1
|
Xu Q, Zheng Z, Zhang J, Luo J, Chen J, Lai Z. Investigation of MnFeOx/PTFE-based catalytic bag-filter materials for dedusting and denitration based on novel composite preparation technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36526-w. [PMID: 40411638 DOI: 10.1007/s11356-025-36526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
A series of manganese-iron-based (MnFeOx) polytetrafluoroethylene (PTFE) catalytic filter materials were prepared by combining acid pretreatment and ultrasound-assisted coupling method to achieve simultaneous treatment of nitrogen oxides and dust. Surface acid pretreatment of the filter materials can improve PTFE's surface roughness and provide more attachment sites for catalyst loading. The ultrasound-assisted coupling technology significantly improves the loading capacity of the catalyst and the bonding strength with the filter material. Compared to previous catalytic filter materials, the preparation of the optimal catalytic filter material in this study had achieved gratifying catalytic performance (NO conversion of 95% at 200 ℃) and could reach 99.95% filtration performance. In addition, the catalytic filter material also exhibited outstanding catalyst stability and mechanical properties of filter material, which made the catalytic filter material suitable for complicated working conditions. The functional integrated filter material has great significance for the collaborative treatment of multiple pollutants and could significantly benefit future development of air pollution control.
Collapse
Affiliation(s)
- Qian Xu
- Xiamen Zhongchuang Environmental Protection Technology Co., Ltd, Xiamen, 361101, China
- College of Environment and Ecology, Xiamen University, Xiamen, 361105, China
| | - Zhihong Zheng
- Xiamen Zhongchuang Environmental Protection Technology Co., Ltd, Xiamen, 361101, China.
| | - Jingyun Zhang
- Xiamen Zhongchuang Environmental Protection Technology Co., Ltd, Xiamen, 361101, China
| | - Jinjing Luo
- College of Environment and Ecology, Xiamen University, Xiamen, 361105, China
| | - Jianwen Chen
- Xiamen Zhongchuang Environmental Protection Technology Co., Ltd, Xiamen, 361101, China
| | - Zheng Lai
- Xiamen Zhongchuang Environmental Protection Technology Co., Ltd, Xiamen, 361101, China
| |
Collapse
|
2
|
Wang A, Ding M, Cai Y, Wang L, Guo Y, Guo Y, Zhan W. Ultra-efficient Ru and Nb Co-Modified CeO 2 Catalysts for Catalytic Oxidation of 1,2-Dichloroethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20300-20312. [PMID: 39473281 DOI: 10.1021/acs.est.4c06776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
The oxidation of chlorinated volatile organic compounds on CeO2 is hindered by its high susceptibility to chlorine poisoning, resulting in a reduced efficiency and stability. In this study, Ru- and Nb-co-modified CeO2 catalysts were designed to achieve excellent activity, stability, and CO2 selectivity in the catalytic oxidation of 1,2-dichloroethane (EDC). The formation of Nb-O-Ce bonds was observed to enhance the surface acidic sites, thereby improving HCl selectivity and reducing the production of chlorinated byproducts. Meanwhile, it inhibits the formation of Ru-O-Ce and promotes the generation of highly dispersed RuO2 particles on the surface, enhancing the redox properties and mobility of the surface oxygen, thus increasing CO2 selectivity. In situ diffuse reflectance infrared Fourier transform spectroscopy results revealed that chlorine species preferentially attach to Nb species rather than to oxygen vacancies on the Ru/Nb/CeO2 catalyst. This allows more alkane groups to oxidize to formate on the oxygen vacancies, reducing byproduct concentration. Additionally, the oxidation of alkane groups to carboxylic acids is initiated on the Nb species, completing a comprehensive oxidation process under the synergistic effect of RuO2.
Collapse
Affiliation(s)
- Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Min Ding
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuang Cai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
3
|
Park ED. Recent Progress on Low-Temperature Selective Catalytic Reduction of NO x with Ammonia. Molecules 2024; 29:4506. [PMID: 39339501 PMCID: PMC11434452 DOI: 10.3390/molecules29184506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) has been implemented in response to the regulation of NOx emissions from stationary and mobile sources above 300 °C. However, the development of NH3-SCR catalysts active at low temperatures below 200 °C is still needed to improve the energy efficiency and to cope with various fuels. In this review article, recent reports on low-temperature NH3-SCR catalysts are systematically summarized. The redox property as well as the surface acidity are two main factors that affect the catalytic activity. The strong redox property is beneficial for the low-temperature NH3-SCR activity but is responsible for N2O formation. The multiple electron transfer system is more plausible for controlling redox properties. H2O and SOx, which are often found with NOx in flue gas, have a detrimental effect on NH3-SCR activity, especially at low temperatures. The competitive adsorption of H2O can be minimized by enhancing the hydrophobic property of the catalyst. Various strategies to improve the resistance to SOx poisoning are also discussed.
Collapse
Affiliation(s)
- Eun Duck Park
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Chen Z, Wang H, Zhang X, Wu M, Qu H. Construction of multifunctional interface engineering on Cu-SSZ-13@Ce-MnO x/Mesoporous-silica catalyst for boosting activity, SO 2 tolerance and hydrothermal stability. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135268. [PMID: 39047562 DOI: 10.1016/j.jhazmat.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Although small pore Cu-SSZ-13 catalysts have been successful as commercial catalysts for controlling NOx emissions from mobile sources, the challenges of high light-off temperature, SO2 tolerance and hydrothermal stability still need to be addressed. Here, we synthesized a multifunctional core-shell catalyst with Cu-SSZ-13 as the core phase and Ce-MnOx supported Mesoporous-silica (Meso-SiO2) as the shell phase via self-assembly and impregnation. The core-shell catalyst exhibited excellent low-temperature activity, SO2 tolerance and hydrothermal stability compared to the Cu-SSZ-13. The Ce-MnOx species dispersed in the shell are found to enhance both the acidic and oxidative properties of the core-shell catalyst. More critically, these species can rapidly activate NO and oxidize it to NO2, which allows the NH3-SCR reaction on the core-shell catalyst to be initiated in the shell phase. Meanwhile, Ce-MnOx species can react preferentially with SO2 as sacrifice components, effectively avoiding the sulfur inactivation of the copper active sites. Furthermore, the hydrophobic Meso-SiO2 shell provides an important barrier for the core phase, which reduces the loss of active species, acid sites and framework Al of the aged core-shell catalyst and mitigates the collapse of the zeolite framework. This work provides a new strategy for the design of novel and efficient NH3-SCR catalysts.
Collapse
Affiliation(s)
- Zhiqiang Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Hang Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinjia Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mei Wu
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Hongxia Qu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Wang Y, Zhu F, Li J, Gurmesa GA, Huang S, Fang X, Liu D, Mgelwa AS, Wang W, Huang K, Duan Y, Song L, Li X, Quan Z, Kang R, Zhu W, Hobbie EA, Fang Y. Evidence and causes of recent decreases in nitrogen deposition in temperate forests in Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172472. [PMID: 38642760 DOI: 10.1016/j.scitotenv.2024.172472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024]
Abstract
High reactive nitrogen (N) emissions due to anthropogenic activities in China have led to an increase in N deposition and ecosystem degradation. The Chinese government has strictly regulated reactive N emissions since 2010, however, determining whether N deposition has reduced requires long-term monitoring. Here, we report the patterns of N deposition at a rural forest site (Qingyuan) in northeastern China over the last decade. We collected 456 daily precipitation samples from 2014 to 2022 and analysed the temporal dynamics of N deposition. NH4+-N, NO3--N, and total inorganic N (TIN) deposition ranged from 10.5 ± 3.5 (mean ± SD), 6.1 ± 1.6, and 16.6 ± 4.7 kg N ha-1 year-1, respectively. Over the measurement period, TIN deposition at Qingyuan decreased by 55 %, whereas that in comparable sites in East Asia declined by 14-34 %. We used a random forest model to determine factors influencing the deposition of NH4+-N, NO3--N, and TIN during the study period. NH4+-N deposition decreased by 60 % because of decreased agricultural NH3 emissions. Furthermore, NO3--N deposition decreased by 42 %, due to reduced NOx emissions from agricultural soil and fossil fuel combustion. The steep decline in N deposition in northeastern China was attributed to reduced coal consumption, improved emission controls on automobiles, and shifts in agricultural practices. Long-term monitoring is needed to assess regional air quality and the impact of N emission control regulations.
Collapse
Affiliation(s)
- Yingying Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Zhu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China.
| | - Jin Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geshere Abdisa Gurmesa
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Shaonan Huang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environment Science, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Air Pollution Prevention and Ecological Security (Henan University), Kaifeng 475004, China
| | - Xiaoming Fang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Dongwei Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Abubakari Said Mgelwa
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China; College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania
| | - Wenchao Wang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Huang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Yihang Duan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Linlin Song
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Xue Li
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Quan
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Ronghua Kang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China
| | - Weixing Zhu
- Department of Biological Sciences, Binghamton University, The State University of New York, Binghamton, NY, USA
| | - Erik A Hobbie
- Earth Systems Research Center, University of New Hampshire, Durham, NH 03824, United States
| | - Yunting Fang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China; Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning 110016, China; Key Laboratory of Stable Isotope Techniques and Applications, Shenyang, Liaoning 110016, China.
| |
Collapse
|
6
|
Li G, Li G, Liao M, Liu W, Zhang H, Huang S, Huang T, Zhang S, Li Z, Peng H. Unlocking Mixed-Metal Oxides Active Centers via Acidity Regulation for K&SO 2 Poisoning Resistance: Self-Detoxification Mechanism of Zeolite-Confined deNO x Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10388-10397. [PMID: 38828512 DOI: 10.1021/acs.est.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.
Collapse
Affiliation(s)
- Guobo Li
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Gang Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Meiyuan Liao
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Wenming Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hongxiang Zhang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shan Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Ting Huang
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhenguo Li
- National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, PR China
| | - Honggen Peng
- School of Resources and Environment, Nanchang University, Nanchang, Jiangxi 330031, PR China
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, PR China
| |
Collapse
|
7
|
Wang F, Chen A, Lan T, Chen X, Wang M, Hu X, Wang P, Cheng D, Zhang D. Synergistic catalytic removal of NO x and chlorinated organics through the cooperation of different active sites. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133722. [PMID: 38367433 DOI: 10.1016/j.jhazmat.2024.133722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/19/2024]
Abstract
The synergistic removal of NOx and chlorinated volatile organic compounds (CVOCs) has become the hot topic in the field of environmental catalysis. However, due to the trade-off effects between catalytic reduction of NOx and catalytic oxidation of CVOCs, it is indispensable to achieve well-matched redox property and acidity. Herein, synergistic catalytic removal of NOx and chlorobenzene (CB, as the model of CVOCs) has been originally demonstrated over a Co-doped SmMn2O5 mullite catalyst. Two kinds of Mn-Mn sites existed in Mn-O-Mn-Mn and Co-O-Mn-Mn sites were constructed, which owned gradient redox ability. It has been demonstrated that the cooperation of different active sites can achieve the balanced redox and acidic property of the SmMn2O5 catalyst. It is interesting that the d band center of Mn-Mn sites in two different sites was decreased by the introduction of Co, which inhibited the nitrate species deposition and significantly improved the N2 selectivity. The Co-O-Mn-Mn sites were beneficial to the oxidation of CB and it cooperates with Mn-O-Mn-Mn to promote the synergistic catalytic performance. This work paves the way for synergistic removal of NOx and CVOCs over cooperative active sites in catalysts.
Collapse
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Aling Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xin Chen
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Mengxue Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaonan Hu
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Danhong Cheng
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Sun L, Cheng Y, Liu Y, Yi C. Ytterbium modified birnessite MnO2 for improving deep oxidation of toluene. J RARE EARTH 2023. [DOI: 10.1016/j.jre.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
9
|
Wang Z, Peng S, Zhu C, Wang B, Du B, Cheng T, Jiang Z, Sun L. Study of the denitration performance of a ceramic filter using a manganese-based catalyst. RSC Adv 2022; 13:344-354. [PMID: 36605665 PMCID: PMC9769093 DOI: 10.1039/d2ra06677g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
A MnO x /γ-Al2O3 catalyst was prepared by impregnation of manganese acetate and alumina. After optimizing the composition, it was loaded into a ceramic filter (CF) by a one-step coating method. The results show that MnO x /γ-Al2O3 had the best denitration activity when the Mn loading was 4 wt% with a calcination temperature of 400 °C. The MnO x /γ-Al2O3 catalyst ceramic filter (MA-CCF) was made by loading the CF twice with MnO x /γ-Al2O3. When face velocity (FV) was 1 m min-1, MA-CCF displayed more than 80% NO conversion at 125-375 °C and possessed a good resistance of H2O and SO2. The abundant surface adsorbed oxygen, dense membrane and high-density fiber structure on the outer layer of CF effectively protected the catalyst and could improve MA-CCF denitration activity. The multiple advantages of MA-CCF made it possible for good application prospects.
Collapse
Affiliation(s)
- Zhenzhen Wang
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
- Anhui Academy for Ecological and Environmental Science Research Hefei 230071 China
| | - Shuchuan Peng
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Bin Wang
- CNBM Environmental Protection Research Institute(Jiangsu)Co., Ltd. Yancheng 224051 China
| | - Bo Du
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Ting Cheng
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Zhaozhong Jiang
- School of Resource and Environmental Engineering, Hefei University of Technology Hefei 230009 China
| | - Lei Sun
- Anhui Academy for Ecological and Environmental Science Research Hefei 230071 China
| |
Collapse
|
10
|
Structure-activity strategy comparison of (NH4)2CO3 and NH4OH precipitants on MnO catalyst for low-temperature NO abatement. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Promotion effect of bulk sulfates over CeO2 for selective catalytic reduction of NO by NH3 at high temperatures. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Doping effect of rare earth metal ions Sm3+, Nd3+ and Ce4+ on denitration performance of MnO catalyst in low temperature NH3-SCR reaction. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Wang F, Wang P, Lan T, Shen Y, Ren W, Zhang D. Ultralow-Temperature NO x Reduction over SmMn 2O 5 Mullite Catalysts Via Modulating the Superficial Dual-Functional Active Sites. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fuli Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tianwei Lan
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yongjie Shen
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- School of Environmental and Chemical Engineering, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
14
|
Ordered Mesoporous MnAlOx Oxides Dominated by Calcination Temperature for the Selective Catalytic Reduction of NOx with NH3 at Low Temperature. Catalysts 2022. [DOI: 10.3390/catal12060637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Manganese alumina composited oxides (MnAlOx) catalysts with ordered mesoporous structure prepared by evaporation-induced self-assembly (EISA) method was designed for the selective catalytic reduction (SCR) of NOx with NH3 at low temperature. The effect of calcination temperature of MnAlOx catalysts was investigated systematically, and it was correlated with SCR activity. Results showed that with an increase in calcination temperature, the SCR activity of MnAlOx catalysts increased. When the calcination temperature was raised up to 800 °C, the NOx conversion was more than 90% in the operation temperature range of 150~240 °C. Through various characterization analysis, it was found that MnAlOx-800 °C catalysts possessed enhanced redox capacities as the higher content of Mn4+/(Mn3+ + Mn4+). Moreover, the improved redox properties could contribute to a higher NOx adsorption and activation ability, which lead to higher SCR performance of MnAlOx-800 °C catalysts. In situ DRIFTs revealed that the adsorbed NO2 and bidentate nitrate are the reactive intermediate species, and NH3 species bonded to Lewis acid sites taken part in SCR progress. The SCR progress predominantly followed E–R mechanism, while L–H mechanism also takes effect to a certain degree.
Collapse
|
15
|
Low-Temperature NH3-SCR on Cex-Mn-Tiy Mixed Oxide Catalysts: Improved Performance by the Mutual Effect between Ce and Ti. Catalysts 2022. [DOI: 10.3390/catal12050471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A series of Cex-Mn-Tiy catalysts were synthesized using the coprecipitation method, and sodium carbonate solution was used as a precipitant. The various catalysts were assessed by selective catalytic reduction of NOx with NH3, and characterized by X-ray diffraction, Raman spectroscopy, H2 temperature-programmed reduction, NH3 temperature-programmed desorption, and X-ray photoelectron spectroscopy to investigate the physicochemical properties, surface acidity, and redox abilities of the Cex-Mn-Tiy catalysts. The Ce0.1-Mn-Ti0.1 catalyst exhibited the best catalytic performance (more than 90% NOx conversion in the range of 75 to 225 °C), as a result of proper redox ability, abundant acid sites, high content of Mn4+ and Ce3+, and surface-adsorbed oxygen (OS). The results of in situ DRIFT spectroscopy showed that the NH3-SCR reaction followed both the E-R and L-H paths over the Ce0.1-Mn-Ti0.1 catalyst, and it occurred faster and more sharply when it mainly abided by the E-R mechanism.
Collapse
|
16
|
Mechanistic insight into the promoting effect of partial substitution of Mn by Ce on N2 selectivity of MnTiO catalyst for NH3-SCR of NO. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Abstract
In recent years, low-temperature SCR (Selective Catalytic Reduction) denitrification technology has been popularized in non-power industries and has played an important role in the control of industrial flue gas NOx emissions in China. Currently, the most commonly used catalysts in industry are V2O5-WO3(MoO3)/TiO2, MnO2-based catalysts, CeO2-based catalysts, MnO2-CeO2 catalysts and zeolite SCR catalysts. The flue gas emitted during industrial combustion usually contains SO2, moisture and alkali metals, which can affect the service life of SCR catalysts. This paper summarizes the mechanism of catalyst poisoning and aims to reduce the negative effect of NH4HSO4 on the activity of the SCR catalyst at low temperatures in industrial applications. It also presents the outstanding achievements of domestic companies in denitrification in the non-power industry in recent years. Much progress has been made in the research and application of low-temperature NH3-SCR, and with the renewed demand for deeper NOx treatments, new technologies with lower energy consumption and more functions need to be developed.
Collapse
|
18
|
Yang C, Li H, Zhang A, Sun Z, Zhang X, Zhang S, Jin L, Song Z. Effect of Indium Addition on the Low-Temperature Selective Catalytic Reduction of NO x by NH 3 over MnCeO x Catalysts: The Promotion Effect and Mechanism. ACS OMEGA 2022; 7:6381-6392. [PMID: 35224399 PMCID: PMC8867571 DOI: 10.1021/acsomega.1c07000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
A MnCeInO x catalyst was prepared by a coprecipitation method for denitrification of NH3-SCR (selective catalytic reduction). The catalysts were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry, scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller analysis, H2 temperature-programmed reduction, and NH3 temperature-programmed desorption. The NH3-SCR activity and H2O and SO2 resistance of the catalysts were evaluated. The test results showed that the SCR and water resistance and sulfur resistance were good in the range of 125-225 °C. The calcination temperature of the Mn6Ce0.3In0.7O x catalyst preparation was studied. The crystallization of the Mn6Ce0.3In0.7O x catalyst was poor when calcined at 300 °C; however, the crystallization is excessive at a 500 °C calcination temperature. The influence of space velocity on the performance of the catalyst is great at 100-225 °C. FTIR test results showed that indium distribution on the surface of the catalyst reduced the content of sulfate on the surface, protected the acidic site of MnCe, and improved the sulfur resistance of the catalyst. The excellent performance of the Mn6Ce0.3In0.7O x catalyst may be due to its high content of Mn4+, surface adsorbed oxygen species, high specific surface area, redox sites and acid sites on the surface, high turnover frequency, and low apparent activation energy.
Collapse
|
19
|
Kim J, Kim DH, Park J, Jeong K, Ha HP. Decrypting Catalytic NOX Activation and Poison Fragmentation Routes Boosted by Mono- and Bi-Dentate Surface SO32–/SO42– Modifiers under a SO2-Containing Flue Gas Stream. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jongsik Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Dong Ho Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jinseon Park
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Heon Phil Ha
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
20
|
Guo RT, Qin B, Wei LG, Yin TY, Zhou J, Pan WG. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys Chem Chem Phys 2022; 24:6363-6382. [DOI: 10.1039/d1cp05557g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective catalytic reduction with NH3 (NH3−SCR) was the most efficient approach to mitigate the emission of nitrogen oxides (NOx). Although the conventional manganese oxide-based catalyst had gradually become a kind...
Collapse
|
21
|
Xu Q, Li Z, Wang L, Zhan W, Guo Y, Guo Y. Understand the role of redox property and NO adsorption over MnFeOx for NH3-SCR. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02203b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Widening the operation temperature window of selective catalytic reduction NO by NH3 (NH3-SCR) is a challenge to meet the increasingly stringent emission control regulations of NOx. Hence, MnFeOx with different...
Collapse
|
22
|
Pu Y, Wang P, Jiang W, Dai Z, Yang L, Jiang X, Jiang Z, Yao L. A novel CNTs functionalized CeO 2/CNTs-GAC catalyst with high NO conversion and SO 2 tolerance for low temperature selective catalytic reduction of NO by NH 3. CHEMOSPHERE 2021; 284:131377. [PMID: 34225121 DOI: 10.1016/j.chemosphere.2021.131377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Low-temperature selective catalytic reduction of NOx by NH3 (NH3-SCR) for diminishing SO2 poisoning remains an issue in flue gas denitrification (DeNOx). Herein, A novel CNTs functionalized low temperature NH3-SCR catalyst CeO2/CNTs-GAC was prepared, which showed high NO conversion activity (100% at 150 °C) and SO2 resistance. The addition of CNTs restrained SO2 adsorption but improved the selective adsorption of NO, which restricted the deposition of (NH4)2SO4 and/or Ce2(SO4)3, and resulted in high SO2 resistance. The addition of CNTs facilitated the diffusion and transportation of NH3 and NO, and the electron transfer on CeO2/CNTs-GAC, leading to higher content of Ce3+ and adsorbed O species on the CeO2/CNTs-GAC surface and promoted formation of surface-adsorbed oxygen OA. Therefore, CeO2/CNTs-GAC provided abundant NO adsorption and activation sites, facilitating "fast SCR" reaction and enhancing the NH3-SCR reaction. The proposed CeO2/CNTs-GAC catalyst exhibited higher NH3-SCR activity, N2 selectivity, catalytic durability and SO2 resistance than CeO2/GAC.
Collapse
Affiliation(s)
- Yijuan Pu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Pengchen Wang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Wenju Jiang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, 610065, PR China
| | - Zhongde Dai
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, 610065, PR China
| | - Lin Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, 610065, PR China
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, 610065, PR China
| | - Zhicheng Jiang
- Department of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Lu Yao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China; National Engineering Research Center for Flue Gas Desulfurization, Chengdu, 610065, PR China.
| |
Collapse
|
23
|
Effect of Tourmaline Addition on the Catalytic Performance and SO2 Resistance of NixMn3−xO4 Catalyst for NH3-SCR Reaction at Low Temperature. Catal Letters 2021. [DOI: 10.1007/s10562-021-03585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Qu C, Zhou H, Xu D, Guo J, Zhao D, Guo X, Xing L. Effect of zirconia crystal type on SCR activity of Mn/x-ZrO 2. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1992434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Changsheng Qu
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Hao Zhou
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Dongyao Xu
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Jiaojiao Guo
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Danyang Zhao
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Xuewei Guo
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| | - Luyuan Xing
- Department of Environmental Science and Engineering, School of Chemical & Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, China
| |
Collapse
|
25
|
Bonelli B, Tammaro O, Martinovic F, Nasi R, Dell’Agli G, Rivolo P, Giorgis F, Ditaranto N, Deorsola FA, Esposito S. Reverse Micelle Strategy for the Synthesis of MnO x -TiO 2 Active Catalysts for NH 3-Selective Catalytic Reduction of NO x at Both Low Temperature and Low Mn Content. ACS OMEGA 2021; 6:24562-24574. [PMID: 34604638 PMCID: PMC8482467 DOI: 10.1021/acsomega.1c03153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/06/2021] [Indexed: 06/02/2023]
Abstract
MnO x -TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NO x have been synthesized by the reverse micelle-assisted sol-gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at -196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV-vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol-gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NO x conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200-250 °C temperature range.
Collapse
Affiliation(s)
- Barbara Bonelli
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Olimpia Tammaro
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Ferenc Martinovic
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Roberto Nasi
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Gianfranco Dell’Agli
- Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Via G. Di Biasio 43, 03043 Cassino, Frosinone, Italy
| | - Paola Rivolo
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Fabrizio Giorgis
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Nicoletta Ditaranto
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Fabio Alessandro Deorsola
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| | - Serena Esposito
- Dipartimento di
Scienza Applicata e Tecnologia (DISAT) and INSTM Unit of Torino-Politecnico, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
| |
Collapse
|
26
|
Kim J, Nam KB, Ha HP. Comparative study of HSO A-/SO A2- versus H 3-BPO 4B- functionalities anchored on TiO 2-supported antimony oxide-vanadium oxide-cerium oxide composites for low-temperature NO X activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125780. [PMID: 33865113 DOI: 10.1016/j.jhazmat.2021.125780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/11/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
TiO2-supported antimony oxide-vanadium oxide-cerium oxide (SVC) imparts Lewis acidic (L)/Brönsted acidic (B) sites, labile (Oα)/mobile oxygens (OM), and oxygen vacancies (OV) for selective catalytic NOX reduction (SCR). However, these species are harmonious occasionally, readily poisoned by H2O/sulfur/phosphorus/carbon, thus limiting SCR performance of SVC. Herein, a synthetic means is reported for immobilizing HSOA-/SOA2- (A= 3-4) or H3-BPO4B- (B= 1-3) on the L sites of SVC to form SVC-S and SVC-P. HSOA-/SOA2-/H3-BPO4B- acted as additional B sites with distinct characteristics, altered the properties of Oα/OM/OV species, thereby affecting the SCR activities and performance of SVC-S and SVC-P. SVC-P activated Langmuir-Hinshelwood-typed SCR better than SVC-S, as demonstrated by a greater Oα-directed pre-factor and smaller binding energy between Oα and NO. Meanwhile, SVC-S provided a larger B-directed pre-factor, thereby outperforming SVC-P in activating Eley-Rideal-typed SCR that dictated the overall SCR activities. Compared with SVC-S, SVC-P contained fewer OV species, yet, had higher OM mobility, thus enhancing the overall redox cycling feature, while providing greater Brönsted acidity. Consequently, the resistance of SVC-P to H2O or soot were greater than or similar to that of SVC-S. Conversely, SVC-S revealed greater tolerance to hydro-thermal aging and SO2 than SVC-P. This study highlights the pros and cons of HSOA-/SOA2-/H3-BPO4B- functionalities in tailoring the properties of metal oxides in use as SCR catalysts.
Collapse
Affiliation(s)
- Jongsik Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| | - Ki Bok Nam
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| | - Heon Phil Ha
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
27
|
Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Wang H, Jia J, Liu S, Chen H, Wei Y, Wang Z, Zheng L, Wang Z, Zhang R. Highly Efficient NO Abatement over Cu-ZSM-5 with Special Nanosheet Features. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5422-5434. [PMID: 33720690 DOI: 10.1021/acs.est.0c08684] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Conventional Cu-ZSM-5 and special Cu-ZSM-5 catalysts with diverse morphologies (nanoparticles, nanosheets, hollow spheres) were synthesized and comparatively investigated for their performances in the selective catalytic reduction (SCR) of NO to N2 with ammonia. Significant differences in SCR behavior were observed, and nanosheet-like Cu-ZSM-5 showed the best SCR performance with the lowest T50 of 130 °C and nearly complete conversion in the temperature range of 200-400 °C. It was found that Cu-ZSM-5 nanosheets [mainly exposed (0 1 0) crystal plane] with abundant mesopores and framework Al species were favorable for the formation of high external surface areas and Al pairs, which influenced the local environment of Cu. This motivated the preferential formation of active copper species and the rapid switch between Cu2+ and Cu+ species during NH3-SCR, thus exhibiting the highest NO conversion. In situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) results indicated that the Cu-ZSM-5 nanosheets were dominated by the Eley-Rideal (E-R) mechanism and the labile nitrite species (NH4NO2) were the crucial intermediates during the NH3-SCR process, while the inert nitrates were more prone to generate on Cu-ZSM-5 nanoparticles and conventional one. The combined density functional theory (DFT) calculations revealed that the decomposition energy barrier of nitrosamide species (NH2NO) on the (0 1 0) crystal plane of Cu-ZSM-5 was lower than those on (0 0 1) and (1 0 0) crystal planes. This study provides a strategy for the design of NH3-SCR zeolite catalysts.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jingbo Jia
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shanshan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongxia Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ying Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhoujun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zichun Wang
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Runduo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
29
|
Tian S, Deng W, Su Y. Experimental study on single-mode microwave-induced tungsten wire discharge for NO conversion in NO/N 2 atmosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19094-19106. [PMID: 33398758 DOI: 10.1007/s11356-020-12230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Single-mode microwave-induced tungsten wire discharge was conducted to investigate discharge phenomena in Ar, N2, NO, and their mixtures, as well as the effects of parameters, including diameter and number of tungsten wire, initial NO concentration, total gas flow rate, and microwave power, on NO conversion. The discharge phenomena verified that intense discharge could be observed in pure Ar or N2, but the discharge was considerably weakened in gas mixtures. The results of NO conversion showed that the increases of the tungsten wire diameter (0.1-0.12 mm), the tungsten wire number (1-3 wires), and microwave power (400-700 W), or the decreases of the total gas flow rate (2-0.5 L/min), and the initial NO concentration (800-200 ppm) could effectively lead to the increase of NO conversion. A maximum NO conversion of 91.5% can be achieved under the optimal conditions in the examined range. Besides, spectral analysis showed that W, O, and N ions were found in the discharge zone. After reactions, depositions were found on the inner surface of reaction tube, and the results of EDS (energy dispersive X-ray spectrometer) tests show that the depositions were composed of W, O, and N. Therefore, a portion of NO was inferred to be consumed by tungsten ions through the formation of tungsten oxides and tungsten nitrides.
Collapse
Affiliation(s)
- Shijuan Tian
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenyi Deng
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yaxin Su
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Insight into the activity and SO2 tolerance of hierarchically ordered MnFe1-δCoδOx ternary oxides for low-temperature selective catalytic reduction of NOx with NH3. J Catal 2021. [DOI: 10.1016/j.jcat.2020.12.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Abstract
Iron-based oxide catalysts for the NH3–SCR (selective catalytic reduction of NOx by NH3) reaction have gained attention due to their high catalytic activity and structural adjustability. In this work, iron–niobium, iron–titanate and iron–molybdenum composite oxides were synthesized by a co-precipitation method with or without the assistance of hexadecyl trimethyl ammonium bromide (CTAB). The catalysts synthesized with the assistance of CTAB (FeM0.3Ox-C, M = Nb, Ti, Mo) showed superior SCR performance in an operating temperature range from 150 °C to 400 °C compared to those without CTAB addition (FeM0.3Ox, M = Nb, Ti, Mo). To reveal such enhancement, the catalysts were characterized by N2-physisorption, XRD (Powder X-ray diffraction), NH3-TPD (temperature-programmed desorption of ammonia), DRIFTS (Diffuse Reflectance Infrared Fourier Transform Spectroscopy), XPS (X-ray Photoelectron Spectroscopy), and H2-TPR (H2-Total Physical Response). It was found that the crystalline phase of Fe2O3 formed was influenced by the presence of CTAB in the preparation process, which favored the formation of crystalline γ-Fe2O3. Owing to the changed structure, the redox-acid properties of FeM0.3Ox-C catalysts were modified, with higher exposure of acid sites and improved ability of NO oxidation to NO2 at low-temperature, both of which also contributed to the improvement of NOx conversion. In addition, the weakened redox ability of Fe prevented the over-oxidation of NH3, thus accounting for the greatly improved high-temperature activity as well as N2 selectivity.
Collapse
|
32
|
Promotional Effects on NH3-SCR Performance of CeO2–SnO2 Catalysts Doped by TiO2: A Mechanism Study. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-020-09318-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Yu Y, Yi X, Zhang J, Tong Z, Chen C, Ma M, He C, Wang J, Chen J, Chen B. Application of ReOx/TiO2 catalysts with excellent SO2 tolerance for the selective catalytic reduction of NOx by NH3. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00467k] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The adsorption of SO2 on ReOx/TiO2 catalysts was rather weak; thus, ReOx/TiO2 catalysts exhibited excellent SO2 tolerance in the NH3-SCR reaction.
Collapse
|
34
|
Zhao S, Shi JW, Niu C, Wang B, He C, Liu W, Xiao L, Ma D, Wang H, Cheng Y. FeVO 4-supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NO x by NH 3. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01424b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Iron vanadate (FeVO4) nanorods are used as a carrier to support manganese (Mn) and cerium (Ce) oxides for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) with NH3 for the first time.
Collapse
Affiliation(s)
- Shuqi Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cihang Niu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baorui Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chi He
- Department of Environmental Science and Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Liu
- Qiyuan (Xi'an) Dae Young Environmental Protection Technology Co., Ltd., Xi'an 710018, China
| | - Lei Xiao
- Qiyuan (Xi'an) Dae Young Environmental Protection Technology Co., Ltd., Xi'an 710018, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongkang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
35
|
Zhou G, Maitarad P, Wang P, Han L, Yan T, Li H, Zhang J, Shi L, Zhang D. Alkali-Resistant NO x Reduction over SCR Catalysts via Boosting NH 3 Adsorption Rates by In Situ Constructing the Sacrificed Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13314-13321. [PMID: 32960572 DOI: 10.1021/acs.est.0c04536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, improving the alkali resistance of vanadium-based catalysts still remains as an intractable issue for the selective catalytic reduction of NOx with NH3 (NH3-SCR). It is generally believed that the decrease in adsorbed NHx species deriving from the declined acidic sites is the chief culprit for the deactivation of alkali-poisoned catalysts. Herein, alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates was originally demonstrated by in situ constructing the sacrificed sites. It is interesting that the adsorbed NHx species largely decrease while the NH3 adsorption rate is well kept over the V2O5/CeO2 catalyst by in situ constructing the sacrificed sites. The SCR activity could be maintained after alkali poisoning because in situ constructed SO42- groups would prefer to be combined with K+ so that the specific V═O species can endow K-poisoned V2O5/CeO2 with high adsorption rate of NH3 and high reactivity of NHx species. This work provides a new viewpoint that NH3 adsorption rate plays more decisive roles in the performance of alkali-poisoned catalysts than the amount of NH3 adsorption and enlightens an alternative strategy to improve the alkali-resistance of catalysts, which is significant to both the academic and industrial fields.
Collapse
Affiliation(s)
- Guangyu Zhou
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Phornphimon Maitarad
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongrui Li
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianping Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Liyi Shi
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
36
|
Sb-Containing Metal Oxide Catalysts for the Selective Catalytic Reduction of NOx with NH3. Catalysts 2020. [DOI: 10.3390/catal10101154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sb-containing catalysts (SbZrOx (SbZr), SbCeOx (SbCe), SbCeZrOx (SbCeZr)) were prepared by citric acid method and investigated for the selective catalytic reduction (SCR) of NOx with NH3 (NH3-SCR). SbCeZr outperformed SbZr and SbCe and exhibited the highest activity with 80% NO conversion in the temperature window of 202–422 °C. Meanwhile, it also had good thermal stability and resistance against H2O and SO2. Various characterization methods, such as XRD, XPS, H2-TPR, NH3-TPD, and in situ diffuse reflectance infrared Fourier transform (DRIFT), were applied to understand their different behavior in NOx removal. The presence of Sb in the metal oxides led to the difference in acid distribution and redox property, which closely related with the NH3 adsorption and NO oxidation. Brønsted acid and Lewis acid were evenly distributed on SbCe, while Brønsted acid dominated on SbCeZr. Compared with Brønsted acid, Lewis acid was slightly active in NH3-SCR. The competition between NH3 adsorption and NO oxidation was dependent on SbOx and metal oxides, which were found on SbCe while not on SbCeZr.
Collapse
|
37
|
Wang B, Wang M, Han L, Hou Y, Bao W, Zhang C, Feng G, Chang L, Huang Z, Wang J. Improved Activity and SO2 Resistance by Sm-Modulated Redox of MnCeSmTiOx Mesoporous Amorphous Oxides for Low-Temperature NH3-SCR of NO. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02567] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Bing Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Meixin Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Lina Han
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Yaqin Hou
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Weiren Bao
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Changming Zhang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, College of Chemistry, Nanchang University, No. 999Xuefu Road, Nanchang 330031, P. R. China
| | - Liping Chang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Zhanggen Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
| | - Jiancheng Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| |
Collapse
|