphorus removal and recovery. CHEMOSPHERE 2024; 367:143648. [PMID: 39476984 PMCID: PMC12036625 DOI: 10.1016/j.chemosphere.2024.143648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Phosphorus (P) removal from water and recovery into useable forms is a critical component of creating a sustainable P cycle, although mature technologies for P removal and recovery are still lacking. The goal of this paper was to advance the testing of novel materials for P removal and recovery from water by providing guidance on the development of more realistic aqueous matrices used during materials development. Literature reports of "new" materials to remove P from water are often difficult to compare in terms of performance because authors use a myriad of water chemistries containing P concentrations, pH, and competing ions. Moreover, many tests are conducted in simplified matrices that do not reflect conditions in real systems. To address this critical gap, the research herein developed a systematic approach of identifying aqueous matrices relevant to P recovery, including key components in the aqueous matrices having the greatest influence on the mechanisms of P removal with emphasis on phosphate precipitation and phosphate adsorption, and providing guidelines on relevant "recipes" for aqueous solutions for testing novel materials. Key components in the aqueous matrices included hydrogen ion (i.e., pH), multivalent metal cations, and dissolved organic matter due to their influence on phosphate precipitation and adsorption mechanisms. Recipes for buffer solution and synthetic groundwater, surface water, anaerobic digestate, and stored urine are discussed in the context of P removal and recovery processes. Wherein the adoption of standard matrices in other fields have permitted direct comparison of processes or materials, it is anticipated that adoption of relevant aqueous matrix recipes for P removal and recovery will improve the ability to directly compare novel materials and processes.
Collapse
Affiliation(s)
- Treavor H Boyer
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA.
| | - Emily Briese
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Lucas Crane
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Jehangir Bhadha
- Department of Soil, Water, and Ecosystem Sciences, UF/IFAS Everglades Research and Education Center, University of Florida, 3200 E Canal St, Belle Glade, FL, 33430, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Douglas F Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 915 Partners Way, Raleigh, NC, 27695-7908, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Eric S McLamore
- Department of Agricultural Sciences, Clemson University, 232 McAdams Hall, Clemson, SC, 29634, USA; Department of Environmental Engineering and Earth Sciences, Clemson University, Calhoun Dr, Clemson, SC, 29634, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Bruce Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Shea Tuberty
- Department of Biology, Appalachian State University, ASU Box 32027, 572 Rivers St, Boone, NC, 28608, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment (SSEBE), Arizona State University, PO Box 873005, Tempe, AZ, 85287-3005, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, 101 Derieux St, Campus Box 7619, Raleigh, NC, 26795, USA; NSF Science and Technologies for Phosphorus Sustainability (STEPS) Center, USA
| |
Collapse
|
34
|
Zhang S, Li M, Zhang H, Fan F, Zhou C, Lao K, Gao X. Enhanced phosphate removal from aqueous environments using three-dimensional La-doped carboxylic carbon nanotubes/alginate: Performance and mechanisms. Int J Biol Macromol 2024; 280:136117. [PMID: 39343262 DOI: 10.1016/j.ijbiomac.2024.136117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The excessive amounts of phosphorus (P) discharged and usage have caused eutrophication and algal blooms, which seriously jeopardize the environment even the human health. In this study, carbon nanotubes (CNTs) served as carriers to develop a lanthanum-based sodium alginate hydrogel (La-CNT-COOH/SA) aimed at efficiently removing phosphate from wastewater. Characterization results confirmed successful deposition of La(OH)3 nanoparticles onto CNT-COOH. The optimal adsorption efficiency of La-CNT-COOH/SA hydrogels occurred at pH 4, with a maximum adsorption capacity of 54.4 mg/g under an initial phosphate concentration of 60 mg/L. Batch experiments demonstrated that La-CNT-COOH/SA performed well across a favorable pH range and exhibited high tolerance to common coexisting ions during phosphate adsorption. Adsorption isotherms indicated a dominance of both physical and chemical mechanisms in phosphate removal by La-CNT-COOH/SA. At elevated phosphate concentrations, the adsorption process followed quasi-second-order kinetics, primarily driven by chemical adsorption. Multi-instrument characterization emphasized that the substantial loading of La(OH)3 on CNT-COOH significantly contributed to adsorption, alongside crosslinked lanthanum ions on sodium alginate and abundant hydroxyl groups. Mechanisms of adsorption by La-CNT-COOH/SA encompassed electrostatic interactions, surface precipitation, and in-sphere complexation (La-O-P). These findings on fabrication, properties, and adsorption mechanisms of the phosphate-removal hydrogel lay a theoretical foundation for applying biomass-based materials in large-scale remediation practices.
Collapse
Affiliation(s)
- Shenghao Zhang
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China; Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Mingyang Li
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| | - Hao Zhang
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chunyang Zhou
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Kangwen Lao
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Xiangpeng Gao
- Key Laboratory of Mine Low-Carbon Reclamation and Solid Waste Resource Utilization of Ma'anshan, Anhui University of Technology, Ma'anshan, Anhui 243032, China; School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China.
| |
Collapse
|
35
|
Yue Y, Zeng Z, Zhou Y, Hu W. Phosphate adsorption characteristics of CeO 2-loaded, Eucommia ulmoides leaf residue biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124657. [PMID: 39098643 DOI: 10.1016/j.envpol.2024.124657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
In this study, a Ce-loading biochar (Ce-BC) was synthesized by the optimal modification method of pre-pyrolysis impregnation, a pyrolysis temperature at 600 °C, and a CeCl3 concentration of 1.00 mol L-1 for efficient adsorption phosphorus (P) from wastewater. The results revealed that Ce-BC could achieve a maximum P removal rate of 100% under specific conditions: an adsorbent concentration of 2.00 g L-1, an initial solution pH of 3.00, an adsorption temperature of 25 °C, and an initial P concentration of 20.00 mg L-1. The adsorption process followed the quasi-secondary kinetic model, suggesting the Ce-BC was particularly effective in acidic environments. Meanwhile, Ce-BC has a strong resistance to anion interference and good cycling performance (the P adsorption capacity of Ce-BC was 59.77% of its initial value after four cycles). Field emission scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) indicated that Ce-BC contained a porous structure and rich functional groups (hydroxyl and carboxyl), and compounds of CeO2 and MgCeO3 were formed. The Ce loading favored the exchange with P through ligands, inner-sphere complexation, ion exchange, and electrostatic interaction to form inner-sphere complex-cerium P (CePO4), and the surface complex of Ce-O-P replaced O-H. In addition, the Ce-BC adsorption columns substantially affected P removal in actual wastewater. Overall, Ce-BC is a promising material for the treating P-containing acidic wastewater.
Collapse
Affiliation(s)
- Yufang Yue
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Zixing Zeng
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Yu Zhou
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Wenyong Hu
- School of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China.
| |
Collapse
|
36
|
Wu X, Liu S, Song S, Liu Y, Huang C, Wang L, He J, Shen F, Zhang Y. Calcium silicate hydrate complex konjac glucomannan-based hydrogel selectively adsorbed phosphate in low alkalinity solution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122560. [PMID: 39299108 DOI: 10.1016/j.jenvman.2024.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The selective recovery of phosphate from wastewater can manage nutrients and realize the recycling of phosphorus resources. In this study, a novel konjac glucomannan/pectin/calcium silicate composite hydrogel (KP-CSH) was developed for efficient recovery of phosphate in aqueous solution. The amount of alkali released after the reaction of KP-CSH in a neutral solution was small (the pH of the solution after the reaction was < 9). In a wide initial pH range (3-10), the adsorption capacity of KP-CSH in 50 mg-P/L phosphate solution reached 39∼45 mg-P/g. Besides, even if the pH of the solution after the reaction was less than 8, it could still well adsorb phosphate. The kinetic and isothermal adsorption experiments indicated that the adsorption process of phosphate by KP-CSH was chemical adsorption, and the maximum adsorption capacity was 61.2 mg-P/g. KP-CSH preferentially adsorbed phosphate even in the presence of high concentrations of competitive ions. In the actual biogas slurry, KP-CSH also exhibited the strongest selectivity/affinity for phosphate, and its distribution coefficient (Kd) was significantly higher than that of other co-existing anions and cations. The adsorption mechanism analysis indicated that Ca was the main adsorption site of KP-CSH, and that the adsorption process of target pollutants mainly involved ligand exchange and the intra-sphere complexation. Further plant seed germination and seedling growth experiments suggested that KP-CSH after phosphate recovery did not exert a negative effect on the growth of plant seedlings, and increased the chlorophyll content of seedling leaves. These results demonstrate that KP-CSH is a potential adsorbent for efficient phosphate recovery, which can be used as a slow-release phosphate fertilizer after recovering phosphate.
Collapse
Affiliation(s)
- Xingyu Wu
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyu Liu
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siqi Song
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Liu
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Chengyi Huang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lilin Wang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jinsong He
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fei Shen
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanzong Zhang
- College of Environment Sciences, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
37
|
Samaraweera H, Zahir A, Alam SS, Perera SS, Masud MAA, Khan AH, Oguntuyi DO, Yunusu W, Shin WS, Mohamed MM, Mlsna T. Sustainable utilization of Fe 3O 4-modified activated lignite for aqueous phosphate removal and ANN modeling. ENVIRONMENTAL RESEARCH 2024; 260:119618. [PMID: 39009211 DOI: 10.1016/j.envres.2024.119618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Lignites are widely available and cost-effective in many countries. Sustainable methods for their utilization drive innovation, potentially advancing environmental sustainability and resource efficiency. In the present study, Fe3O4 (∼25.1 nm) supported on KOH-activated lignite (A-L) displayed 8 times higher phosphate removal than pristine A-L (67.6 mg/g vs. 8.5 mg/g at pH 5, 50 mg of absorbent in 25 mL of 1500 ppm [phosphate]), owing to its abundant Fe3O4 (10 wt% of Fe) nanoparticle content. The removal occurred within ∼2 h, following a pseudo-second-order kinetic model. Across pH levels ranging from 5.0 to 9.0, Fe3O4-A-L's phosphate removal occurs via both chemisorption and precipitation, as evident by kinetic, pH, and XPS analyses. The phosphate adsorption fits better with the Freundlich isotherm. The combined benefits of facile recovery, rapid phosphate uptake, straightforward regeneration, and attractive post-adsorption benefits (e.g., possibly use as a Fe, P-rich fertilizer) make magnetic Fe3O4-A-L a promising candidate for real-world applications. Artificial Neural Network (ANN) modeling indicates an excellent accuracy (R2 = 0.99) in predicting the amount of phosphate removed by Fe3O4-A-L. Sensitivity analysis revealed both temperature and initial concentration as the most influencing factors. Leveraging lignite in environmentally friendly applications not only addresses immediate challenges but also aligns with sustainability goals. The study clearly articulates the potential benefits of utilizing lignite for sustainable phosphate removal and recovery, offering avenues for mitigating environmental concerns while utilizing resources efficiently.
Collapse
Affiliation(s)
- Hasara Samaraweera
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA; Department of Civil and Environmental Engineering, Western University, ON, N6H0B6, Canada.
| | - Abdul Zahir
- National Textile Research Centre, National Textile University, Faisalabad, 37610, Pakistan
| | - Shah Saud Alam
- Mechanical Engineering, University of Kansas, Lawrence, KS, 66045, USA
| | - S Sameera Perera
- Lumigen Instrument Center, Wayne State University, Detroit, MI, 48201, USA
| | - Md Abdullah Al Masud
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, Jazan, Saudi Arabia
| | | | - Wana Yunusu
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA
| | - Won Sik Shin
- School of Architecture, Civil, Environmental and Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Mohamed Mostafa Mohamed
- Department of Civil and Environmental Engineering, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates; National Water and Energy Center, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, USA
| |
Collapse
|
38
|
Zhao Y, Xu M, Ren S, Yu J, Li T. Ultra-High Adsorption Capacity of Calcium-Iron Layered Double Hydroxides for HEDP Removal through Phase Transition Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19514-19522. [PMID: 39420764 DOI: 10.1021/acs.est.4c06464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Antiscalant disposal in reverse osmosis concentrate (ROC) treatment is a significant obstacle in desalination. This study investigated the adsorption performance of LDHs for removing 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP). CaFe-LDH presented a specific adsorption behavior and ultrahigh adsorption capacity for HEDP, with a maximum adsorption capacity of 335.7 mg P/g (1116.5 mg HEDP/g) at pH 7.0. X-ray diffraction (XRD) demonstrated that HEDP adsorption induced a structural transformation of CaFe-LDH from a layered configuration to a highly ordered structure, leading to a noticeable phase transition. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy further confirmed that two distinct binding modes of HEDP, relating to chelation with Ca2+ and adsorption on Fe3+ simultaneously, are connected by phosphonic acid groups (-C-PO(OH)2), forming the CaFe-HEDP complex. X-ray fluorescence (XRF) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the CaFe-HEDP ternary complex exhibits a highly ordered arrangement in an oxygen-bridged framework. The construction of an oxygen-coordinated framework contributes to the incorporation of more HEDP into CaFe-LDH, leading to a well-aligned lattice in the new phase. These findings provide valuable insights into developing novel LDH-based adsorbents for removing phosphorus-containing antiscalants, establishing a sustainable approach to ROC management, and potential environmental risk reduction.
Collapse
Affiliation(s)
- Yue Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Menglan Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuyang Ren
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tong Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
39
|
Yang W, Chen T, Jia H, Li J, Liu B. Preparation and Electrochemical Applications of Magnéli Phase Titanium Suboxides: A Review. Chemistry 2024; 30:e202402188. [PMID: 39149925 DOI: 10.1002/chem.202402188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
Magnéli phase titanium suboxides (M-TSOs) belong to a type of sub-stoichiometric titanium oxides based on the crystal structure of rutile TiO2. They possess a unique shear structure, granting them exceptional electrical conductivity and corrosion resistance. These two advantages are crucial for electrode materials in electrochemistry, hence the significant interest from numerous researchers. However, the preparation of M-TSOs is uneconomic due to high temperature reduction and other complex synthesis process, thus limiting their practical application in electrochemical fields. This review delves into the crystal structure, properties, and synthesis methods of M-TSOs, and touches on their applications as electrocatalysts in wastewater treatment and electrochemical water splitting. Furthermore, it highlights the research challenges and potential future research directions in M-TSOs.
Collapse
Affiliation(s)
- Wenduo Yang
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Tongxiang Chen
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Hanze Jia
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Jing Li
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| | - Baodan Liu
- School of Materials Science and Engineering, Northeastern University, No.11, Wenhua Road, Shenyang, 110819, China
- Foshan Graduate School of Innovation, Northeastern University, No. 2, Zhihui Road, Shunde District, Foshan, 528300, China
| |
Collapse
|
40
|
Chaikhan S, Thongdamrongtham S, Junsiri S, Labcom C, Sarak A, Boonkhao L. Enhanced phosphorus adsorption using modified drinking water treatment residues: A comparative analysis of powder and alginate bead forms. Heliyon 2024; 10:e38144. [PMID: 39397955 PMCID: PMC11470402 DOI: 10.1016/j.heliyon.2024.e38144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/06/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
This study provides an analysis of the phosphorus adsorption efficacy of three modified drinking water treatment residues (MDWTRs): MDWTR-P (powdered form), MDWTR-D2, and MDWTR-D5 (alginate bead-entrapped forms with bead diameters of 2 mm and 5 mm, respectively). The preparation process involved washing and drying the drinking water treatment residue, followed by grinding and sieving to achieve particle sizes below 90 μm. The residue was then incinerated at 600 °C in oxygen-limited conditions. Subsequently, the MDWTR was formulated into alginate beads by mixing with sodium alginate and FeCl3 solutions, resulting in spherical particles of specified diameters. The evaluation of surface area, pore volume, pore size, and CHN concentration revealed that MDWTR-D5 possesses the largest surface area (284.7 m2 g-1) and highest micropore volume (0.04 cm3 g-1), indicating a greater capacity for adsorption. SEM-EDS analysis demonstrated significant compositional changes post-treatment, particularly elevated phosphorus levels, confirming effective adsorption. Metal content analysis indicated high aluminum levels in MDWTR-P and increased iron content in MDWTR-D5. Toxicity Characteristic Leaching Procedure (TCLP) and in vitro bioaccessibility (IVBA) tests confirmed the non-hazardous nature of all MDWTRs, ensuring their safety for environmental applications. Kinetic analyses using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models highlighted the superior performance of MDWTR-D5, with the highest equilibrium adsorption capacity and initial adsorption rate across all tested concentrations, suggesting both high efficiency and rapid adsorption potential. Further validation using Langmuir and Freundlich isotherms revealed MDWTR-D5's highest monolayer adsorption capacity (22.88 mg g-1) and Freundlich adsorption capacity parameter (6.97 mg g-1). Statistical analysis via one-way ANOVA confirmed significant differences in phosphorus concentrations among the MDWTRs samples (p-value <0.001), consistently underscoring MDWTR-D5's superior adsorption performance. These findings highlight MDWTR-D5's potential as an effective adsorbent for phosphorus removal in wastewater treatment, emphasizing its applicability in environmental remediation strategies.
Collapse
Affiliation(s)
- Sitthichai Chaikhan
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | | | - Supanee Junsiri
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Chiraporn Labcom
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Anootsara Sarak
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Laksanee Boonkhao
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| |
Collapse
|
41
|
Miao Z, Song X, Wang X, Wang H, Li S, Jiao Z. Facile synthesis of Fe-doped ZIF-8 and its adsorption of phosphate from water: Performance and mechanism. PLoS One 2024; 19:e0311239. [PMID: 39392804 DOI: 10.1371/journal.pone.0311239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
To remove phosphate from water, a novel Fe-doped ZIF-8 was synthesized as a superior adsorbent. The Fe-doped ZIF-8 was fully characterized using different characterization techniques and it was found that the as-prepared Fe-doped ZIF-8 (denoted as ZIF-(2Zn:1Fe)) showed a polyhedral morphology with a large specific surface area of 157.64 m2/g and an average pore size of 3.055 nm. Analyses using Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction showed that Fe atoms were successfully incorporated into the ZIF-8 skeleton. Batch experiments demonstrated that the molar ratio of Fe and Zn has effects on phosphate adsorption. The adsorption kinetics conformed to a pseudo-second-order model with a high correlation coefficient (R2 = 0.9983). The adsorption isotherm matched the Langmuir model (R2 = 0.9994) better than the Freundlich model (R2 = 0.7501), suggesting that the adsorption of phosphoric acid by ZIF-(2Zn:1Fe) can be classified as a chemisorption on a homogeneous surface. The adsorption amount was 38.60 mg/g. It was found that acidic environments favored the adsorption reaction and the best adsorption was achieved at an initial pH of 2. Inhibition of adsorption by common anions is NO3-> CO32-> SO42-> Cl-. Characterization results indicate that the main mechanism of adsorption is surface complexation interactions.
Collapse
Affiliation(s)
- Zhijia Miao
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, China
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, China
- Wastewater Treatment and Resource Reusing Technology Innovation Center of Hebei Province, Hebei Yuehai Water Group Co., Ltd., Shijiazhuang, China
- Norendar International Co., Ltd., Shijiazhuang, China
| | - Xueqiang Song
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, China
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, China
| | - Xiaolei Wang
- Wastewater Treatment and Resource Reusing Technology Innovation Center of Hebei Province, Hebei Yuehai Water Group Co., Ltd., Shijiazhuang, China
| | - Hao Wang
- Norendar International Co., Ltd., Shijiazhuang, China
| | - Shuoyang Li
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, China
- Wastewater Treatment and Resource Reusing Technology Innovation Center of Hebei Province, Hebei Yuehai Water Group Co., Ltd., Shijiazhuang, China
| | - Zhen Jiao
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, China
- School of Water Resources and Environment, Hebei GEO University, Shijiazhuang, China
- Wastewater Treatment and Resource Reusing Technology Innovation Center of Hebei Province, Hebei Yuehai Water Group Co., Ltd., Shijiazhuang, China
- Norendar International Co., Ltd., Shijiazhuang, China
| |
Collapse
|
42
|
Mittal Y, Srivastava P, Kumar N, Tripathy BC, Martinez F, Yadav AK. Nutrient removal in floating and vertical flow constructed wetlands using aluminium dross: An innovative approach to mitigate eutrophication. BIORESOURCE TECHNOLOGY 2024; 410:131205. [PMID: 39097238 DOI: 10.1016/j.biortech.2024.131205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
On global scale, eutrophication is one of the most prevalent environmental threats to water quality, primarily caused by elevated concentration of nutrients in wastewater. This study utilizes aluminum dross (AD), an industrial waste, to create a value-added material by improving its operational feasibility and application for removing phosphate and ammonium from water. The operational challenges of AD such as its powdered nature and effective operation under only extreme pH conditions were addressed by immobilizing in calcium alginate to form calcium alginate aluminium dross (Ca-Alg-Al dross) beads. These Ca-Alg-Al dross beads were further tested for phosphate and ammonium removal from natural wastewater in two different aqueous environment systems: (i) vertical flow constructed wetlands (VF-CWs) followed by Ca-Alg-Al dross beads fixed bed system and (ii) Ca-Alg-Al dross beads mounted floating constructed wetlands (FCW) for remediating polluted lentic ecosystems. Our results show maximum phosphate and ammonium removal of 85 ± 0.41 % and 93.44 %, respectively, in VF-CWs followed by Ca-Alg-Al dross beads fixed bed system. The Ca-Alg-Al dross beads mounted FCW system achieved maximum phosphate removal of 79.18 ± 8.56 % and ammonium removal of 65.45 ± 21.04 %. Furthermore, the treated water from the FCW system was assessed for its potential to inhibit algal growth by artificially inoculating treated water with natural algae to simulate eutrophic conditions. Interestingly, treated water from the FCW system was found capable of arresting the algal growth. Besides, scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) spectroscopy confirmed the functional groups and surface properties and probable participation of multiple mechanisms including ion exchange, electrostatic attraction, and ligand complexation for phosphate and ammonium removal. Overall, these results offer a promising way to utilize AD for high-end applications in wastewater treatment.
Collapse
Affiliation(s)
- Yamini Mittal
- Ingenieurgesellschaft Janisch & Schulz mbH, Münzenberg 35516, Germany; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Pratiksha Srivastava
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Naresh Kumar
- Soil Chemistry, Wageningen University and Research, 6708 PB Wageningen, The Netherland
| | - Bankim Chandra Tripathy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India
| | - Fernando Martinez
- Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain; Instituto de Investigación de Tecnologías para la Sostenibilidad, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Asheesh Kumar Yadav
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha 751013, India; Chemical & Environmental Engineering Group, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain.
| |
Collapse
|
43
|
Xu Z, Duan X, Chen Y, Chen D, Lu H, Zhan J, Ren X, Pan X. Great truths are always simple: A millimeter-sized macroscopic lanthanum-calcium dual crosslinked carboxymethyl chitosan aerogel bead as a promising adsorbent for scavenging oxytetracycline from wastewater. Int J Biol Macromol 2024; 278:134499. [PMID: 39217038 DOI: 10.1016/j.ijbiomac.2024.134499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Given their increasing environmental and health harms, it is crucial to develop green and sustainable techniques for scavenging antibiotics represented by oxytetracycline (OTC) from wastewater. In the present work, a structurally simple lanthanum-calcium dual crosslinked carboxymethyl chitosan (CMCS-La3+-Ca2+) aerogel was innovatively synthesized for adsorptive removal of OTC. It was found that CMCS and La3+ sites collaboratively participated in OTC elimination, and OTC removal peaked over the wide pH range of 4-7. The process of OTC sorption was better described by the pseudo-second-order kinetic model and Redlich-Peterson model, and the saturated uptake amount toward OTC was up to 580.91 mg/g at 303 K, which was comparable to the bulk of previous records. The as-fabricated composite also exerted exceptional capture capacity toward OTC in consecutive adsorption-desorption runs and high-salinity wastewater. Amazingly, its packed column continuously ran for over 60 h with a dynamic uptake amount of 215.21 mg/g until the adsorption was saturated, illustrating its great potential in scale-up applications. Mechanism studies demonstrated that multifarious spatially-isolated reactive sites of CMCS-La3+-Ca2+ cooperatively involved in OTC capture via multi-mechanisms, such as n-π EDA interaction, H-bonding, La3+-complexation, and cation-π bonding. All the above superiorities endow it as a promising adsorbent for OTC-containing wastewater decontamination.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| | - Xingyu Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongshan Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hao Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Juhong Zhan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaomin Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China..
| |
Collapse
|
44
|
Chu L, Song Z, Zou S, Wang D. Effect of carbonaceous materials on phosphorus removal in flow-through packed column systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60555-60567. [PMID: 39384671 DOI: 10.1007/s11356-024-35268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Phosphorus (P) overloading in aquatic environments has long-been recognized as the leading cause of water quality deterioration, harmful algal bloom, and eutrophication. This study investigated P removal performance by five cost-effective carbonaceous materials (CMs) in flow-through packed column systems. These CMs include biochars pyrolyzed from feedstocks of Eucalyptus (E-biochar) and Douglas fir (D-biochar), commercial biochar (C-biochar), iron oxide-coated biochar (Fe-biochar), and commercial activated carbon (AC). The physicochemical properties of CMs, such as specific surface area (SSA), pore volume, pore diameter, elemental composition, and surface charge, were characterized. The packed column experimental results showed that P removal performance followed the order: E-biochar < D-biochar < C-biochar < Fe-biochar < AC. Specifically, the sorption capacity of 1 mg/L of P in packed columns was 0.0036 mg P/g E-biochar, 0.0111 mg P/g D-biochar, 0.0369 mg P/g D-biochar, 0.077 mg P/g Fe-biochar, and 0.088 mg P/g AC, respectively. The largest SSA (1012 m2/g) and pore volume (0.57 cm3/g) of AC accounted for the most outstanding P removal efficiency mainly by physical sorption, while electrostatic interaction explained the high P removal by Fe-biochar (SSA as low as 32.4 m2/g). Our findings provide direct practical implications for effectively removing P in water by cost-effective CMs.
Collapse
Affiliation(s)
- Lingyang Chu
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Ziteng Song
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shiqiang Zou
- Department of Civil and Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
45
|
Patro A, Dwivedi S, Thakur A, Sahoo PK, Biswas JK. Recent approaches and advancement in biochar-based environmental sustainability: Is biochar fulfilling the sustainable development goals? iScience 2024; 27:110812. [PMID: 39310752 PMCID: PMC11416529 DOI: 10.1016/j.isci.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
This review highlights the application of biochar (BC) for attaining different SDGs (SDG 6: clean water and sanitation, SDG 7: affordable and clean energy, SDG 13: climate action, and SDG 15: life on land). These goals coincide with the various existing environmental problems including wastewater treatment, soil amendment, greenhouse gas remediation, and bioenergy generation. So, the review encompasses the various mechanisms involved in the BC-assisted treatment and reclamation of water, pollutant immobilization and enhancing soil properties, reduction of greenhouse gas emission during the wastewater treatment process and soil amendment mechanisms, bioenergy generation through various electrode material, biodiesel production, and many more. The review also explains the various drawbacks and limitations of BC application to the available environmental issues. Conclusively, it was apprehended that BC is an appropriate material for several environmental applications. More research interventions are further required to analyze the applicability of different BC materials for attaining other available SDGs.
Collapse
Affiliation(s)
- Ashmita Patro
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Saurabh Dwivedi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, Odisha, India
| | - Anjali Thakur
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Prafulla Kumar Sahoo
- Department of Environmental Science and Technology, Central University of Punjab, V.P.O. Ghudda, Bathinda 151401, Punjab, India
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
46
|
Sun Y, Guo M, Hu S, Jia Y, Zhu W, Yamauchi Y, Wang C. A carbon-based bifunctional heterogeneous enzyme: toward sustainable pollution control. Chem Sci 2024:d4sc03752a. [PMID: 39386913 PMCID: PMC11459632 DOI: 10.1039/d4sc03752a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
We present a study on an immobilized functional enzyme (IFE), a novel biomaterial with exceptional sustainability in enzyme utility, widely employed across various fields worldwide. However, conventional carriers are prone to eroding the active functional domain of the IFE, thereby weakening its intrinsic enzyme activity. Consequently, there is a burgeoning interest in developing next-generation IFEs. In this study, we engineered a carbon-based bifunctional heterogeneous enzyme (MIP-AMWCNTs@lipase) for the intelligent recognition of di(2-ethylhexyl)phthalate (DEHP), a common plasticizer. The heterogeneous enzyme contains a bifunctional structural domain that both enriches and degrades DEHP. We investigated its dual-response performance for the enrichment and specific removal of DEHP. The imprinting factor of the carrier for DEHP was 3.4, demonstrating selectivity for DEHP. The removal rate reached up to 94.2% over a short period. The heterogeneous enzyme exhibited robust activity, catalytic efficiency, and excellent stability under harsh environmental conditions, retaining 77.7% of its initial lipase activity after 7 cycles. Furthermore, we proposed a stepwise heterogeneous enzyme reaction kinetic model based on the Michaelis-Menten equation to enhance our understanding of enzyme reaction kinetics. Our study employs a dual-effect recognition strategy of molecular blotting and enzyme immobilization to establish a method for the removal of organic pollutants. These findings hold significant implications for the fields of biomaterials and environmental science.
Collapse
Affiliation(s)
- Yuting Sun
- College of Environmental and Resource Sciences, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Ming Guo
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Shengnan Hu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yankun Jia
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Wenkai Zhu
- College of Chemistry and Materials Engineering, Zhejiang Agricultural & Forestry University Hangzhou Zhejiang 311300 China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya 464-8601 Japan
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| | - Chaohai Wang
- Henan International Joint Laboratory of Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction Pingdingshan Henan 467036 China
| |
Collapse
|
47
|
Xu L, Zhang Z, Graham NJD, Yu W. Exploring the influence of aquatic phosphate on Fe floc dynamics in water treatment. WATER RESEARCH 2024; 262:122146. [PMID: 39079425 DOI: 10.1016/j.watres.2024.122146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
The formation of flocs is crucial in the coagulation process of water treatment. However, the nature of ligand exchange on the surface of primary nanoparticles (PNPs) during floc formation requires further investigation to enhance our understanding of the coagulation mechanism. Phosphate (P) is a ubiquitous nutrient ion in aquatic surface water, in this study, the impact of P on floc growth under different pH conditions were investigated. The results revealed that floc growth patterns depended on both P dosage and pH. The mode of ligand exchange between P and in-situ formed ferric hydroxide within a pH range of 5 to 10 was further explored, and remarkable disparities in pH changes induced by P addition were observed. At lower pH levels, OH- release occurred relatively slowly, stabilizing with continued P addition. At neutral pH, OH- release was comparatively higher with P addition, while under alkaline conditions, both the quantity of OH- and its release rate decreased. It was deduced that Fe-OH21/2+ sites function as "active sites," while Fe-OH1/2- sites act as "inert sites" on the surface of PNPs formed during flocculation. These sites are crucial in the interconnections between flocs formed during coagulation and in floc growth. Analyses of Fe PNPs by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), with and without P addition, revealed that the introduction of P inhibits or interferes with the self-crystallization of Fe PNPs through chemical coordination reactions. The results offer deeper insights into the coagulation mechanism and the transformation of Fe flocs in raw waters containing P during water treatment practices.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Zixiang Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Wenzheng Yu
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| |
Collapse
|
48
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
49
|
Hu A, Jiang Y, An J, Huang X, Elgarhy AH, Cao H, Liu G. Novel Fe/Ca oxide co-embedded coconut shell biochar for phosphorus recovery from agricultural return flows. RSC Adv 2024; 14:27204-27214. [PMID: 39193306 PMCID: PMC11348781 DOI: 10.1039/d4ra04795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Efficient elimination and recovery of phosphorus from agricultural return flows are crucial for effective eutrophication management and phosphorus reuse. In this study, a neutral Fe/Ca oxide co-embedded biochar (FCBC) was synthesized using calcium peroxide and ferrous chloride as precursors for phosphate recovery from agricultural return flows. FCBC possesses a highly intricate pore structure and an abundance of surface-active groups. Fe/Ca oxides were loaded onto the biochar in the form of Ca2Fe2O5, Fe2O3, and CaCO3. FCBC demonstrated a broad pH tolerance range (pH = 6-12) in the aquatic environment. The maximum saturation adsorption capacity was 53.31 mg g-1. Phosphorus removal is influenced by Ca3(PO4)2 generation, intra-particle diffusion, and electrostatic attraction. The produced FCBC showed exceptional phosphorus removal efficiency in the presence of various anions, except for wastewater with high concentrations of SO4 2-, CO3 2-, HCO3 -, and F- (>500 mg L-1). FCBC can effectively remove phosphorus from agricultural return flows and reduce the risk of the water environment. Returning it to the field can also mitigate the depletion of phosphorus resources, effectively reduce carbon emissions from farmland, improve soil fertility, and realize multiple benefits.
Collapse
Affiliation(s)
- Anqi Hu
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University Hangzhou 310058 Zhejiang Province China
| | - Jiaqi An
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Xiaodian Huang
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
| | - Abdelbaky Hossam Elgarhy
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC) Qalyobia 13621 Egypt
| | - Huafen Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
50
|
Liu X, Guo W, Cheng X, Wei Z, Feng Q, Cheng S, Zhang Q, Luo J. Time-dependent interference of surfactants and CeO 2/Fe 2O 3 nanoparticles co-occurrence on the volatile fatty acids biosynthesis during semi-continuous sludge fermentation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134915. [PMID: 38878443 DOI: 10.1016/j.jhazmat.2024.134915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Various exogenous contaminants typically coexist in waste activated sludge (WAS), and the long-term impacts of these co-occurring contaminants on WAS anaerobic fermentation and associated mechanisms remain largely unknown. This study reveals that the co-occurrence of surfactants and nanoparticles (NPs, i.e., Fe2O3 and CeO2, frequently detected in sludge) exhibited time-dependent impacts on the volatile fatty acids (VFAs) biosynthesis. Surfactants triggered WAS decomposition and enhanced NPs dispersion, leading to increased exposure of functional anaerobes to NPs toxicity, negatively affecting them. Consequently, key fermentation processes, acidogenic bacterial abundance, and metabolic functions were inhibited in co-occurrence reactors compared to those containing only surfactants in the early stage (before 56 d). Surprisingly, the fermentation systems containing surfactants collapsed subsequently, with VFAs yield at 72 d decreasing by 48.59-71.27 % compared to 56 d. The keystone microbes (i.e., Acidobacteria (16 d) vs Patescibacteria (56 d)) were reshaped, and metabolic traits (i.e., proB involved in intracellular metabolism) were downregulated by 0.05-78.02 % due to reduced microbial adaptive capacity (i.e., quorum sensing (QS)). Partial least squares path modeling (PLS-PM) analysis suggests that the microbial community was the predominant factor influencing VFAs generation. This study provides new insights into the long-term effects of co-contaminants on the biological treatment of WAS.
Collapse
Affiliation(s)
- Xinyi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Wen Guo
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210024, China
| | - Xiaoshi Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zhicheng Wei
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qian Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Qin Zhang
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243000, China.
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, China.
| |
Collapse
|