1
|
Báez ME, Sarkar B, Peña A, Vidal J, Espinoza J, Fuentes E. Effect of surfactants on the sorption-desorption, degradation, and transport of chlorothalonil and hydroxy-chlorothalonil in agricultural soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121545. [PMID: 37004862 DOI: 10.1016/j.envpol.2023.121545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The fungicide chlorothalonil (CTL) and its metabolite hydroxy chlorothalonil (OH-CTL) constitute a risk of soil and water contamination, highlighting the need to find suitable soil remediation methods for these compounds. Surfactants can promote the bioavailability of organic compounds for enhanced microbial degradation, but the performance depends on soil and surfactant properties, sorption-desorption equilibria of contaminants and surfactants, and possible adverse effects of surfactants on microorganisms. This study investigated the influence of five surfactants [e.g., Triton X-100 (TX-100), sodium dodecyl sulphate (SDS), hexadecyltrimethylammonium bromide (HDTMA), Aerosol 22 and Tween 80] on the sorption-desorption, degradation, and mobility of CTL and OH-CTL in two volcanic and one non-volcanic soil. Sorption and desorption of fungicides depended on the sorption of surfactants on soils, surfactants' capacity to neutralize the net negative charge of soils, surfactants' critical micellar concentration, and pH of soils. HDTMA was strongly adsorbed on soils, which shifted the fungicide sorption equilibria by increasing the distribution coefficient (Kd) values. Contrarily, SDS and TX-100 lowered CTL and OH-CTL sorption on soils by decreasing the Kd values, which resulted in an efficient extraction of the fungicide compounds from soil. SDS increased the degradation of CTL, especially in the non-volcanic soil (DT50 values were 14 and 7 days in natural and amended soils, with final residues <7% of the initial dose), whereas TX-100 enabled an early start and sustenance of OH-CTL degradation in all soils. CTL and OH-CTL stimulated soil microbial activities without noticeable deleterious effects of the surfactants. SDS and TX-100 also reduced the vertical transport of OH-CTL in soils. Results of this study could be extended to soils in other regions of the world because the tested soils represent widely different physical, chemical, and biological properties.
Collapse
Affiliation(s)
- María E Báez
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile.
| | - Binoy Sarkar
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Aránzazu Peña
- Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Granada, Spain
| | - Jorge Vidal
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Jeannette Espinoza
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| | - Edwar Fuentes
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Olivos 1007, 8380000, Santiago, Chile
| |
Collapse
|
2
|
Liu X, Peng X, Wang A, Yang C, Cheng Y, Wang J, Wu Y, Ju C. Preparation of TiO2/CX composite photoanode and its breathing-like mode photoelectrocatalytic degradation of solubilized PHE in soil washing effluent. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Electrolytic Oxidation as a Sustainable Method to Transform Urine into Nutrients. Processes (Basel) 2020. [DOI: 10.3390/pr8040460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, the transformation of urine into nutrients using electrolytic oxidation in a single-compartment electrochemical cell in galvanostatic mode was investigated. The electrolytic oxidation was performed using thin film anode materials: boron-doped diamond (BDD) and dimensionally stable anodes (DSA). The transformation of urine into nutrients was confirmed by the release of nitrate (NO3−) and ammonium (NH4+) ions during electrolytic treatment of synthetic urine aqueous solutions. The removal of chemical oxygen demand (COD) and total organic carbon (TOC) during electrolytic treatment confirmed the conversion of organic pollutants into biocompatible substances. Higher amounts of NO3− and NH4+ were released by electrolytic oxidation using BDD compared to DSA anodes. The removal of COD and TOC was faster using BDD anodes at different current densities. Active chlorine and chloramines were formed during electrolytic treatment, which is advantageous to deactivate any pathogenic microorganisms. Larger quantities of active chlorine and chloramines were measured with DSA anodes. The control of chlorine by-products to concentrations lower than the regulations require can be possible by lowering the current density to values smaller than 20 mA/cm2. Electrolytic oxidation using BDD or DSA thin film anodes seems to be a sustainable method capable of transforming urine into nutrients, removing organic pollution, and deactivating pathogens.
Collapse
|
4
|
Acosta-Santoyo G, Llanos J, Raschitor A, Bustos E, Cañizares P, Rodrigo M. Performance of ultrafiltration as a pre-concentration stage for the treatment of oxyfluorfen by electrochemical BDD oxidation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Carboneras MB, Rodrigo MA, Canizares P, Villasenor J, Fernandez-Morales FJ. Removal of oxyfluorfen from polluted effluents by combined bio-electro processes. CHEMOSPHERE 2020; 240:124912. [PMID: 31574437 DOI: 10.1016/j.chemosphere.2019.124912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
In this work, the combination of biological and electrochemical processes to mineralize oxyfluorfen has been studied. First, an acclimatized mixed-culture biological treatment was used to degrade the biodegradable fraction of the pesticide, reaching up to 90% removal. After that, the non-biodegraded fraction was oxidised by electrolysis using boron-doped diamond as the anode. The results showed that the electrochemical technique was able to completely mineralize the residual pollutants. The study of the influence of the supporting electrolyte on the electrochemical process showed that the trace mineral solution used in the biological treatment was enough to completely mineralize the oxyfluorfen, resulting in total organic carbon removal rates that were well-fitted by a first-order model with a kinetic constant of 0.91 h-1. However, the first-order degradation rate increased approximately 20% when Na2SO4 was added as supporting electrolyte, reaching a degradation rate of 1.16 h-1 with a power consumption that was approximately 70% lower.
Collapse
Affiliation(s)
- M B Carboneras
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - P Canizares
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - J Villasenor
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain
| | - F J Fernandez-Morales
- Department of Chemical Engineering, University of Castilla-La Macha, ITQUIMA, Avenida Camilo José Cela s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
6
|
Cotillas S, Lacasa E, Herraiz-Carboné M, Sáez C, Cañizares P, Rodrigo MA. Innovative photoelectrochemical cell for the removal of CHCs from soil washing wastes. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115876] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Carboneras Contreras MB, Fourcade F, Assadi A, Amrane A, Fernandez-Morales FJ. Electro Fenton removal of clopyralid in soil washing effluents. CHEMOSPHERE 2019; 237:124447. [PMID: 31356995 DOI: 10.1016/j.chemosphere.2019.124447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The removal of a commercial herbicide, based on clopyralid, by means of Electro-Fenton (EF) was studied using a soil washing effluent obtained using synthetic ground water as washing fluid. From the results, it was observed that the degradation and mineralization yields of clopyralid were high, even without the addition of supporting electrolyte. The groundwater could be then used as a sustainable supporting electrolyte. The influence of the minerals constituents, the current and the ferrous ions regeneration was evaluated. The highest hydrogen peroxide production was achieved working at 200 mA but regeneration of ferrous ions was not efficient at this current. Iodide ions were one of the main responsible in the EF efficiency decrease due to their reaction with the produced hydrogen peroxide. Electrochemical study proved that clopyralid was not electroactive and that its degradation was mainly due to radical oxidation. Long duration electrolysis carried out at 200 mA in groundwater provided an improvement of the solution biodegradability after 480 min that can be linked to a significant increase in the carboxylic acids production. These results support the feasibility of applying an EF process in order to carry out a subsequent biological mineralization.
Collapse
Affiliation(s)
- María Belén Carboneras Contreras
- Chemical Engineering Department. Research Institute for Chemical and Environmental Technology (ITQUIMA). University of Castilla- La Mancha, 13071, Ciudad Real, Spain; Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, F-35000, Rennes, France
| | - Florence Fourcade
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, F-35000, Rennes, France.
| | - Aymen Assadi
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, F-35000, Rennes, France
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, F-35000, Rennes, France
| | - Francisco Jesus Fernandez-Morales
- Chemical Engineering Department. Research Institute for Chemical and Environmental Technology (ITQUIMA). University of Castilla- La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
8
|
Raschitor A, Llanos J, Rodrigo MA, Cañizares P. Combined electrochemical processes for the efficient degradation of non-polar organochlorine pesticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 248:109289. [PMID: 31344559 DOI: 10.1016/j.jenvman.2019.109289] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
This study deals with the development of efficient and economic electrochemical treatment processes to confront the treatment of liquid wastes containing non-polar organochlorine pesticides. In previous works, it was demonstrated that it is possible to use electrocoagulation (EC) as a concentration technique for a model organochlorine pesticide (oxyfluorfen). Within this framework, the present work describes a process for the degradation of wastes containing non-polar organochlorines (oxyfluorfen or lindane) in two consecutive stages: 1) a first stage of concentration by electrocoagulation; 2) a second stage of electrochemical degradation by electro-oxidation (EO) or electro-Fenton (EF). The first result reached in the present work is that it is possible to remove close to 50% of both pollutants using EO and more that 94% using EF. Additionally, it was proved that the addition of a pre-concentration stage decreases by a factor of 20 the power consumption needed to deplete by EO the same amount of the initial pollutant. Moreover, when EF process is performed to the concentrated stream, the power consumption is further reduced, getting values (for 1-log removal) as low as 14.51 kWh m-3 for oxyfluorfen decrease and 49.7 kWh m-3 for lindane. These results strengthen the fact that the removal efficiency increases with the concentration of the pollutant and demonstrate that the combination of concentration steps and electrochemical degradation technologies is an efficient and promising alternative for the degradation of non-polar organochlorines.
Collapse
Affiliation(s)
- A Raschitor
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - J Llanos
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain.
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real 13071, Spain
| |
Collapse
|
9
|
Futalan CM, Phatai P, Kim J, Maulana AY, Yee JJ. Treatment of soil washing wastewater via adsorption of lead and zinc using graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17292-17304. [PMID: 31016587 DOI: 10.1007/s11356-019-05010-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
In the present work, graphene oxide (GO) was synthesized via the modified Hummers method and utilized in treating real soil washing wastewater via adsorptive removal of lead (Pb) and zinc (Zn). Characterization analysis of GO was performed using X-ray diffraction, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and zeta potential analysis. The Van't Hoff, Eyring, and Arrhenius equations were applied to determine the activation and thermodynamic parameters namely activation energy (Ea), standard Gibbs energy change (ΔG°), standard enthalpy change (ΔH°), standard entropy change (ΔS°), change in activation Gibbs energy (ΔG#), change in activation enthalpy (ΔH#), and change in activation entropy (ΔS#). Based on the high coefficient of determination values (0.8882 ≥ R2 ≥ 0.9094) and low values of SSE (0.0292 ≤ SSE ≤ 0.0511) and ARE (0.8014 ≤ ARE ≤ 0.8822), equilibrium data agreed well with the Freundlich isotherm. The maximum adsorption capacity for Pb(II) and Zn(II) was determined to be 11.57 and 4.65 mg/g, respectively. Kinetic studies revealed that pseudo-second-order equation fitted well with the experimental data, which indicates that chemisorption is the rate-determining step of the adsorption system. Results have shown the possibility of GO as a potential adsorbent material in the treatment of soil washing wastewater.
Collapse
Affiliation(s)
- Cybelle M Futalan
- National Research Center for Disaster-Free and Safe Ocean City, Dong-A University, Saha-gu, Busan, 49315, Republic of Korea
| | - Piaw Phatai
- Department of Chemistry, Faculty of Science, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand
| | - JongSik Kim
- Department of Chemistry, Dong-A University, Saha-gu, Busan, 49315, Republic of Korea
| | - Achmad Yanuar Maulana
- Department of Chemistry, Dong-A University, Saha-gu, Busan, 49315, Republic of Korea
| | - Jurng-Jae Yee
- Department of Architectural Engineering, Dong-A University, Saha-gu, Busan, 49315, Republic of Korea.
| |
Collapse
|
10
|
Zou Q, Gao Y, Yi S, Jiang J, Aihemaiti A, Li D, Yang M. Multi-step column leaching using low-molecular-weight organic acids for remediating vanadium- and chromium-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15406-15413. [PMID: 30941713 DOI: 10.1007/s11356-019-04915-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
In soil, vanadium (V) contamination is commonly concomitant with chromium (Cr) contamination, which poses potential risks to humans, animals, and plants due to the transfer of toxic metals and the increase in their concentrations via the food chain or through direct exposure. This study applied a multi-step column leaching process using low-molecular-weight organic acids (LMWOAs) to treat V-contaminated soil from a smelter site that contains 2015.1 mg V kg-1 and 1060.3 mg Cr kg-1. After leaching three times with an equivalent solution/soil ratio of 0.3 mL/g using 1.0 M oxalic acid solution, the total removal rates reached 77.2% and 7.2% for V and Cr, respectively, while the removal rates of the extractable fractions reached 118.6% and 99.2% due to the reduction in residual fraction (F4) of toxic metals. Simultaneously, the distribution and redistribution of geochemical fractions of V and Cr were determined with a sequential extraction technique, and the greater proportion of potential mobile fractions of V (65.1%) may increase its leaching from soil relative to Cr (7.1%). In addition, a lower pH of the leaching agent increased the efficiency of the leaching process to an extent. Compared with batch extraction with a typical solution to soil ratio of 10 mL/g, multi-step column leaching used less agent and hence produced less wastewater. This strategy could reduce the mobilization and bioavailability of toxic metals, and potentially enhance in situ soil flushing for the remediation of V- and Cr- contaminated soil.
Collapse
Affiliation(s)
- Quan Zou
- School of Environment, Tsinghua University, Beijing, 10084, China.
| | - Yuchen Gao
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Soyoung Yi
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 10084, China.
| | | | - De'an Li
- School of Environment, Tsinghua University, Beijing, 10084, China
| | - Meng Yang
- School of Environment, Tsinghua University, Beijing, 10084, China
| |
Collapse
|
11
|
Trellu C, Chakraborty S, Nidheesh PV, Oturan MA. Environmental Applications of Boron‐Doped Diamond Electrodes: 2. Soil Remediation and Sensing Applications. ChemElectroChem 2019. [DOI: 10.1002/celc.201801877] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Clément Trellu
- Université Paris-EstLaboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM 5 Bd Descartes, 77454 Marne-la-Vallée Cedex 2 France
| | - Shampa Chakraborty
- CSIR-National Environmental Engineering Research Institute Nagpur, Maharashtra India
| | - P. V. Nidheesh
- CSIR-National Environmental Engineering Research Institute Nagpur, Maharashtra India
| | - Mehmet A. Oturan
- Université Paris-EstLaboratoire Géomatériaux et Environnement (LGE), EA 4508, UPEM 5 Bd Descartes, 77454 Marne-la-Vallée Cedex 2 France
| |
Collapse
|
12
|
Silva FL, Lanza MRV, Saez C, Rodrigo MA. Electrochemical dewatering for the removal of hazardous species from sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:768-773. [PMID: 30318156 DOI: 10.1016/j.jenvman.2018.09.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/23/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
This work focuses on the evaluation of the electrochemical dewatering of sludge polluted with model hazardous species. To do this, two sludge samples taken from the outlet of the anaerobic digesters of the municipal Wastewater Treatment Facility of Ciudad Real were polluted with herbicide clopyralid (CP) and with antibiotics amoxicillin (AMX) and ampicillin (AMP), respectively. These sludge samples underwent first dewatering by press filtration and then, the dewatering continued by the application of an electrochemically assisted driven process with increasing electric fields (1.0, 2.0 and 3.0 V cm-1). Results demonstrate that the electrochemically-assisted process can help to exhaust the pollutant adsorbed onto the sludge and attain a supplemental removal (up to 15%) of water in both cases. This is a highly important result, because it can help to develop technologies for sludge treatment that avoid the diffusion of hazardous pollution during the land application of the sludge. No reactivity of the pollutants was observed during the tests.
Collapse
Affiliation(s)
- F L Silva
- Institute of Chemistry of São Carlos, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil
| | - M R V Lanza
- Institute of Chemistry of São Carlos, University of São Paulo, P.O. Box 780, 13560-970, São Carlos, SP, Brazil
| | - C Saez
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Chemical Engineering Department, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
13
|
Zou Q, Xiang H, Jiang J, Li D, Aihemaiti A, Yan F, Liu N. Vanadium and chromium-contaminated soil remediation using VFAs derived from food waste as soil washing agents: A case study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 232:895-901. [PMID: 30530280 DOI: 10.1016/j.jenvman.2018.11.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 10/18/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Food waste (FW) is environmentally unfriendly and decays easily under ambient conditions. Vanadium (V) and chromium (Cr) contamination in soils has become an increasing concern due to risks to human health and environmental conservation. Volatile fatty acids (VFAs) derived from FW was applied as soil washing agent to treat V and Cr-contaminated soil collected from a former V smelter site in this work. The Community Bureau of Reference (BCR) three-step sequential extraction procedure was used to identify geochemical fractions of V and Cr influencing their mobility and biological toxicity. Optimal parameters of a single washing procedure were determined to be a 4 h contact time, liquid-solid ratio of 10:1, VFAs concentration of 30 g/L, and reaction temperature of 25 °C, considering for typical soil remediation projects and complete anaerobic fermentation of FW. Under the optimal conditions, butyric acid fermentation VFAs attained removal rates of 57.09 and 23.55% for extractable fractions of V and Cr, respectively. Simultaneously, a multi-washing process under a constant liquid-solid ratio using fresh and recycled VFAs was conducted, which led to an improvement on the total removal efficiency of toxic metals. The washing procedure could reach the pollution thresholds for several plants, such as of S. viridis, K. scoparia, M. sativa, and E. indica. This strategy enhances the utilization of VFAs derived from food waste, has a positive effect on V and Cr-contaminated soil remediation, wastewater control of soil washing and FW disposal.
Collapse
Affiliation(s)
- Quan Zou
- School of Environment, Tsinghua University, Beijing 10084, China.
| | - Honglin Xiang
- School of Environment, Tsinghua University, Beijing 10084, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing 10084, China; Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education, Beijing 10084, China.
| | - Dean Li
- School of Environment, Tsinghua University, Beijing 10084, China
| | | | - Feng Yan
- School of Environment, Tsinghua University, Beijing 10084, China
| | - Nuo Liu
- School of Environment, Tsinghua University, Beijing 10084, China
| |
Collapse
|
14
|
Qiu Y, Xu M, Sun Z, Li H. Remediation of PAH-Contaminated Soil by Combining Surfactant Enhanced Soil Washing and Iron-Activated Persulfate Oxidation Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030441. [PMID: 30717404 PMCID: PMC6388178 DOI: 10.3390/ijerph16030441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
There is increasing concern regarding soils contaminated with polycyclic aromatic hydrocarbons (PAHs). In the present study, the remediation of soil spiked with PAHs was explored by the combination of soil washing with sodium dodecyl sulfate (SDS) and subsequent oxidation through persulfate (PS) activated by Fe2+, nanoscale zero-valent iron (nZVI), and SiO₂-coated nZVI (SiO₂/nZVI). Results demonstrated that the removal of phenanthrene (PHE), fluoranthene (FLU), and pyrene (PYR) by SDS is an efficient means for soil decontamination. At SDS concentration of 20 g/L, the removal efficiencies of PHE, PYR, and FLU were 37%, 40%, and 44%, respectively. For the degradation of PAHs and SDS in the soil washing effluents, the efficiencies of PS activated with SiO₂/nZVI were not significantly different from those of PS activated with nZVI and Fe2+ (p > 0.05). In practice, SiO₂/nZVI is more preferable due to the improved antioxidation and dispersibility. At the dosage of 2 g/L (in the amount of iron) of SiO₂/nZVI, the removal efficiencies of PHE, FLU, PYR, and SDS within 30 min of treatment were 75%, 85%, 87%, and 34%, respectively. The degradation of SDS was much lower than those of PAHs, which facilitated the recycle of SDS. Our findings suggest that PS activated with SiO₂/nZVI is a promising method for the treatment of soil washing effluents containing SDS and PAHs.
Collapse
Affiliation(s)
- Yanhua Qiu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Meilan Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Zongquan Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Helian Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
15
|
Carboneras MB, Villaseñor J, Fernández-Morales FJ, Rodrigo MA, Cañizares P. Biological treatment of wastewater polluted with an oxyfluorfen-based commercial herbicide. CHEMOSPHERE 2018; 213:244-251. [PMID: 30223129 DOI: 10.1016/j.chemosphere.2018.09.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/24/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Fluoxil-24 is a commercial herbicide based on oxyfluorfen (a hazardous non-soluble organochlorinated compound) and additional compounds used as solvents. The aim of this work is to study the biotreatability of this commercial herbicide in water through batch experiments performed at different temperatures (15, 20, 25 and 30 °C) and initial concentrations (85, 150, 300 and 500 mg L-1 of oxyfluorfen). Activated sludge from an oil refinery wastewater treatment plant was acclimated and used for biodegradation experiments. Two main mechanisms, volatilization and biodegradation, were observed to be responsible of the herbicide removal. Fluoxil-24 removal efficiencies between approximately 40% and 80% were reached after 70 h, depending on the conditions used, and oxyfluorfen was not completely removed. Regarding the influence of the temperature, thermal inhibition problems appeared at 30 °C, and the volatilization rate of solvents increased, causing oxyfluorfen to become unavailable for microorganisms. An increase of herbicide initial concentration did not clearly affect the herbicide removal efficiency, whereas it negatively affected the biological mechanism. The experimental results were fitted to a mathematical model that included both simultaneous mechanisms of volatilization and Monod biodegradation kinetics. The model was able to predict the experimental results, and the calculated model parameters confirmed the effect of the variables under study.
Collapse
Affiliation(s)
- María Belén Carboneras
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain.
| | - José Villaseñor
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Francisco Jesús Fernández-Morales
- Chemical Engineering Department, Research Institute for Chemical and Environmental Technology (ITQUIMA), University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Manuel Andrés Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| | - Pablo Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technology, University of Castilla- La Mancha, 13071, Ciudad Real, Spain
| |
Collapse
|
16
|
Carboneras MB, Cañizares P, Rodrigo MA, Villaseñor J, Fernandez-Morales FJ. Improving biodegradability of soil washing effluents using anodic oxidation. BIORESOURCE TECHNOLOGY 2018; 252:1-6. [PMID: 29306123 DOI: 10.1016/j.biortech.2017.12.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
In this work, a combination of electrochemical and biological technologies is proposed to remove clopyralid from Soil Washing Effluents (SWE). Firstly, soil washing was carried out to extract clopyralid from soil. After that, four different anodes-Ir-MMO, Ru-MMO, pSi-BDD and Carbon Felt (CF)-were evaluated in order to increase the biodegradability of the SWE. CF was selected because was the only one able to transform the pesticide to a more biodegradable compounds without completely mineralizing it. Finally, biological oxidation tests were performed to determine the aerobic biodegradability of the SWE generated. From the obtained results, it was observed that at the beginning of the electrolysis the toxicity slightly increased and the biodegradability decreases. However, for electric current charges over 2.5 A·h dm-3 the toxicity drastically decreased, showing an EC50 of 143 mg L-1, and the BOD5/COD ratio increased from 0.02 to 0.23.
Collapse
Affiliation(s)
- María Belén Carboneras
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Pablo Cañizares
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - Manuel Andrés Rodrigo
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - José Villaseñor
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | | |
Collapse
|
17
|
Carboneras B, Villaseñor J, Fernandez-Morales FJ. Modelling aerobic biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by mixed-cultures. BIORESOURCE TECHNOLOGY 2017; 243:1044-1050. [PMID: 28764106 DOI: 10.1016/j.biortech.2017.07.089] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to study and to model the biodegradation of atrazine and 2,4-dichlorophenoxy acetic acid by aerobic mixed cultures. Slow removal rates were observed when biodegrading atrazine, in spite of the initial concentrations. However, high removal rates were obtained when biodegrading 2,4-D, removing up to 100mg/L in about 2months. Regarding the 2,4-D it must be highlighted that a lag phase appears, being its length proportional to the initial 2,4-D concentration. The biodegradation trends were fitted to a Monod based model and the value of the main parameters determined. In the case of atrazine they were µmax: 0.011 1/d and Y: 0.53g/g and in the case of 2,4-D µmax: 0.071 1/d and Y: 0.44g/g, indicating the higher persistence of atrazine. Once finished the experiments the microbial population was characterized being the major genus Pseudomonas when treating atrazine and Rhodococcus when treating 2,4-D.
Collapse
Affiliation(s)
- Belen Carboneras
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | - José Villaseñor
- University of Castilla-La Mancha, ITQUIMA, Chemical Engineering Department, Avenida Camilo José Cela S/N, 13071 Ciudad Real, Spain
| | | |
Collapse
|