1
|
Liu M, Xu R, Cui X, Hou D, Zhao P, Cheng Y, Qi Y, Duan G, Fan G, Lin A, Tan X, Xiao Y. Effects of remediation agents on rice and soil in toxic metal(loid)s contaminated paddy fields: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171656. [PMID: 38490416 DOI: 10.1016/j.scitotenv.2024.171656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Toxic metal(loid)s contamination of paddy soil is a nonnegligible issue and threatens food safety considering that it is transmitted via the soil-plant system. Applying remediation agents could effectively inhibit the soil available toxic metal(loid)s and reduce their accumulation in rice. To comprehensively quantify how remediation agents impact the accumulation of Cd/Pb/As in rice, rice growth and yield, the accumulation of available Cd/Pb/As in paddy soil, and soil characteristics, 50 peer-reviewed publications were selected for meta-analysis. Overall, the application of remediation agents exhibited significant positive effects on rice plant length (ES = 0.05, CI = 0.01-0.08), yield (ES = 0.20, CI = 0.13-0.27), peroxidase (ES = 0.56, CI = 0.18-0.31), photosynthetic rate (ES = 0.47, CI = 0.34-0.61), and respiration rate (ES = 0.68, CI = 0.47-0.88). Among the different types of remediation agents, biochar was the most effective in controlling the accumulation of Cd/Pb/As in all portions of rice, and was also superior in inhibiting the accumulation of Pb in rice grains (ES = -0.59, 95 % CI = -1.04-0.13). This study offers an essential contribution for the remediation strategies of toxic metal(loid)s contaminated paddy fields.
Collapse
Affiliation(s)
- Meng Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ruiqing Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xuedan Cui
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Daibing Hou
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Pengjie Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanzhao Cheng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yujie Qi
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Guodong Fan
- Henan ENERGY Storage Technology Co., Ltd., People's Republic of China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xiao Tan
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Yong Xiao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
2
|
Li Y, Li H, Zhang R, Bing X. Toxicity of antimony to Daphnia magna: Influence of environmental factors, development of biotic ligand approach and biochemical response at environmental relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132738. [PMID: 37832444 DOI: 10.1016/j.jhazmat.2023.132738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Acute toxicity of antimony pentavalent to neonatal Daphnia magna and the influence of water quality parameters were investigated, and enzymatic activities of organisms at environmentally relevant levels of antimony were determined. EC50 values of antimony to neonatal D. magna were 90.3 and 63.8 mg/L at 24 and 48 h of exposure, respectively. Dissolved organic matter (FA and HA) and cation (Ca2+, Mg2+ or Na+) had significant protective effects on D. magna against antimony toxicity. With increasing pH in the range from 7.4 to 8.5, increase of EC50 were observed due to the competition of OH- on biotic ligands. Based on the biotic ligand model (BLM) concept, stability constants for the binding of Sb(OH)6- and OH- to the biotic ligand were estimated, and the Log [Formula: see text] - and LogKXOH- were 3.137 and 2.859, respectively. Moreover, antimony exposure in low concentrations significantly increased MDA levels and maybe exert oxidative stress to the organisms. Antimony can also induce toxicity in D. magna by affecting oxidative stress and neurotransmitter systems. The relatively comprehensive toxicological data can contribute to the toxicity prediction and ecological risk assessments of antimony.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| | - Huixian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Ruiqing Zhang
- School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China.
| | - Xiaojie Bing
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
3
|
Zhang B, Zhang H, He J, Zhou S, Dong H, Rinklebe J, Ok YS. Vanadium in the Environment: Biogeochemistry and Bioremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14770-14786. [PMID: 37695611 DOI: 10.1021/acs.est.3c04508] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Vanadium(V) is a highly toxic multivalent, redox-sensitive element. It is widely distributed in the environment and employed in various industrial applications. Interactions between V and (micro)organisms have recently garnered considerable attention. This Review discusses the biogeochemical cycling of V and its corresponding bioremediation strategies. Anthropogenic activities have resulted in elevated environmental V concentrations compared to natural emissions. The global distributions of V in the atmosphere, soils, water bodies, and sediments are outlined here, with notable prevalence in Europe. Soluble V(V) predominantly exists in the environment and exhibits high mobility and chemical reactivity. The transport of V within environmental media and across food chains is also discussed. Microbially mediated V transformation is evaluated to shed light on the primary mechanisms underlying microbial V(V) reduction, namely electron transfer and enzymatic catalysis. Additionally, this Review highlights bioremediation strategies by exploring their geochemical influences and technical implementation methods. The identified knowledge gaps include the particulate speciation of V and its associated environmental behaviors as well as the biogeochemical processes of V in marine environments. Finally, challenges for future research are reported, including the screening of V hyperaccumulators and V(V)-reducing microbes and field tests for bioremediation approaches.
Collapse
Affiliation(s)
- Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Han Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Jinxi He
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Beijing, Beijing 100083, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, Wuppertal 42285, Germany
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- International ESG Association (IESGA), Seoul 02841, Republic of Korea
| |
Collapse
|
4
|
Tang QX, Gan CD, Yang JY, Huang Y. Dynamics of vanadium and response of inherent bacterial communities in vanadium-titanium magnetite tailings to beneficiation agents, temperature, and illumination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121743. [PMID: 37149251 DOI: 10.1016/j.envpol.2023.121743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Vanadium-titanium (V-Ti) magnetite tailings contain toxic metals that could potentially pollute the surrounding environment. However, the impact of beneficiation agents, an integral part of mining activities, on the dynamics of V and the microbial community composition in tailings remains unclear. To fill this knowledge gap, we compared the physicochemical properties and microbial community structure of V-Ti magnetite tailings under different environmental conditions, including illumination, temperature, and residual beneficiation agents (salicylhydroxamic acid, sodium isobutyl xanthate, and benzyl arsonic acid) during a 28-day reaction. The results revealed that beneficiation agents exacerbated the acidification of the tailings and the release of V, among which benzyl arsonic acid had the greatest impact. The concentration of soluble V in the leachate of tailings with benzyl arsonic acid was 6.4 times higher than that with deionized water. Moreover, illumination, high temperatures, and beneficiation agents contributed to the reduction of V in V-containing tailings. High-throughput sequencing revealed that Thiobacillus and Limnohabitans adapted to the tailings environment. Proteobacteria was the most diverse phylum, and the relative abundance was 85.0%-99.1%. Desulfovibrio, Thiobacillus, and Limnohabitans survived in the V-Ti magnetite tailings with residual beneficiation agents. These microorganisms could contribute to the development of bioremediation technologies. The main factors affecting the diversity and composition of bacteria in the tailings were Fe, Mn, V, SO42-, total nitrogen, and pH of the tailings. Illumination inhibited microbial community abundance, while the high temperature (39.5 °C) stimulated microbial community abundance. Overall, this study strengthens the understanding of the geochemical cycling of V in tailings influenced by residual beneficiation agents and the application of inherent microbial techniques in the remediation of tailing-affected environments.
Collapse
Affiliation(s)
- Qi-Xuan Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Chun-Dan Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, 644000, China
| | - Jin-Yan Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Panzhihua, 617000, Sichuan, China.
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, Sichuan, China
| |
Collapse
|
5
|
Luo X, Wang X, Xia C, Peng J, Wang Y, Tang Y, Gao F. Quantitative ion character-activity relationship methods for assessing the ecotoxicity of soil metal(loid)s to lettuce. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24521-24532. [PMID: 36336735 DOI: 10.1007/s11356-022-23914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
New pollution elements introduced by the rapid development of modern industry and agriculture may pose a serious threat to the soil ecosystem. To explore the ecotoxicity and risk of these elements, we systematically studied the acute toxicity of 18 metal(loid)s toward lettuce using hydroponic experiments and quantitative relationships between element toxicity and ionic characteristics using ion-grouping and ligand-binding theory methods, thereby establishing a quantitative ion character-activity relationship (QICAR) model for predicting the phytotoxicity threshold of data-poor elements. The toxicity of 18 ions to lettuce differed by more than four orders of magnitude (0.05-804.44 μM). Correlation and linear regression analysis showed that the ionic characteristics significantly associated with this toxicity explained only 23.8-50.3% of the toxicity variation (R2Adj = 0.238-0.503, p < 0.05). Relationships between toxicity and ionic properties significantly improved after separating metal(loid) ions into soft and hard, with R2Adj of 0.793 and 0.784 (p < 0.05), respectively. Three ligand-binding parameters showed different predictive effects on lettuce metal(loid) toxicity. Compared with the binding constant of the biotic ligand model (log K) and the hard ligand scale (HLScale) (p > 0.05), the softness consensus scale (σCon) was significantly correlated with toxicity and provided the best prediction (R2Adj = 0.844, p < 0.001). We selected QICAR equations based on soft-hard ion classification and σCon methods to predict phytotoxicity of metal(loid)s, which can be used to derive ecotoxicity for data-poor metal(loid)s, providing preliminary assessment of their ecological risks.
Collapse
Affiliation(s)
- Xiaorong Luo
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| | - Cunyan Xia
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Jing Peng
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Yujie Tang
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Fan Gao
- College of Resource Environment and Tourism, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
6
|
He E, Qiu H. Lanthanum and cerium disrupt similar biological pathways and interact synergistically in Triticum aestivum as revealed by metabolomic profiling and quantitative modeling. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127831. [PMID: 34863565 DOI: 10.1016/j.jhazmat.2021.127831] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The industrial and agricultural applications of rare earth elements (REEs) lead to considerable REE emissions into environment. Yet, little is known about the molecular-level effects and interactions of REEs in terrestrial plants. Herein, the individual and joint effects of La and Ce in Triticum aestivum were investigated using mass spectrometry-based metabolomics. Metabolic effect level index (MELI) was utilized as a readable endpoint for quantifying mixture interactions. Exposure to single La/Ce at environmentally relevant levels induced significant dose-dependent metabolic changes. The highly overlap of differential metabolites and perturbed pathways of La and Ce suggested their similar mode of action. Exposure to La-Ce mixtures did not induce additional metabolic pathway perturbation. Specifically, metabolism of amino sugar and nucleotide sugar, starch and sucrose, fructose and mannose, glycerophospholipid and purine were disrupted for both single and binary exposures. These results, together with physiological indicators, point to REE-induced oxidative stress, energy expenditure, DNA damage and membrane disturbance. The MELI calculations showed that La and Ce interacted synergistically at the overall metabolic level, which could be causally linked to synergistic interaction at the individual level (root elongation). This work proved metabolomics could be an important and effective strategy for interpreting toxicity and interactions of REE mixtures.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Parker SP, Wilkes AE, Long GR, Goulding NWE, Ghosh RS. Development of Fluoride Protective Values for Aquatic Life Using Empirical Bioavailability Models. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:396-409. [PMID: 34813674 PMCID: PMC9303462 DOI: 10.1002/etc.5259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/21/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The derivation of protective values for aquatic life can be enhanced by the development and use of bioavailability models. Recent advances to metals bioavailability modeling are applicable to other analyte groups and should be widely considered. We conducted a meta-analysis of the available aquatic toxicity literature for fluoride to evaluate the utility of hardness, alkalinity, and chloride as toxicity-modifying factors (TMFs) in empirical bioavailability models of freshwater taxa. The resulting optimal multiple linear regression model predicting acute fluoride toxicity to the invertebrate Hyalella azteca included all three TMFs (observed vs. predicted 50% lethal concentrations, R2 = 0.88) and the optimal model predicting toxicity to the fish Oncorhynchus mykiss included alkalinity and hardness (R2 = 0.37). At >20 mg/L chloride, the preliminary final acute values for fluoride were within 1 order of magnitude and ranged from approximately 18.1 to 56.3 mg/L, depending on water chemistry. Sensitivity of H. azteca to low-chloride conditions increased model uncertainty when chloride was <20 mg/L. Because of limited toxicity data, chronic bioavailability models were not developed, and final chronic values were derived using an acute-to-chronic ratio (ACR) approach. Accounting for TMFs, the geometric mean ACR was 5.4 for fish and invertebrate taxa (n = 6). The present assessment highlights the need to expand bioavailability modeling to include inorganic anions, particularly fluoride, and demonstrates that existing promulgated protective values for fluoride are likely overly conservative. More toxicological studies are recommended to further refine multivariate empirical bioavailability models for inorganic anions. Environ Toxicol Chem 2022;41:396-409. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
8
|
Tang X, Huang Y, Li Y, Yang Y, Cheng X, Jiao G, Dai H. The response of bacterial communities to V and Cr and novel reducing bacteria near a vanadium‑titanium magnetite refinery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151214. [PMID: 34715225 DOI: 10.1016/j.scitotenv.2021.151214] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination with multiple heavy metals has always been a pressing issue, but little attention has been given to V and Cr and their chemical fractions' impacts on microorganisms because Cr2O3 usually occurs as an associated mineral in vanadium mines. To investigate this issue, samples (N1-N6) less affected by anthropogenic activities were selected for microbial analysis. The area near the refinery was heavily contaminated according to the PLI (pollution load index). Actinobacteriota, Proteobacteria, and Chloroflexi were the dominant phyla in the soil. The diversity of bacteria was positively influenced by V and Cr and negatively influenced by pH, while the abundance was positively correlated with soil nutrients. Interestingly, the influence of heavy metals in the residual fraction on the microbial community structure and functional metabolism was higher than that in the oxidizable fraction, which may be due to the relatively low heavy metal valence of the oxidizable fraction, suggesting that low valence binding forms of multivalence elements have little effect on microorganisms in the soil. Ultimately, two strains with great efficiency in reducing V and Cr were screened, and co-occurrence network characteristics with significant positive interactions suggested that Bacillus can coordinate community structure in the same niche. This research will help to explore the bioavailability of heavy metals and further achieve the bioremediation of heavy metal contamination in soil.
Collapse
Affiliation(s)
- Xue Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Yi Huang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China; State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China.
| | - Ying Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ying Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Xin Cheng
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Ganghui Jiao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Geosciences, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| | - Hao Dai
- State Key Laboratory of Collaborative Control and Joint Remediation of Soil and Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, Sichuan, China
| |
Collapse
|
9
|
Luo X, Wang X, Tang Y, Liu Y, Wang Y. Using quantitative ion character-activity relationship (QICAR) method in evaluation of metal toxicity toward wheat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112443. [PMID: 34166939 DOI: 10.1016/j.ecoenv.2021.112443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
It is important to assess the toxic effects posed by soil pollutants toward plants. However, plant toxicology experiments normally involve a considerable amount of manpower, consumables and time. Therefore, the use of metal toxicity prediction models, independent of toxicity tests, is critical. In this study, we investigated the toxicity of different metal ions to wheat using hydroponic experiments. We employed the methods of soft-hard ion grouping, soft-hard ligand theory and K (conditional binding constant based on the biotic ligand model principle) in combination with hydroponic experiments to explore the application of quantitative ion character-activity relationships in predicting phytotoxicity. The results showed that the toxicity of the 19 metal ions tested varied significantly, with EC50 ranging from 0.27 μM to 4463.36 μM. The linear regression relationships between the toxicity of these metal ions and their physicochemical properties were poor (R2 = 0.237-0.331, p < 0.05). These relationships were improved after grouping the metals according to the soft-hard theory (R2 = 0.527-0.744 and p < 0.05 for soft ions; R2 = 0.445-0.743 and p < 0.05 for hard ions). The application of soft-hard ligand theory, based on the binding affinity of the metals to the ligands, showed poor prediction of the phytotoxicity of metals, with R2 = 0.413 (p = 0.024) for the softness consensus scale (σCon) and R2 = 0.348 (p = 0.218) for the normalized hard ligands scale (HLScale). However, the method of K provided the closest fit in predicting toxicity (R2 = 0.803, p < 0.001). Our results showed that the application of soft-hard ion grouping and log K can improve prediction of the phytotoxicity of metals relatively well, which can potentially be used for deriving the toxicity of elements with limited toxicity data.
Collapse
Affiliation(s)
- Xiaorong Luo
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xuedong Wang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China.
| | - Yujie Tang
- College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Yanju Liu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing 100191, China
| |
Collapse
|
10
|
Gong B, He E, Romero-Freire A, Ruan J, Yang W, Zhang P, Qiu H. Do essential elements (P and Fe) have mitigation roles in the toxicity of individual and binary mixture of yttrium and cerium to Triticum aestivum? JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125761. [PMID: 33819642 DOI: 10.1016/j.jhazmat.2021.125761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Essential elements can affect the bioavailability, uptake, and toxicity of metals. However, hardly any research has focused on the roles of essential elements on the toxicity of rare earth metals. Here we examined how P and Fe modified the individual and binary toxicity of Y and Ce to Triticum aestivum, respectively. Standard root elongation tests were used to quantify the toxicity of both single and binary mixtures at three levels of P addition (1, 5, and 10 μM) and Fe addition (0.1, 1, and 5 mM). Our results showed that both P and Fe can alleviate individual toxicity of Y or Ce irrespective of the dose indicators as suggested by the enhanced EC50 values. Both P and Fe might mitigate Y/Ce toxicity by limiting Y/Ce uptake into roots and improving nutritional status of wheats, whereas P can also decrease free Y/Ce ion activities in the exposure media. As for the mixture toxicity of Y and Ce, only improved P, but not Fe can exhibit approximately additive mixture toxicity, which can be adequately predicted by the simple Concentration Addition model. Our results suggested the important roles of P and Fe in assessing Y and Ce toxicity accurately.
Collapse
Affiliation(s)
- Bing Gong
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ana Romero-Freire
- Department of Soil Science, University of Granada, Avd. Fuente Nueva, Granada 18002, Spain
| | - Jujun Ruan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Peihua Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|